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Abstract

It has been proved by Bertoin and Caballero [8] that a 1/α-increasing self-similar Markov process

X is such that t−1/αX (t) converges weakly, as t →∞, to a degenerate random variable whenever

the subordinator associated to it via Lamperti’s transformation has infinite mean. Here we prove

that log(X (t)/t1/α)/ log(t) converges in law to a non-degenerate random variable if and only if

the associated subordinator has Laplace exponent that varies regularly at 0. Moreover, we show

that lim inft→∞ log(X (t))/ log(t) = 1/α, a.s. and provide an integral test for the upper functions

of {log(X (t)), t ≥ 0}. Furthermore, results concerning the rate of growth of the random clock

appearing in Lamperti’s transformation are obtained. In particular, these allow us to establish

estimates for the left tail of some exponential functionals of subordinators. Finally, some of the

implications of these results in the theory of self-similar fragmentations are discussed.
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1 Introduction

Let X = {X (t), t ≥ 0} be an increasing positive self-similar Markov process with càdlàg paths,

(pssMp) viz. X is a ]0,∞[ valued strong Markov process that fulfills the scaling property: there

exists an α > 0 such that for every c > 0

�
{cX (tc−α), t ≥ 0}, IPx

� Law
=
�
{X (t), t ≥ 0}, IPcx

�
, x ∈]0,∞[,

where IPy denotes the law of the process X with starting point y > 0. We will say that X is an

increasing 1/α-pssMp.

A stable subordinator of parameter β ∈]0,1[ is a classical example of increasing pssMp and its

index of self-similarity is 1/β . Another example of this class of processes appears in the theory of

extremes. More precisely, let Yβ = {Yβ (t), t ≥ 0} be a stable Lévy process of parameter β ∈]0,2[,

with non-negative jumps and so its Lévy measure has the form aβ x−1−β , x > 0, for some a > 0.

The increasing process Xβ defined as

Xβ (t) := the largest jump in [0, t] of the process Yβ , t ≥ 0,

has the strong Markov property because the jumps of Yβ form a Poisson point process with intensity

measure aβ x−1−β , x > 0, and inherits the scaling property from Yβ , with a self-similarity index

1/β . In fact, the processes Xβ belongs to the class of extremal process whose Q-function has the

form Q(x) = cx−b, for x > 0 and Q(x) =∞ otherwise, for some c, b > 0, see e.g. [21] for further

results concerning this and other related processes. In our specific example c = a and 0< b = β < 2.

Furthermore, according to [21] Proposition 3 an extremal process with Q function as above with

b ≥ 2, which is an increasing pssMp, can be constructed by taking the largest jump in [0, t] of the

process (Y1/b)
1/2b for t ≥ 0. Some asymptotic results for these processes were obtained in [22]

Section 5.

Another example of an increasing pssMp is that of the reciprocal of the process of a tagged fragment

which appeared recently in the theory of self-similar fragmentations, see [7] Section 3.3 or Section

7 below where some of our main results are applied to this class of processes.

It is well known that by means of a transformation due to Lamperti [20] any increasing positive

self-similar Markov processes can be transformed into a subordinator and vice-versa. By a subordi-

nator we mean a càdlàg real valued process with independent and stationary increments, that is, a

Lévy process with increasing paths. To be more precise about Lamperti’s transformation, given an

increasing 1/α-pssMp X we define a new process ξ by

ξt = log

�
X (γt)

X (0)

�
, t ≥ 0,

where {γt , t ≥ 0} denotes the inverse of the additive functional

∫ t

0

(X (s))−αds, t ≥ 0.

The process ξ = {ξt , t ≥ 0} defined this way is a subordinator started from 0, and we denote by P

its law. Reciprocally, given a subordinator ξ and α > 0, the process constructed in the following way

is an increasing 1/α-pssMp. For x > 0, we denote by IPx the law of the process

x exp{ξτ(t/xα)}, t ≥ 0,
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where {τ(t), t ≥ 0} is the inverse of the additive functional

Ct :=

∫ t

0

exp{αξs}ds, t ≥ 0. (1)

So for any x > 0, IPx , is the law of an 1/α-pssMp started from x > 0. We will refer to any of these

transformations as Lamperti’s transformation.

In a recent paper Bertoin and Caballero [8] studied the problem of existence of entrance laws at 0+

for an increasing pssMp. They established that if the subordinator (ξ,P) (which is assumed to be

non arithmetic) associated to (X , IP) via Lamperti’s transformation has finite mean m := E(ξ1)<∞,

then there exists a non-degenerate probability measure IP0+ on the space of paths that are right

continuous and left limited which is the limit in the sense of finite dimensional laws of IPx as x → 0+.

Using the scaling and Markov properties it is easy to see that the latter result is equivalent to the

weak convergence of random variables

t−1/αX (t)
Law
−−→
t→∞

Z , (2)

where X is started at 1 and Z is a non-degenerate random variable. The law of Z will be denoted

by µ, and it is the probability measure defined by

µ( f ) := IE0+

�
f (X (1))

�
=

1

αm
E

�
f

��
1

I

�1/α
�

1

I

�
, (3)

for any measurable function f : R+→ R+; where I is the exponential functional

I :=

∫ ∞

0

exp{−αξs}ds,

associated to the subordinator ξ; see the Remark on page 202 in [8], and [10] where the analogous

result for more general self-similar Markov processes is obtained. The fact that I is finite a.s. is a

consequence of the fact that ξt tends to infinity as t →∞ at least with a linear rate owing to the law

of large numbers for subordinators, see e.g. [11] Theorem 1. Besides, it is important to mention

that in [8] the case of an arithmetic subordinator was not studied for sake of brevity. However, the

analogous result can be obtained with the same techniques but using instead the arithmetic renewal

theorem and tacking limits over well chosen sequences.

The following result complements the latter.

