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1 Introduction

The theory of rough paths allows one to properly define solutions of controlled differential equations

driven by irregular paths and to assert the continuity — in the right topology — of the map that send

the control to the solution [17; 16; 14; 11; 12]. As this theory was initially designed to overcome

the problem of defining stochastic differential equations in a pathwise way, this map is called the

Itô map. As Brownian paths are α-Hölder continuous for any α < 1/2, the theory of rough paths

asserts that one can define in a pathwise way solution of stochastic differential equations as soon

as one shows that the iterated integrals t 7→
∫ t

0
(Bs − B0)⊗ ◦dBs have the right regularity property,

and then, that the Brownian path can be embedded in an enhanced Brownian path with values in

a non-commutative Lie group given by a truncated tensor algebra. The theory of rough path can

indeed be used for many stochastic processes (See for example the book [7]).

The goal of this article is then to bring some precisions on the Itô map, which is that map that

transform a rough path x of finite p-variation with p < 3 into the solution z of

zt = z0+

∫ t

0

f (zs)dxs

for a vector field f which is smooth enough. In particular, we show that the assumptions on the

boundedness on the vector field can be dropped to assume that f has a linear growth to get local

existence up to a given horizon, and sometimes global existence with some global control on the

growth of f for a function f with a bounded, γ-Hölder continuous derivative with 2+ γ > p (in-

deed, we may even relax the conditions to consider the case where f has only a locally γ-Hölder

continuous derivative). Also, we give a sufficient condition for global existence, but which is not

a necessary condition. In [5], A.M. Davie dealt with the rough differential equations using an ap-

proach that relies on Euler scheme and also gave a sufficient condition for non-explosion. He also

showed that explosion may happens by constructing a ad hoc counter-example. In [7], P. Friz and

N. Victoir assert that no explosion occurs for rough differential equations driven by geometric rough

paths (the ones that may be approximated by smooth rough paths) under a linear growth condition

when the underlying paths live in Rd . Constructing sub-Riemaniann geodesics play an important

role there, so that extension to more general setting as not an easy issue. Yet in most of the case we

do not know whether genuine explosion may happen, and stochastic differential equations provides

us an example where there is no explosion even with conditions weaker than those in [7]. How-

ever, in this case, it is possible to take profit from the fact that we have an extra-information on the

solution, which is the fact that it is a semi-martingale and then have finite p-variation.

The special case of a linear vector field f can be studied independently and global existence occurs.

Note that linear rough differential equations have already been studied in [15; 1; 7; 8].

In addition, we show that the Itô map (z0, f , x) 7→ z is locally Lipschitz in all its arguments (a slightly

weaker statement on the continuity with respect to the vector field was proved in [3; 9] and [13],

and on the Lipschitz continuity with respect to x in [16; 1]) under the more stringent assumption

that f is twice differentiable with γ-Hölder continuous second-order derivative with 2 + γ > p.

The proof relies on some estimates on the distance between two solutions of rough differential

equations, which can be also used as a priori estimates. From this, we deduce an alternative proof

of the uniqueness of the solution of a differential equation controlled by a rough paths of finite

p-variation with p < 3.
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The Lipschitz continuity of the Itô map can be important for applications, since it allows one to

deduce for example rates of convergence of approximate solutions of differential equations from the

approximations of the driving signal (see for example [18] for a practical application to functional

quantization).

In this article, our main tool is to use the approach that allows one to pass from an almost rough

path to a rough path. Another approach to deal with rough differential equations consists in studying

convergence of Euler scheme in the way initiated by A.M. Davie [5] (see also [6; 7]) where estimates

are obtained on smooth paths. However, our approach can be used in a very general context,

including infinite dimensional ones and we are not bound in using geometric rough paths (although

any rough path may be interpreted as a geometric rough path, but at the price of a higher complexity

[10]). Yet we also believe that all the results of this article may be extended to deal with (p,q)-rough

paths [10], although it leads to much more complicated computations.

2 Notations

Let U and V be some finite-dimensional Banach spaces (we have to note however that the dimension

does not play a role here when we consider functions that are (2+ γ)-Lipschitz continuous, but not

(1 + γ)-Lipschitz continuous, where the solutions of the rough differential equations are defined

using a non-contractive fixed point theorem, which is not always possible to apply in an infinite

dimensional setting). The tensor product between two such spaces will be denoted by U⊗ V, and

such a space is equipped with a norm |·| such that |x⊗ y |U⊗V ≤ |x |U×|y |V. To simplify the notations,

the norm on a Banach space X is then denoted by | · | instead of | · |X, as there is no ambiguity. For a

Banach space X, we choose a norm on the tensor space X⊗ X such that |a⊗ b| ≤ |a| · |b| for a, b in

X. For a Banach space X = Y⊕ Z with a sub-space Y, we denote by πY(x) the projection of x onto

the sub-space Y. In addition, we define on X⊕ (X⊗X) a norm | · | by |a|=max{|πX(a)|, |πX⊗X(a)|}.

A control is a R+-valued function ω defined on

∆2 def
= {(s, t) ∈ [0, T]2 |0≤ s ≤ t ≤ T}

which is continuous near the diagonal with ω(s, s) = 0 for s ∈ [0, T] and which is super-additive,

that is

ω(s, r) +ω(r, t)≤ω(s, t), 0≤ s ≤ r ≤ t ≤ T.

For a Banach space U, let us define the space T 2(U) = {1}⊕U⊕ (U⊗U), which is a subspace of the

vector space R⊕U⊕ (U⊗U). Let us note that (T 2(U),⊗) is a Lie group.

For 2 ≤ p < 3, a rough path x from [0, T] to T 2(U) of finite p-variation controlled by ω is x is a

function from [0, T] to (T2(U),⊗) such that

‖x‖p,ω
def
= sup
(s,t)∈∆2

s 6=t

max

¨
|πU(xs,t)|

ω(s, t)1/p
,
|πU⊗U(xs,t)|

ω(s, t)2/p

«

is finite, where xs,t
def
= x−1

s ⊗x t for (s, t) ∈∆2 and x−1
s is the inverse of xs in the Lie group (T2(U),⊗).

Let L(U,V) be the space of linear maps from U to V.
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For γ ∈ (0,1], we denote by LipLG(1+γ) the class of continuous functions f : V→ L(U,V) for which

there exists a bounded, continuous function ∇ f : V→ L(V⊗U,V) such that

f (z)x − f (y)x =

∫ 1

0

∇ f (y +τ(z− y))(z− y)⊗ x dτ

and ∇ f is γ-Hölder continuous: for some constant C > 0,

‖∇ f (z)−∇ f (y)‖L(V⊗U,V) ≤ C |z − y |γ, ∀z, y ∈ V.

In other words, if U= Rd and V= Rm, this means that f = ( f1, . . . , fd) has bounded derivatives ∇ fi

which are γ-Hölder continuous from Rm to R. Note that here, f is not necessarily bounded, but it

growths at most linearly.

We denote by Lip(1+ γ) the class of functions in LipLG(1+ γ) which are bounded.

We also denote by LipLG(2+ γ) the class of continuous functions f : V → L(U,V) with bounded,

continuous functions ∇ f : V→ L(V⊗U,V) that are Lip(1+ γ).

We denote by Lip(2+ γ) the class of functions in LipLG(2+ γ) which are bounded.

For a γ-Hölder continuous function, we denote by Hγ( f ) its Hölder norm. We also set Nγ( f )
def
=

Hγ( f ) + ‖ f ‖∞, which is a norm on the space of γ-Hölder continuous functions.

3 The main results

3.1 The case of bounded vector fields

For z0 ∈ V, let z be a solution to the rough differential equation

zt = z0+

∫ t

0

f (zs)dxs. (1)

By this, we mean a rough path in T2(U⊕V) such that πT2(U)(z) = x and which is such that zt = z0+∫ t
0

D( f )(zs)dzs where D( f ) is the differential form on U⊕V defined by D( f )(x , z) = 1 dx+ f (z)dx ,

where 1 is the map from U⊕ V to L(U,U) defined by 1(x , z)a = a for all (x , z, a) ∈ U× V×U.

