
E l e c t r o n
i

c

J
o

u
r

n a l

o
f

P
r

o
b a b i l i t y

Vol. 14 (2009), Paper no. 23, pages 594–611.

Journal URL

http://www.math.washington.edu/~ejpecp/

On the Exponentials of Fractional Ornstein-Uhlenbeck

Processes

Muneya Matsui∗ Narn-Rueih Shieh†

Abstract

We study the correlation decay and the expected maximal increment (Burkholder-Davis-Gundy

type inequalities) of the exponential process determined by a fractional Ornstein-Uhlenbeck

process. The method is to apply integration by parts formula on integral representations of

fractional Ornstein-Uhlenbeck processes, and also to use Slepian’s inequality. As an application,

we attempt Kahane’s T-martingale theory based on our exponential process which is shown to

be of long memory.
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1 Introduction

We begin with a review on the definition and properties of fractional Brownian motion (FBM for

short).

Definition 1.1. Let 0 < H < 1. A fractional Brownian motion {BH
t }t∈R is a centered Gaussian process

with BH
0 = 0 and Cov

�

BH
s , BH

t

�

= 1

2

�

|t|2H + |s|2H − |t − s|2H
�

, (t, s) ∈ R2.

It is well known that FBM has stationary increments and self-similarity with index H, i.e., for any

c > 0 {BH
ct}t∈R

d
= {cH BH

t }t∈R where
d
= denotes equality in all finite dimensional distributions.

Another important property is long memory. Although there exist several notions, we use the fol-

lowing definition which is widely known.

Definition 1.2. Let (X1, X2, . . .) be a zero mean stationary stochastic sequence with a finite variance.

Write Γ(n) = Cov(X1, Xn). We say that the process has long memory if
∑∞

n=0Γ(n) =∞.

Note that E[(X1)
2] < ∞ implies that the correlation and the covariance are different only in mul-

tiplication of some constant and we use the latter here. The definition is related to the classical

invariance principle, i.e., if
∑∞

n=0 |Γ(n)|<∞, the properly normalized sum of (X1, X2, . . .) converges

weakly to Brownian motion (BM for short). By contrast, if the process has a long memory, this may

not hold (see p.191 of [18] or p.336 of [19]). For other definitions and their relations one can

consult [18].

FBM with H ∈ (0, 1

2
) ∪ (1

2
, 1) has the following incremental property. For any 0 < h < s, t ∈ R and

N = 1,2, . . .,

Γh(s) := Cov
�

BH
t+h− BH

t , BH
t+s+h− BH

t+s

�

= Cov
�

BH
h , BH

s+h− BH
s

�

=

∞
∑

n=1

h2n

(2n)!

 

2n−1
∏

k=0

(2H − k)

!

s2H−2n

=

N
∑

n=1

h2n

(2n)!

 

2n−1
∏

k=0

(2H − k)

!

s2H−2n +O
�

s2H−2N−2
�

, as s→∞.

Thus
∑∞

n=0Γh(nh) = ∞ and the incremental process of FBM with H ∈ (1

2
, 1) is proved to have a

long memory property. Concerning the maximal inequality of FBM there have been several results;

see, for example, Chapter 4.4 of [5]. In particular [13] proved the maximal inequality for FBM with

H ∈ (1

2
, 1) which corresponds to the Burkholder-Davis-Gundy inequality for martingale: For p > 0

there exist constants c(p, H) and C(p, H) such that

c(p, H)E[τpH]≤ E

�

max
s≤τ

¯

¯BH
s

¯

¯

p
�

≤ C(p, H)E[τpH],

where τ is a stopping time. Extending this, [11] have obtained inequalities for the moment of

integrals with respect to FBM. Regarding other properties, we refer to [5] or [19] which give con-

clusive introduction to FBM. We also refer to recently published [12] which gives nice summary on

stochastic calculus for FBM.
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Now we turn to Ornstein-Uhlenbeck processes driven by FBM with H ∈ (0, 1

2
) ∪ (1

2
, 1) (FOU for

short), which is defined by

Y
H,ξ
t = e−λt

�

ξ+σ

∫ t

0

eλudBH
u

�

, (1)

where λ > 0,σ > 0 and ξ is a.s. finite random variable. This process appears firstly in [4]. They

show that FOU {Y H,ξ
t }t≥0 is the unique a.s. continuous-path process which solves

Zt = ξ−λ
∫ t

0

Zsds+σBH
t , t ≥ 0,

and is strictly stationary if

ξ= σ

∫ 0

−∞
eλudBH

u .

We mainly study this stationary version, as follows

Y H
t := σ

∫ t

−∞
e−λ(t−u)dBH

u ,

where the random function t → Y H
t now can be and will be extended to the whole t ∈ R. Let

cH :=
Γ(2H + 1) sin(πH)

2π

a constant. The correlation decay of {Y H
t }t∈R with H ∈ (0, 1

2
)∪ (1

2
, 1) as s→∞ satisfies, see p.289

of [15],

Cov(Y H
t , Y H

t+s) = Cov(Y H
0 , Y H

s )

= 2cHσ
2

∫ ∞

0

cos(sx)
x1−2H

λ+ x2
d x (2)

=
1

2
σ2

N
∑

n=1

λ−2n

 

2n−1
∏

k=0

(2H − k)

!

s2H−2n +O(s2H−2N−2), N = 1,2, . . . , (3)

so that the decay is similar to that of Cov
�

BH
t+h
− BH

t , BH
t+s+h
− BH

t+s

�

as s → ∞. In particular,

for H ∈ (1

2
, 1) it exhibits long range dependence, which contrasts with the exponential decay of

Ornstein-Uhlenbeck process driven by BM. Regarding distribution of the maximum of FOU, [17]

more generally obtained estimates of the tail of the maximum of stochastic integrals with respect to

FBM, of which we shall make use. Other interesting results are given in Chapters 1.9 and 1.10 of

[12].