Proposition 1. Let {X (t), t ≥ 0} be an increasing 1/α-pssMp. Assume that the subordinator ξ, as-

sociated to X via Lamperti’s transformation is non arithmetic and has finite mean, m = E(ξ1) < ∞.

Then
1

log(t)

∫ t

0

f (s−1/αX (s))
ds

s
−−→
t→∞

µ( f ), IP0+ -a.s.

for every function f ∈ L1(µ). Furthermore,

log (X (t))

log(t)
−−→
t→∞

1/α, IP1 -a.s.
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In fact, the results of the previous proposition are not new.

The first assertion can be obtained as a consequence of an ergodic theorem for self-similar processes

due to Csáki and Földes [17], and the second assertion has been obtained in [6]. However, we

provide a proof of these results for ease of reference.

A study of the short and large time behaviour of X under IP0+ has been done in [22] and [16].

In [8] the authors also proved that if the subordinator (ξ,P) has infinite mean then the convergence

in law in (2) still holds but Z is a degenerate random variable equal to∞ a.s. The main purpose of

this paper is to study in this setting the rate at which t−1/αX (t) tends to infinity as the time grows.

Observe that the asymptotic behaviour of (X , IP) at large times is closely related to the large jumps of

it, because it is so for the subordinator (ξ,P). So, for our purposes it will be important to have some

information about the large jumps of (ξ,P) or equivalently about those of (X , IP). Such information

will be provided by the following assumption. Let φ : R+ → R+ be the Laplace exponent of (ξ,P),

viz.

φ(λ) := − log
�

E(e−λξ1)
�
= dλ+

∫

]0,∞[

(1− e−λx)Π(dx), λ ≥ 0,

where d ≥ 0 and Π is a measure over ]0,∞[ such that
∫
(1 ∧ x)Π(dx) < ∞, which are called the

drift term and Lévy measure of ξ, respectively. We will assume that φ is regularly varying at 0, i.e.

lim
λ→0

φ(cλ)

φ(λ)
= cβ , c > 0,

for some β ∈ [0,1], which will be called the index of regular variation of φ. In the case where

β = 0, it is said that the function φ is slowly varying. It is known that φ is regularly varying at 0

with an index β ∈]0,1[ if and only if the right tail of the Lévy measure Π is regularly varying with

index −β , viz.

lim
x→∞

Π]cx ,∞[

Π]x ,∞[
= c−β , c > 0. (4)

Well known examples of subordinators whose Laplace exponent is regularly varying are the stable

subordinators and the gamma subordinator. A quite rich but less known class of subordinators

whose Laplace exponent is regularly varying at 0 is that of tempered stable subordinators, see [24]

for background on tempered stable laws. In this case, the drift term is equal to 0, and the Lévy

measure Πδ has the form Πδ(dx) = x−δ−1q(x)dx , x > 0, where δ ∈]0,1[ and q : R+ → R+ is a

completely monotone function such that
∫ 1

0
x−δq(x)dx <∞. By l’Hôpital’s rule, for Πδ to be such

that the condition (4) is satisfied it is necessary and sufficient that q be regularly varying at infinity

with index −λ and such that 0< λ+δ < 1.

We have all the elements to state our first main result.

Theorem 1. Let {X (t), t ≥ 0} be a positive 1/α-self-similar Markov process with increasing paths. The

following assertions are equivalent:

(i) The subordinator ξ, associated to X via Lamperti’s transformation, has Laplace exponent φ :

R+→ R+, which is regularly varying at 0 with an index β ∈ [0,1].

(ii) Under IP1 the random variables
¦

log(X (t)/t1/α)/ log(t), t > 1
©

converge weakly as t → ∞ to-

wards a random variable V.
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(iii) For any x > 0, under IPx the random variables
¦

log(X (t)/t1/α)/ log(t), t > 1
©

converge weakly

as t →∞ towards a random variable V.

In this case, the law of V is determined in terms of the value of β as follows: V = 0 a.s. if β = 1;

V =∞, a.s. if β = 0, and if β ∈]0,1[, its law has a density given by

α1−β2β sin(βπ)

π
v−β(2+αv)−1dv, v > 0.

We will see in the proof of Theorem 1 that under the assumption of regular variation of φ at 0,

the asymptotic behaviour of X (t) is quite irregular. Namely, it is not of order ta for any a > 0, see

Remark 5. This justifies our choice of smoothing the paths of X by means of the logarithm.

Observe that the case where the underlying subordinator is arithmetic is not excluded in Theorem 1.

This is possible as the proof of this Theorem uses among other tools the Dynkin-Lamperti Theorem

for subordinators which in turn does not exclude the case of arithmetic subordinators, see e.g. [4]

Section 3.1.2, and Corollary 1 in [23]. Moreover, we can find some similarities between the Dynkin-

Lamperti Theorem and our Theorem 1. For example, the conclusions of the former hold if and only

if one of the conditions of the latter hold; both theorems describe the asymptotic behaviour of ξ

at a sequence of stopping times, those appearing in the former are the first passage times above a

barrier, while in the latter they are given by τ(·). It shall be justified in Section 8 that in fact both

families of stopping times bear similar asymptotic behaviour.

The equivalence between (ii) and (iii) in Theorem 1 is a simple consequence of the scaling property.

Another simple consequence of the scaling property is that: if there exists a normalizing function

h : R+ → R+ such that for any x > 0, under IPx , the random variables
¦

log(X (t)/t1/α)/h(t), t > 0
©

converge weakly as t → ∞ towards a non-degenerate random variable V whose law does not depend

on x , then the function h is slowly varying at infinity. Hence, in the case where the Laplace exponent

is not regularly varying at 0 it is natural to ask if there exists a function h that grows faster or

slower than log(t) and such that log(X (t)/t1/α)/h(t) converges in law to a non-degenerate random

variable. The following result answers this question negatively.

