
E l e c t r o n
i

c

J
o

u
r

n a l

o
f

P
r

o
b a b i l i t y

Vol. 14 (2009), Paper no. 19, pages 500–530.

Journal URL

http://www.math.washington.edu/~ejpecp/

Maximum Principle and Comparison Theorem for

Quasi-linear Stochastic PDE’s

Laurent DENIS

Département de Mathématiques

Equipe “Analyse et Probabilités”

Université d’Evry-Val-d’Essonne

Boulevard F. Mitterrand

91 025 EVRY Cedex

FRANCE

ldenis@univ-evry.fr

Anis MATOUSSI

Département de Mathématiques

Equipe “Statistique et Processus’

Université du Maine

Avenue Olivier Messiaen

72085 LE MANS Cedex 9 FRANCE

anis.matoussi@univ-lemans.fr

Lucretiu STOICA ∗

Institute of Mathematics "Simion Stoilow" of the Romanian Academy and

Faculty of Mathematics University of Bucharest

Str. Academiei 14, Bucharest RO -70109, ROMANIA

lstoica@fmi.unibuc.ro

Abstract

We prove a comparison theorem and maximum principle for a local solution of quasi-linear

parabolic stochastic PDEs, similar to the well known results in the deterministic case. The proofs

are based on a version of Ito’s formula and estimates for the positive part of a local solution

which is non-positive on the lateral boundary. Moreover we shortly indicate how these results

generalize for Burgers type SPDEs.
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1 Introduction

In the theory of Partial Differential Equations, the maximum principle plays an important role and

there is a huge literature on this subject. It permits one to study the local behavior of solutions of

PDE since it gives a relation between the bound of the solution on the boundary and a bound on the

whole domain. The maximum principle for quasi-linear parabolic equations was proved by Aronson

-Serrin (see Theorem 1 of [1]) in the following form.

Theorem 1. Let u be a weak solution of a quasi-linear parabolic equation of the form

∂tu= divA (t, x ,u,∇u) +B (t, x ,u,∇u)

in the bounded cylinder ]0, T[×O ⊂ Rd+1. If u ≤ M on the parabolic boundary {[0, T[×∂ O } ∪
{{0} ×O }, then one has

u≤ M + C f (A ,B) ,
where C depends only on T, the volume of O and the structure of the equation, while f (A ,B) is

directly expressed in terms of some quantities related to the coefficientsA andB .

The method of proof was based on Moser’s iteration scheme adapted to the nonlinear case. This

method of Aronson and Serrin was further adapted to the stochastic framework in [5], obtain-

ing some Lp a priori estimates for the uniform norm of the solution of the stochastic quasi-linear

parabolic equation. However the results of that paper concern only the case of solution with null

Dirichlet condition and the method was based on the properties of the semi-group corresponding to

null boundary condition. In particular the version of Ito’s formula established in ([5], Proposition

10) was for solutions with null Dirichlet condition.

The aim of the present paper is to consider the case of local solutions, which, roughly speaking, are

weak solutions without conditions at the boundary. For example a solution obtained in a larger do-

main D with null conditions on ∂D, when regarded on O becomes a local solution. We assume that

a local solution is bounded from above by an Ito process on the boundary of the domain and then

we deduce a stochastic version of the maximum principle of Aronson -Serrin. This generalization is

not a simple consequence of the previous results because the local solutions which do not vanish on

the lateral boundary are not directly tractable with the semigroup of null Dirichlet conditions. The

main point is that we have to establish an Ito’s type formula for the positive part of a local solution

which is non-positive on the lateral boundary (see Proposition 1).

More precisely, we study the following stochastic partial differential equation (in short SPDE) for a

real -valued random field ut (x) = u (t, x) ,

dut (x) = Lut (x) d t + ft

�
x ,ut (x) ,∇ut (x)

�
d t +

d∑

i=1

∂i gi,t

�
x ,ut (x) ,∇ut (x)

�
d t

+

d1∑

j=1

h j,t

�
x ,ut (x) ,∇ut (x)

�
dB

j
t (1)

with a given initial condition u0 = ξ, where L is a symmetric, uniformly elliptic, second order

differential operator defined in some bounded open domain O ⊂ Rd and f , gi , i = 1, ..., d,h j , j =

1, ..., d1 are nonlinear random functions. Let us note that in order to simplify the appearance of the
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equation we have chosen to write it as a sum of a linear uniformly parabolic part and two nonlinear

terms, expressed by f and g in (1).

The study of the Lp norms w.r.t. the randomness of the space-time uniform norm on the trajecto-

riesof a stochastic PDE was started by N. V. Krylov in [7]. His aim was to obtain estimates useful

for numerical approximations. In [5] we have introduced the method of iteration of Moser (more

precisely a version due to Aronson -Serrin for non -linear equations) in the stochastic framework,

which allowed us to treat equations with measurable coefficients. The present paper is a continua-

tion of these. One of our motivations is to get Holder continuity properties for the solution of the

SPDE in a forthcoming paper. As in the deterministic case we think that an essential step is to estab-

lish a stochastic version of a maximum principle. Moreover, our maximum principle allows one to

estimate the solution of the Dirichlet problem with random boundary data. For simplicity, let us give

a consequence of it. Under suitable assumptions on f , g, h (Lipschitz continuity and integrability

conditions), we have

Theorem 2. Let (Mt)t≥0 be an Itô process satisfying some integrability conditions, p ≥ 2 and u be a

local weak solution of (1). Assume that u ≤ M on the parabolic boundary {[0, T[×∂ O } ∪ {{0} ×O },
then for all t ∈ [0, T]:

E


(u−M)+



p

∞,∞;t
≤ k

�
p, t
�

E
�
‖ξ−M0‖p∞ +



( f 0,M )+


∗p
θ ,t
+


|g0,M |2



∗p/2
θ ;t
+


|h0,M |2



∗p/2
θ ;t

�

where f 0,M (t, x) = f (t, x , M , 0), g0,M (t, x) = g(t, x , M , 0), h0,M (t, x) = h(t, x , M , 0)and k is a func-

tion which only depends on the structure constants of the SPDE, ‖ · ‖∞,∞;t is the uniform norm on

[0, t]×O and ‖·‖∗θ ;t is a certain norm which is precisely defined below.

The paper is organized as follows : in section 2 we introduce notations and hypotheses and we

take care to detail the integrability conditions which are used all along the paper. In section 3 we

establish Itô’s formula for the positive part of the local solution (Proposition 1). In section 4, we

prove a comparison theorem (Theorem 5) which yields the maximum principle (Theorem 7). Then

in section 5 we prove an existence result for Burgers type SPDE’s with null Dirichlet conditions and

so we generalize results obtained by Gyöngy and Rovira [6]. Moreover we shortly indicate how the

maximum principle and the comparison theorem generalize to this kind of equations. Finally in the

appendix we present some technical facts related to solutions in the L1-sense which are used in the

proofs of the preceding sections.

2 Preliminaries

2.1 Lp,q-spaces

Let O be an open bounded domain in Rd . The space L2 (O ) is the basic Hilbert space of our frame-

work and we employ the usual notation for its scalar product and its norm,

(u, v) =

∫

O
u (x) v (x) d x , ‖u‖2 =

�∫

O
u2 (x) d x

� 1

2

.

In general, we shall use the notation

(u, v) =

∫

O
u(x)v(x) d x ,
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where u, v are measurable functions defined in O and uv ∈ L1(O ).
Another Hilbert space that we use is the first order Sobolev space of functions vanishing at the

boundary, H1
0 (O ) . Its natural scalar product and norm are

(u, v)H1
0
(O ) = (u, v) +

∫

O

d∑

i=1

�
∂iu (x)

��
∂i v (x)

�
d x , ‖u‖H1

0
(O ) =

�
‖u‖22+ ‖∇u‖22

� 1

2 .

We shall denote by H1
loc
(O ) the space of functions which are locally square integrable in O and

which admit first order derivatives that are also locally square integrable.

For each t > 0 and for all real numbers p, q ≥ 1, we denote by Lp,q([0, t]×O ) the space of (classes

of) measurable functions u : [0, t]×O −→ R such that

‖u‖p,q; t :=



∫ t

0

�∫

O
|u(s, x)|p d x

�q/p

ds




1/q

is finite. The limiting cases with p or q taking the value ∞ are also considered with the use of the

essential sup norm. We identify this space, in an obvious way, with the space Lq ([0, t] ; Lp (O )) , con-

sisting of all measurable functions u : [0, t]→ Lp (O ) such that

∫ t

0



us



q

p
ds <∞. This identification

implies that

�∫ t

0



us



q

p
ds

� 1

q

= ‖u‖p,q; t .

The space of measurable functions u : R+→ L2 (O ) such that ‖u‖2,2;t <∞, for each t ≥ 0, is denoted

by L2
loc

�
R+; L2 (O )

�
. Similarly, the space L2

loc

�
R+; H1

0 (O )
�

consists of all measurable functions

u : R+→ H1
0 (O ) such that

‖u‖2,2;t + ‖∇u‖2,2;t <∞,

for any t ≥ 0.

Next we are going to introduce some other spaces of functions of interest and to discuss a certain

duality between them. They have already been used in [1] and [5] but here intervenes a new case

and we change a little bit the notation used before in a way which, we think, make things clearer.

Let
�

p1,q1

�
,
�

p2,q2

�
∈ [1,∞]2 be fixed and set

I = I
�

p1,q1, p2,q2

�
:=
¦�

p,q
�
∈ [1,∞]2 / ∃ ρ ∈ [0,1] s.t.

1

p
= ρ

1

p1

+
�
1−ρ

� 1

p2

,
1

q
= ρ

1

q1

+
�
1−ρ

� 1

q2

¾
.

This means that the set of inverse pairs
�

1

p
, 1

q

�
, (p,q) belonging to I , is a segment contained in

the square [0,1]2 , with the extremities
�

1

p1
, 1

q1

�
and

�
1

p2
, 1

q2

�
. There are two spaces of interest

associated to I . One is the intersection space

LI;t =
⋂

(p,q)∈I

Lp,q ([0, t]×O ) .
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Standard arguments based on Hölder’s inequality lead to the following inclusion (see e.g. Lemma 2

in [5])

Lp1,q1 ([0, t]×O )∩ Lp2,q2 ([0, t]×O )⊂ Lp,q ([0, t]×O ) ,
for each

�
p,q
�
∈ I , and the inequality

‖u‖p,q;t ≤ ‖u‖p1,q1;t ∨ ‖u‖p2,q2;t ,

for any u ∈ Lp1,q1 ([0, t]×O )∩ Lp2,q2 ([0, t]×O ) . Therefore the space LI;t coincides with the inter-

section of the extreme spaces,

LI;t = Lp1,q1 ([0, t]×O )∩ Lp2,q2 ([0, t]×O )

and it is a Banach space with the following norm

‖u‖I;t := ‖u‖p1,q1;t ∨ ‖u‖p2,q2;t .