Here, we consider that x is of finite p-variation controlled byω, and we then consider only solutions

that are of finite p-variation controlled by ω.

We recall one of the main result in the theory of rough paths.

Theorem 1 ([17; 16; 10]). Let γ ∈ (0,1] and p ∈ [2,3) such that 2+γ > p. If f belongs to Lip(1+γ)

and x is of p-finite variation controlled by ω with p ∈ [2,3) then there exists a solution to (1) (this
solution is not necessarily unique). If moreover, f belongs to Lip(2+ γ), then the solution is unique. In
this case, x 7→ z is continuous from the space of p-rough paths from [0, T] to T 2(U) controlled by ω to
the space of p-rough paths from [0, T] to T 2(U⊕ V) controlled by ω.

The map (z0, x , f ) 7→ z is called the Itô map.

This result can be shown using a contractive fixed point theorem if f belongs to Lip(2+γ) and by a

Schauder fixed point theorem if f belongs to Lip(1+ γ). It can also be deduced from the following

result, the existence of a unique solution if x is smooth and the continuity result, provided that one

has uniform estimates on the p-variation of the solution. Of course, it is a consequence of Theorem 3

below, which is itself an adaptation of the proof presented in [10].
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3.2 The case of non-bounded vector fields

Our goal is to extend Theorem 1 to the case of functions with a linear growth, as in the case of

ordinary differential equations. Indeed, we were only able to prove local existence in the general

case. However, the linear case is a special case where global existence holds.

Theorem 2. Let x be a rough path of finite p-variation controlled by ω with p ∈ [1,3) on T and
f be the vector field f (y) = Ay for some linear application A from V to L(U,V). Then there exists a

unique solution to the rough differential equation zt = z0+
∫ t

0
f (zs)dxs. In addition, for some universal

constant K1,
sup

t∈[0,T]
|πV(zt − z0)| ≤ |z0|exp(K2ω(0, T )‖A‖p max{1,‖x‖pp,ω}) (2)

for some universal constant K2.

Remark 1. For practical application, for example for dealing with derivatives of rough differential

equations with respect to some parameters, then one needs to deal with equations of type

zt = z0+

∫ t

0

A(xs)zs dxs. (3)

Indeed, if one consider the rough path X t =
∫ t

0
A(xs)dxs with values in T2(L(U,V)), it is easily

shown that the solution of (3) is also the solution to zt = z0 +
∫ t

0
dXszs for which the results of

Theorem 2 may be applied.

To simplify we assume that ω is continuous on ∆2 and t 7→ω(0, t) is increasing (this are very weak

hypotheses, since using a time change it is possible to consider that x is indeed Hölder continuous

and then to consider that ω(s, t) = t− s). For a LipLG(1+γ)-vector field f , provided that Hγ( f )> 0

(otherwise, ∇ f is constant and then it corresponds to the linear case covered by Theorem 2), set

µ
def
=

�
‖∇ f ‖∞
Hγ(∇ f )

�1/γ
.

Theorem 3. If x is a rough path of finite p-variation controlled by ω, f is a LipLG(1+ γ)-vector field
with 3> 2+ γ > p ≥ 2, then for τ such that

ω(0,τ)1/pG(z0)‖x‖p,ω ≤ K3µ with G(z0) = sup
a∈W, |a−z0|≤µ

| f (a)|, (4)

for some universal constant K3 (depending only on γ and p), there exists a solution z to (1) in the sense
of rough paths which is such that for some universal constant K4 (depending only on γ and p),

|πV(zs,t)| ≤ 2‖x‖p,ωG(z0)ω(s, t)1/p, (5a)

|πV⊗U(zs,t)| ≤ 2‖x‖p,ωG(z0)ω(s, t)2/p, (5b)

|πU⊗V(zs,t)| ≤ 2‖x‖p,ωG(z0)ω(s, t)2/p, (5c)

|πV⊗V(zs,t)| ≤ K4‖x‖p,ω(1+ ‖x‖p,ω + ‖∇ f ‖∞)G(z0)
2ω(s, t)2/p, (5d)

and sup
t∈[0,τ]

|πV(zt − z0)| ≤ µ (5e)

for all 0 ≤ s ≤ t ≤ τ. If f is a vector field in LipLG(2+ γ) with 3 ≥ 2+ γ > p, then the solution is
unique.
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Remark 2. The idea of the proof is to show that if z satisfies (5a)–(5d), then ezt = z0 +
∫ t

0
f (zs)dxs

also satisfies (5a)–(5d), and then to apply a Schauder fixed point theorem. The results are proved

under the assumption that ∇ f is bounded and Hölder continuous. However, we may assume that

∇ f is only locally Hölder continuous. In which case, we may consider a compact K as well as

µ(K) = (‖∇ f ‖∞;K/Hγ(∇ f ; K))1/γ where ‖∇ f ‖∞;K (resp. Hγ(∇ f ; K)) are the uniform (resp. Hölder

norm) of ∇ f . In this case, sups∈[0,t] |z0,s| ≤ µω(0, t)1/p/ω(0,τ)1/p for the choice of τ given by (4)

and one has also to impose that τ is also such that z0,t belongs to K for t ∈ [0,τ].

To simplify the description, we assume that the control ω is defined on 0 ≤ s ≤ t for s, t ∈ R+ and

that the rough path x is defined as a rough path on R+ with ‖x‖p,ω <+∞.

Once the local existence established, it is then possible to construct recursively a sequence {τi} of

times and a sequence {ξi} of points of V such that

ω(τi,τi+1)
1/pG(ξi)‖x‖p,ω = K3µ,

where ξ0 = z0 and ξi = πV(zτi
) for a solution zt to zt = ξi−1 +

∫ t
0

f (zs)dxs on [τi−1,τi], i ≥ 1.

This way, it is possible to paste the solutions on the time intervals [τi,τi+1]. Given a time T > 0,

our question is to know whether or not there exists a solution up to the time T , which means that

limi→∞ τi > T .

Of course, it is possible to relate the explosion time, if any, to the explosion of the p-variation of z
or of the uniform norm of z.

Lemma 1. It holds that S = limi→∞τi < +∞ if and only if limtրS ‖z‖p,ω,t = +∞ and
limtրS ‖z‖∞,t = +∞, where ‖z‖p,ω,t (resp. ‖z‖∞,t) is the p-variation (resp. uniform) norm of z
(resp. πV(z)) on [0, t].

Proof. Let us assume that for all S > 0, supt≤S ‖z‖p,ω,t < +∞ (which implies also that

supt≤S ‖z‖∞,τi
<+∞) or supt≥0 ‖z‖∞,τi

< +∞. Then G(ξi) is bounded and then

n∑

i=0

ω(τi,τi+1) =

n∑

i=0

K p
3µ

p

G(ξi)
p‖x‖pp,ω

−−−→
n→∞

+∞.

As
∑n−1

i=0 ω(τi,τi+1)≤ω(0,τn), the time τn converges to +∞ as n→∞.

Conversely, if limi→+∞τi = +∞, then there exists n such that τn > S for any S > 0 and then,

since the p-variation of a path on [0,S] may deduced from the p-variation of the path restricted to

[τi,τi+1], ‖z‖p,ω,S < +∞ and ‖z‖∞,S < +∞.

In practical, the following criterion is useful to determine whether or not a rough differential equa-

tion has a global solution or a solution up to time T . It has to be compared with the one given by

A.M. Davie in [5].

Lemma 2. It is possible to solve zt = z0+
∫ t

0
f (zs)dxs up to time T if and only if

+∞∑

i=0

ω(τi,τi+1)>ω(0, T ). (6)
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Proof. Assume (6). As
∑n−1

i=0 ω(τi,τi+1) ≤ ω(0,τn) and t 7→ ω(0, t) is increasing then for n large

enough ω(0,τn)>ω(0, T ) and τn > T , which means that at most n intervals are sufficient to solve

(1) on [0, T]. Conversely, if
∑+∞

i=0 ω(τi,τi+1) < ω(0, T ), then S = limi→∞τi < T and the solution

explodes at time S.