Theorem 2. Assume that the Laplace exponent of ξ is not regularly varying at 0 with a strictly positive

index and let h : R+ → R+ be an increasing function that varies slowly at ∞. If h(t)/ log(t) tends to

0 or ∞, as t →∞, and the law of log(X (t)/t1/α)/h(t), under IP1, converges weakly to a real valued

random variable, as t →∞, then the limiting random variable is degenerate.

Now, observe that in the case where the underlying subordinator has finite mean, Proposition 1

provides some information about the rate of growth of the random clock (τ(t), t ≥ 0) because it

is equal to the additive functional
∫ t

0
(X (s))−αds, t ≥ 0 under IP1 . In the case where φ is regularly

varying at 0 with an index in [0,1[ it can be verified that

1

log(t)

∫ t

0

(X (s))−αds −−→
t→∞

0, IP1 -a.s.

see Remark 4 below. Nevertheless, in the latter case we can establish an estimate of the Darling-Kac

type for the functional
∫ t

0
(X (s))−αds, t ≥ 0, which provides some insight about the rate of growth

of the random clock. This is the content of the following result.
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Proposition 2. The following conditions are equivalent:

(i) φ is regularly varying at 0 with an index β ∈ [0,1].

(ii) The law of φ
�

1

log(t)

�∫ t

0
(X (s))−αds, under IP1, converges in distribution, as t →∞, to a random

variable α−βW, where W is a random variable that follows a Mittag-Leffler law of parameter

β ∈ [0,1].

(iii) For some β ∈ [0,1], IE1

��
φ
�

1

log(t)

�∫ t

0
(X (s))−αds

�n
�

converges towards α−βnn!/Γ(1+ nβ),

for n= 0,1, . . . , as t →∞.

Before continuing with our exposition about the asymptotic results for log(X ) let us make a di-

gression to remark that this result has an interesting consequence for a class of random variables

introduced by Bertoin and Yor[9] that we explain next. Recently, they proved that there exists a R+

valued random variable Rφ associated to Iφ :=
∫∞

0
exp{−αξs}ds, such that

Rφ Iφ
Law
= e(1), where e(1) follows an exponential law of parameter 1.

The law of Rφ is completely determined by its entire moments, which in turn are given by

E(Rn
φ) =

n∏

k=1

φ(αk), for n= 1,2, . . .

Corollary 1. Assume that φ is regularly varying at 0 with index β ∈ [0,1]. The following estimates

E

�
1{Rφ>s}

1

Rφ

�
∼

1

αβΓ(1+ β)φ(1/ log(1/s))
, P(Rφ < s) = o

�
s

αβΓ(1+ β)φ(1/ log(1/s))

�
,

as s→ 0, hold. If furthermore, the function λ/φ(λ), λ > 0, is the Laplace exponent of a subordinator

then

E

�
1{Iφ>s}

1

Iφ

�
∼
αβ log(1/s)φ(1/ log(1/s))

Γ(2− β)
, P(Iφ < s) = o

�
αβ s log(1/s)φ

�
1/ log(1/s)

�

Γ(2− β)

�
,

as s→ 0.

It is known, [25] Theorem 2.1, that a Laplace exponent φ is such that the function λ/φ(λ) is

the Laplace exponent of a subordinator if and only if the renewal measure of ξ has a decreasing

density; see also [19] Theorem 2.1 for a sufficient condition on the Lévy measure for this to hold.

The relevance of the latter estimates relies on the fact that in the literature about the subject there

are only a few number of subordinators for which estimates for the left tail of Iφ are known.

In the following theorem, under the assumption that (i) in Theorem 1 holds, we obtain a law

of iterated logarithm for {log(X (t)), t ≥ 0} and provide an integral test to determine the upper

functions for it.

Theorem 3. Assume that the condition (i) in Theorem 1 above holds with β ∈]0,1[. We have the

following estimates of log(X (t)).
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(a) lim inf
t→∞

log (X (t))

log(t)
= 1/α, IP1 -a.s.

(b) Let g :]e,∞[→ R+ be the function defined by

g(t) =
log
�
log(t)

�

ϕ
�

t−1 log
�
log(t)

�� , t > e,

with ϕ the inverse of φ. For f : R+ → (0,∞) increasing function with positive increase, i.e.

0< lim inft→∞
f (t)

f (2t)
, we have that

lim sup
t→∞

log(X (t))

f
�
log(t)

� = 0, IP1 -a.s. (5)

whenever ∫ ∞
φ
�
1/ f (g(t))

�
dt <∞, (6)

and

lim sup
t→∞

log(X (t))

f
�
log(t)

� =∞, IP1 -a.s. (7)

whenever, for some ǫ > 0 ∫ ∞
φ
�

1/ f ((g(t))1+ǫ)
�

dt =∞. (8)

Remark 1. Observe that in the case where the Laplace exponent varies regularly at 0 with index 1,

then Theorem 1 implies that
log (X (t))

log(t)

Probability
−−−−−→

t→∞
1/α.

Proposition 1 says that the finiteness of the mean of the underlying subordinator is a sufficient

condition for this to hold. A question that remains open is to show whether this condition is also

necessary.

Remark 2. In the case where φ is slowly varying at 0, Theorem 1 implies that

log (X (t))

log(t)

Probability
−−−−−→

t→∞
∞.

In the proof of Theorem 2 it will be seen that if h : R+→]0,∞[ is a function such that log(t)/h(t)→

0 as t →∞, then
log (X (t))

h(t)

Probability
−−−−−→

t→∞
0,

which is a weak analogue of Theorem 3.

Remark 3. Observe that the local behaviour of X , when started at a strictly positive point, is quite

similar to that of the underlying subordinator. This is due to the elementary fact

τ(t)

t
−−−→
t→0+

1, IP1 -a.s.
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So, for short times the behaviour of ξ is not affected by the time change, which is of course not

the case for large times. Using this fact and known results for subordinators, precisely Theorem 3

in [3] Section III.3, it is straightforward to prove the following Proposition which is the short time

analogue of our Theorem 1. We omit the details of the proof.