The other space of interest is the algebraic sum

L I;t :=
∑

(p,q)∈I

Lp,q ([0, t]×O ) ,

which represents the vector space generated by the same family of spaces. This is a normed vector

space with the norm

‖u‖I;t := inf

(
n∑

i=1



ui




pi ,qi ; t

/ u=

n∑

i=1

ui ,ui ∈ Lpi ,qi ([0, t]×O ) ,
�

pi ,qi

�
∈ I , i = 1, ...n; n ∈ N∗

)
.

Clearly one has L I;t ⊂ L1,1 ([0, t]×O ) and ‖u‖1,1;t ≤ c ‖u‖I;t , for each u ∈ L I;t , with a certain

constant c > 0.

We also remark that if
�

p,q
�
∈ I , then the conjugate pair

�
p′,q′

�
, with 1

p
+ 1

p′
= 1

q
+ 1

q′
= 1, belongs

to another set, I ′, of the same type. This set may be described by

I ′ = I ′
�

p1,q1, p2,q2

�
:=

½�
p′,q′

�
/ ∃
�

p,q
�
∈ I s.t.

1

p
+

1

p′
=

1

q
+

1

q′
= 1

¾

and it is not difficult to check that I ′
�

p1,q1, p2,q2

�
= I
�

p′1,q′1, p′2,q′2
�

, where p′1,q′1, p′2 and q′2 are

defined by 1

p1
+ 1

p′
1

= 1

q1
+ 1

q′
1

= 1

p2
+ 1

p′
2

= 1

q2
+ 1

q′
2

= 1.

Moreover, by Hölder’s inequality, it follows that one has

∫ t

0

∫

O
u (s, x) v (s, x) d xds ≤ ‖u‖I;t ‖v‖I

′;t , (2)

for any u ∈ LI;t and v ∈ L I ′;t . This inequality shows that the scalar product of L2 ([0, t]×O ) extends

to a duality relation for the spaces LI;t and L I ′;t .

Now let us recall that the Sobolev inequality states that

‖u‖2∗ ≤ cS ‖∇u‖2 ,
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for each u ∈ H1
0 (O ) , where cS > 0 is a constant that depends on the dimension and 2∗ = 2d

d−2
if

d > 2, while 2∗ may be any number in ]2,∞[ if d = 2 and 2∗ =∞ if d = 1. Therefore one has

‖u‖2∗,2;t ≤ cS ‖∇u‖2,2;t ,

for each t ≥ 0 and each u ∈ L2
loc

�
R+; H1

0 (O )
�

. And if u ∈ L∞
loc

�
R+; L2 (O )

�⋂
L2

loc

�
R+; H1

0 (O )
�

,

one has

‖u‖2,∞;t ∨ ‖u‖2∗,2;t ≤ c1

�
‖u‖22,∞;t + ‖∇u‖22,2;t

� 1

2
,

with c1 = cS ∨ 1.

One particular case of interest for us in relation with this inequality is when p1 = 2,q1 = ∞ and

p2 = 2∗,q2 = 2. If I = I (2,∞, 2∗, 2) , then the corresponding set of associated conjugate numbers is

I ′ = I ′ (2,∞, 2∗, 2) = I
�

2,1, 2∗

2∗−1
, 2
�

, where for d = 1 we make the convention that 2∗

2∗−1
= 1. In

this particular case we shall use the notation L#;t := LI;t and L∗
#;t

:= L I ′;t and the respective norms

will be denoted by

‖u‖#;t := ‖u‖I;t = ‖u‖2,∞;t ∨ ‖u‖2∗,2;t , ‖u‖∗#;t := ‖u‖I ′;t .

Thus we may write

‖u‖#;t ≤ c1

�
‖u‖22,∞;t + ‖∇u‖22,2;t

� 1

2
, (3)

for any u ∈ L∞
loc

�
R+; L2 (O )

�⋂
L2

loc

�
R+; H1

0 (O )
�

and t ≥ 0 and the duality inequality becomes

∫ t

0

∫

O
u (s, x) v (s, x) d xds ≤ ‖u‖#;t ‖v‖∗#;t ,

for any u ∈ L#;t and v ∈ L∗
#;t

.

2.2 Hypotheses

Let {Bt := (B
j
t ) j∈{1,··· ,d1} }t≥0 be a d1-dimentional Brownian motion defined on a standard filtered

probability space
�
Ω,F , (Ft)t≥0, P

�
.

Let A be a symmetric second order differential operator given by A := −L = −
∑d

i, j=1 ∂i(a
i, j ∂ j).

We assume that a is a measurable and symmetric matrix defined on O which satisfies the uniform

ellipticity condition

λ|ξ|2 ≤
∑

i, j

ai, j(x)ξi ξ j ≤ Λ|ξ|2, ∀x ∈ O , ξ ∈ Rd , (4)

where λ and Λ are positive constants. The energy associated with the matrix a will be denoted by

E (w, v) =

d∑

i, j=1

∫

O
ai, j(x)∂iw(x)∂ j v(x) d x . (5)

It’s defined for functions w, v ∈ H1
0(O ), or for w ∈ H1

loc
(O ) and v ∈ H1

0(O ) with compact support.
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We consider the semilinear stochastic partial differential equation (1) for the real-valued random

field ut(x) with initial condition u(0, .) = ξ(.), where ξ is a F0-measurable random variable with

values in L2
loc
(O ).

We assume that we have predictable random functions

f : R+ ×Ω×O ×R×Rd → R ,

h : R+ ×Ω×O ×R×Rd → Rd1

g = (g1, ..., gd) : R+ ×Ω×O ×R×Rd → Rd

We define

f (·, ·, ·, 0, 0) := f 0, h(·, ·, ·, 0, 0) := h0 and g(·, ·, ·, 0, 0) := g0 = (g0
1 , ..., g0

d
).

We considere the following sets of assumptions :

Assumption (H): There exist non negative constants C , α, β such that

(i) | f (t,ω, x , y, z)− f (t,ω, x , y
′
, z
′
)| ≤ C

�
|y − y

′ |+ |z − z
′ |
�

(ii)
�∑d1

j=1 |h j(t,ω, x , y, z)− h j(t,ω, x , y
′
, z
′
)|2
� 1

2 ≤ C |y − y
′ |+ β |z − z

′ |,

(iii)
�∑d

i=1 |gi(t,ω, x , y, z)− gi(t,ω, x , y
′
, z
′
)|2
� 1

2 ≤ C |y − y
′ |+ α |z − z

′ |.

(iv) the contraction property (as in [5]) : α+
β2

2
< λ .

Moreover we introduce some integrability conditions on f 0, g0, h0 and the initial data ξ :

Assumption (HD) local integrability conditions on f 0, g0 and h0 :

E

∫ t

0

∫

K

�
| f 0

t (x)|+ |g
0
t (x)|

2+ |h0
t |

2
�
d xd t <∞

for any compact set K ⊂ O , and for any t ≥ 0.

Assumption (HI) local integrability condition on the initial condition :

E

∫

K

|ξ(x)|2d x <∞

for any compact set K ⊂ O .

Assumption (HD#)

E

��

 f 0


∗

#;t

�2

+


g0


2

2,2;t
+


h0


2

2,2;t

�
<∞,

for each t ≥ 0.

Sometimes we shall consider the following stronger forms of these conditions:
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Assumption (HD2)

E
�

 f 0



2

2,2;t
+


g0


2

2,2;t
+


h0


2

2,2;t

�
<∞,

for each t ≥ 0.

Assumption (HI2) integrability condition on the initial condition :

E‖ξ‖22 <∞.

Remark 1. Note that (2,1) is the pair of conjugates of the pair (2,∞) and so (2,1) belongs to the set I ′

which defines the space L∗
#;t

. Since ‖v‖2,1;t ≤
p

t ‖v‖2,2;t for each v ∈ L2,2 ([0, t]×O ) , it follows that

L2,2 ([0, t]×O )⊂ L2,1;t ⊂ L∗#;t ,

and ‖v‖∗#;t ≤
p

t ‖v‖2,2;t , for each v ∈ L2,2 ([0, t]×O ) . This shows that the condition (HD#) is

weaker than (HD2).

The Lipschitz condition (H) is assumed to hold throughtout this paper, except the last section de-

voted to Burgers type equations. The weaker integrability conditions (HD) and (HI) are also as-

sumed to hold everywhere in this paper. The other stronger integrability conditions will be men-

tioned whenever we will assume them.

2.3 Weak solutions

We now introduceH =H (O ), the space of H1
0(O )-valued predictable processes (ut)t≥0 such that

 
E sup

0≤t≤T



ut



2

2
+

∫ T

0

E E
�
ut

�
d t

!1/2

< ∞ , for each T > 0 .

We define Hloc = Hloc(O ) to be the set of H1
loc
(O )-valued predictable processes such that for any

compact subset K in O and all T > 0:

 
E sup

0≤t≤T

∫

K

ut(x)
2 d x + E

∫ T

0

∫

K

|∇ut(x)|2 d xd t

!1/2

< ∞.

The space of test functions is D = C∞c ⊗C 2
c (O ), where C∞c denotes the space of all real infinite

differentiable functions with compact support in R and C 2
c (O ) the set of C2-functions with compact

support in O .

Definition 1. We say that u ∈ Hloc is a weak solution of equation (1) with initial condition ξ if the

following relation holds almost surely, for each ϕ ∈ D,

∫ ∞

0

[
�
us,∂sϕ

�
−E

�
us,ϕs

�
+
�

f
�
s,us,∇us

�
,ϕs

�
−

d∑

i=1

�
gi

�
s,us,∇us

�
,∂iϕs

�
]ds

+

∫ ∞

0

�
h
�
s,us,∇us

�
,ϕs

�
dBs +

�
ξ,ϕ0

�
= 0.

(6)

We denote by Uloc(ξ, f , g,h) the set of all such solutions u.

If u belongs toH , we say that u solves the SPDE with zero Dirichlet condition on the boundary.

508



In general we do not know much about the set Uloc

�
ξ, f , g,h

�
. It may be empty or may contain

several elements. But under the conditions (H), (HI2) and (HD2) we know from Theorem 9 in [4]

that there exists a unique solution inH and that this solution admits L2(O )-continuous trajectories.

As the space H1
0 (O ) consists of functions which vanish in a generalized sense at the boundary

∂ O , we may say that a solution which belongs to H satisfies the zero Dirichlet conditions at the

boundary of O . Thus we may say that under the assumptions (H), (HD2) and (HI2) there exists a

unique solution with null Dirichlet conditions at the boundary of O . This result will be generalised

below. We denote by U
�
ξ, f , g,h

�
the solution of (1) with zero Dirichlet boundary conditions

whenever it exists and is unique.