In recent years, it has been of great interest to study the exponential functionals and the exponential

processes determined by BM and Lévy processes, see [2] and [3], with the view toward application

in financial economics. In this paper, we study the exponential process determined by {Y H
t }t∈R,

X H
t := eY H

t . (4)
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We shall call the process to be a geometric fractional Ornstein-Uhlenbeck processes (gFOU, for short).

We study two fundamentally important properties of gFOUs. The correlation decay Cov
�

X H
t , X H

t+s

�

as s→∞, and the expected maximal increments

E

�

max
t≤s≤t+r

¯

¯X H
s − X H

t

¯

¯

�

as r ↓ 0.

The first result is useful to understand the spectral structure of the process. The second result is of

intrinsic importance to the path variation (and hence toward various applications) of the process. In

case {Y H
t } with H = 1/2 (BM case), some weaker form of the results appears very recently in a paper

by Anh, Leonenko and Shieh (2007), whose methods are based on Hermite orthogonal expansion

and the Itô’s calculus for martingales. However, both tools are lack for FBM case, since FBM is not

a semimartingale. Thus we need to use other devices, which are mainly precise calculations based

on the Gaussian properties, the integral representations of FOUs, and the Slepian’s inequality. We

remark that the main results Theorems 2.1 and 2.2 in this paper are new even in the BM case, to our

knowledge.

This paper is organized as follows. In Section 2 we state the main results. In Section 3 we treat

Kahane’s T-martingale theory as an application. We present all proofs of our results in Section 4.

2 The main results

From now on we treat gFOU and FOU with λ= σ = 1 for convenience. Moreover, we consider these

process on R. The notation
d
= denotes equality in distributional sense, for processes also for random

variables or vectors. All proofs of our results are given in the final section.

As a preliminary step we confirm the following basic result.

Lemma 2.1. Let H ∈ (0,1) and {X H
t }t∈R := {eY H

t }t∈R be gFOU constructed by the stationary process

{Y H
t }t∈R. Then {X H

t }t∈R is also stationary.

Our first study is about correlation decay of gFOU, which holds for all gFOUs with full range

H ∈ (0, 1

2
) ∪ (1

2
, 1). Note that, although the following Propositions 2.1 and 2.2 are stated

for covariances, results for correlations are routinely obtained when covariances are divided by

Var(X H
0 ) = exp

�

2Var(Y H
0 )
�

and Var((Y H
0 )

m) respectively.

Proposition 2.1. Let H ∈ (0, 1

2
)∪(1

2
, 1) and {X H

t }t∈R := {eY H
t }t∈R be gFOU constructed by the station-

ary process {Y H
t }t∈R. Then for fixed t ∈ R and s→∞,

Cov
�

X H
t , X H

t+s

�

= exp
�

Var(Y H
0 )
�

�

H(2H − 1)s2H−2 +
1

2
H2(2H − 1)2s4H−4 +O

�

max{s6H−6, s2H−4}
�

�

.

Remark 2.1. Proposition 2.1 asserts that the gFOU with H ∈ (1

2
, 1), like the FOU case as shown below

in Proposition 2.2 (with m = 1 there), exhibits the long range dependence; this contrasts to both the

O-U and the geometric O-U processes driven by BM.

We also analyze correlation decay of m-power of FOU, the process {(Y H
t )

m}t∈R.
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Proposition 2.2. Let {Y H
t }t∈R be FOU with H ∈ (0, 1

2
)∪ (1

2
, 1) and m = 1,2, . . .. Then for fixed t ∈ R

and s→∞,

Cov
�

(Y H
t )

m, (Y H
t+s)

m
�

=







m2 ((m− 2)!!)2
�

Var(Y H
0 )
�m−1

Cov
�

Y H
0 , Y H

s

�

+O
�
�

Cov
�

Y H
0 , Y H

s

��2
�

if m is odd

1

2

�

m!(m−3)!!

(m−2)!

�2 �

Var(Y H
0 )
�m−2 �

Cov
�

Y H
0 , Y H

s

��2
+O

�
�

Cov
�

Y H
0 , Y H

s

��4
�

if m is even

=







m2 ((m− 2)!!)2
�

Var(Y H
0 )
�m−1

H(2H − 1)s2H−2 +O(s4H−4) if m is odd

1

2

�

m!(m−3)!!

(m−2)!

�2 �

Var(Y H
0 )
�m−2

H2(2H − 1)2s4H−4 +O(s4H−6) +O(s8H−8) if m is even.

Remark 2.2. The correlation decay of {(Y H
t )

m}t∈R for all odd m is the same as that of {Y H
t }t∈R, which

exhibits the long range dependence for all H ∈ (1

2
, 1). While for even m, {(Y H

t )
m} with H ∈ (1

2
, 3

4
) no

longer has the long memory property. We also observe that the situation depends entirely on m being

even or being odd, rather than the actual value of m.