As
n∑

i=0

ω(τi,τi+1) =

n∑

i=0

K p
3µ

p

G(ξi)
p‖x‖pp,ω

it is then possible to consider several situations. First, let us note that for all integer i,

G(ξi)≤ h((i+ 1)µ) with h(r)
def
= sup

a∈W, |a−z0|≤r
| f (a)|.

Thus (assuming for simplicity that h(0)> 0),

+∞∑

i=0

ω(τi,τi+1)≥
K p

3µ
p

‖x‖pp,ω

Θ with Θ
def
=

+∞∑

i=0

1

h((i+ 1)µ)p
.

The next lemma is a direct consequence of Lemma 2. Let us note that Θ depends only on the vector

field f .

Lemma 3. IfΘ=+∞, then there exists a solution to (1) with a vector field f in LipLG(1+γ), 2+γ > p,
up to any time T > 0.

We should now detail some cases.

Influence of µ. Of course, the favourable cases are those for which ω(τi,τi+1) is big, but this

does not mean that µ itself shall be big, as G(ξi) also may depend on ∇ f . For example, consider

the linear growth case, in which case G(ξi) is of order | f (ξi)|+µ‖∇ f ‖∞ and ω(τi,τi+1) is of order

µ/G(ξi)‖x‖p,ω. In this case, if µ is big, then ω(τi,τi+1) is of order 1/‖∇ f ‖p∞. Thus, if µ is big

because Hγ(∇ f ) is small, then the value of ω(τi,τi+1) will be insensitive to the position ξi and a

solution may exists at least for for a large time, if not for any time. For γ = 1 and in the case of the

linear growth, one obtains easily that

n∑

i=0

ω(τi,τi+1)≥

n∑

i=0

�
1

1+ | f (x0)|‖∇
2 f ‖∞/‖∇ f ‖∞ + (i+ 1)‖∇2 f ‖∞

�p
.

The linear case may be deduced as a limit of this case by considering sequence of functions f such

that ‖∇2 f ‖∞ decreases to 0. On the other hand, if µ is big because ‖∇ f ‖∞ is big, thenω(τi,τi+1)
1/p

will be small. On the other hand, if µ is small, then µ/G(ξi) will be equivalent to µ/| f (ξi)| and

then ω(τi,τi+1)
1/p will be small.
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The case p = 1. If p = 1, which means that x is a path of bounded variation, then h(iµ) ≤
| f (z0)| + iµ‖∇ f ‖∞ and Θ is a divergent series. Here, we recover the usual result that Lipschitz

continuity is sufficient to solve a controlled differential equation. In addition

ω(0,τn)≥

n−1∑

i=0

ω(τi,τi+1)

≥

n∑

i=1

µK3/‖x‖1,ω

| f (z0)|+ iµ‖∇ f ‖∞
≥

∫ n+1

1

µK3/‖x‖1,ω

| f (z0)|+σµ‖∇ f ‖∞
dσ

and the last term in the inequality is equal to

K3/‖x‖1,ω

‖∇ f ‖∞

�
log(| f (z0)|+ (n+ 1)µ‖∇ f ‖∞)− log(| f (z0)|+µ‖∇ f ‖∞)

�
.

Then, the number of steps n required to get τn > T is such that

log(| f (z0)|+ nµ‖∇ f ‖∞)

≤ω(0, T )‖x‖1,ω‖∇ f ‖∞/K3+ log(| f (z0)|+µ‖∇ f ‖∞)

≤ log(| f (z0)|+ (n+ 1)µ‖∇ f ‖∞)

and it follows that

sup
t∈[0,T]

|πV(zt − z0)| ≤ nµ≤
| f (z0)|+µ‖∇ f ‖∞
‖∇ f ‖∞

exp
�
ω(0, T )‖x‖1,ω‖∇ f ‖∞/K3

�
.

Note that this expression is similar to (2). However, one cannot compare the two expressions,

because formally, µ=+∞ in the linear case.

Conditions on the growth of f . If f is bounded, then h is bounded and Θ is also a divergent

series. Of course, there are other cases where Θ is divergent, for example if h(a) ∼a→∞ aδ with

0 < δ < 1/p or h(a) ∼a→∞ log(a). The boundedness of f is not a necessary condition to ensure

global existence.

The condition Θ < +∞ does not mean explosion. Yet it is not sufficient to deduce from the

fact that Θ < +∞ that there is no global existence. Indeed, we have constructed Θ from a rough

estimate. The real estimate depends on where the path z has passed through. The linear case

illustrates this point, but here is another counter-example.

Set U = Rm, V = Rd , consider a LipLG(2+ γ)-vector field f for some γ > 0 and solve the stochastic

differential equation

Zt = z0+

∫ t

0

f (Zs) ◦ dBs

for a Brownian motion B in Rm. This equation has a unique solution on any time interval [0, T]. This

solution is a semi-martingale, which has then a finite p-variation for any p > 2 (see [4] for example).

Then, it is possible to replace f by a bounded vector field g and then to solve zt = z0+
∫ t

0
g(zs)dBs,
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where B is the rough path associated to B by Bt = 1+Bt −B0+
∫ t

0
(Bs−B0)⊗◦dBs. One knows that

πV(z) = Z so that z has a finite p-variation on [0, T]. With Lemma 1 and Lemma 8 below, this shows

that yt = z0 +
∫ t

0
f (ys)dxs has a solution on [0, T], which is z. On the other hand, our criteria just

give the existence of a solution up to a finite time.

This case is covered by Exercise 10.61 in [7]. However, it is still valid in our context if one replace B

by the non-geometric rough path 1+Bt−B0+
∫ t

0
(Bs−B0)⊗ dBs in which case Z is the solution to the

Itô stochastic differential equation Zt = Z − 0+
∫ t

0
f (Zs)dBs. In addition if f is only a LipLG(1+ γ)-

vector field, then this still holds thanks to a result in [2] which asserts that the solution of the

stochastic differential equation may be interpreted as a solution of a rough differential equation.

3.3 A continuity result

We now state a continuity result, which improves the results on [17; 16; 10] for the continuity with

respect to the signal, and the results from [3; 13] on the continuity with respect to the vector fields.

For two elements z and bz in V, we set δ(z,bz) def
= |bz − z|. For two p-rough paths x and bx of finite

p-variation controlled by ω, we set

δ(x , bx) def
= sup
(s,t)∈∆2

max

¨
|πU(xs,t − bxs,t)|

ω(s, t)1/p
,
|πU⊗U(xs,t − bxs,t)|

ω(s, t)2/p

«
.

Finally, for f and bf in LipLG(2+ κ) and ρ fixed, we set

δρ( f , bf ) def
= sup

z∈BV(ρ)

| f (z)− bf (z)|L(U,V)

and δρ(∇ f ,∇bf ) def
= sup

z∈BV(ρ)

|∇ f (z)−∇bf (z)|L(V⊗U,V),

where BW(ρ) = {z ∈W | |z| ≤ ρ} for a Banach space W.

Theorem 4. Let f and bf be two LipLG(2+ κ)-vector fields and x, bx be two paths of finite p-variation
controlled by ω, with 2 ≤ p < 2+ κ ≤ 3. Denote by z and bz the solutions to z = z0 +

∫ ·
0

f (zs)dxs and

bz = bz0 +
∫ ·

0
bf (bzs)dbxs. Assume that both z and bz belong to BT2(U⊕V)(ρ) and max{‖z‖p,ω,‖bz‖p,ω} ≤ ρ.

Then
δ(z,bz)≤ C
�
δρ( f , bf ) +δρ(∇ f ,∇bf ) +δ(z0,bz0) + δ(x , bx)

�
, (7)

where C depends only on ρ, T , ω, p, κ, ‖∇ f ‖∞, Nκ(∇
2 f ), ‖∇bf ‖∞ and Nκ(∇

2 bf ).

Remark 3. Let us note that this theorem implies also the uniqueness of the solution to (1) for a

vector field in LipLG(2+ γ).

Remark 4. Of course, (7) allows one to control ‖z − bz‖∞, since ‖z − bz‖∞ ≤ δ(z,bz)ω(0, T )1/p +
δ(z0,bz0).