We should also note that if the conditions (H), (HD2) and (HI2) are satisfied and if u is a process

inH , the relation from this definition holds with any test function ϕ ∈ D if and only if it holds with

any test function in C∞c
�
R+
�
⊗ H1

0 (O ) . In fact, in this case, one may use as space of test functions

any space of the form C∞c
�
R+
�
⊗ V, where V is a dense subspace of H1

0 (O ) , obtaining equivalent

definitions of the notion of solution with null Dirichlet conditions at the boundary of O . In [4] one

uses C∞c
�
R+
�
⊗ D (A) as space of test functions because this is the space which suits better the

abstract analytic functional framework of that paper.

Remark 2. It is proved in [4] that under (HI2) and (HD2) the solution with null Dirichlet condi-

tions at the boundary of O has a version with L2 (O )-continuous trajectories and, in particular, that

limt→0 ‖ut − ξ‖2 = 0, a.s. This property extends to the local solutions in the sense that any element of

Uloc(ξ, f , g,h) has a version with the property that a.s. the trajectories are L2 (K)-continuous, for each

compact set K ⊂ O and

lim
t→0

∫

K

�
ut(x)− ξ(x)

�2
d x = 0.

In order to see this it suffices to take a test function φ ∈ C∞c (O ) and to verify that v = φu satifies the

equation

dvt =
�

Lvt + f t + divg t

�
+ ht dBt ,

with the initial condition v0 = φξ, where

f t(x) = φ(x) f
�

t, x ,ut(x),∇ut(x)
�
− 〈∇φ(x), a(x)∇ut(x)〉 − 〈∇φ(x), g

�
t, x ,ut(x),∇ut(x)

�
〉,

g t(x) = φ(x)g
�

t, x ,ut(x),∇ut(x)
�
− ut(x)a(x)∇φ(x) and

ht(x) = φ(x)h
�

t, x ,ut(x),∇ut(x)
�

.

Thus v =U
�
φξ, f , g,h

�
and the results of [4] hold for v.

Remark 3. Let us now precise the sense in which a solution is dominated on the lateral boundary.

Assume that v belongs to H1
loc
(O ′) where O ′ is a larger open set such that O ⊂ O ′. Then it is well

known that the condition v+|O ∈ H1
0(O ) expresses the boundary relation v ≤ 0 on ∂ O . Similarly, if a

process u belongs to Hloc(O ′), then the condition u+|O ∈ H (O ) ensures the inequality u ≤ 0 on the

lateral boundary {[0,∞[×∂ O }.
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3 Itô’s formula

3.1 Estimates for solutions with null Dirichlet conditions

Now we are going to improve the existence theorem and the estimates satisfied by the solution

obtained in the general framework of [4]. Though strictly speaking this improvement is not indis-

pensable for the main subject, it is interesting because it shows the minimal integrability conditions

one should impose to the functions f 0, g0,h0. Namely, taking into account the advantage of uniform

ellipticity, we replace the condition (HD2) with the weaker one (HD#).

Theorem 3. Under the conditions (H), (HD#) and (HI2) there exists a unique solution of (1) inH .

Moreover, this solution has a version with L2(O )-continuous trajectories and it satisfies the following

estimates

E
�
‖u‖22,∞;t + ‖∇u‖22,2;t

�
≤ k (t) E

�
‖ξ‖22+

�

 f 0


∗

#;t

�2

+


g0


2

2,2;t
+


h0


2

2,2;t

�
,

for each t ≥ 0, where k (t) is a constant that only depends on the structure constants and t.

Proof:

Theorem 9 of [4] ensures the existence of the solution under the stronger condition (HD2). So we

now assume this condition and we shall next prove that then the solution u=U
�
ξ, f , g,h

�
satisfies

the estimates asserted by our theorem. We start by writing Ito’s formula for the solution in the form



ut



2

2
+ 2

∫ t

0

E
�
us,us

�
ds = ‖ξ‖22+ 2

∫ t

0

�
us, fs

�
us,∇us

��
ds

− 2

∫ t

0

d∑

i=1

�
∂ius, gi,s

�
us,∇us

��
ds+

∫ t

0



hs

�
us,∇us

�

2

2
ds

+ 2

d1∑

j=1

∫ t

0

�
us,h j,s

�
us,∇us

��
dB j

s ,

(7)

equality which holds a.s. (See (ii) of the Proposition 7 in [4]). This is in fact a stochastic version of

Cacciopoli’s identity, well-known for deterministic parabolic equations.

The Lipschitz condition and the inequality (2) lead to the following estimate

∫ t

0

�
us, fs

�
us,∇us

��
ds ≤ ǫ ‖∇u‖22,2;t + cǫ ‖u‖22,2;t +δ ‖u‖

2
#;t + cδ

�

 f 0


∗

#;t

�2

,

where ǫ,δ > 0 are two small parameters to be chosen later and cǫ, cδ are constants depending of

them. Similar estimates hold for the next two terms

−
∫ t

0

d∑

i=1

�
∂ius, gi,s

�
us,∇us

��
ds ≤ (α+ ǫ)‖∇u‖22,2;t + cǫ ‖u‖22,2;t + cǫ



g0


2

2,2;t
,

∫ t

0



hs

�
us,∇us

�

2

2
ds ≤

�
β2+ ǫ

�
‖∇u‖22,2;t + cǫ ‖u‖22,2;t + cǫ



h0


2

2,2;t
.
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Since E
�
us,us

�
≥ λ



∇us



2

2
, we deduce from the equality (7),



ut



2

2
+ 2

�
λ−α−

β2

2
−

5

2
ǫ

�
‖∇u‖22,2;t ≤ δ ‖u‖

2
#;t + ‖ξ‖

2
2+ 2cδ

�

 f 0


∗

#;t

�2

+ 2cǫ


g0


2

2,2;t
+ cǫ



h0


2

2,2;t
+ 5cǫ ‖u‖22,2;t + 2Mt , (8)

a.s., where Mt :=
∑d1

j=1

∫ t

0

�
us,h j,s

�
us,∇us

��
dB

j
s represents the martingale part. Further, using a

stopping procedure while taking the expectation, the martingale part vanishes, so that we get

E


ut



2

2
+ 2

�
λ−α−

β2

2
−

5

2
ǫ

�
E ‖∇u‖22,2;t ≤ δE ‖u‖2#;t

+E

�
‖ξ‖22+ 2cδ

�

 f 0


∗

#;t

�2

+ 2cǫ


g0


2

2,2;t
+ cǫ



h0


2

2,2;t

�
+ 5cǫ

∫ t

0

E


us



2

2
ds.

Then we choose ǫ = 1

5

�
λ−α− β

2

2

�
, set γ= λ−α− β

2

2
and apply Gronwall’s lemma obtaining

E


ut



2

2
+ γE ‖∇u‖22,2;t ≤

�
δE ‖u‖2#;t + EF

�
δ,ξ, f 0, g0,h0, t

��
e5cǫ t , (∗)

where F
�
δ,ξ, f 0, g0,h0, t

�
=

�
‖ξ‖22+ 2cδ

�

 f 0


∗

#;t

�2

+ 2cǫ


g0


2

2,2;t
+ cǫ



h0


2

2,2;t

�
. As a conse-

quence one gets

E ‖u‖22,2;t ≤
1

5cǫ

�
δE ‖u‖2#;t + EF

�
δ,ξ, f 0, g0,h0, t

���
e5cǫ t − 1

�
. (∗∗)

We now return to the inequality (8) and estimate a.s. the supremum for the first term, obtaining

‖u‖22,∞;t ≤ δ ‖u‖
2
#;t + F

�
δ,ξ, f 0, g0,h0, t

�
+ 5cǫ ‖u‖22,2;t + 2 sup

s≤t

Ms.

We would like to take the expectation in this relation and for that reason we need to estimate the

bracket of the martingale part,

〈M〉
1

2
t ≤ ‖u‖2,∞;t ‖h(u,∇u)‖2,2;t ≤ η‖u‖22,∞;t + cη

�
‖u‖22,2;t + ‖∇u‖22,2;t +



h0


2

2,2;t

�
,

with η another small parameter to be properly chosen. Using this estimate and the inequality of

Burkholder-Davis-Gundy we deduce from the preceding inequality

�
1− 2CBDGη

�
E ‖u‖22,∞;t ≤ δE ‖u‖2#;t + EF

�
δ,ξ, f 0, g0,h0, t

�

+
�

5cǫ + 2CBDGcη
�

E ‖u‖22,2;t + 2CBDGcηE ‖∇u‖22,2;t + 2CBDGcηE


h0


2

2,2;t
,

where CBDG is the constant corresponding to the Burkholder-Davis-Gundy inequality. Further we

choose the parameter η= 1

4CBDG
and combine this estimate with (*) and (**) to deduce an estimate

of the form

E
�
‖u‖22,∞;t + ‖∇u‖22,2;t

�
≤ δc2 (t) E ‖u‖2#;t + c3 (δ, t)R

�
ξ, f 0, g0,h0, t

�
,
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where R
�
ξ, f 0, g0,h0, t

�
:= ‖ξ‖22 +

�

 f 0


∗

#;t

�2

+


g0


2

2,2;t
+


h0


2

2,2;t
, and c3 (δ, t) is a constant

that depends of δ and t, while c2 (t) is independent of δ. Dominating the term E ‖u‖2#;t by using the

estimate (3) and then choosing δ = 1

2c2
1

c2(t)
we obtain the estimate asserted by our theorem.

The existence of the solution in the general case, when only condition (HD#) is fulfilled, follows by

an approximation procedure. The function f is approximated by fn := f − f 0+ f 0
n , where f 0

n , n ∈ N,

is a sequence of bounded functions such that E
�

 f 0− f 0

n



∗
#;t

�2

→ 0, as n → 0. The solutions,

un, n ∈ N, of the equation (1) corresponding to the functions fn, n ∈ N, form a Cauchy sequence in

the sense of the following relation

lim
n,m→∞

E
�

un− um



2

2,∞;t
+


∇�un− um

�

2

2,2;t

�
= 0,

which follows from the estimate already proven. The limit u = limn→∞ un represents the solution

associated with f . It clearly satisfies the estimate asserted by the theorem.

It remains to check the uniqueness assertion. Let u,u′ be two solutions inH . Then their difference

u= u− u′ is a solution of a similar equation u=U
�

0, f , g,h
�

, where

f (t, x , y, z) = f (t, x , y + u′(t, x), z +∇u′(t, x))− f (t, x ,u′(t, x),∇u′(t, x)),

g(t, x , y, z) = g(t, x , y + u′(t, x), z +∇u′(t, x))− g(t, x ,u′(t, x),∇u′(t, x)),

h(t, x , y, z) = h(t, x , y + u′(t, x), z +∇u′(t, x))− h(t, x ,u′(t, x),∇u′(t, x)).