Proposition 3. Let {X (t), t ≥ 0} be a positive 1/α-self-similar Markov process with increasing paths.

The following conditions are equivalent:

(i) The subordinator ξ, associated to X via Lamperti’s transformation, has Laplace exponent φ :

R+→ R+, which is regularly varying at∞ with an index β ∈]0,1[.

(ii) There exists an increasing function h : R+ → R+ such that under IP1 the random variables�
h(t) log(X (t)), t > 0

	
converge weakly as t → 0 towards a non-degenerate random variable

(iii) There exists an increasing function h : R+ → R+ such that under IP1 the random variables

h(t) (X (t)− 1) , t > 0 converge weakly as t → 0 towards a non-degenerate random variable

In this case, the limit law is a stable law with parameter β , and h(t) ∼ ϕ(1/t), as t → 0, with ϕ the

inverse of φ.

It is also possible to obtain a short time analogue of Theorem 3, which is a simple translation for

pssMp of results such as those appearing in [3] Section III.4.

The rest of this paper is mainly devoted to prove the results stated before. The paper is organized so

that each subsequent Section contains a proof: in Section 2 we prove Proposition 1, in Section 3 the

first Theorem, in Section 4 the proof of Theorem 2 is given, Section 5 is devoted to Proposition 2 and

Section 6 to Theorem 3. Furthermore, in Section 7 we establish some interesting consequences of

our main results to self-similar fragmentation theory. Finally, Section 8 is constituted of a comparison

of the results obtained here with the known results describing the behaviour of the underlying

subordinator.

2 Proof of Proposition 1

Assume that the mean of ξ is finite, m := E(ξ1)<∞. According to the Theorem 1 in [8] there exists

a measure IP0+ on the space of càdlàg paths defined over ]0,∞[ that takes only positive values,

under which the canonical process is a strong Markov process with the same semigroup as X .

Its entrance law can be described in terms of the exponential functional I =
∫∞

0
exp{−αξs}ds, by

the formula

IE0+

�
f (X (t))

�
=

1

αm
E

�
f
�
(t/I)1/α

� 1

I

�
, t > 0,

for any measurable function f : R+ → R+. This formula is a consequence of (3) and the scaling

property. A straightforward consequence of the scaling property is that the process of the Ornstein-

Uhlenbeck type U defined by

Ut = e−t/αX (et), t ∈ R,

under IE0+ is a strictly stationary process. This process has been studied by Carmona, Petit and

Yor [15] and by Rivero in [22]. Therein it is proved that U is a positive recurrent and strong Markov
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process. Observe that the law of U0 under IE0+ is given by the probability measure µ defined in (3).

By the ergodic theorem we have that

1

t

∫ t

0

f (Us)ds −−→
t→∞

IE0+

�
f (U0)

�
= µ( f ), IP0+ -a.s.

for every function f ∈ L1(µ). Observe that a change of variables u= es allows us to deduce that

1

log(t)

∫ t

1

f (u−1/αX (u))
du

u
=

1

log(t)

∫ log(t)

0

f (Us)ds −−→
t→∞

IE0+

�
f (U0)

�
, IP0+ -a.s.

Now to prove the second assertion of Proposition 1 we use the well known fact that

lim
t→∞

ξt

t
= m, P -a.s.

So, to prove the result it will be sufficient to establish that

τ(t)/ log(t)−−→
t→∞

1/mα, P -a.s. (9)

Indeed, if this is the case, then

log(X (t))

log(t)
=
ξτ(t)

τ(t)

τ(t)

log(t)
−−→
t→∞

m/αm, P -a.s.

Now, a simple consequence of Lamperti’s transformation is that under IP1

τ(t) =

∫ t

0

(X (s))−αds=

∫ t

0

�
s−1/αX (s)

�−α ds

s
, t ≥ 0.

So, the result just proved applied to the function f (x) = x−α, x > 0, leads to

1

log(1+ t)

∫ 1+t

1

�
u−1/αX (u)

�−α du

u
−−→
t→∞

1/αm, IP0+ -a.s.

Denote byH the set were the latter convergence holds. By the Markov property it is clear that

IP0+

�
IPX (1)

�
1

log(1+ t)

∫ t

0

�
u−1/αX (u)

�−α du

u
9 1/αm

��
= IP0+ (H

c) = 0.

So for IP0+–almost every x > 0,

IPx

�
1

log(1+ t)

∫ t

0

�
u−1/αX (u)

�−α du

u
−−→
t→∞

1/αm

�
= 1.

For such an x , it is a consequence of the scaling property that

1

log(1+ t)

∫ t

0

�
u−1/αxX (ux−α)

�−α du

u
−−→
t→∞

1/αm, IP1 -a.s.

Therefore, by making a change of variables s = ux−α and using the fact that
log(1+t x−α)

log(t)
→ 1, as

t →∞, we prove that (9) holds. In view of the previous comments this concludes the proof of the

second assertion in Proposition 1.
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Remark 4. In the case where the mean is infinite, E(ξ1) =∞, we can still construct a measure N

with all but one of the properties of IP0+; the missing property is that N is not a probability measure,

it is in fact a σ-finite, infinite measure. The measure N is constructed following the methods used

by Fitzsimmons [18].

The details of this construction are beyond the scope of this note so we omit them. Thus, using

results from the infinite ergodic theory (see e.g. [1] Section 2.2) it can be verified that

1

log(t)

∫ t

0

f (s−1/αX (s))
ds

s
−−→
t→∞

0, N -a.s.

for every function f such that N(| f (X (1))|) = E(| f (I−1/α)|I−1) <∞; in particular for f (x) = x−α,

x > 0. The latter holds also under IP1 because of the Markov and self-similarity properties.

3 Proof of Theorem 1

The proof of Theorem 1 follows the method of proof in [8]. So, here we will first explain how the

auxiliary Lemmas and Corollaries in [8] can be extended in our setting and then we will apply those

facts to prove the claimed results.