In the previous theorem, we are not forced to assume that z and bz belong to BT2(U⊕V)(ρ) but one

may assume that, by properly changing the definition of δρ( f , bf ), they belong to the shifted ball

a + BT2(U⊕V)(ρ) for any a ∈ V without changing the constants. This is a consequence of the next

lemma.
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Lemma 4. For f in Lip(2+ γ) and for a ∈ U, let z be the rough solution to zt = a+
∫ t

0
f (zs)dxs and

y be the rough solution to yt =
∫ t

0
g(ys)dxs where g(y) = f (a+ y). Then z = a+ y.

Proof. Let us set ut = a+ y0,t for t ∈ [0, T] and then us,t
def
= u−1

s ⊗ ut = ys,t . Thus, the almost rough

path associated to
∫ t

0
f (us)dxs is

hs,t = 1+ xs,t + f (us)x
1
s,t +∇ f (us)πW⊗V (us,t)

+ f (us)⊗ 1 · x2
s,t + 1⊗ f (us) · x

2
s,t + f (us)⊗ f (us) · x

2
s,t

and is then equal to the almost rough path associated to
∫ t

0
g(ys)dxs. Hence,

∫ t

0

f (us)dxs =

∫ t

0

g(ys)dxs = yt = a−1 ⊗ ut .

Then, u is solution to ut = a⊗
∫ t

0
f (us)dxs and by uniqueness, the result is proved.

Remark 5. One may be willing to solve za
t = a⊗
∫ t

0
g(za

s )dxs for a ∈ T2(U⊕ V) with πT2(U)(a) = 1,

which is a more natural statement when one deals with tensor spaces. However we note that

a−1⊗ za = ba−1⊗ zba if πV (a) = πV (ba) and then za is easily deduced from zπV(a). This is why, for the

sake of simplicity, we only deal with starting points in V.

4 Preliminary computations

We fix T > 0, p ∈ (2,3] and we define ∆3 def
= {(s, r, t) ∈ [0, T]3 | s ≤ r ≤ t}.

For (ys,t)(s,t)∈∆2 with ys,t in T2(U⊕ V) define

‖y‖p,ω = sup
(s,t)∈∆2

s 6=t

max

(
|y1

s,t |

ω(s, t)1/p
,
|y2

s,t |

ω(s, t)2/p

)

when this quantity is finite. We have already seen that a rough path of finite p-variation controlled

by ω is by definition a function (xs)s∈∆1 with values in the Lie group (T 2(U⊕ V),⊗) to which one

can associate a family (xs,t)(s,t)∈∆2 by xs,t = x−1
s ⊗ x t such that ‖x‖p,ω is finite.

We set ys,r,t
def
= ys,t− ys,r⊗ yr,t . By definition, a rough path is a path y such that ys,r,t = 0. An almost

rough path is a family (ys,t)(s,t)∈∆2 such that ‖y‖p,ω is finite and for some θ > 1 and some C > 0

|ys,r,t | ≤ Cω(s, t)θ . (8)

Let us recall the following results on the construction of a rough path from an almost rough path

(see for example [17; 16; 11; 12]).
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Lemma 5. If y is an almost rough path of finite p-variation and satisfying (8), then there exists a
rough path x of finite p-variation such that for K5 =

∑
n≥1 1/nθ ,

|y1
s,t − x1

s,t | ≤ CK5ω(s, t)θ ,

|y2
s,t − x2

s,t | ≤ CK5(1+ 2K5(‖y‖p,ω+ K5Cω(0, T )θ )ω(0, T )1/p)ω(s, t)θ .

The rough path is unique in the sense that if z is another rough path of p-variation controlled by ω and
such that |ys,t − zs,t | ≤ C ′ω(s, t)θ

′

for some C ′ > 0 and θ ′ > 1, then z = x.

Lemma 6. Let y and by be two almost rough paths such that for some θ > 1 and some constant C,

‖y‖p,ω ≤ C , ‖by‖p,ω ≤ C , |ys,r,t | ≤ Cω(s, t)θ , |bys,r,t | ≤ Cω(s, t)θ

and for some ε > 0,
‖y − by‖p,ω ≤ ε and |ys,r,t − bys,r,t | ≤ εω(s, t)θ .

Then the rough paths x and bx associated respectively to y and by satisfy

|xs,t − bxs,t | ≤ εKω(s, t)θ

for some constant K that depends only on ω(0, T ), θ , p and C.

Given a solution z of (1) for a vector field f which is Lip(1+ γ) with 2+ γ > 2 (we know that (1)

may have a solution, but which is not necessarily unique), set

ys,t = 1+ xs,t + f (zs)x
1
s,t +∇ f (zs)z

×
s,t + f (zs)⊗ 1 · x2

s,t

+ 1⊗ f (zs) · x
2
s,t + f (zs)⊗ f (zs) · x

2
s,t , (9)

where z× = πV⊗U(z), x1 = πU(x) and x2 = πU⊗U(x). In (9), if a (resp. b) is a linear forms from

a Banach space X to a Banach space X′ (resp. from Y to Y′), and x belongs to X (resp. Y), then we

denote by a⊗ b the bilinear form from X⊗Y to X′⊗Y′ defined by a⊗ b · x⊗ y = a(x)⊗ b(y). In the

previous expression, f (zs)x
1
s,t +∇ f (zs)z

×
s,t projects onto V, f (zs)⊗ f (zs) · x

2
s,t projects onto V⊗ V,

1⊗ f (zs) · x
2
s,t projects onto U⊗ V while f (zs)⊗ 1 · x2

s,t projects onto V⊗U.

The result in the next lemma is a direct consequence of the definition of the iterated integrals.

However, we gives its proof, since some of the computations will be used later, and y is the main

object we will work with.

Lemma 7. For a rough path x of finite p-variation controlled by ω and f in Lip(1+γ) with 2+γ > p,
the family (ys,t)(s,t)∈∆2 defined by (9) for a solution z to (1) is an almost rough path whose associated
rough path is z.
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Proof. For a function g, we set ‖g ◦ z‖∞ = supt∈[0,T] |g(zt)|. Since xs,t = xs,r ⊗ x r,t ,

ys,r,t
def
= ys,t − ys,r ⊗ yr,t

=(∇ f (zs)−∇ f (zr))z
×
r,t (10a)

+ ( f (zs)− f (zr))x
1
r,t +∇ f (zs)(z

×
s,t − z×s,r − z×r,t) (10b)

+ ( f (zs)− f (zr))⊗ 1 · x2
r,t + 1⊗ ( f (zs)− f (zr)) · x

2
r,t (10c)

+ ( f (zs)⊗ f (zs)− f (zr)⊗ f (zr)) · x
2
r,t (10d)

+ ( f (zs)⊗ ( f (zr)− f (zs))) · x
1
s,r ⊗ x1

r,t (10e)

+ 1⊗ ( f (zs)− f (zr)) · x
1
s,r ⊗ x1

r,t (10f)

+Υs,r,t (10g)

with

Υs,r,t =∇ f (zs)z
×
s,r ⊗ (x

1
r,t + f (zr)x

1
r,t +∇ f (zr)z

×
r,t

+ (x1
s,r + f (zr)x

1
s,r +∇ f (zs)z

×
s,r)⊗∇ f (zs)z

×
r,t . (11)

We denote by L(i) the quantity of Line (i).

Since zs,t = zs,r ⊗ zr,t , we get that z×s,t = z×s,r + z×r,t + z1
s,r ⊗ x1

r,t and then that Line (10b) is equal to

L(10b) = ( f (zs)− f (zr))x
1
r,t +∇ f (zs)z

1
s,r ⊗ x1

r,t .