Now we turn to the more difficult second part, namely to study expected maximal increment of

gFOU. For the upper bound inequality, we only consider those gFOUs with H ∈ (1

2
, 1), and we are

not able to obtain the case of H < 1/2, yet this latter case is of less interest in view that the process

if not of long range dependence then. Before analyzing, we present three lemmas which we think

themselves to be interesting in future researches. Indeed Lemmas 2.3 and 2.4 deal with maximal

inequalities for FOUs. For the consistency, in all the following statements, we always include the

H = 1/2 case.

The first result (Lemma 2.3) is based on Statement 4.8 of [17]. It will be useful to give a clean

statement of this since the definition of FBM is different from ours and there are minor mistakes in

[17] (e.g., regarding his q f (s, t) a constant is lacking, he referred to Theorem 4.1 in Statement 4.2

but we can not find Theorem 4.1 in his paper).

Lemma 2.2 (Statement 4.8 (2) of [17]). Let H ∈ (1

2
, 1) and 0< β < 2H − 1. Write

q f (s, t) = H(2H − 1)

∫ t

s

∫ t

s

f (u) f (v)|u− v|2H−2dudv.

If f ∈ L2/(1+β)([0,1]) then for every real r ∈ [0,1]

P

�

max
0≤t≤1

∫ t

0

f (s)dBH
s > λ

�

≤
∫ ∞

λr/
p

q f +(0,1)

+

∫ ∞

λ(1−r)/
p

q f −(0,1)

r

2

π
e−x2/2d x , (5)

where f± =
| f |± f

2
.

Lemma 2.3. Let H ∈ [1

2
, 1). Then for any λ≥ 0, r ≥ 0 and t ∈ R we have

P

�

max
t≤s≤t+1

BH
s ≥ λ

�

≤
r

2

π

∫ ∞

λ

e−x2/2d x .
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P

�

max
t≤s≤t+1

¯

¯BH
s

¯

¯≥ λ
�

≤
2
p

2
p
π

∫ ∞

λ

e−x2/2d x . (6)

E

��

max
t≤s≤t+r

¯

¯BH
s

¯

¯

�m�

≤
(

rHm 2
p

2p
π
(m− 1)!! if m is odd

rHm2(m− 1)!! if m is even.

Lemma 2.4. Let H ∈ [1

2
, 1) and m = 1,2, . . .. Then FOU {Y H

t }t∈R has following bound for m-th

moment of maximal increments for all r ≥ 0 and all t ∈ R.

E
�

maxt≤s≤t+r

¯

¯Y H
s − Y H

t

¯

¯

m�

m!
≤ c1rHm, (7)

where c1 is an universal constant, which does not depend on any m or H.

Lemma 2.5. Let H ∈ (0,1) and p > 0. Then FOU {Y H
t }t∈R has the following lower bound for p-th

moment of maximal increments for all 0≤ r ≤ T and all t ∈ R.

E

�

max
t≤s≤t+r

¯

¯Y H
s − Y H

t

¯

¯

p
�

≥ c2(p, T, H)rpH , (8)

where c2(p, T, H) is a constant depending on parameters p, T and H.

Now we state our main results. The upper bound inequality is given as follows.

Theorem 2.1. Let H ∈ [1

2
, 1) and {X H

t }t∈R := {eY H
t }t∈R be gFOU constructed by the stationary process

{Y H
t }t∈R. Then there exists a constant C(H) such that for all r with rH < 1/2 and all t ∈ R,

E

�

max
t≤s≤t+r

¯

¯X H
s − X H

t

¯

¯

�

≤ C(H)rH .

The lower bound inequality is given as follows.

Theorem 2.2. Let H ∈ (0,1) and {X H
t }r∈R := {eY H

t }t∈R be gFOU constructed by the stationary process

{Y H
t }t∈R. Then there exists a constant c(T, H) such that for all t ∈ R, 0≤ r ≤ T,

E

�

max
t≤s≤t+r

¯

¯X H
s − X H

t

¯

¯

�

≥ c(T, H)rH .

Remark 2.3. In the above, we always include H = 1/2 (the BM case); we should keep in mind that

for this critical case the proofs can be done separately by stochastic analysis of martingales (see, for

example, [7]). We would like to show that the methods in this paper are powerful enough to obtain

Theorems 2.1 and 2.2.
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3 An application to Kahane’s T-martingale Theory

J.-P. Kahane established T-martingale Theory as a mathematical formulation of Mandelbrot’s turbu-

lence cascades; see [8] and [14] for inspiring surveys. To our knowledge, the theory is only applied

to independent or Markovian cascades. Using the results in Section 2 we are able to give an depen-

dent attempt to this theory. To describe our result, let X be a normalized gFOU which is defined to

be, for a given fixed H ∈ (1

2
, 1) and its corresponding stationary FOU Y H

t ,

X (t) := eY H
t −cH

, t ∈ R,

where cH is chosen so that the resulting positive-valued stationary process is of mean 1. Note that

the process X is non-Markovian (indeed, it is of long range dependence). Now let a sequence of

independent gFOU X n, defined on a common probability space (Ω, P); each process {X n(t)}t∈R is

of continuous paths and is distributed as {X (bn · t)}t∈R, n= 0,1,2, . . . , where the scaling factor

b > 1+ Var(X (0)) = 1+
exp
�

2Var(Y H
0 )
�

exp
�

2cH
� .