Since f
0
= g0 = h

0
= 0 and ū0 = 0 we may apply the above established estimates to deduce that

u= 0.

�

3.2 Estimates of the positive part of the solution

In this section we shall assume that the conditions (H), (HI2) and (HD#) are fulfilled. By Theorem

3 we know that the equation (1) has a unique solution with null Dirichlet boundary conditions

which we denote by U
�
ξ, f , g,h

�
. Next we are going to apply Proposition 2 of the appendix to the

solution u. In fact we have in mind to apply it with ϕ(y) = (y+)2. In the following corollary we

make a first step and relax the hypotheses on ϕ.

Corollary 1. Let us assume the hypotheses of the preceding Theorem with the same notations. Let

ϕ : R→ R be a function of class C 2 and assume that ϕ′′ is bounded and ϕ′ (0) = 0. Then the following

relation holds a.s. for all t ≥ 0:

∫

O
ϕ
�
ut (x)

�
d x +

∫ t

0

E
�
ϕ′
�
us

�
,us

�
ds =

∫

O
ϕ (ξ (x)) d x +

∫ t

0

�
ϕ′
�
us

�
, fs(us,∇us

�
ds
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−
∫ t

0

d∑

i=1

�
∂i

�
ϕ′
�
us

��
, gi,s(us,∇us

�
ds+

1

2

∫ t

0

�
ϕ′′
�
us

�
,
¯̄
hs(us,∇us)

¯̄2�
ds

+

d1∑

j=1

∫ t

0

�
ϕ′
�
us

�
,h j,s(us,∇us)

�
dB j

s .

Proof: Thanks to the estimate obtained in Theorem 3 and the inequality (3) we deduce that the

process ϕ′(u) belongs toH
⋂

L#;t and that f (u,∇u) belongs to L∗
#;t

, for all t > 0. From this we get

the desired result by approximating ϕ and passing to the limit in Proposition 2. �

We next prove an estimate for the positive part u+ of the solution u = U
�
ξ, f , g,h

�
. For this we

need the following notation:

f u,0 = 1{u>0} f
0, gu,0 = 1{u>0}g

0, hu,0 = 1{u>0}h
0,

f u = f − f 0+ f u,0, gu = g − g0+ gu,0, hu = h− h0+ hu,0

f u,0+ = 1{u>0}
�

f 0 ∨ 0
�

, ξ+ = ξ∨ 0.

(9)

Theorem 4. The positive part of the solution satisfies the following estimate

E
�

u+



2

2,∞;t
+


∇u+



2

2,2;t

�
≤ k (t) E

�

ξ+


2

2
+
�

 f u,0+



∗
#;t

�2

+


gu,0



2

2,2;t
+


hu,0



2

2,2;t

�
,

with the same constant k (t) as in the Theorem 3.

Proof:

We first show that the relation (7) appearing in the proof of the Theorem 3 still holds with u replaced

by u+ and with f u, gu,hu,ξ+ in the respective places of f , g,h,ξ.

The idea is to apply Ito’s formula to the function ψ defined by ψ
�

y
�
=
�

y+
�2

, for any y ∈ R.

Since this function is not of the class C 2 we shall make an approximation as follows. Let ϕ be a

C∞ function such that ϕ
�

y
�
= 0 for any y ∈]−∞, 1] and ϕ

�
y
�
= 1 for any y ∈ [2,∞[. We set

ψn

�
y
�
= y2ϕ

�
ny
�

, for each y ∈ R and all n ∈ N∗. It is easy to verify that
�
ψn

�
n∈N∗ converges

uniformly to the function ψ and that

lim
n→∞

ψ′n
�

y
�
= 2y+, lim

n∞
ψ′′n
�

y
�
= 2 · 1{y>0},

for any y ∈ R. Moreover we have the estimates

0≤ψn

�
y
�
≤ψ

�
y
�

, 0≤ψ′
�

y
�
≤ C y,

¯̄
ψ′′n
�

y
�¯̄
≤ C ,

for any y ≥ 0 and all n ∈ N∗, where C is a constant. Thanks to Corallary 1 we have for all n ∈ N∗
and each t ≥ 0, a.s.,
∫

O
ψn

�
ut (x)

�
d x +

∫ t

0

E
�
ψn
′ �us

�
,us

�
ds =

∫

O
ψn (ξ (x)) d x +

∫ t

0

�
ψn
′ �us

�
, fs
�
us,∇us

��
ds

−
∫ t

0

d∑

i=1

�
ψn
′′ �us

�
∂ius, gi,s

�
us,∇us

��
ds+

1

2

∫ t

0

�
ψn
′′ �us

�
,
¯̄
hs

�
us,∇us

�¯̄2�
ds

+

d1∑

j=1

∫ t

0

�
ψn
′ �us

�
,h j,s

�
us,∇us

��
dB j

s .

(10)
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As a consequence of the local property of the Dirichlet form, ψ′n (u) converges to u+ in

L2
loc

�
R+; H1

0 (O )
�

. (see Theorem 5.2 in [3] or [2]). Therefore, letting n → ∞, the relation be-

comes

∫

O

�
u+t (x)

�2
d x + 2

∫ t

0

E
�

u+s ,u+s

�
ds =

∫

O

�
ξ+ (x)

�2
d x + 2

∫ t

0

�
u+s , fs

�
us,∇us

��
ds

−2

∫ t

0

d∑

i=1

�
1{us>0}∂ius, gi,s

�
us,∇us

��
ds+

∫ t

0

�
1{us>0},

¯̄
hs

�
us,∇us

�¯̄2�
ds

+2

d1∑

j=1

∫ t

0

�
u+s ,h j,s

�
us,∇us

��
dB j

s .

This turns out to be exactly the relation (7) with u+, f u, gu,hu,ξ+ in the respective places of

u, f , g,h,ξ. Then one may do the same calculation as in the preceding proof with only one minor

modification concerning the term which contains f u, namely one has

∫ t

0

�
u+s , fs

�
us,∇us

��
ds =

∫ t

0

�
u+s , f u

s

�
u+s ,∇u+s

��
ds

≤ ǫ


∇u+



2

2,2;t
+ cǫ



u+


2

2,2;t
+δ



u+


2

#;t
+ cδ

�

 f u,0+


∗

#;t

�2

.

Thus one has a relation analogous to (8), with u+, f u,0+, gu,0,hu,0,ξ+ in the respective places of

u, f , g,h,ξ and with the corresponding martingale given by

d1∑

j=1

∫ t

0

�
u+s ,hu

j,s

�
u+s ,∇u+s

��
dB j

s .

The remaining part of the proof follows by repeating word by word the proof of Theorem 3. �

3.3 The case without lateral boundary conditions

In this subsection we are again in the general framework with only conditions (H), (HD) and (HI)

being fulfilled. The following proposition represents a key technical result which leads to a gener-

alization of the estimates of the positive part of a local solution. Let u ∈ Uloc

�
ξ, f , g,h

�
, denote by

u+ its positive part and let the notation (9) be considered with respect to this new function.

Proposition 1. Assume that u+ belongs to H and assume that the data satisfy the following integra-

bility conditions

E


ξ+



2

2
<∞, E

�

 f u,0


∗

#;t

�2

<∞, E


gu,0



2

2,2;t
<∞, E



hu,0


2

2,2;t
<∞,

for each t ≥ 0. Let ϕ : R→ R be a function of class C 2, which admits a bounded second order derivative

and such that ϕ′ (0) = 0. Then the following relation holds, a.s., for each t ≥ 0,

∫

O
ϕ
�

u+t (x)
�

d x +

∫ t

0

E
�
ϕ′
�

u+s

�
,u+s

�
ds =

∫

O
ϕ
�
ξ+ (x)

�
d x +

∫ t

0

�
ϕ′
�

u+s

�
, fs
�

u+s ,∇u+s

��
ds
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−
∫ t

0

d∑

i=1

�
ϕ′′
�

u+s

�
∂iu
+
s , gi,s

�
u+s ,∇u+s

��
ds+

1

2

∫ t

0

�
ϕ′′
�

u+s

�
,

¯̄
¯hs

�
u+s ,∇u+s

�¯̄
¯
2
�

ds

+

d1∑

j=1

∫ t

0

�
ϕ′
�

u+s

�
,h j,s

�
u+s ,∇u+s

��
dB j

s .

Proof:

The version of Ito’s formula proved in [5] (Lema 7) works only for solutions with null Dirichlet

conditions. In this subsection only the positive part u+ vanishes at the boundary, but it is not a

solution. So we are going to make an approximation of x+ by some smoother functions ψn(x)

such that ψn(u) satisfy a SPDE and also converges, as n goes to infinity, in a good sense to u+. The

essential point is to prove that the integrability conditions satisfied by our local solution ensure the

passage to the limit.

We start with some notation. Let n ∈ N∗ be fixed and define ψ = ψn to be the real function

determined by the following conditions

ψ (0) =ψ′ (0) = 0, ψ′′ = n1� 1

n
, 2

n

�.

Then clearly ψ is increasing, ψ (x) = 0 if x < 1

n
,ψ (x) = x − 3

2n
for x > 2

n
, and

0∨
�

x −
3

2n

�
≤ψ≤ x ∨ 0,

for any x ∈ R. The derivative satisfies the inequalities 0 ≤ ψ′ ≤ 1 and ψ′ (x) = 1 for x ≥ 2

n
. We set

vt =ψ
�
ut

�
and prove the following lemma.

Lemma 1. The process v =
�

vt

�
t>0 satisfies the following SPDE

dvt = Lvt d t + f̌t d t + bft d t +

d∑

i=1

∂i ǧi,t d t +

d1∑

j=1

ȟ j,t dB
j
t

with the initial condition v0 = ψ (ξ) and zero Dirichlet conditions at the boundary of O , where the

processes intervening in the equation are defined by

f̌t (x) =ψ
′ �ut (x)

�
ft

�
x ,u+t (x) ,∇u+t (x)

�
,

ǧt (x) =ψ
′ �ut (x)

�
gt

�
x ,u+t (x) ,∇u+t (x)

�
,

ȟt (x) =ψ
′ �ut (x)

�
ht

�
x ,u+t (x) ,∇u+t (x)

�
,

bft (x) =−ψ′′
�
ut (x)

�� d∑

i, j=1

�
ai j
�
∂iu
+
t

��
∂ ju

+
t

��
(x) +

d∑

i=1

�
∂iu
+
t

�
gi,t

�
u+t ,∇u+t

�
(x)

−
1

2

¯̄
¯ht

�
u+t ,∇u+t

�¯̄
¯
2

(x)
�

.
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The assumptions on u+ ensure that v belong to H . We also note that the functions f̌ , bf , ǧ and ȟ

vanish on the set
¦

ut ≤ 1

n

©
and they satisfy the following integrability conditions:

E




 f̌





2

1,1;t
≤ E

�


 f̌





∗

#;t

�2

, E


 ǧ


2

2,2;t
, E




ȟ





2

2,2;t
, E




bf





1,1;t
<∞,

for each t ≥ 0. The equation from the statement should be considered in the weak L1 sense of

Definition 4 introduced in the Appendix .