Since f is in Lip(1+ γ),

f (zr)− f (zs) =

∫ 1

0

∇ f (z1
s +τz1

s,r)z
1
s,r dτ

and then

|L(10b)| ≤

¯̄
¯̄
¯

∫ 1

0

∇ f (zs +τz1
s,r)z

1
s,r dτ−∇ f (zs)z

1
s,r

¯̄
¯̄
¯ · |x

1
r,t | ≤ C1ω(s, t)(2+γ)/p

with C1 ≤ Hγ(∇ f )‖z‖2+γp,ω (note that since x is a part of z, ‖x‖p,ω ≤ ‖z‖p,ω). Similarly, since

|x1
s,r ⊗ x1

r,t | ≤ω(s, t)2/p,

|L(10a)| ≤ C2ω(s, t)(2+γ)/p, |L(10c)| ≤ C3ω(s, t)3/p, |L(10d)| ≤ C4ω(s, t)3/p

|L(10e)| ≤ C5ω(s, t)3/p and |L(10f)| ≤ C6ω(s, t)3/p,

with C2 ≤ Hγ(∇ f ), C3 ≤ ‖∇ f ◦ z‖∞, C4 ≤ 2‖ f ◦ z‖∞‖∇ f ◦ z‖∞, C5 ≤ ‖ f ◦ z‖∞‖∇ f ◦ z‖∞ and

C6 ≤ ‖∇ f ◦ z‖∞.

Finally,

|Υs,r,t | ≤ C7ω(s, t)3/p

where C7 depends only on ‖ f ◦ z‖∞, ‖∇ f ◦ z‖∞ and ‖z‖p,ω.

To summarize all the inequalities, for (s, r, t) ∈∆3,

|ys,r,t | ≤ C8ω(s, t)(2+γ)/p,
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for some constant C8 that depends only on Nγ(∇ f ), ‖ f ◦ z‖∞ ω, T , γ, p and ‖z‖p,ω. In addition, on

gets easily that

‖y‖p.ω ≤max{‖ f ◦ z‖∞ + ‖∇ f ◦ z‖∞ω(0, T )1/p,‖ f ◦ z‖2∞}

and then that y is an almost rough path. Of course, the rough path associated to y is z from the

very definition of the integral of a differential form along the rough path z.

The proof of the following lemma is immediate and will be used to localize.

Lemma 8. Let us assume that z is a rough path of finite p-variations in T 2(U⊕V) such for some ρ > 0,
|zt | ≤ ρ for t ∈ [0, T] and let us consider two vector fields f and g in Lip(1+γ) with f = g for |x | ≤ ρ.

Then
∫ t

0
D( f )(zs)dzs =
∫ t

0
D(g)(zs)dzs for all t ∈ [0, T].

5 Proof of Theorems 2 and 3 on existence of solutions

We prove first Theorem 3 and then Theorem 2 whose proof is much more simpler.

5.1 The non-linear case: proof of Theorem 3

Let f be a function in Lip(1 + γ) with γ ∈ [0,1], 2 + γ > p. Let us consider a rough path z in

T2(U⊕V) whose projection on T 2(U) is x . We set ζ
def
= ‖x‖p,ω. Let us set z1 = πV(z), z× = πV⊗U(z),

x1 = πU(x), x2 = πU⊗U(x). We assume that for some R≥ 1

|z1
s,t | ≤ Rω(s, t)1/p and |z×s,t | ≤ Rω(s, t)2/p

for all (s, t) ∈∆2. Let us also set ‖ f ◦ z‖∞,t = sups∈[0,t] | f (πV(zs))|.

Let bz be rough path defined by

bzt = z0+

∫ t

0

f (zs)dxs.

Indeed, to define bz, we only need to know x , z1 and z×. This is why we only get some control over

the terms bz1 = πV(bz) and bz× = πV⊗U(bz). Let us consider first

y1
s,t = f (zs)x

1
s,t +∇ f (zs)z

×
s,t ,

so that

y1
s,r,t

def
= y1

s,t − y1
s,r − y1

r,t =

∫ 1

0

(∇ f (z1
s +τz1

s,r)−∇ f (z1
s ))z

1
s,r x1

r,t dτ

+ (∇ f (z1
r )−∇ f (z1

s ))z
×
r,t

and then

|y1
s,r,t | ≤ (1+ ζ)Hγ( f )R

1+γω(s, t)(2+γ)/p.

It follows that for some universal constant K5,

|bz1
s,t − y1

s,t | ≤ (1+ ζ)K5Hγ( f )R
1+γω(s, t)(2+γ)/p. (12)
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On the other hand

|y1
s,t | ≤ ‖ f ◦ z‖∞,tω(s, t)1/pζ+ R‖∇ f ‖∞ω(s, t)2/p. (13)

Let us consider also

y2
s,t = x1

s,t + bz1
s,t + f (ys)⊗ 1 · x2

s,t ∈ T2(U)⊕ V⊕ (V⊗U).

This way, if y2
s,r,t

def
= πT1(U)⊕V⊕V⊗U(y

2
s,t − y2

s,r ⊗ y2
r,t), then for a partition {t i}i=1,...,n of [0, T] and

0≤ k ≤ n− 2,

πT1(U)⊕V⊕V⊗U(y
2
t0,t1
⊗ · · · ⊗ y2

tk ,tk+1
⊗ y2

tk+1,tk+1
⊗ · · · ⊗ y2

tn−1,tn
)

−πT1(U)⊕V⊕V⊗U(y
2
t0,t1
⊗ · · · ⊗ y2

tk ,tk+2
⊗ · · · ⊗ y2

tn−1,tn
) = y2

tk ,tk+1,tk+2
. (14)

Since for all (s, r, t) ∈∆3,

y2
s,r,t = ( f (ys)x

1
s,r − bz1

s,r)⊗ x1
r,t − ( f (zr)− f (zs))⊗ 1 · x2

r,t

and

| f (ys)x
1
s,r − bz1

s,r | ≤ (1+ ζ)K5Hγ( f )R
1+γω(s, t)(2+γ)/p + ‖∇ f ‖∞Rω(s, t)2/p,

it follows that

|πV⊗U(y
2
s,r,t)| ≤ 2ζ‖∇ f ‖∞Rω(s, t)3/p + (1+ ζ)ζK5Hγ( f )R

1+γω(s, t)(3+γ)/p.

From (14), since bz×s,t is the limit of πV⊗U(
⊗n−1

i=1 y2
tn
i ,tn

i+1
) over a family of partitions {tn

i }i=1,...,n whose

meshes decrease to 0 as n goes to infinity, it follows from standard argument that for the universal

constant K5,

|bz×s,t −πV⊗U(y
2
s,t)| ≤ 2ζK5R‖∇ f ‖∞ω(s, t)3/p

+ (1+ ζ)K2
5 Hγ( f )R

1+γω(s, t)(3+γ)/p. (15)

On the other hand for all (s, t) ∈∆2,

‖πV⊗U(y
2
s,t)‖ ≤ ζ‖ f ◦ z‖∞,tω(s, t)2/p. (16)

For τ ∈ (0, T], consider a positive quantity sτ( f ) such that

sτ( f )≥ ‖ f ◦ z‖∞,τ, τ ∈ [0, T].

and we choose λ such that R= λsτ( f ). From (12) and (13), for 0≤ s ≤ t ≤ τ,

|bz1
s,t | ≤ sτ( f )ω(s, t)1/p

�
ζ+λ‖∇ f ‖∞ω(0,τ)1/p

+ (1+ ζ)K5Hγ( f )sτ( f )
γλ1+γω(0,τ)(1+γ)/p

�
. (17)

and from (15) and (16),

|bz×s,t | ≤ sτ( f )ω(s, t)2/p
�
ζ+λ2ζK5‖∇ f ‖∞ω(0,τ)1/p

+ (1+ ζ)K2
5 Hγ( f )sτ( f )

γλ1+γω(0,τ)(1+γ)/p
�
. (18)
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If

‖bz‖p,ω,τ
def
= sup

0≤s≤t≤τ
max

(
|z1

s,t |

ω(s, t)1/p
,
|z×s,t |

ω(s, t)1/p

)

and

C9
def
= max{1,2ζK5}‖∇ f ‖∞ and C10

def
= (1+ ζ)K2

5 Hγ( f )

one deduce from (17) and (18) that

‖bz‖p,ω,τ ≤ sτ( f )(ζ+λC9ω(0,τ)1/p +λ1+γC10sτ( f )
γω(0,τ)(1+γ)/p).