We consider the integrated process of the n+ 1 products,

An(t,ω) :=

∫ t

0

n
∏

i=0

X i(s,ω)ds, t ≥ 0,ω ∈ Ω.

We note that, for each t, An(t,ω) is well-defined as an integral for path-wise ω, since the integrand

is a positive-valued continuous function in s for path-wise ω. The following two facts are basic to

the theory:

1. for each t fixed, the sequence An(t) form a martingale in n.

2. for each n fixed, t → An(t) is continuous and increasing.

We state our T-martingale result for the gFOU process as follows. In the statement, we restrict the

time parameter for the target process A(t) to be A(t), t ∈ [0,1]; though it can be defined for any

compact time-interval [0, T].

Proposition 3.1. For each t ∈ [0,1], the random sequence An(t) converges in L2(dP). Thus a limiting

process A(t), t ∈ [0,1], is defined. The process t → A(t) is continuously increasing. Moreover, there

exist C , C such that the following mutual bounds hold for all q ∈ [1,2] and all t ∈ [0,1],

C · tq−log2 E(X (0))q ≤ E(A(t))q ≤ C · tq−log2 E(X (0))q .

Remark 3.1. The close form of E(X (0))q can be written out, since the random variable Y H
t is Gaussian

distributed; it is non-linear in q, which is the heart of the matter.

Remark 3.2. To our knowledge, in all the previous literatures on Kahane’s theory, the initial process

(in our case, X ) is assumed to be independent (for discrete cascades) or to be Markovian (for general

cascades). The above result can be regarded to be a first attempt to apply the dependent process X to Ka-

hane’s theory, which theory aims to proceed some multi-scale analysis (usually termed as “multifractal

analysis”) on the atomless random measure induced by the continuously increasing process A.

Remark 3.3. We mention that, in [10] the authors adapt Kahane’s formulation to stationary processes,

and impose various conditions to enforce the validity of their re-formulation (in their eventual examples,

one is a two-state Markov process and one is a Poisson process with random magnitudes). It has been a

recent study to examine the validity of their re-formulation for several stationary exponential processes,

see [1] and the references therein.
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4 The proofs

Proof of Lemma 2.1

It follows that for any real set (t1, t2, . . . , tn) and all h ∈ R,

(Y H
t1

, . . . , Y H
tn
)

d
= (Y H

t1+h, . . . , Y H
tn+h).

Accordingly our assertion is implied by

(X H
t1

, . . . , X H
tn
) = (e

Y H
t1 , . . . , e

Y H
tn )

d
= (e

Y H
t1+h, . . . , e

Y H
tn+h)

= (X H
t1+h, . . . , X H

tn+h).

�

Note that in Proofs of Proposition 2.1 and 2.1, we make full use of the stationarity both of {X t}t∈R
and of {Yt}t∈R, we namely use Var(Y H

t ) = Var(Y t
0 ) or Cov(Y H

t , Y H
t+s) = Cov(Y H

0 , Y H
s ), t ∈ R, s ≥ 0

without mentioning it.

Proof of Proposition 2.1

Since {Y H
t }t∈R is a Gaussian process, the distribution of (Y H

t , Y H
t+s), t ∈ R is a bivariate Gaussian.

Then its moment generating function taken at 1 and the stationarity of {X t}t∈R yield

E[X H
t ] = E[X H

0 ] = exp

½

1

2
Var
�

Y H
0

�

¾

and

E[X H
t X H

t+s] = E[X H
0 X H

s ]

= E[eY H
0 +Y H

s ]

= exp

½

1

2
(1,1)Σ(1,1)′

¾

,

where

Σ =

�

Var
�

Y H
0

�

Cov
�

Y H
0 , Y H

s

�

Cov
�

Y H
0 , Y H

s

�

Var
�

Y H
s

�

�

.

Then by using Cov
�

Y H
0 , Y H

s

�

→ 0 as s→∞ and ex =
∑∞

n=0 xn/n! for |x |<∞, we have

Cov
�

X H
t , X H

t+s

�

= exp{Var
�

Y H
0

�

}
�

exp
¦

Cov
�

Y H
0 , Y H

s

�©

− 1
�

= exp{Var
�

Y H
0

�

}





Cov
�

Y H
0 , Y H

s

�

+

�

Cov
�

Y H
0 , Y H

s

��2

2!
+

�

Cov
�

Y H
0 , Y H

s

��3

3!
+ · · ·





 .
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By aid of the equation (3), the equation above can be written as

Cov
�

X H
t , X H

t+s

�

= exp{Var
�

Y H
0

�

}
�

H(2H − 1)s2H−2 +
1

2

3
∏

k=0

(2H − k)s2H−4 +O(s2H−6)

+
1

2
H2(2H − 1)2s4H−4 +O(s4H−6)

+
1

6
H3(2H − 1)3s6H−6 +O(s6H−8)

+O(s8H−8) + · · ·
�

.

Hence we obtain the result. �

Proof of Proposition 2.2

As in Proof of Proposition 2.1, (Y H
t , Y H

t+s) is a bivariate Gaussian distribution and its moment gener-

ating function writes

E
h

eu1Y H
t +u2Y H

t+s

i

= exp

½

1

2

�

u2
1Var(Y H

t ) + 2u1u2Cov(Y H
t , Y H

t+s) + u2
2Var(Y H

t+s)
�

¾

=

∞
∑

n=0

2−n

n!