We start by introducing some notation. We define the processes of the age and rest of life associated

to the subordinator ξ,

(At ,Rt) = (t − ξL(t)−,ξL(t)− t), t ≥ 0,

where L(t) = inf{s > 0 : ξs > t}. The methods used by Bertoin and Caballero are based on the

fact that if the mean E(ξ1) < ∞ then the random variables (At ,Rt) converge weakly to a non-

degenerate random variable (A,R) as the time tends to infinity. In our setting, E(ξ1) = ∞, the

random variables (At ,Rt) converge weakly towards (∞,∞). Nevertheless, if the Laplace exponent

φ is regularly varying at 0 then (At/t,Rt/t) converge weakly towards a non-degenerate random

variable (U ,O) (see e.g. Theorem 3.2 in [4] where the result is established for At/t and the result

for (At/t,Rt/t) can be deduced therefrom by elementary arguments as in Corollary 1 in [23]; for

sake of reference the limit law of the latter is described in Lemma 2 below). This fact, known as the

Dynkin-Lamperti Theorem, is the clue to solve our problem.

The following results can be proved with little effort following [8]. For b > 0, let Tb be the first

entry time into ]b,∞[ for X , viz. Tb = inf{s > 0 : X (s)> b}.

Lemma 1. Fix 0< x < b. The distribution of the pair (Tb, X (Tb)) under IPx is the same as that of

 
bα exp{−αAlog(b/x)}

∫ L(log(b/x))

0

exp{−αξs}ds, b exp{Rlog(b/x)}

!
.

This result was obtained in [8] as Corollary 5 and is still true under our assumptions because the

proof holds without any hypothesis on the mean of the underlying subordinator. Now, using the

latter result, the arguments in the proof of Lemma 6 in [8], the Dynkin-Lamperti Theorem for

subordinators and arguments similar to those provided in the proof of Corollary 7 in [8] we deduce

the following result.

874



Lemma 2. Assume that the Laplace exponent φ of the subordinator ξ is regularly varying at 0 with

index β ∈ [0,1].

i) Let F : D[0,s]→ R and G : R2
+→ R be measurable and bounded functions. Then

lim
t→∞

E

�
F
�
ξr , r ≤ s

�
G

�
At

t
,
Rt

t

��
= E

�
F(ξr , r ≤ s)

�
E (G (U ,O)) ,

where (U ,O) is a [0,1]× [0,∞] valued random variable whose law is determined as follows: if

β = 0 (resp. β = 1), it is the Dirac mass at (1,∞) (resp. at (0,0)). For β ∈]0,1[, it is the

distribution with density

pβ(u, w) =
β sinβπ

π
(1− u)β−1(u+w)−1−β , 0< u< 1, w > 0.

ii) As t tends to infinity the triplet

 ∫ L(t)

0

exp{−αξs}ds,
At

t
,
Rt

t

!

converges in distribution towards
�∫ ∞

0

exp{−αξs}ds, U ,O

�
,

where ξ is independent of the pair (U ,O) which has the law specified in (i).

We have the necessary tools to prove Theorem 1.

Proof of Theorem 1. Let c > −1, and b(x) = ec log(1/x), for 0 < x < 1. In the case where β = 1 we

will furthermore assume that c 6= 0 owing that in this setting 0 is a point of discontinuity for the

distribution of U . The elementary relations

log (b(x)/x) = (c + 1) log(1/x), log
�

b(x)/x2
�
= (c+ 2) log(1/x), 0< x < 1,

will be useful. The following equality in law follows from Lemma 1

 
log
�

Tb(x)/x

�

log (1/x)
,
log
�

X
�

Tb(x)/x

��

log(1/x)

!
Law
=



α log(b(x)/x)−αAlog(b(x)/x2) + log

�∫ L(log(b(x)/x2))
0

exp{−αξs}ds

�

log (1/x)
,
log (b(x)/x) + Rlog(b(x)/x2)

log (1/x)


 ,

(10)

for all 0 < x < 1. Moreover, observe that the random variable
∫ L(r)

0
exp{−αξs}ds converges almost

surely to
∫∞

0
exp{−αξs}ds, as r →∞; and that for any t > 0 fixed,

IP1

�
log
�

xX (t x−α)
�

log(1/x)
> c

�
= IP1

�
xX (t x−α)> b(x)

�
, 0< x < 1,

875



IP1(Tb(x)/x < t x−α)≤ IP1(xX (t x−α)> b(x))

≤ IP1(Tb(x)/x ≤ t x−α)≤ IP1(xX (t x−α)≥ b(x)), 0< x < 1.
(11)

Thus, under the assumption of regular variation at 0 of φ, the equality in law in (10) combined with

the result in Lemma 2-(ii) leads to the weak convergence
 

log(Tb(x)/x)

log(1/x)
,
log
�

X
�

Tb(x)/x

��

log(1/x)

!
D
−−−→
x→0+

(α [c + 1− (c+ 2)U] , c + 1+ (c + 2)O) .

As a consequence we get

IP1(Tb(x)/x < t x−α) = IP1

 
log
�

Tb(x)/x

�

log (1/x)
<

log(t)

log (1/x)
+α

!
−−−→
x→0+

P

�
c

c + 2
< U

�
,

for c >−1. In view of the first two inequalities in (11) this shows that for any t > 0 fixed

IP1

�
log
�

xX (t x−α)
�

log(1/x)
> c

�
−−−→
x→ 0+

P

�
c

c + 2
< U

�
, (12)

for c >−1, and we have so proved that (i) implies (ii).

Next, we prove that (ii) implies (i). If (ii) holds then

IP1

�
log
�

xX (t x−α)
�

log(1/x)
> c

�
−−−→
x→ 0+

P (V > c) ,

for every c > −1 point of continuity of the distribution of V. Using this and the second and third

inequalities in (11) we obtain that

IP1

 
log
�

Tb(x)/x

�

log (1/x)
<

log(t)

log (1/x)
+α

!
−−−→
x→0+

P (c < V ) .