Let us assume that τ is such that C9ω(0,τ)1/p < 1/4 and set

λ
def
=

ζ

1− 2C9ω(0,τ)1/p
≤ 2ζ.

Now, we assume that τ is such that

ζ+λC9ω(0,τ)1/p +λ1+γC10sτ( f )
γω(0,τ)(1+γ)/p ≤ ζ+ 2λC9ω(0,τ)1/p = λ

which means that

λ1+γω(0,τ)(1+γ)/psτ( f )
γC10 ≤ λC9ω(0,τ)1/p

and then that

λγω(0,τ)γ/psτ( f )
γC10 ≤ C9. (19)

If C10 > 0 (the case C10 = 0 corresponds to Hγ(∇ f ) = 0 and then to the linear case), (19) is true if

α0,τsτ( f )≤ ρ (20)

with

αs,t
def
=

ζω(s, t)1/p

1− 2C9ω(s, t)1/p
≤ 2ζω(s, t)1/p

and

ρ
def
=

�
C9

C10

�γ
with

C9

C10

∈

�
1

K2
5

‖∇ f ‖∞
Hγ(∇ f )

,
2

K5

‖∇ f ‖∞
Hγ(∇ f )

�
.

Such a choice is possible, as ω(0, t) decreases to 0 when t decreases to 0.

This choice implies that

‖bz‖p,ω,τ ≤ λsτ( f ) = R

and owing to (19),

|bz0,t | ≤ ‖bz‖p,ω,τω(0,τ)1/p ≤ ρ.

for t ∈ [0,τ]. The constant ρ depends only on ζ, Hγ(∇ f ) and ‖∇ f ‖∞.

To summarize, if for τ small enough (with τ such that C9ω(0,τ)1/p < 1/4),

‖ f ◦ z‖∞,τ ≤ sτ( f ) and ‖z‖p,ω,τ ≤ λsτ( f )

and (20) holds then bz satisfies

‖bz‖p,ω,τ ≤ λsτ( f ), sup
t∈[0,τ]

|bz0,t | ≤ ρ and ‖ f ◦ bz‖∞,τ ≤ G(z0)
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with

G(z0)
def
= sup

a∈V s.t. |a−z0|≤ρ

| f (a)|.

Consequently, if τ is such that

α0,τG(z0)≤ ρ

and z is such that

|z1
0,t | ≤ ρ, t ∈ [0,τ] and ‖z‖p,ω,τ ≤ λG(z0), (21)

then, since ‖ f ◦ z‖∞,τ ≤ G(z0), the path bz also satisfies (21).

Let us consider the set of paths with values in V ⊕ (V ⊗ U) starting from z0 and such that zs,t =

zs,r + zr,t + zs,r ⊗ x r,t for all (s, r, t) ∈ ∆3 and that satisfies ‖z‖p,ω,τ ≤ λG(z0) and |z0,t | ≤ ρ for all

t ∈ [0,τ]. Clearly, this is a closed, convex ball. By the Ascoli-Arzelà theorem, it is easily checked

that this set relatively compact in the topology generated by the norm ‖ · ‖q,ω for any q > p. And

any function in this set is such that supt∈[0,t] | f (zt)| ≤ G(z0).

By the Schauder fixed point theorem, there exists a solution to

zt = z0+

∫ t

0

f (zs)dxs (22)

living in T2(U)⊕ V⊕ (V⊗U). This solution may be lifted as a genuine rough path ez with values in

T2(U⊕ V) associated to the almost rough path

eys,t = zs,t + 1⊗ f (zs) · x
2
s,t + f (zs)⊗ f (zs) · x

2
s,t .

The arguments are similar to those in [10]. The uniqueness for a Lip(2+ γ)-vector field f follows

from the uniqueness of the solution of a rough differential equation in the case of a bounded vector

field, as thanks to Lemma 8, one may assume that f is bounded. We may also use Theorem 4.

Remark 6. If f is a Lip(2+ γ), then from the computations used in the proof of Theorem 4, one

may proved that the Picard scheme will converge (see Remark 7 below). This can be used in the

infinite dimensional setting where a ball is not compact and then the Schauder theorem cannot be

used because the set of paths with a p-variation smaller than a given value is no longer relatively

compact.

We have solved (22) on the time interval [0,τ] in order to have ‖z‖p,ω,τ ≤ 2ζG(z0) (if

C9ω(0,τ)1/p < 1/4) and |z0,t | ≤ ρ for t ∈ [0,τ].

It remains to estimate the p-variation norm of ez in order to complete the proof. In this case, the

computations are similar for πU⊗V(ezs,t) as for πV⊗U(ezs,t) = πV⊗U(zs,t) since

|πU⊗V(ezs,t)| ≤ λG(z0)≤ 2ζG(z0)ω(s, t)2/p.

Since max{1,2ζK5}‖∇ f ‖∞ω(0,τ)1/p ≤ 1/4, λ≤ 2ζ and using (19),

| f (zs)x
1
s,r − z1

s,r | ≤ ‖∇ f ‖∞‖z‖p,ωω(s, t)2/p

+λ
max{1,2ζK5}

K5

‖∇ f ‖∞G(z0)ω(0,τ)1/pω(s, t)2/p

≤ 2ζG(z0)ω(s, t)2/p
�
‖∇ f ‖∞ +max{K−1

5 , 2ζ}ω(0,τ)1/p‖∇ f ‖∞
�

≤ 2ζG(z0)ω(s, t)2/p
�
‖∇ f ‖∞ + K6

�
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for some universal constant K6. On the other hand

| f (zs)− f (zr)| ≤ ‖∇ f ‖∞λG(z0)ω(s, t)1/p ≤ 2ζω(s, t)1/pG(z0).

Hence

|πV⊗V(eys,r,t)| ≤ 4ζ2ω(s, t)3/pG(z0)
2+ 4ζG(z0)

2ω(s, t)3/p(‖∇ f ‖∞ + K6)

and then

|πV⊗V(ezs,t)− f (zs)⊗ f (zs)x
2
s,t | ≤ 4K5ζG(z0)

2ω(s, t)3/p(ζ+ ‖∇ f ‖∞ + K6).

It follows that

|πV⊗V(ezs,t)| ≤ K7ζG(z0)
2ω(s, t)2/p(1+ ‖∇ f ‖∞ + ζ)

for some universal constant K7.

5.2 The linear case: proof of Theorem 2

The linear case is simpler. Let us write f (zt) = Azt and let us set

y1
s,t = Azs · x

1
s,t + Az×s,t .

Since z×s,t = z×s,r + z×r,t + z1
s,r ⊗ x1

r,t , one gets that y1
s,r,t = 0 for any (s, r, t) ∈ ∆3. Again, let us set

ζ
def
= ‖x‖p,ω.

This way, bzt = z0+
∫ t

0
Azs dxs satisfies

bz1
s,t = y1

s,t , (s, t) ∈∆2.

Also, for

y2
s,t = xs,t + bz2

s,t + Azs ⊗ 1 · x2
s,t ,

one obtains that

y2
s,r,t = A(zs − zr)⊗ 1 · x2

r,t − Az×s,r ⊗ x1
r,t .

Hence for all 0≤ s ≤ t ≤ τ for a given τ < T

|bz×s,t −πV⊗U(y
2
s,t)| ≤ 2K5‖A‖‖z‖p,ω,τζω(s, t)3/p

and thus

|bz×s,t | ≤ ‖A‖ω(s, t)2/p(ζ|zs|+ K5ζ‖z‖p,ω,τω(s, t)1/p). (23)

On the other hand,

|bz1
s,t | ≤ ‖A‖ω(s, t)1/p(ζ|zs|+ ‖z‖p,ω,τω(s, t)1/p). (24)

As |zs| ≤ |z0|+ ζω(0, s)1/p‖z1‖p,ω,τ, it follows from (24) and (23) that

‖bz‖p,ω,τ ≤ ‖A‖max{1,ζ}(|z0|+ K8‖z‖p,ω,τω(0,τ)1/p)

for some universal constant K8.
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Set β = ‖A‖max{1,ζ}. Assume that ‖z‖p,ω,τ ≤ L|z0| for some L > 0. Then

‖bz‖p,ω,τ ≤ β(1+ LK8ω(0,τ)1/p)|z0|.