∑

k,l≥0;k+l≤n

n!

k! l! (n− k− l)!

×
�

u2
1Var(Y H

0 )
�k �

2u1u2Cov(Y H
0 , Y H

s )
�l �

u2
2Var(Y H

0 )
�n−l−k

=

∞
∑

n=0

2−n

n!

∑

k,l≥0;k+l≤n

n! 2lu2k+l
1 u

2(n−l−k)+l

2

k! l! (n− k− l)!

�

Var(Y H
0 )
�n−l �

Cov(Y H
0 , Y H

s )
�l

. (9)

Here we use the expansion of ex and the multinomial expansion. By using this representation we

will calculate E
�

(Y H
t )

m(Y H
t+s)

m
�

. Recall that

E
�

(Y H
t )

m(Y H
t+s)

m
�

=
∂ 2m

(∂ u1)
m(∂ u2)

m
E
h

eu1Y H
t +u2Y H

t+s

i

¯

¯

¯

¯

¯

u1=0,u2=0

and hence the remaining term of the sum in (9) is only that of n= m,

2−m

m!

m
∑

k,l≥0;k+l≤m

m! 2lu2k+l
1 u

2(m−l−k)+l

2

k! l! (m− k− l)!

�

Var(Y H
0 )
�m−l �

Cov(Y H
0 , Y H

s )
�l

.

Then putting m= 2k+ l = 2(m− l − k) + l, we have

∑

l=m−2k;0≤k≤⌊m/2⌋

2−m+lum
1 um

2

l! {((m− l)/2)!}2
�

Var(Y H
0 )
�m−l �

Cov(Y H
0 , Y H

s )
�l

.
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Thus

E
�

(Y H
t )

m(Y H
t+s)

m
�

=
∑

l=m−2k;0≤k≤⌊m/2⌋

2−m+l

l!

�

m!

((m− l)/2)!

�2
�

Var(Y H
0 )
�m−l �

Cov(Y H
0 , Y H

s )
�l

=
∑

l=m−2k;0≤k≤⌊m/2⌋

1

l!

�

m!(m− l − 1)!!

(m− l)!

�2
�

Var(Y H
0 )
�m−l �

Cov
�

Y H
0 , Y H

s

��l
.

Here we use the formula (2n− 1)!! = (2n)!/(2nn!). When m is odd only terms l = 1,3,5, . . . , m

remain and it follows form the equation (3) that

E
�

(Y H
t )

m(Y H
t+s)

m
�

=

�

m!(m− 2)!!

(m− 1)!

�2
�

Var(Y H
0 )
�m−1

Cov(Y H
0 , Y H

s ) +O
�
�

Cov(Y H
0 , Y H

s )
�2
�

= m2 ((m− 2)!!)2
�

Var(Y H
0 )
�m−1

H(2H − 1)s2H−2 +O(s4H−4).

When m is even only terms l = 2,4, . . . , m remain and it follows from the equation (3) that

E
�

(Y H
t )

m(Y H
t+s)

m
�

= ((m− 1)!!)2
�

Var(Y H
0 )
�m

+
1

2

�

m!(m− 3)!!

(m− 2)!

�2
�

Var(Y H
0 )
�m−2 �

Cov(Y H
0 , Y H

s )
�2

+O
�
�

Cov(Y H
0 , Y H

s )
�4
�

= ((m− 1)!!)2
�

Var(Y H
0 )
�m

+
1

2

�

m!(m− 3)!!

(m− 2)!

�2
�

Var(Y H
t )
�m−2

H2(2H − 1)2s4H−4

+O(s4H−6) +O(s8H−8).

Finally noticing E[(Y H
t )

m] = (m− 1)!!
�

Var(Y H
0 )
�m/2

, we can obtain the desired result. �

Proof of Lemma 2.3

The first equation follows from Statement 4.2 (2) of [17] with f = 1 and r ↑ 1. However, since the

definition of FBM in [17] is different from our definition, we briefly review the outline, which will

help reader’s understanding.

According to Lemma 5.7 of [17] there exists a Gaussian Markov process {B̂H
t }t∈[0,1] with indepen-

dent increment such that E[B̂H
t ] = 0 and Cov(B̂H

s , B̂H
t ) = s2H whenever s ≤ t. Then from Slepian’s

inequality (Lemma 5.6 of [17], see also [21] or Theorem 7.4.2 of [9]), we have

P

�

max
0≤t≤1

BH
t ≥ λ

�

≤ P

�

max
0≤t≤1

B̂H
t ≥ λ

�

.

Finally by the reflection principle for Gaussian Markov processes (e.g. [16]), it follows that

P

�

max
0≤t≤1

BH
t ≥ λ

�

≤ 2P
�

B̂H
t ≥ λ

�

.
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Second the symmetric property of FBM gives

P

�

max
0≤t≤1

BH
t ≥ λ

�

= P

�

− max
0≤t≤1

BH
t ≤−λ

�

= P

�

min
0≤t≤1
−BH

t ≤−λ
�

= P

�

min
0≤t≤1

BH
t ≤−λ

�

.