Owing to the equality in law (10) we have that

P (c < V )

= lim
x→0+

P



α log(b(x)/x)−αAlog(b(x)/x2) + log

�∫ L(log(b(x)/x2))
0

exp{−αξs}ds

�

log (1/x)
<

log(t)

log (1/x)
+α




= lim
x→0+

P

 
α(c+ 1)−

α(c + 2)Alog(b(x)/x2)

log
�

b(x)/x2
� < α

!

= lim
z→∞

P

�
Az

z
>

c

c + 2

�

(13)

So we can ensure that if (ii) holds then Az/z converges weakly, as z→∞, which is well known to be

equivalent to the regular variation at 0 of the Laplace exponent φ, see e.g. [4] Theorem 3.2 or [3]

Theorem III.6. Thus we have proved that (ii) implies (i).

To finish, observe that if (i) holds with β = 0, it is clear that V =∞ a.s. given that in this case U = 1

a.s. In the case where (i) holds with β ∈]0,1] it is verified using (12) and elementary calculations

that V has the law described in Theorem 1.
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Remark 5. Observe that if in the previous proof we replace the function b by b′(x , a) = aec log(1/x),

for a > 0, c >−1 and 0< x < 1, then

IP1(x
1+cX (x−α)> a) = IPx(X (1)> b′(x , a)) = IP1

�
log
�

xX (x−α)
�

log(1/x)
> c +

log a

log(1/x)

�
,

and therefore its limit does not depend on a, as x goes to 0+ . That is for each c > −1 we have the

weak convergence under IP1 of the random variables

x1+cX (x−α)
D
−−→
x→0

Y (c),

and Y (c) is an {0,∞}-valued random variable whose law is given by

IP(Y (c) =∞) = IP

�
c

c + 2
< U

�
, IP(Y (c) = 0) = IP

�
c

c + 2
≥ U

�
.

Therefore, we can ensure that the asymptotic behaviour of X (t) is not of the order ta for any a > 0,

as t →∞.

4 Proof of Theorem 2

Assume that the Laplace exponent of ξ is not regularly varying at 0 with a strictly positive index.

Let h : R+ →]0,∞[ be an increasing function such that h(t) → ∞ as t → ∞ and varies slowly at

infinity; and define f (x) = h(x−α), 0< x < 1. Assume that h, and so f , are such that

log(xX (x−α))

f (x)

Law
−−−→
x→0+

V,

where V is an a.s. non-degenerate, finite and positive valued random variable. For c a continuity

point of V let bc(x) = exp{c f (x)}, 0< x < 1. We have that

IP1

�
log(xX (x−α))

f (x)
> c

�
−−−→
x→0+

P(V > c).

Arguing as in the proof of Theorem 1 it is proved that the latter convergence implies that

IP1

 
log
�

Tbc(x)/x

�

log (1/x)
≤ α

!
−−−→
x→0+

P (V > c) .

Using the identity in law (10) and arguing as in equation (13) it follows that the latter convergence

implies that

P(V > c) = lim
x→0+

P

�
Alog(bc(x)/x

2)

f (x)
≥ c

�

= lim
x→0+

P

�
Alog(bc(x)/x

2)

log(bc(x)/x
2)

�
c +

2 log(1/x)

f (x)

�
≥ c

�
,

(14)
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where the last equality follows from the definition of bc .

Now, assume that
log(t)

h(t)
→ 0, as t →∞, or equivalently that

log(1/x)

f (x)
→ 0, as x → 0+ . It follows that

P(V > c) = lim
x→0+

P

�
Alog(bc(x)/x

2)

log(bc(x)/x
2)
≥ 1

�

= lim
z→∞

P

�
Az

z
≥ 1

�
,

owing that by hypothesis log(bc(x)/x
2) is a strictly decreasing function. Observe that this equal-

ity holds for any c > 0 point of continuity of V. Making c first tend to infinity and then to 0+,

respectively, and using that V is a real valued random variable it follows that

P(V =∞) = 0= lim
z→∞

P

�
Az

z
≥ 1

�
= P(V > 0).

Which implies that V = 0 a.s. this in turn is a contradiction to the fact that V is a non-degenerate

random variable.

In the case where
log(t)

h(t)
→∞, as t →∞, or equivalently

log(1/x)

f (x)
→∞, as x → 0+, we will obtain a

similar contradiction. Indeed, let lc : R+→ R+ be the function lc(x) = log(bc(x)/x
2), for x > 0.

This function is strictly decreasing and so its inverse l−1
c exists. Observe that by hypothesis

log(bc(x)/x
2)/ f (x) = c +

2 log(1/x)

f (x)
→ ∞ as x → 0, thus z/ f

�
l−1
c (z)

�
→ ∞ as z → ∞. So, for

any ε > 0, it holds that f
�

l−1
c (z)

�
/z < ε, for every z large enough. It follows from the first equality

in equation (14) that

P(V ≥ c) = lim
z→∞

P

�
Az

z

z

f (l−1
c (z))

≥ c

�

≥ lim
z→∞

P

�
Az

z
≥ cε

�
,

for any c point of continuity of the distribution of V. So, by replacing c by c/ε, making ε tend to 0+,

and using that V is finite a.s. it follows that

Az

z

Law
−−→
z→∞

0.

By the Dynkin Lamperti Theorem it follows that the Laplace exponent φ of the underlying subor-

dinator ξ, is regularly varying at 0 with index 1. This is a contradiction to our assumption that the

Laplace exponent of ξ is not regularly varying at 0 with a strictly positive index.