Fix 0< η < 1 and choose τ such that

βK8ω(0,τ)1/p ≤ η

then set

L
def
=

β

1− βK8ω(0,τ)1/p
≤

β

1−η

so that

β(1+ LK8ω(0,τ)1/p)≤ L

is satisfied and then

‖bz‖p,ω,τ ≤ L|z0| and |bz0,t | ≤ L|z0|ω(0,τ)1/p. (25)

By the Schauder fixed point theorem, there exists a solution in the space of paths z with values in

V⊕(V⊗U) starting from z and satisfying (25) as well as bzs,t = bzs,r+bzr,t+bzs,r⊗ x1
r,t . We do not prove

uniqueness of the solution, which follows from the computations of Section 6.

This way, it is possible to solve globally zt = z0 +
∫ t

0
Azs dxs by solving this equation on time

intervals [τi ,τi+1] with ω(τi,τi+1) = (η/βK8)
p, assuming that ω is continuous. The num-

ber N of such intervals is the smallest integer for which N(η/βK8)
p ≥ ω(0, T ). Thus, since

|zτi ,τi+1
| ≤ L|zτi

|ω(τi,τi+1)
1/p, we get that for i = 0,1, . . . , N − 1,

sup
s∈[τi ,τi+1]

|zτi ,t | ≤ |zτi
|

�
1+

η

1−η

1

K8

�
≤ |z0|

�
1+

η

1−η

1

K8

�N−1

≤ |z0|

�
1+

η

1−η

1

K8

�ω(0,T )(η/βK8)
−p

which leads to (2).

6 Proof of Theorem 4 on the Lipschitz continuity of the Itô map

In order to understand how we get the Lipschitz continuity under the assumption that f and bf
belongs to LipLG(2+γ) with 2+γ > p, we evaluate first the distance between to almost rough paths

associated to the solutions of controlled differential equations when the vector fields only belong to

LipLG(1+ γ). Without loss of generality, we assume that indeed f and bf are bounded and belong to

Lip(1+ γ).

6.1 On the distance between the almost rough paths associated to controlled differ-

ential equations

For a rough path bx of finite p-variation, and let bz be the solution to bzt = bz0 +
∫ t

0
bf (bzs)dbxs. Define by

with the same formula as in (9) by replacing z (resp. f , x) by bz (resp. bf , bx).
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We set z1 = πV(z) and bz1 = πV(bz), and we set ‖zs‖∞,[s,t]
def
= supr∈[s,t] |zr |. In addition, we assume

that z and bz are such that max{‖z‖∞,‖z‖p,ω} ≤ ρ and max{‖bz‖∞,‖bz‖p,ω} ≤ ρ.

In the following, the constants Ci depend on ‖ f ‖∞, Nγ(∇ f ), ω, T , p, κ, ‖x‖p,ω and ρ.

Let us note that

|y1
s,t − by1

s,t | ≤ |( f (zs)− f (bzs))x
1
s,t |+ |( f (bzs)−
bf (bzs))x

1
s,t |+ |
bf (bzs)(x

1
s,t − bx1

s,t)|

+ |(∇ f (zs)−∇ f (bzs))z
×
s,t |+ |(∇ f (bzs)−∇

bf (bzs))z
×
s,t |

+ |∇bf (bzs)(z
×
s,t − bz×s,t)|+ |x1

s,t − bx1
s,t |.

It follows that

|y1
s,t − by1

s,t | ≤ C11(‖z
1− bz1‖∞,[s,t] +δρ( f , bf ) +δ(x , bx))ω(s, t)1/p

+ Hγ(∇ f )
�
‖z1− bz1‖

γ

∞,[s,t] + δρ(∇ f ,∇bf )
�
‖z‖p,ω‖x‖p,ωω(s, t)2/p

+ ‖∇bf ‖∞δ(z,bz)‖x‖p,ωω(s, t)2/p

with

C11 ≤max{‖x‖p,ω,‖bx‖p,ω}max{1,‖bf ‖∞,‖∇ f ‖∞}.

With similar computations,

|y2
s,t − by2

s,t | ≤ C12(δρ( f , bf ) +δ(x , bx) + ‖z1− bz1‖∞,[s,t])ω(s, t)2/p.

We are now willing to estimate |ys,r,t − bys,r,t |. By watching at the expressions (10a)–(10d), we get

|ys,r,t − bys,r,t | ≤C13(δρ( f , bf ) +δρ(∇ f ,∇bf ) +δ(x , bx))ω(s, t)(2+γ)/p (26a)

+|( f (zs)− f (zr))x
1
r,t +∇ f (zs)z

1
s,r ⊗ x1

r,t (26b)

− ( f (bzs)− f (bzr))x
1
r,t −∇ f (bzs)bz1

s,r ⊗ x1
r,t | (26c)

+|( f (zs)− f (zr))⊗ 1 · x2
r,t + 1⊗ ( f (zs)− f (zr)) · x

2
r,t (26d)

− ( f (bzs)− f (bzr))⊗ 1 · x2
r,t + 1⊗ ( f (bzs)− f (bzr)) ·x

2
r,t | (26e)

+|( f (zs)⊗ f (zs)− f (zr)⊗ f (zr)) · x
2
r,t (26f)

− ( f (bzs)⊗ f (bzs)− f (bzr)⊗ f (bzr)) · x
2
r,t | (26g)

+| f (zs)⊗ ( f (zs)− f (zr)) · x
1
s,r ⊗ x1

r,t (26h)

− f (bzr)⊗ ( f (bzs)− f (bzr)) · x
1
s,r ⊗ x1

r,t | (26i)

+|1⊗ ( f (zs)− f (zr)− f (bzs) + f (bzr)) · x
1
s,r ⊗ x1

r,t | (26j)

+|Υs,r,t − bΥs,r,t |, (26k)

where bΥs,r,t is similar to Υs,r,t defined by (11) with f , x and z replaced by bf , bx and bz. First we
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consider Lines (26d)-(26j). For this, let us note that

|( f (zr)− f (zs))− ( f (bzr)− f (bzs))|=

¯̄
¯
∫ 1

0

∇ f (zs +τ(bzs − zs))(bzs − zs)dτ

−

∫ 1

0

∇ f (zr +τ(bzr − zr))(bzr − zr)dτ

¯̄
¯

≤

¯̄
¯̄
¯

∫ 1

0

(∇ f (zs +τ(bzs − zs))−∇ f (zr +τ(bzr − zr)))(bzr − zr)dτ

¯̄
¯̄
¯

+

¯̄
¯̄
¯

∫ 1

0

∇ f (zr +τ(bzr − zr))(bz1
s,r − z1

s,r)dτ

¯̄
¯̄
¯

≤ ‖z1− bz1‖∞,[s,t]Hγ(∇ f )

∫ 1

0

|τ(z1
s − z1

r ) + (1−τ)(bz1
s − bz1

r )|
γ dτ

+ ‖∇ f ‖∞δ(z,bz)ω(s, t)1/p

≤ C14ω(s, t)γ/p‖z1− bz1‖∞,[s,t](‖z‖
γ
p,ω+ ‖bz‖γp,ω)

+ C15δ(z,bz)ω(s, t)1/p. (27)

With this, we get a control over Lines (26d)-(26e), (26f)-(26g), (26h)-(26i) and (26j) of type

|L(26d)−(26e)+ L(26f)−(26g)+ L(26h)−(26i)+ L(26j)|

≤ C16ω(s, t)(2+γ)/p‖z1− bz1‖∞,[s,t](‖z‖
γ
p,ω+ ‖bz‖γp,ω)

+ C17δ(z,bz)ω(s, t)3/p.

Similarly, we have

|L(26k)| ≤ C18

�
‖z1− bz1‖

γ

∞,[s,t] + ‖z
1− bz1‖∞,[s,t]

+δ(z,bz) +δ(x , bx) +δρ( f , bf ) + δρ(∇ f ,∇bf )
�
.