From this we have

P

�

max
0≤t≤1

¯

¯BH
t

¯

¯≥ λ
�

≤ P

�

max
0≤t≤1

BH
t ≥ λ

�

+ P

�

min
0≤t≤1

BH
t ≤−λ

�

= 2P

�

max
0≤t≤1

BH
t ≥ λ

�

.

Thus we get the second assertion. Next the self-similarity of FBM and BH
0 = 0 a.s. yield

max
s≤t≤s+r

¯

¯BH
t − BH

s

¯

¯

d
= max

0≤t≤r

¯

¯BH
t − BH

0

¯

¯

a.s.
= max

0≤t≤r

¯

¯BH
t

¯

¯

d
= rH max

0≤t≤1

¯

¯BH
t

¯

¯ .

Hence

P

�

max
s≤t≤s+r

¯

¯BH
t − BH

s

¯

¯≥ x

�

= P

�

max
0≤t≤1

¯

¯BH
t

¯

¯≥ r−H x

�

.

Since for positive random variable X , we have

E[X m] =

∫ ∞

0

m · ym−1P(X > y)d y,

it follows that

E

��

max
s≤t≤s+r

¯

¯BH
t

¯

¯

�m�

≤
2
p

2
p
π

∫ ∞

0

m · ym−1

∫ ∞

r−H y

e−x2/2d xd y

=
2
p

2
p
π

∫ ∞

0

e−x2/2d x

∫ rH x

0

m · ym−1d y

= rHm
2
p

2
p
π

∫ ∞

0

xme−x2/2d x .

Finally, we apply relations 2 and 3 of 3.461 of [6], i.e.,

∫ ∞

0

x2ne−px2

d x =
(2n− 1)!!

2(2p)n

r

π

p
, p > 0, n= 1,2, . . .

∫ ∞

0

x2n+1e−px2

d x =
n!

2pn+1
, p > 0,
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to the integral of the last inequality above and obtain

∫ ∞

0

xme−x2/2d x =

¨

(m− 1)!! if m is odd
p

π

2
(m− 1)!! if m is even.

Thus the result holds. �

Proof of Lemma 2.4

By the stationary increment we consider E[max0≤s≤r |Y H
s − Y H

0 |m]. The increment of {Y H
s }s≥0 has

the following representation via the integral by parts formula (see Theorem 2.21 of [22]).

Y H
s − Y H

0 = e−s

∫ s

−∞
eudBH

u −
∫ 0

−∞
eudBH

u

= e−s

∫ s

0

eudBH
u + (e

−s − 1)

∫ 0

−∞
eudBH

u

a.s.
= e−s

�

euBH
u

�s

0
− e−s

∫ s

0

BH
u eudu+ (e−s − 1)

∫ 0

−∞
eudBH

u

= BH
s − e−s

∫ s

0

BH
u eudu+ (e−s − 1)Y H

0 .

Take absolute value of this to obtain

¯

¯Y H
s − Y H

0

¯

¯≤
¯

¯BH
s

¯

¯+ max
0≤u≤s

¯

¯BH
u

¯

¯ (1− e−s) + (1− e−s)
¯

¯Y H
0

¯

¯

and

¯

¯Y H
s − Y H

0

¯

¯

m ≤
∑

i+ j+k=m; i, j,k≥0

m!

i! j! k!

¯

¯BH
s

¯

¯

i
½

max
0≤u≤s

¯

¯BH
u

¯

¯ (1− e−s)

¾ j
¯

¯Y H
0

¯

¯

k
(1− e−s)k.

Then taking expectation of maximum of this, we have

E

�

max
0≤s≤r

¯

¯Y H
s − Y H

0

¯

¯

m
�

≤
∑

i+ j+k=m; i, j,k≥0

m!

i! j! k!
E

�

max
0≤s≤r

¯

¯BH
s

¯

¯

i+ j ¯
¯Y H

0

¯

¯

k
�

(1− e−s) j+k. (10)

On behalf of Lemma 2.3, the expectation in each term of the sum is bounded as

E

�

max
0≤s≤r

¯

¯BH
s

¯

¯

i+ j ¯
¯Y H

0

¯

¯

k
�

≤
r

E

�

max
0≤s≤r

¯

¯BH
s

¯

¯

2(i+ j)
�q

E
h
¯

¯Y H
0

¯

¯

2k
i

≤
p

2 (2(i + i)− 1)!!r2H(i+ j)
Æ

(2k− 1)!!M2k
1

≤
p

2i+ j(i + j)!r2H(i+ j)
Æ

2kk!M2k
1

=
p

(i+ j)!k!(
p

2rH)(i+ j)(
p

2M1)
k.

Here M1 only depends on the variance of Gaussian random variable of Y H
0 , namely only depends on

parameter H. However since H ∈ [1

2
, 1), we can make M1 to attain a certain bound regardless of
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H (for example, we may take M1 =

Æ

Var(Y
1/2

0 ) + 2. Then substituting this relation into (10) and

dividing by m!, we have

E
�

max0≤s≤r

¯

¯Y H
s − Y H

0

¯

¯

m�

m!

≤
1
p

m!

∑

i+ j+k=m; i, j,k≥0

m!

i! j! k!

r

(i + j)!k!

m!
(
p

2rH)i(
p

2rH(1− e−s)) j(
p

2M1(1− e−s))k

≤
1
p

m!

¦p
2rH +

p
2rH(1− e−s) +

p
2M1(1− e−s)

©m

= rHm

np
2+
p

2(1− e−s) +
p

2M1
1−e−s

rH

om

p
m!