5 Proof of Proposition 2

We will start by proving that (i) is equivalent to

(i’) For any r > 0,

log

�∫ r/φ(1/t)

0
exp{αξs}ds

�

αt

Law
−−→
t→∞

eξr , with eξ a stable subordinator of parameter

β , whenever β ∈]0,1[, and in the case where β = 0, respectively β = 1, we have that
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eξr =∞1{e(1)<r}, respectively eξr = r a.s. where e(1) denotes an exponential random variable

with parameter 1.

Indeed, using the time reversal property for Lévy processes we obtain the equality in law

∫ r/φ(1/t)

0

exp{αξs}ds = exp{αξr/φ(1/t)}

∫ r/φ(1/t)

0

exp{−α(ξr/φ(1/t)− ξs)}ds

Law
= exp{αξr/φ(1/t)}

∫ r/φ(1/t)

0

exp{−αξs}ds.

Given that the random variable
∫∞

0
exp{−αξs}ds is finite P-a.s. we deduce that

∫ r/φ(1/t)

0

exp{−αξs}ds −−→
t→∞

∫ ∞

0

exp{−αξs}ds <∞ P -a.s.

These two facts allow us to conclude that as t →∞, the random variable

log

 ∫ r/φ(1/t)

0

exp{αξs}ds

!
/αt

converges in law if and only if ξr/φ(1/t)/t does. The latter convergence holds if and only if φ is

regularly varying at 0 with an index β ∈ [0,1]. In this case both sequences of random variables

converge weakly towards eξr . To see this it suffices to observe that the weak convergence of the

infinitely divisible random variable ξr/φ(1/t)/t holds if and only if its Laplace exponent converges

pointwise towards the Laplace exponent of eξr as t tends to infinity. The former Laplace exponent is

given by

− log
�

E
�

exp{−λξr/φ(1/t)/t}
��
= −rφ(λ/t)/φ(1/t).

The rightmost term in this expression converges pointwise as t → ∞ if and only if φ is regularly

varying at 0 and in this case

lim
t→∞

rφ(λ/t)/φ(1/t) = rλβ , λ ≥ 0,

for some β ∈ [0,1], see e.g. Theorem 1.4.1 and Section 8.3 in [12]. This proves the claimed fact as

the Laplace exponent of eξr is given by rλβ , λ ≥ 0.
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Let ϕ be the inverse of φ. Assume that (i), and so (i’), hold. To prove that (ii) holds we will use the

following equalities valid for β ∈]0,1], for any x > 0

P

��
αeξ1

�−β
< x

�
= P

�
αeξ1 > x−1/β

�

= P
�
αeξx > 1

�

= lim
t→∞

P

 
log

 ∫ x/φ(1/t)

0

exp{αξs}ds

!
> t

!

= lim
l→∞

P

 ∫ l

0

exp
�
αξs

	
ds > exp{1/ϕ(x/l)}

!

= lim
u→∞

P

�
x

�
φ

�
1

log(u)

��−1

> τ (u)

�

= lim
u→∞

IP1

�
x > φ

�
1

log(u)

�∫ u

0

(X (s))−αds

�
,

(15)

where the second equality is a consequence of the fact that eξ is self-similar with index 1/β and

hence x1/β eξ1 has the same law as eξx . So, using the well known fact that (eξ1)
−β follows a Mittag-

Leffler law of parameter β , it follows therefrom that (i’) implies (ii). Now, to prove that if (ii) holds

then (i’) does, simply use the previous equalities read from right to left. So, it remains to prove the

equivalence between (i) and (ii) in the case β = 0. In this case we replace the first two equalities in

equation (15) by

P(e(1)< x) = P(αeξx > 1),

and simply repeat the arguments above.

Given that the Mittag-Leffler distribution is completely determined by its entire moments the fact

that (iii) implies (ii) is a simple consequence of the method of moments. Now we will prove that (i)

implies (iii). Let n ∈ N . To prove the convergence of the n-th moment of φ
�

1

log(t)

�∫ t

0
(X (s))−αds to

that of a multiple of a Mittag-Leffler random variable we will use the following identity, for x , c > 0,

IEx

 �
c

∫ t

0

(X (s))−αds

�n
!
= E

��
cτ(t x−α)

�n
�

= cn

∫ ∞

0

nyn−1 P(τ(t x−α)> y)dy

=

∫ ∞

0

nyn−1 P(τ(t x−α)> y/c)dy

=

∫ ∞

0

nyn−1 P

 
log(t x−α)> αξy/c + log

∫ y/c

0

exp{−αξs}ds

!
dy, (16)

where in the last equality we have used the time reversal property for Lévy processes. We use the

notation ft(y) = P

�
log(t x−α)> αξy/c + log

∫ y/c

0
exp{−αξs}ds

�
and we will prove that

sup
t>0

(

∫ ∞

0

nyn−1 ft(y)d y)<∞, sup
t>0

(

∫ ∞

0

(nyn−1 ft(y))
2d y)<∞.
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This will show that the family {nyn−1 ft(y)}t≥0 is uniformly integrable. To prove the first assertion

observe that for any t, y > 0 such that y > φ(1/ log(t)) we have

log

∫ y

φ(1/ log(t))

0

e−αξs ds ≥ log

∫ 1

0

e−αξs ds ≥−αξ1,

and as a consequence


log(t x−α)≥ αξy/φ(1/ log(t))+ log

∫ y

φ(1/ log(t))

0

e−αξs ds



 ⊆

¦
log(t x−α)≥ α

�
ξy/φ(1/ log(t))− ξ1

�©
.

Using this, the fact that ξy/φ(1/ log(t)) − ξ1 has the same law as ξ y

φ(1/ log(t))
−1 and Markov’s inequality

it follows that the rightmost term in equation (16) is bounded from above by

�
φ(1/ log(t))

�n
+

∫ ∞

φ(1/ log(t))

nyn−1 P

�
log(t x−α)≥ αξ y

φ(1/ log(t))
−1

�
dy

≤
�
φ(1/ log(t))

�n
+

∫ ∞

φ(1/ log(t))

nyn−1 exp

¨
−

�
y −φ(1/ log(t))

�
φ
�
α/ log

�
t x−α

��

φ(1/ log(t))

«
dy

≤
�
φ(1/ log(t))

�n
+ n2n−1

�
φ(1/ log(t))

�n

φ
�
α/ log

�
t x−α

�� + 2n−1Γ(n+ 1)

�
φ(1/ log(t))

φ(α/ log(t x−α))

�n

.