For (26b)-(26c), we use the same kind of computations as we did for L(10b) and then,

|L(26b)−(26c)| ≤ω(s, t)1/p‖x‖p,ω

¯̄
¯
∫ 1

0

(∇ f (zs +τz1
s,r)−∇ f (zs))z

1
s,r dτ

−

∫ 1

0

(∇ f (bzs +τbz1
s,r)−∇ f (bzs))bz1

s,r dτ

¯̄
¯

≤ω(s, t)1/p‖x‖p,ω

¯̄
¯
∫ 1

0

((∇ f (zs +τz1
s,r)−∇ f (zs))− (∇ f (bzs +τbz1

s,r)−∇ f (bzs)))z
1
s,r dτ

¯̄
¯

+ω(s, t)1/p‖x‖p,ω

¯̄
¯
∫ 1

0

(∇ f (bzs +τbz1
s,r)−∇ f (bzs))(bz1

s,r − z1
s,r)dτ

¯̄
¯.

The last term in the previous inequality is bounded by the quantity

Hγ(∇ f )‖x‖p,ωω(s, t)(2+γ)/p‖bz‖γp,ωδ(z,bz). (28)
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On the other hand, for τ ∈ [0,1], if

∆
def
= |((∇ f (zs +τz1

s,r)−∇ f (zs))− (∇ f (bzs +τbz1
s,r)−∇ f (bzs)))|

then

∆≤

(
2Hγ(∇ f )‖z1− bz1‖

γ

∞,[s,t]

21−γHγ(∇ f )(‖z‖p,ω+ ‖bz‖p,ω)
γω(s, t)γ/p.

(29)

Thus, we may choose η ∈ (0,1) and combine the two terms in (29) to obtain

∆≤ C19ω(s, t)ηγ/p(‖z‖p,ω+ ‖bz‖p,ω)
γη‖z1− bz1‖

(1−η)γ

∞,[s,t].

It follows that with (28),

|L(26b)−(26c)| ≤ C20ω(s, t)(2+γ)/pδ(z,bz)
+ C21(‖z‖p,ω+ ‖bz‖p,ω)

γη‖z1− bz1‖
(1−η)γ

∞,[s,t]ω(s, t)(2+ηγ)/p (30)

where C20 and C21 depend on Hγ(∇ f ).

The case of a Lip(2+ κ)-vector field. If f belongs to Lip(2+ κ) with 2+ κ > p, then one can

set γ = 1 in the previous equations. In this case, one can give a better estimate on L(26b)−(26c),

which we use below to prove the Lipschitz continuity of the Itô map. In this case, we use the same

computation as in (27) by replacing f by ∇ f to get

|L(26b)−(26c)| ≤ C22ω(s, t)3/pδ(z,bz) + C23ω(s, t)(2+κ)/p‖z1− bz1‖∞,[s,t]

+ C24δ(z,bz)ω(s, t)(2+κ)/p, (31)

where C22 and C23 depend on Hγ(∇
2 f ) and ‖∇2 f ‖∞ and C24 depends on ‖∇ f ‖∞.

On the difference between the two cases. In order to prove the Lipschitz continuity of the Itô

map, which implies uniqueness using a regularization procedure, we will see that we will get an

inequality of type δ(z,bz) ≤ A(1 + CTδ(z,bz)) with CT converges to 0, and then one can compare

δ(z,bz) with A. This is possible thanks to (31). With (30), we get an inequality of type δ(z,bz) ≤
A(1+CTδ(z,bz)λ) with λ < 1 and then it is impossible to deduce an inequality on δ(z,bz) in function

of A when δ(z,bz)≤ 1. Anyway, in [5], A.M. Davie showed that there could exist several solutions to

a rough differential equation for f in Lip(1+ γ) but not in Lip(2+ γ).

6.2 Proof of Theorem 4

Since the solutions of rough differential equations remains bounded, we may assume that f belongs

to Lip(2+ κ) instead of LipLG(2+ κ) with 2≤ p ≤ 2+ κ < 3.

Let us note that

‖z − bz‖∞ ≤ δ(z0,bz0) +α0,Tδ(z,bz) (32)

with αs,t defined by αs,t
def
= max{ω(s, t)1/p,ω(s, t)2/p}. Note that α0,T decreases to 0 as T converges

to 0.
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Since γ= 1, we have obtained from (31) and (32) that for all (s, r, t) ∈∆3, we get that

|ys,r,t − bys,r,t | ≤ C25(δρ( f , bf ) + δ(x , bx) +δ(z0,bz0)

+ω(s, t)(1−κ)/pδ(z,bz) +α0,Tδ(z,bz))ω(s, t)(2+κ)/p, (33a)

that

|y1
s,t − by1

s,t | ≤ C26(α0,Tδ(z,bz) +δ(z0,bz0) + δρ( f , bf ) + δ(x , bx))ω(s, t)1/p

+ C27((1+α0,T )δ(z,bz) +δ(z0,bz0) +δρ(∇ f ,∇bf ))ω(s, t)2/p, (33b)

that

|y2
s,t − by2

s,t | ≤ C28(δρ( f , bf ) +δ(x , bx) +α0,Tδ(z,bz) +δ(z0,bz0))ω(s, t)2/p, (33c)

and that

|ys,r,t | ≤ C29ω(s, t)3/p and |bys,r,t | ≤ C30ω(s, t)3/p. (33d)

For convenience, we assume that κ < 1.

Since z (resp. bz) is the rough path associated to y (resp. z), it follows from (33a)-(33d) and

Lemma 5 that

|ys,t − zs,t | ≤ C31ω(s, t)3/p, |bys,t − bzs,t | ≤ C31ω(s, t)3/p

and from Lemma 6 that

|z1
s,t − bz1

s,t | ≤ β(T )ω(s, t)1/p and |z2
s,t − bz2

s,t | ≤ β(T )ω(s, t)2/p (34)

with

β(T )≤ C32 max{α0,Tδ(z,bz) +δ(z0,bz0) +δρ( f , bf ) + δ(x , bx)α0,T ,

((1+α0,T )δ(z,bz) + δ(z0,bz0) +δρ(∇ f ,∇bf ))ω(0, T )1/p,

(δρ( f , bf ) +δ(x , bx)α0,T +δ(z0,bz0)

+ω(0, T )(1−κ)/pδ(z,bz) +α0,Tδ(z,bz))}.

In particular, (34) means that δ(z,bz) ≤ β(T ), but β(T ) also depends on δ(z,bz). More precisely, the

constant β(T ) satisfies

β(T )≤ C32δ(z,bz)(α0,T + (1+α0,T )ω(0, T )1/p +ω(0, T )(1−κ)/p)

+ C32(δρ( f , bf ) + δρ(∇ f ,∇bf ) + δ(x , bx) +δ(z0,bz0)).

Remark 7. The same computations can be used in order to prove the convergence of the Picard

scheme zn+1 = z0+
∫ t

0
f (zn

s )dxs of the Picard scheme, in which case

δ(zn+1, zn)≤ C33 max{α0,T ,α2
0,T ,ω(0, T )(1−κ)/p}δ(zn, zn−1)

and it is then possible to choose T small enough to get δ(zn+1, zn)≤ kδ(zn, zn−1) with k < 1.
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Now, choose τ small enough so that for all s ∈ [0, T −τ],

C32

�
αs,s+τ+ (1+αs,s+τ)ω(s, s+τ)

1/p +ω(s, s+τ)(1−κ)/p
�
≤

1

2
.

This is possible since by definition, (s, t) ∈∆2 7→ω(s, t) is continuous close to its diagonal.

Hence, one may choose τ small enough in order to get

δ(z,bz)≤ 2C32(δρ( f , bf ) +δρ(∇ f ,∇bf ) + δ(x , bx) +δ(z0,bz0))

for T ≤ τ. By a standard stacking argument where z0 (resp. bz0) is replaced recursively by zkτ (resp.

bzkτ) for k = 1,2, . . . , we can then obtain that

δ(z,bz)≤ C34(δρ( f , bf ) +δρ(∇ f ,∇bf ) +δ(x , bx) + δ(z0,bz0)),

since the choice of τ does not depend on z0.

In other words, the Itô map is locally Lipschitz continuous in all its arguments.
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