Proof of the Lemma :

Let φ ∈ C∞c (O ) and set νt = φut , which defines a process in H . A direct calculation involving the

definition relation shows that this process satisfies the following equation with φξ as initial data

and zero Dirichlet boundary conditions,

dνt =

 
Lνt +

eft +

d∑

i=1

∂iÝgi,t

!
d t +

d1∑

j=1

gh j,t dB
j
t ,

where

eft = φ ft

�
ut ,∇ut

�
−

d∑

i, j=1

ai, j
�
∂iφ
��
∂ jut

�
−

d∑

i=1

�
∂iφ
�

gi,t

�
ut ,∇ut

�
,

Ýgi,t = φgi,t

�
ut ,∇ut

�
− ut

d∑

j=1

ai, j∂ jφ, i = 1, ...d, gh j,t = φh j,t

�
ut ,∇ut

�
, j = 1, ..., d1.

Then we may write Ito’s formula in the form

�
ψ
�
νt

�
,ϕt

�
+

∫ t

0

E
�
ψ′
�
νs

�
ϕs,νs

�
ds =

�
ψ
�
φξ
�

,ϕ0

�
+

∫ t

0

�
ψ
�
νs

�
,∂sϕs

�
ds

+

∫ t

0

�
ψ′
�
νs

�
ϕs, efs

�
ds−

∫ t

0

d∑

i=1

�
∂i

�
ψ′
�
νs

�
ϕs

�
,Ýgi,s

�
ds+

1

2

∫ t

0

�
ψ′′
�
νs

�
ϕs,

¯̄
¯ ehs

¯̄
¯
2
�

ds

+

d1∑

j=1

∫ t

0

�
ψ′
�
νs

�
ϕs,fh js

�
dB j

s .

where ϕ ∈ D. (The proof of this relation follows from the same arguments as the proof of Lemma 7

in [5].) Now we take φ such that φ = 1 in an open subset O ′ ⊂ O and such that supp(ϕt) ⊂ O ′ for

each t ≥ 0, so that this relation becomes

�
vt ,ϕt

�
+

∫ t

0

E
�
ψ′
�
us

�
ϕs,us

�
ds =

�
ψ (ξ) ,ϕ0

�
+

∫ t

0

�
vs,∂sϕs

�
ds

+

∫ t

0

�
ϕs, fs

�
us,∇us

��
ds−

∫ t

0

d∑

i=1

�
∂i

�
ψ′
�
us

�
ϕs

�
, gi,s

�
us,∇us

��
ds

+
1

2

∫ t

0

�
ψ′′
�
us

�
ϕs,
¯̄
hs

�
us,∇us

�¯̄2�
ds+

d1∑

j=1

∫ t

0

�
ψ′
�
us

�
ϕs,h j,s

�
us,∇us

��
dB j

s .
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By remarking for example that

E
�
ψ′(us)ϕs,us

�
=

d∑

i, j=1

∫

O
ai j∂i(ψ

′(us)ϕs)∂ j(us) d x

=

d∑

i, j=1

∫

O
ai jψ′′(us)∂i(ϕs)∂ j(us) d x + E

�
ψ(us),ϕs

�
,

an inspection of this relation reveals that this is in fact the definition equality of the equation of the

lemma in the sense of the Definition 4 in the Appendix. �

Proof of Proposition 1 :

It is easy to see that the proof can be reduced to the case where the function ϕ has both first and

second derivatives bounded. Then we write the formula of Proposition 2 of the Appendix to the

process v and obtain

∫

O
ϕ
�

vt

�
+

∫ t

0

E
�
ϕ′
�

vs

�
, vs

�
=

∫

O
ϕ
�

v0

�
d x +

∫ t

0

�
ϕ′
�

vs

�
, f̌s +

bfs
�

ds

−
∫ t

0

d∑

i=1

�
∂i

�
ϕ′
�

vs

��
, ǧi,s

�
ds+

1

2

∫ t

0

�
ϕ′′
�
us

�
,

¯̄
¯ȟs

¯̄
¯
2
�

ds

+

d1∑

j=1

∫ t

0

�
ϕ′
�

vs

�
, ȟ j,s

�
dB j

s .

Further we change the notation taking into account the fact that the function ψ depends on the

natural number n. So we writeψn forψ, vn
t forψn

�
ut

�
= vt and f̌ n,cf n, ǧn, ȟn for the corresponding

functions denoted before by f̌ , bf , ǧ, ȟ. Then we pass to the limit with n→∞. Obviously one has



vn− u+




2,2;t
→ 0,



¯̄∇vn−∇u+
¯̄



2,2;t
→ 0,

for each t ≥ 0, a.s. and ψ′n (u)→ 1{u>0}. Then one deduces that




 f̌ n− f
�

u+,∇u+
�



∗

#;t
→ 0,





¯̄
¯ ǧn− g

�
u+,∇u+

�¯̄
¯





2,2;t
→ 0,





¯̄
¯ȟn− h

�
u+,∇u+

�¯̄
¯





2,2;t
→ 0,

for each t ≥ 0, a.s.

On the other hand, since the assumptions on ϕ ensure that
¯̄
ϕ′ (x)

¯̄
≤ K |x | for any x ∈ R, with

some constant K , we deduce that |ϕ′ (vn)ψ′′n (u) | ≤ 2K 1[ 1

n
, 2

n
](u). Therefore by the dominated

convergence theorem we get that 


ϕ′ (vn)cf n





1,1;t
→ 0,
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for each t ≥ 0, a.s. Finally we deduce that the above relation passes to the limit and implies the

relation stated by the theorem. �

The above proposition immediately leads to the following generalization of the estimates of the

positive part obtained in the previous section, with the same proof.

Corollary 2. Under the hypotheses of the above Proposition with same notations, one has the following

estimates

E
�

u+



2

2,∞;t
+


∇u+



2

2,2;t

�
≤ k (t) E

�

ξ+


2

2
+
�

 f u,0+



∗
#;t

�2

+


gu,0



2

2,2;t
+


hu,0



2

2,2;t

�
.

4 Main results : comparison theorem and maximum principle

In this section we are still in the general framework and we consider u ∈ Uloc

�
ξ, f , g,h

�
a local

solution of our SPDE. We first give the following comparison theorem.

Theorem 5. Assume that f 1, f 2 are two functions similar to f which satisfy the Lipschitz condition

(H)-(i) and such that both triples
�

f 1, g,h
�

and
�

f 2, g,h
�

satisfy (HD). Assume that ξ1,ξ2 are ran-

dom variables similar to ξ and that both satisfy (HI). Let ui ∈ Uloc

�
ξi , f i , g,h

�
, i = 1,2 and suppose

that the process
�

u1− u2
�+

belongs toH and that one has

E

�


 f 1
�

., .,u2,∇u2
�
− f 2

�
., .,u2,∇u2

�



∗

#;t

�2

<∞, for all t ≥ 0.

If ξ1 ≤ ξ2 a.s. and f 1
�

t,ω,u2,∇u2
�
≤ f 2

�
t,ω,u2,∇u2

�
, d t⊗d x⊗dP-a.e., then one has u1(t, x)≤

u2(t, x), d t ⊗ d x ⊗ dP-a.e.

Proof:

The difference v = u1− u2 belongs to Uloc

�
ξ, f , g,h

�
, where ξ= ξ1− ξ2,

f
�

t,ω, x , y, z
�
= f 1

�
t,ω, x , y + u2

t (x) , z +∇u2
t (x)

�
− f 2

�
t,ω, x ,u2

t (x) ,∇u2
t (x)

�
,

g
�

t,ω, x , y, z
�
= g

�
t,ω, x , y + u2

t (x) , z +∇u2
t (x)

�
− g

�
t,ω, x ,u2

t (x) ,∇u2
t (x)

�
,

h
�

t,ω, x , y, z
�
= h
�

t,ω, x , y + u2
t (x) , z +∇u2

t (x)
�
− h
�

t,ω, x ,u2
t (x) ,∇u2

t (x)
�

.

The result follows from the preceding corollary, since ξ≤ 0 and f
0 ≤ 0 and g0 = h

0
= 0.

�

Before presenting the next application we are going to recall some notation used in [5]. For d ≥ 3

and some parameter θ ∈ [0,1[ we used the notation

Γ∗θ =

½�
p,q
�
∈ [1,∞]2 /

d

2p
+

1

q
= 1− θ

¾
,

L∗θ =
∑

(p,q)∈Γ∗θ

Lp,q ([0, t]×O )
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‖u‖∗θ ;t := inf

(
n∑

i=1



ui




pi ,qi ; t

/ u=

n∑

i=1

ui ,ui ∈ Lpi ,qi ([0, t]×O ) ,

�
pi ,qi

�
∈ Γ∗θ , i = 1, ...n; n ∈ N∗

©
.

Remark 4. In the paper [5] we have omitted the cases d = 1,2. In fact, one can cover these cases by

setting

Γθ =

¨
�

p,q
�
∈ [1,∞]2 /

2∗

2∗− 2

1

p
+

1

q
=

2∗

2∗− 2
+ θ

«
,

Γ∗θ =

¨
�

p,q
�
∈ [1,∞]2 /

2∗

2∗− 2

1

p
+

1

q
= 1− θ

«

and by using similar calculations with the convention 2∗

2∗−2
= 1 if d = 1.

We want to express these quantities in the new notation introduced in the subsection 2.1 and to

compare the norms ‖u‖∗θ ;t and ‖u‖∗#;t . So, we first remark that Γ∗
θ
= I
�
∞, 1

1−θ , d

2(1−θ) ,∞
�

and that

the norm ‖u‖∗θ ;t coincides with ‖u‖Γ∗θ ;t = ‖u‖I
�
∞, 1

1−θ , d

2(1−θ ) ,∞
�

;t
. On the other hand, we recall that

the norm ‖u‖∗#;t is associated to the set I
�

2,1, 2∗

2∗−1
, 2
�

, i.e. ‖u‖∗#;t coincides with ‖u‖I
�

2,1, 2∗
2∗−1

,2
�

;t
.

Then we may prove the following result.

Lemma 2. One has ‖u‖∗#;t ≤ c ‖u‖∗θ ;t , for each u ∈ L∗
θ
, with some constant c > 0.