.

Note that (1− e−s)/rH with 0 ≤ s ≤ r and H ∈ [ 1

2
, 1), is uniformly bounded in r ≥ 0. In addition

cm/
p

m! with c > 0 is also uniformly bounded in m. Hence we can take a universal constant c1 > 0

and obtain
E
�

max0≤s≤r

¯

¯Y H
s − Y H

0

¯

¯

m�

m!
≤ c1rHm.

�

Proof of Lemma 2.5

We have easily

E

�

max
t≤s≤t+r

¯

¯Y H
s − Y H

t

¯

¯

p
�

= E

�

max
0≤s≤r

¯

¯Y H
s − Y H

0

¯

¯

p
�

≥ E
�¯

¯Y H
r − Y H

0

¯

¯

p�

.

Since {Y H
t }t∈R is a Gaussian process, a random vector (Y H

0 , Y H
r ) is a bivariate Gaussian distribution

and its linear combination (Y H
r − Y H

0 ) is also univariate Gaussian. We denote the square root of

variance as

σ̂ :=
Æ

Var(Y H
r − Y H

0 )

=

q

2
�

Var(Y H
0 )−Cov(Y H

0 , Y H
r )
�

,

and then

E
�¯

¯Y H
r − Y H

0

¯

¯

p�

= 2

∫ ∞

0

x p
1
p

2πσ̂
exp

�

−
x2

2σ̂2

�

d x

=
σ̂p

p
π

2p/2Γ((p+ 1)/2). (11)

Here we use the equality

∫ ∞

0

xν−1e−µx p

d x =
1

p
µ−ν/pΓ(ν/p), Re µ > 0,Re ν > 0, p > 0
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from 3.478 of [6]. An evaluation of σ̂p is derived via the equation (2) with σ = λ= 1.

σ̂2 := 2
�

Var(Y H
0 )−Cov(Y H

0 , Y H
r )
�

= 4cH

�∫ ∞

0

x1−2H

1+ x2
d x −

∫ ∞

0

cos(r x)
x1−2H

1+ x2
d x

�

= 4cH

�∫ ∞

0

(1− cos(r x))
x1−2H

1+ x2
d x

�

= 8cH

∫ ∞

0

sin2(r x/2)
x1−2H

1+ x2
d x

(Change of variables : y = r x)

= 8cH r2H

∫ ∞

0

sin2(y/2)
y1−2H

r2+ y2
d y

≥ 8cH r2H

∫ ∞

0

sin2(y/2)
y1−2H

T2+ y2
d y

:= 8cH cT r2H .

Accordingly it follows that

σ̂p ≥ (8cH cT )
p/2rpH .

Substituting this into (11), we can obtain

E
�¯

¯Y H
r − Y H

0

¯

¯

p� ≥
2p/2

p
π
Γ((p+ 1)/2)(8cH cT )

p/2rpH

:= c(p, T, H)rpH .

Hence Proof is over. �

Proof of Theorem 2.1

The stationarity of {Y H
t }t∈R gives

max
t≤s≤t+r

¯

¯X H
s − X H

t

¯

¯ = max
t≤s≤t+r

¯

¯

¯eY H
s − eY H

t

¯

¯

¯

d
= max

0≤s≤r

¯

¯

¯eY H
s − eY H

0

¯

¯

¯

= eY H
0 max

0≤s≤r

¯

¯

¯eY H
s −Y H

0 − 1

¯

¯

¯ .

Taking expectation of both sides, we have

E

�

max
t≤s≤t+r

¯

¯X H
s − X H

t

¯

¯

�

≤
�

E
h

e2Y H
0

i� 1

2

�

E

�
�

max
0≤s≤r

¯

¯

¯eY H
s −Y H

0 − 1

¯

¯

¯

�2
�� 1

2

= eVar(Y H
0 )

�

E

�

max
0≤s≤r

¯

¯

¯eY H
s −Y H

0 − 1

¯

¯

¯

2
�� 1

2

. (12)
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Since {Y H
s }s≥0 has a continuous version, it is bounded on 0 ≤ s ≤ r and we can use the expansion

ex =
∑∞

n=0
xn

n!
on {X H

s }s≥0. Thus elementary calculations show that

max
0≤s≤r

¯

¯

¯eY H
s −Y H

0 − 1

¯

¯

¯

2

= max
0≤s≤r

¯

¯

¯e2(Y H
s −Y H

0 )− 2e(Y
H

s −Y H
0 )+ 1

¯

¯

¯

a.s.
= max

0≤s≤r

¯

¯

¯

¯

¯

∞
∑

m=1

(2(Y H
s − Y H

0 ))
m

m!
− 2

∞
∑

m=1

(Y H
s − Y H

0 )
m

m!

¯

¯

¯

¯

¯

= max
0≤s≤r

¯

¯

¯

¯

¯

�

Y H
s − Y H

0

�2
+

∞
∑

m=3

(2(Y H
s − Y H

0 ))
m

m!
− 2

∞
∑

m=3

(Y H
s − Y H

0 )
m

m!

¯

¯

¯

¯

¯

≤ max
0≤s≤r

�

Y H
s − Y H

0

�2
+

∞
∑

m=3

max0≤s≤r(2
¯

¯Y H
s − Y H

0

¯

¯)m

m!
+

∞
∑

m=3

max0≤s≤r

¯

¯Y H
s − Y H

0

¯

¯

m

m!
.

By virtue of Lemma 2.4, it follows that

E

�

max
0≤s≤r

�

eY H
s −Y H

0 − 1
�2
�

≤ E

�

max
0≤s≤r

�

Y H
s − Y H

0

�2
�

+

∞
∑

m=3

E
�

max0≤s≤r(2
¯

¯Y H
s − Y H

0

¯

¯)m
�

m!

+

∞
∑

m=3

E
�

max0≤s≤r

¯

¯Y H
s − Y H

0

¯

¯

m�

m!

= 2c1r2H +

∞
∑

m=3

c12mrHm +

∞
∑

m=3

c1rHm

= 2c1r2H +
c18r3H

1− 2rH
+

c1r3H

1− rH

≤ 2c1r2H

�

1+
5rH

1− 2rH

�

= 2c1r2H + 2c′1r3H ,

for all r such that rH < 1/2. If we substitute this into (12), we observe that

E

�

max
0≤s≤r

¯

¯X H
s − X H

0

¯

¯

�

≤ c2× evar(Y H
0 )
p

2c1+ 2c′1rH ,

where c2 > 0 is a constant. Then putting

C(H) := c2× evar(Y H
0 )
p

2c1+ 2c′1,

we obtain the result. �

Proof of Theorem 2.2

As in Proof of Theorem 2.1, we have

max
t≤s≤t+r

¯

¯X H
s − X H

t

¯

¯

d
= eY H

0 max
0≤s≤r

¯

¯

¯eY H
s −Y H

0 − 1

¯

¯

¯ .
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According to the Cauchy-Schwartz inequality,

�

E

�

max
0≤s≤r

¯

¯

¯eY H
s −Y H

0 − 1

¯

¯

¯

1/2
��2

≤ E
h

e−Y H
0

i

E

�

eY H
0 max

0≤s≤r

¯

¯

¯eY H
s −Y H

0 − 1

¯

¯

¯

�

,

and thus

E

�

max
t≤s≤t+r

¯

¯X H
s − X H

t

¯

¯

�

≥ e−Var(Y H
0 )/2

�

E

�

max
0≤s≤r

¯

¯

¯eY H
s −Y H

0 − 1

¯

¯

¯

1/2
��2

.

Then by the symmetry of the distribution of (Y H
r − Y H

0 ), we have

E

�

max
0≤s≤r

¯

¯

¯eY H
s −Y H

0 − 1

¯

¯

¯

1/2
�

≥ E

�

max
0≤s≤r

¯

¯

¯eY H
s −Y H

0 − 1

¯

¯

¯

1/2

1{Y H
s −Y H

0
≥0}

�

≥ E

�

max
0≤s≤r

¯

¯Y H
s − Y H

0

¯

¯

1/2
1{Y H

s −Y H
0 ≥0}

�

≥ E
h
¯

¯Y H
r − Y H

0

¯

¯

1/2
1{Y H

r −Y H
0
≥0}

i

≥
1

2
E
h
¯

¯Y H
r − Y H

0

¯

¯

1/2
i

.

Now the conclusion is implied by Lemma 2.5. �

Proof of Proposition 3.1

The proof is based on the examination of the validity of several crucial assumptions imposed in [10],

in which the authors adapt Kahane’s formulation to stationary processes, Our results in Section 2

assert that the crucial conditions imposed in their paper hold for our exponential process X (t).

Firstly, our Proposition 2.1 on the decay of the covariance function asserts the sufficiency conditions

in their subsections 3.1 and 3.2 hold for X . Namely, we apply our Proposition 2.1 to see that the

L2(dP) norm of the martingale difference, ||An(1)− An−1(1)||2, is summable in n (their subsection

3.1), and thus a limiting process A(t) exists, as the L2(dP) limit of An(t) for each t. While it is

obvious that A(t) is path-wise increasing in t, we need apply again our Proposition 2.1 to see that

it is indeed path-wise non-degenerate and continuous in t (their subsection 3.2). Secondly, our

Theorem 2.1 asserts that, for all q ∈ [1,2],

∞
∑

n=0

E

�

max
0≤s≤b−n

¯

¯X (s)q − X (0)q
¯

¯

�

≤ C(H)

∞
∑

n=0

b−nH ,

where C(H) is a constant derived from Theorem 2.1 and the normalizing factor defined in X (t).

Since we have a dominating convergent series on the right-handed side of the above display, the

main (and most crucial) assumption (10) in their Proposition 5 of subsection 3.3 indeed holds, and

hence the inequality of Proposition 3.1 is established as a consequence of their Proposition 5 of

subsection 3.3. �

Concluding remarks on some future works:

1. We may try to obtain the sharp bounds for C(H) and c(H) in Theorems 2.1 and 2.2. This will

be a significant supplement to the works in [13] (in which some rather sharp bounds for B-D-G
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inequalities of fractional Brownian motion is proved).

2. We use Slepian’s inequality in this paper. Instead of this, we may try to consider some possible

complements with the method in [13]. That is, we try to see the mutual benefit between our

Slepian’s inequality and their B-D-G inequalities.

3. We may consider similar results for for geometric fractional Lévy process or geometric fractional

Ornstein-Uhlenbeck Lévy process, which are outside of the Gaussian realm.
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