Proof:

The points defining the sets I
�
∞, 1

1−θ , d

2(1−θ) ,∞
�

and I
�

2,1, 2∗

2∗−1
, 2
�

obviously satisfy the inequal-

ities

∞≥ 2,
1

1− θ ≥ 1,
d

2 (1− θ) ≥
2∗

2∗− 1
=

2d

d + 2
,∞≥ 2,

and hence for each pair
�

p,q
�
∈ Γ∗

θ
, there exists a pair

�bp,bq� ∈ I
�

2,1, 2∗

2∗−1
, 2
�

such that p ≤ bp and

q ≤ bq. This implies the inclusion

L∗θ =
∑

(p,q)∈Γ∗θ

Lp,q ([0, t]×O )⊂ L
I
�

2,1, 2∗
2∗−1

,2
�

;t
=

∑

(p,q)∈I
�

2,1, 2∗
2∗−1

,2
�

Lp,q ([0, t]×O ) ,

and the asserted inequality. �

We now consider the following assumption:

Assumption (HDθ p)

E

 �

 f 0


∗
θ ;t

�p

+

�



¯̄
g0
¯̄2



∗

θ ;t

� p

2

+

�



¯̄
h0
¯̄2



∗

θ ;t

� p

2

!
<∞,

for each t ≥ 0, where θ ∈ [0,1[ and p ≥ 2 are fixed numbers. By the preceding Lemma and since

in general one has ‖u‖1,1;t ≤ c ‖u‖∗θ ;t , it follows that this property is stronger than (HD#).
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As now we want to establish a maximum principle, we have to assume that ξ is bounded with

respect to the space variable, so we introduce the following:

Assumption (HI∞p)

E ‖ξ‖p∞ <∞,

where p ≥ 0 is a fixed number.

Then we have the following result which generalizes the maximum principle to the stochastic frame-

work.

Theorem 6. Assume (H), (HDθ p), (HI∞p) for some θ ∈ [0,1[, p ≥ 2, and that the constants of the

Lipschitz conditions satisfy α+
β2

2
+ 72β2 < λ. Let u ∈ Uloc

�
ξ, f , g,h

�
be such that u+ ∈ H . Then

one has

E


u+



p

∞,∞;t
≤ k (t) E

 


ξ+



p

∞ +
�

 f 0,+



∗
θ ;t

�p

+

�



¯̄
g0
¯̄2



∗

θ ;t

� p

2

+

�



¯̄
h0
¯̄2



∗

θ ;t

� p

2

!
,

where k (t) is constant that depends of the structure constants and t ≥ 0.

Proof:

Set v = U
�
ξ+, bf , g,h

�
the solution with zero Dirichlet boundary conditions, where the function

bf is defined by bf = f + f 0,−, with f 0,− = 0 ∨
�
− f 0

�
. The assumption on the Lipschitz constants

ensure the applicability of the theorem 11 of [5], which gives the estimate

E ‖v‖p∞,∞;t ≤ k (t) E

 


ξ+



p

∞ +
�

 f 0,+



∗
θ ;t

�p

+

�



¯̄
g0
¯̄2



∗

θ ;t

� p

2

+

�



¯̄
h0
¯̄2



∗

θ ;t

� p

2

!
,

because bf 0 = f 0,+. Then (u− v)+ ∈ H and we observe that all the conditions of the preceding

theorem are satisfied so that we may apply it and deduce that u ≤ v. This implies u+ ≤ v+ and the

above estimate of v leads to the asserted estimate. �

Remark 5. As noted in Subsection 2.3 the condition u+ ∈H means that u≤ 0 on the lateral boundary

[0,∞[×∂ O . Similarly, concerning the next theorem, we observe that the condition (u − M)+ ∈ H
means that u≤ M on the lateral boundary [0,∞[×∂ O .

Let us generalize the previous result by considering a real Itô process of the form

Mt = m+

∫ t

0

bsds+

d1∑

j=1

∫ t

0

σ j,sdB j
s ,

where m is a real random variable and b =
�

bt

�
t≥0 , σ =

�
σ1,t , ...,σd,t

�
t≥0

are adapted processes.

Theorem 7. Assume (H), (HDθ p), (HI∞p) for some θ ∈ [0,1[, p ≥ 2, and that the constants of the

Lipschitz conditions satisfy α+
β2

2
+ 72β2 < λ. Assume also that m and the processes b and σ satisfy

the following integrability conditions

E |m|p <∞, E

�∫ t

0

¯̄
bs

¯̄ 1

1−θ ds

�p(1−θ)

<∞, E

�∫ t

0

¯̄
σs

¯̄ 2

1−θ ds

� p(1−θ )
2

<∞,
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for each t ≥ 0. Let u ∈ Uloc

�
ξ, f , g,h

�
be such that (u−M)+ belongs toH . Then one has

E


(u−M)+



p

∞,∞;t
≤ k (t) E

h

(ξ−m)+


p

∞ +

�




�

f (·, ·, M , 0)− b
�+ 





∗

θ ;t

�p

+

�



¯̄
g(·, ·, M , 0)

¯̄2



∗

θ ;T

� p

2

+
�

|h(·, ·, M , 0)−σ|2



∗
θ ;T

� p

2
i

where k (t) is the constant from the preceding corollary. The right hand side of this estimate is domi-

nated by the following quantity which is expressed directly in terms of the characteristics of the process

M,

k (t) E
h

(ξ−m)+



p

∞ + |m|
p +
�

 f 0,+



∗
θ ;t

�p

+

�



¯̄
g0
¯̄2



∗

θ ;T

� p

2

+

�



¯̄
h0
¯̄2



∗

θ ;T

� p

2

+

�∫ t

0

¯̄
bs

¯̄ 1

1−θ ds

�p(1−θ)

+

�∫ t

0

¯̄
σs

¯̄ 2

1−θ ds

� p(1−θ )
2 i

.

Proof:

One immediately observes that u−M belongs to Uloc

�
ξ−m, f , g,h

�
, where

f
�

t,ω, x , y, z
�
= f

�
t,ω, x , y +Mt (ω) , z

�
− bt (ω) ,

g
�

t,ω, x , y, z
�
= g

�
t,ω, x , y +Mt (ω) , z

�
,

h
�

t,ω, x , y, z
�
= h
�

t,ω, x , y +Mt (ω) , z
�
−σt (ω) .

In order to apply the preceding theorem we only have to estimate the zero terms. So we see that

f
0

t = ft

�
Mt , 0

�
− bt , g0

t = gt

�
Mt , 0

�
,h

0

t = ht

�
Mt , 0

�
−σt , and hence we get the first estimate from

the statement. Further we may write

f
0,+

t ≤ C
¯̄
Mt

¯̄
+ f

0,+
t +

¯̄
bt

¯̄
,

¯̄
g0

t

¯̄2 ≤ 2C2
¯̄
Mt

¯̄2
+ 2
¯̄
g0

t

¯̄2
,

¯̄
¯h0

t

¯̄
¯
2

≤ 3C2
¯̄
Mt

¯̄2
+ 3
¯̄
h0

t

¯̄2
+ 3
¯̄
σt

¯̄2
.

Then we have the estimates




 f
0,+




∗

θ ;t
≤


 f 0,+



∗
θ ;t
+ C sup

s≤t

¯̄
Mt

¯̄
+

�∫ t

0

¯̄
bs

¯̄ 1

1−θ ds

�1−θ

,





¯̄
g0
¯̄2



∗

θ ;t
≤ 2





¯̄
g0
¯̄2



∗

θ ;t
+ 2C2 sup

s≤t

¯̄
Mt

¯̄2
,




h0




∗

θ ;t
≤ 3





¯̄
h0
¯̄2



∗

θ ;t
+ 3C2 sup

s≤t

¯̄
Mt

¯̄2
+ 3

�∫ t

0

¯̄
σs

¯̄ 2

1−θ ds

�1−θ

.
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On the other hand, one has

sup
s≤t

¯̄
Mt

¯̄
≤ |m|+

∫ t

0

¯̄
bs

¯̄
ds+ sup

s≤t

¯̄
Nt

¯̄
,

where we have denoted by Nt the martingale
∑d1

j=1

∫ t

0
σ j,sdB

j
s . The inequality of Burkholder -Davis

-Gundy implies

E sup
s≤t

¯̄
Mt

¯̄p ≤ cE


|m|p +

�∫ t

0

¯̄
bs

¯̄
ds

�p

+

�∫ t

0

¯̄
σs

¯̄2
ds

� p

2


 ,

and this allows us to conclude the proof. �

5 Burgers type equations

All along this section, we relax the hypothesis on the predictable random function g which is as-

sumed to be locally Lipschitz with polynomial growth with respect to y . We shall generalize some

results from Gyöngy and Rovira [6]. Indeed, we shall assume that the assumption (H) holds, but

instead of the condition (iii) we assume the following:

Assumption (G): there exists two constants C > 0 and r ≥ 1, and two functions ḡ, ĝ such that

(i) the function g can be expressed by : g(t,ω, x , y, z) = ḡ(t,ω, x , y, z) + ĝ(t,ω, y),

∀(t,ω, x , y, z) ∈ R+ ×Ω×O ×R×Rd .

(ii)
�∑d

i=1 |gi(t,ω, x , y, z)− gi(t,ω, x , y
′
, z
′
)|2
� 1

2 ≤ C
�
1+ |y |r + |y ′|r

�
|y − y

′ |+ α |z − z
′ |,

(iii)
�∑d

i=1 | ḡi(t,ω, x , y, z)− ḡ0
i
(t,ω, x)|2

� 1

2 ≤ C |y | + α |z|,
where α is the constant which appears in assumption (H).

We first consider equation (1) with null Dirichlet boundary condition

ut(x) = 0, for all t > 0, x ∈ ∂ O .

and the initial condition u(0, .) = ξ(.)

The effect of the polynomial growth contained in the term ĝ will be canceled by the following simple

lemma

Lemma 3. Let u ∈ H1
0(O ), ψ ∈ C 1

�
R
�

with bounded derivative and F a real-valued bounded measur-

able function. Then ∫

O
∂i

�
ψ(u(x))

�
F(u)(x) d x = 0, ∀i = 1, · · ·, d.
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Proof: We define

G(y) =

∫ y

0

ψ′(z)F(z) dz. ∀y ∈ R,

so that ∂iG(u) = G′(u)∂iu = ∂i

�
ψ(u)

�
F(u). Then, we deduce that the integral from the statement

becomes
∫
O ∂i

�
G(u(x))

�
d x , which is null because u ∈ H1

0(O ). �

The natural idea is to approximate the coefficient g by a sequence of globally Lipschitz functions.

To this end we define, for all n≥ 1, the coefficient gn by:

∀(t, w, x , y, z) ∈ R+ ×Ω×O ×R×Rd , gn(t, w, x , y, z) = g(t, w, x , ((−n)∨ y)∧ n, z).

In the same way, we define ḡn, ĝn, so that gn = ḡn+ ĝn.

One can easily check that for all n ∈ N, gn,0 = g0 and that the following relations hold:

� d∑

i=1

|gn
i (t,ω, x , y, z)− gn

i (t,ω, x , y
′
, z
′
)|2
� 1

2 ≤ C
�
1+ 2nr

�
|y − y

′ |+ α |z − z
′ | ,

� d∑

i=1

| ḡn
i (t,ω, x , y, z)− ḡ0

i (t,ω, x)|2
� 1

2 ≤ C
�
1+ |y |

�
+ α |z − z

′ | ,
(11)

with the same constants C , α, r as in hypothesis (G), so we are able to apply Theorem 11 of [5] (or

Theorem 3 above) and get the solutions un = U (ξ, f , gn,h) for all n = 1,2, .... We know that for t

fixed, E ‖un‖p2,∞;t is finite. The key point is that this quantity does not depend on n. This is the aim

of the following

Lemma 4. Assume that conditions (H)(i)-(ii), (G), (HDθ p) and (HI∞p) are fulfilled for some θ ∈
[0,1[ and p ≥ 2, and that the constants of the Lipschitz conditions satisfy α+

β2

2
+ 72β2 < λ. Then,

for fixed t > 0,

E ‖un‖p∞,∞;t ≤ k (t) E
�
‖ξ‖p∞ +



 f 0


∗p
θ ,t
+


| ḡ0|2



∗p/2
θ ;t
+


|h0|2



∗p/2
θ ;t

�
,

where k(t) only depends on C, α and β .

Proof: Thanks to the Itô’s formula (see Lemma 7 in [5]) , we have for all l ≥ 2, n ∈ N and t > 0:
∫

O
|un

t (x)|
l d x +

∫ t

0

E
�
l (un

s )
l−1 sgn(un

s ), un
s

�
ds =

∫

O
|ξ(x)|l d x

+ l

∫ t

0

∫

O
sgn(un

s )|u
n
s (x)|

l−1 f (s, x ,un
s ,∇un

s ) d xds

− l(l − 1)

d∑

i=1

∫ t

0

∫

O
|un

s (x)|
l−2∂iu

n
s (x) gi(s, x ,un

s ,∇un
s ) d x ds

+ l

d1∑

j=1

∫ t

0

∫

O
sgn(un

s )|u
n
t (x)|

l−1h j(s, x ,un
s ,∇un

s ) d xdB j
s

+
l(l − 1)

2

d1∑

j=1

∫ t

0

∫

O
|un

t (x)|
l−2h2

j (s, x ,un
s ,∇un

s ) d x ds ,
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P-almost surely.

The midle term in the right hand side can be written as

d∑

i=1

∫ t

0

∫

O
|un

s (x)|
l−2∂iu

n
s (x) gn

i (s, x ,un
s ,∇un

s ) d x ds

=

d∑

i=1

∫ t

0

∫

O
|un

s (x)|
l−2∂iu

n
s (x) ḡn

i (s, x ,un
s ,∇un

s ) d x ds

because by Lemma 3 we have

∫ t

0

∫

O
|un

s (x)|
l−2∂iu

n
s (x) ĝn

i (s,u
n
s ) d x ds = 0.

Now, as

| ḡ(t,ω, x ,un
s ,∇un

s )| ≤ | ḡ
0(t,ω, x)|+ C |un

s | + α |∇un
s |,

and as f and h satisfy similar inequalities with constants which do not depend on n, we can follow

exactly the same arguments as the ones in [5] (Lemmas 12, 14, 16 and 17) replacing g by ḡ and

this yields the result.

Let us remark that in [5], we first assume that initial conditions are bounded and then pass to the

limit. Here, it is not necessary since a priori we know that E ‖un‖p∞,∞;t is finite. �

We need to introduce the following

Definition 2. We denote byHb the subset of processes u inH such that for all t > 0

E ‖ u ‖2∞,∞;t<+∞.

We are now able to enounce the following existence result which gives also uniform estimates for

the solution :

Theorem 8. Assume that conditions (H)(i)-(ii), (G), (HDθ p) and (HI∞p) are fulfilled for some

θ ∈ [0,1[ and p ≥ 2, and that the constants of the Lipschitz conditions satisfy α+
β2

2
+ 72β2 < λ.

Then the equation (1) admits a unique solution u ∈Hb. Moreover

E ‖u‖p∞,∞;t ≤ k (t) E
�
‖ξ‖p∞ +



 f 0


∗p
θ ;t
+


| ḡ0|2



∗p/2
θ ;t
+


|h0|2



∗p/2
θ ;t

�
,

where k is a function which only depends on structure constants.

Proof: We keep the notations of previous Lemma and so consider the sequence (un)n∈N. For all

n ∈ N, we introduce the following stopping time:

τn = inf{t ≥ 0, ‖un‖∞,∞;t > n}.

Now, let n ∈ N be fixed, we set τ= τn ∧τn+1. Define now for i = n, n+ 1

v i
t =

¨
ui

t if t < τ

Pt−τu
i
τ elsewhere,
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where (Pt)t≥0 is the semigroup associated to A with zero Dirichlet condition.

One can verify that v i =U (ξ,1{t≤τ} · f ,1{t≤τ} · gn+1,1{t≤τ} ·h). It is clear that the coefficients of the

equation satisfied by v i fulfill hypotheses (H) and that moreover 1{t≤τ} · gn+1 is globally Lipschitz

continuous. Hence, by Theorem 3 (or Theorem 11 of [5]) this equation admits a unique solution.

So, we conclude that vn = vn+1 which implies that τn+1 ≥ τn and un = un+1 on [0,τn]. Thanks to

previous Lemma, we have

lim
n→+∞

τn =+∞, P − a.e.

We define ut = limn→∞ un
t . It is easy to verify that u is a weak solution of (1) and that it satisfies the

announced estimate.

Let us prove that u is unique. Let v be another solution inHb. By the same reasoning as the one we

have just made, one can prove that u= v on each [0,νn] where for all n ∈ N,

νn = inf{t ≥ 0, ‖v‖∞,∞;t > n}.

As v ∈Hb, limn→+∞ νn =+∞ a.e. and this leads to the conclusion. �

Remark 6. The function k which appears in the above theorem only depends on structure constants but

not on r.

In the setting of this section, with (H) (iii) replaced by (G), one may define local solutions without

lateral boundary conditions by restricting the attention to processes u ∈ Hloc such that ‖u‖∞,∞;t <

∞ a.s. for any t ≥ 0 and such the relation 6 of the definition is satisfied. Then Proposition 1,

Corollary 2 and Theorems 5, 6, 7 of the preceding section still hold for such bounded solutions.

The proof follows from the stopping procedure used in the proof of Theorem 8.

6 Appendix

As we have relaxed the hypothesis on f 0 which does not necessarily satisfy an L2-condition but only

L1, we need to introduce another notion of solution with null Dirichlet conditions at the boundary

of O , which is a solution in the L1 sense.

6.1 Weak L1 -solution

Since this notion intervenes only as a technical tool, we develop only the striclly necessary aspects

related to it. It is defined by using the duality of L1 with L∞. To this end we introduce a few

notations concerning the extension of our operator to L1(O ).
Let (Pt)t≥0 be the semi-group (in L2(O )) whose generator is L = −A. It is well-known that for

all t ≥ 0, Pt can be extended to a sub-Markovian contraction of L1(O ) that we denote by P
(1)
t .

Following [2], Proposition 2.4.2, we know that (P
(1)
t )t≥0 is a strongly continuous contraction semi-

group in L1(O ), whose generator L(1) is the smallest closed extension on L1(O ) of (L,D(A)). We set

A(1) =−L(1) and denote by D(A(1)) its domain.

Let us also put the following notation:

D∞ (A) = {u ∈ D (A)∩ L∞ (O )/Au ∈ L∞ (O )} ,
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[u]∞ = ‖u‖∞ + ‖Au‖∞ ,

for each u ∈ D∞ (A) . It is not difficult to see that the space D∞ (A) endowed with the norm [·]∞ is a

Banach space and that it is dense both in D (A) and D
�

A(1)
�

. Then a suitable space of test functions

is defined by

D0 = C∞c ([0,∞[)⊗D∞ (A) .
We start presenting some facts in the deterministic setting. Analogous to Lemma 2 of [4] one has

the following result.

Lemma 5. If u : R+→ L1 (O ) is such that

∫ t

0

∫

O

¯̄
us (x)

¯̄
d xds <∞

and ∫ t

0

∫

O

�
us,∂tϕ− Aϕs

�
ds = 0,

for any ϕ ∈ D0, then u= 0, as an element of L1
loc

�
R+; L1 (O )

�
.

This last lemma allows us to extend the notion of solution of the equation

∂tu− Lu= w (∗)

to the L1 framework as follows.

Definition 3. Let w ∈ L1
loc

�
R+; L1 (O )

�
and ξ ∈ L1 (O ) be given. Then we say that u ∈

L1
loc

�
R+; L1 (O )

�
is a weak L1 -solution of the equation (∗) with the initial condition u0 = ξ and

zero Dirichlet conditions at the boundary of O provided that one has

∫ ∞

0

��
ut ,∂tϕ− Aϕt

�
+
�
wt ,ϕt

��
d t +

�
ξ,ϕ0

�
= 0,

for any ϕ ∈ D0.

The solution is expressed in terms of the semigroup
�

P
(1)
t

�
t≥0

as stated in the next lemma with

same proof as the one of Lemma 3 in [4].

Lemma 6. If w ∈ L1
loc

�
R+; L1 (O )

�
and ξ ∈ L1 (O ) , then there exists a unique weak L1 -solution of

(∗) with initial condition u0 = ξ and zero Dirichlet boundary conditions and it is expressed by

ut =

∫ t

0

P
(1)
t−swsds+ P

(1)
t ξ,

for any t ≥ 0.

We now turn out to the stochastic case.

The space of all predictable processes with trajectories in L i
loc

�
R+; L i (O )

�
, a.s., and such that

E ‖u‖ii,i;t <∞,

for each t ≥ 0, will be denoted by P
�

L i
�

, for i = 1,2.
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Definition 4. Now let w ∈ P
�

L1
�

, w′i , w′′ j ∈ P
�

L2
�

, i = 1, ..., d, j = 1, ..., d1 and ξ ∈
L1
�
Ω,F0, P; L1 (O )

�
be given and set , w′ =

�
w′1, ..., w′d

�
, w′′ =

�
w′′1, ..., w′′d1

�
. Then we say that

a process u ∈ P
�

L1
�

represents a weak L1 -solution of the equation

dut = Lut d t + wt d t +

d∑

i=1

∂iw
′i
t d t +

d1∑

j=1

w
′′ j
t dB

j
t (∗∗)

with initial condition u0 = ξ and zero Dirichlet conditions at the boundary of O provided that the

following relation holds, a.s.,

∫ ∞

0


�us,∂sϕ− Aϕs

�
+
�
ws,ϕs

�
−

d∑

i=1

�
w′is ,∂iϕ

�

 ds

+

d1∑

j=1

∫ ∞

0

�
w′′ js ,ϕs

�
dB j

s +
�
ξ,ϕ0

�
= 0,

for each test function ϕ ∈ D0.

It is easy to see that, in the case where, besides the preceding conditions, the trajectories of the

solution u belong a.s. to L2
loc

�
R+; H1

0 (O )
�

, the above relation is equivalent to

∫ ∞

0


�us,∂sϕ

�
−E

�
us,ϕs

�
+
�
ws,ϕs

�
−

d∑

i=1

�
w′is ,∂iϕ

�

 ds

+

d1∑

j=1

∫ ∞

0

�
w′′ js ,ϕs

�
dB j

s +
�
ξ,ϕ0

�
= 0.

So, on account of the Proposition 7 of [4] and of the preceding lemma, if w ∈ P
�

L2
�

and ξ ∈
L2
�
Ω,F0, P; L2 (O )

�
the notion of a weak L1-solution of (**) just introduced coincides with the

notion of a weak solution previously defined, with f = f 0 = w, g = g0 = w′ and h = h0 = w′′.
Moreover, we have the following general explicit expression for the solution, similar to Proposition

7 of [4].

Lemma 7. If w ∈ P
�

L1
�

, w′ =
�

w′1, ..., w′d
�

, w′′ =
�

w′′1, ..., w′′d1

�
, w′k, w′′l ∈ P

�
L2
�

, k =

1, ..., d, l = 1, ..., d1 and ξ ∈ L1
�
Ω,F0, P; L1 (O )

�
, then there exists a unique weak L1 -solution of

the equation (∗∗) . The solution is expressed by

ut = P
(1)
t ξ+

∫ t

0

P
(1)
t−swsds+

∫ t

0

Pt−s

 
d∑

i=1

∂iw
′i
s

!
ds+

d1∑

j=1

∫ t

0

Pt−sw
′′ j
s dB j

s .

6.2 Ito’s formula

We now can prove the following version of Ito’s formula.
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Proposition 2. Let us assume hypotheses of the preceding Lemma and that u belongs to H . Let

ϕ : R → R be a function of class C 2, assume that ϕ′ and ϕ′′ are bounded and ϕ′ (0) = 0. Then the

following relation hold a.s. for all t ≥ 0:
∫

O
ϕ
�
ut (x)

�
d x +

∫ t

0

E
�
ϕ′
�
us

�
,us

�
ds =

∫

O
ϕ (ξ (x)) d x +

∫ t

0

�
ϕ′
�
us

�
, ws

�
ds

−
∫ t

0

d∑

i=1

�
∂i

�
ϕ′
�
us

��
, w′is

�
ds+

1

2

∫ t

0

�
ϕ′′
�
us

�
,
¯̄
w′′s
¯̄2�

ds+

d1∑

j=1

∫ t

0

�
ϕ′
�
us

�
, w′′ js

�
dB j

s .

Proof: We denote by v =
�

vt

�
t≥0 the process defined by

vt =

∫ t

0

P
(1)
t−swsds.

Let us define for all n ∈ N∗ and t ≥ 0,

ξn = P
(1)
1

n

ξ, vn
t = P1

n

vt , wn
t = P

(1)
1

n

wt .

Since u belongs toH , then process ξ+ v also belongs toH .

We fix n for the moment. It is known that the semigroup has bounded densities, so that there exists

some constants Kt , t > 0, such that



P
(1)
t f





∞
≤ Kt



 f




1
,

and 


AP
(1)
t f





2
≤ Kt



 f




1
,

for any f ∈ L1 (O ) . The second inequality follows from the well know estimate of spectral calculus

‖APt f ‖2 ≤ e−1 t−1‖ f ‖2. So, it is clear that ξn belongs to L1
�
Ω,F0, P; L∞ (O )

⋂
D(A)

�
and that for

all T > 0 (wn
t )t∈[0,T] belongs to L1(Ω× [0, T];D(A)). As a consequence, vn is D(A)-differentiable

and for all t > 0:

∂t v
n
t = wn

t + Avn
t .

Consider now sequences (w′i,k)k∈N∗ , 1≤ i ≤ d of adapted processes in C∞c ([0,∞))⊗L2(Ω)⊗D(A3/2)

which converge to w′i , 1 ≤ i ≤ d, in P (L2) and sequences (w′′ j,k)k∈N∗ , 1 ≤ j ≤ d1 of adapted

processes in C∞c ([0,∞))⊗ L2(ω)⊗D(A) which converge to w′′ j , 1≤ j ≤ d1, in P (L2).

We set for all k ∈ N∗:
un,k =U (ξn, wn, w′,k, w′′,k),

then we know that for all t

u
n,k
t = Ptξ

n+

∫ t

0

Pt−sw
n
s ds+

∫ t

0

Pt−s

 
d∑

i=1

∂iw
′i,k
s

!
ds+

d1∑

j=1

∫ t

0

Pt−sw
′′ j,k
s dB j

s .

Lemma 6 in [5] ensures that un,k − vn = U (ξn, 0, w′,k, w′′,k) is an L2(O )-valued semi-martingale

hence un,k is also a semi-martingale since vn is differentiable.

Thanks to the Ito’s formula (see Lemma 7 in [5]), we have
∫

O
ϕ
�

u
n,k
t (x)

�
d x =

∫

O
ϕ (ξn (x)) d x −

∫ t

0

�
ϕ′
�

un,k
s

�
,Aun,k

s

�
ds+

∫ t

0

�
ϕ′
�

un,k
s

�
, wn

s

�
ds
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−
∫ t

0

d∑

i=1

�
∂i

�
ϕ′
�

un,k
s

��
, w′i,ks

�
ds+

1

2

∫ t

0

�
ϕ′′
�

un,k
s

�
,
¯̄
w′′,ks

¯̄2�
ds+

d1∑

j=1

∫ t

0

�
ϕ′
�

un,k
s

�
, w′′ j,ks

�
dB j

s .

As a consequence of Lemma 6 in [5], we know that un,k tends to un inH so, making k tend to +∞
and using the fact that for all k,

−
∫ t

0

�
ϕ′
�

un,k
s

�
,Aun,k

s

�
ds =

∫ t

0

E
�
ϕ′
�

un,k
s

�
un,k

s

�
ds,

we get :

∫

O
ϕ
�

un
t (x)

�
d x +

∫ t

0

E
�
ϕ′
�

un
s

�
,un

s

�
ds =

∫

O
ϕ (ξn (x)) d x +

∫ t

0

�
ϕ′
�

un
s

�
, wn

s

�
ds

−
∫ t

0

d∑

i=1

�
∂i

�
ϕ′
�

un
s

��
, w′is

�
ds+

1

2

∫ t

0

�
ϕ′′
�

un
s

�
,
¯̄
w′′s
¯̄2�

ds+

d1∑

j=1

∫ t

0

�
ϕ′
�

un
s

�
, w′′ js

�
dB j

s .

As we assume that ξ+ v belongs toH , un tends to u inH as n tends to +∞, so

lim
n→+∞

∫ t

0

E
�
ϕ′
�

un
s

�
,un

s

�
ds =

∫ t

0

E
�
ϕ′
�
us

�
,us

�
ds

Moreover, for all n

∫ t

0

�
ϕ′
�

un
s

�
, wn

s

�
ds =

∫ t

0

�
ϕ′
�

un
s

�
, P
(1)
1

n

ws

�
ds

=

∫ t

0

�
P1

n

ϕ′
�

un
s

�
, ws

�
ds

Since ϕ′′ is bounded and un tends to u in H , it is easy to prove that P1

n

ϕ′ (un) converges to ϕ′ (u)

in P (L2). Then, thanks to the dominated convergence theorem, we get that for a subsequence:

lim
n→+∞

∫ t

0

�
ϕ′
�

un
s

�
, wn

s

�
ds =

∫ t

0

�
ϕ′
�
us

�
, ws

�
ds.

We then obtain the result by making n tend to +∞ in the other terms of the equality without any

problem. �

References

[1] D.G. Aronson, J. Serrin : Local behavior of solutions of quasi-linear parabolic equations.

Archive for Rational Mechanics and Analysis 25 (1967), 81-122. . MR0244638

[2] N. Bouleau, F. Hirsch : Dirichlet forms and analysis on Wiener space, Kluwer (1993).

[3] L. Denis : Solutions of stochastic partial differential equations considered as Dirichlet pro-

cesses. Bernoulli J.of Probability 10 (5) (2004), 783-827. MR2093611

529

http://www.ams.org/mathscinet-getitem?mr=0244638
http://www.ams.org/mathscinet-getitem?mr=2093611


[4] L. Denis, I. L. Stoica : A general analytical result for non-linear s.p.d.e.’s and applications. Elec.

J. of Probability 9 (2004), p. 674-709. MR2110016

[5] L. Denis, A. Matoussi, I. L. Stoica : Lp estimates for the uniform norm of solutions of quasilinear

SPDE’s. Prob. Th. Rel. Fileds 133 (2005), 437-463. MR2197109

[6] I. Gyöngy, C. Rovira (2000) : On LP -solutions of semilinear stochastic partial differental equa-

tions. Stoch. Processes and their Applications 90 (2000), 83-108. MR1787126

[7] N. V. Krylov : An analytic approach to SPDEs. Six Perspectives, AMS Mathematical surveys an

Monographs, 64 (1999), 185-242. MR1661766

[8] E. Pardoux : Stochastic partial differential equations and filtering of diffusion process. Stochas-

tics 3 (1979), 127-167. MR0553909

530

http://www.ams.org/mathscinet-getitem?mr=2110016
http://www.ams.org/mathscinet-getitem?mr=2197109
http://www.ams.org/mathscinet-getitem?mr=1787126
http://www.ams.org/mathscinet-getitem?mr=1661766
http://www.ams.org/mathscinet-getitem?mr=0553909

	Introduction
	Preliminaries
	Lp,q-spaces
	Hypotheses
	Weak solutions

	Itô's formula 
	Estimates for solutions with null Dirichlet conditions
	Estimates of the positive part of the solution
	The case without lateral boundary conditions

	Main results : comparison theorem and maximum principle
	Burgers type equations
	Appendix
	Weak L1 -solution
	Ito's formula

	References