The regular variation of φ implies that the rightmost term in this equation is uniformly bounded for

large t.

Since ∫ ∞

0

(nyn−1 ft(y))
2d y ≤

∫ ∞

0

(n2 y2n−2 ft(y))d y

a similar bound can be obtained (for a different value of n) and this yields

supt(
∫∞

0
(nyn−1 ft(y))

2d y)<∞

By hypothesis, we know that for y > 0, (log(t))−1ξ
y/φ

�
1

log(t)

� Law
−−→
t→∞

eξy , and therefore

P


log(t x−α)> αξ

y/φ
�

1

log(t)

�+ log

∫ y/φ
�

1

log(t)

�

0

exp{−αξs}ds




∼ P(1> αeξy) as t →∞.

(17)

Therefore, we conclude from (16), (17) and the uniform integrability that

IEx

 �
φ

�
1

log(t)

�∫ t

0

(X (s)−αds

�n
!
−−→
t→∞

∫ ∞

0

nyn−1 P
�

1> αeξy

�
dy

=

(∫∞
0

nyn−1 P
�
e(1)> y

�
dy, if β = 0,∫∞

0
nyn−1 P

�
1> αy1/β eξ1

�
dy, if β ∈]0,1],

=





n!, if β = 0,

E

��
α−β eξ−β1

�n
�

, if β ∈]0,1],
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for any x > 0. We have proved that (i) implies (iii) and thus finished the proof of Proposition 2.

Proof of Corollary 1. It has been proved in [9] that the law of Rφ is related to X by the following

formula

IE1

�
(X (s))−α

�
= E(e−sRφ ), s ≥ 0.

It follows therefrom that

IE1

�∫ t

0

(X (s))−αds

�
=

∫

[0,∞[

1− e−t x

x
P(Rφ ∈ dx), t ≥ 0.

Moreover, the function t 7→ IE1((X (t))
−α) is non-increasing. So, by (iii) in Proposition 2 it follows

that ∫ t

0

IE1

�
(X (s))−α

�
ds ∼

1

αβΓ(1+ β)φ
�

1

log(t)

� , t →∞.

Then, the monotone density theorem for regularly varying functions (Theorem 1.7.2 in [12]) implies

that

IE1

�
(X (t))−α

�
= o




1

αβΓ(1+ β)tφ
�

1

log(t)

�


 , t →∞.

Given that IE1

�
(X (t))−α

�
= E(e−tRφ ), for every t ≥ 0, we can apply Karamata’s Tauberian Theorem

(Theorem 1.7.1’ in [12]) to obtain the estimate

P(Rφ < s) = o




s

αβΓ(1+ β)φ
�

1

log(1/s)

�


 , s→ 0+ .

Also applying Fubini’s theorem and making a change of variables of the form u = sRφ/t we obtain

the identity

∫ t

0

IE1((X (s))
−α)ds =

∫ t

0

E(e−sRφ )ds

= E

 
t

Rφ

∫ Rφ

0

e−tudu

!

= t

∫ ∞

0

due−tu E

�
1{Rφ>u}

1

Rφ

�
, t > 0.

So using Proposition 2 and Karamata’s Tauberian Theorem we deduce that

E

�
1{Rφ>s}

1

Rφ

�
∼

1

αβΓ(1+ β)φ(1/ log(1/s))
, s→ 0+ .

The proof of the second assertion follows from the fact that Iφ has the same law as α−1Rθ where

θ (λ) = λ/φ(λ), λ > 0, for a proof of this fact see the final Remark in [9].
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6 Proof of Theorem 3

The proof of the first assertion in Theorem 3 uses a well known law of iterated logarithm for sub-

ordinators, see e.g. Chapter III in [3]. The second assertion in Theorem 3 is reminiscent of, and its

proof is based on, a result for subordinators that appears in [2]. But to use those results we need

three auxiliary Lemmas. The first of them is rather elementary.

Recall the definition of the additive functional {Ct , t ≥ 0} in (1).

Lemma 3. For every c > 0, and for every f : R+→ R+, we have that

lim inf
s→∞

ξτ(s)

log(s)
≤ c ⇐⇒ lim inf

s→∞

ξs

log(Cs)
≤ c,

and

lim sup
s→∞

ξτ(s)

f (log(s))
≥ c ⇐⇒ lim sup

s→∞

ξs

f (log(Cs))
≥ c

Proof. The proof of these assertions follows from the fact that the mapping t 7→ Ct , t ≥ 0 is contin-

uous, strictly increasing and so bijective.

Lemma 4. Under the assumptions of Theorem 3 we have the following estimates of the functional

log
�
Ct

�
as t →∞,

lim inf
t→∞

log
�
Ct

�

g(t)
= αβ(1− β)(1−β)/β =: αcβ , P -a.s., (18)

lim sup
t→∞

log
�
Ct

�

ξt

= α, P -a.s. (19)

and

lim
t→∞

log log(Ct)

log(g(t))
= 1, P -a.s. (20)

Proof. We will use the fact that if φ is regularly varying with an index β ∈]0,1[, then

lim inf
t→∞

ξt

g(t)
= β(1− β)(1−β)/β = cβ , P -a.s. (21)

A proof for this law of iterated logarithm for subordinators may be found in Theorem III.14 in [3].

Observe that

log
�
Ct

�
≤ log(t) +αξt , ∀t ≥ 0,

so

lim inf
t→∞

log
�
Ct

�

g(t)
≤ lim inf

t→∞

�
log(t)

g(t)
+
αξt

g(t)

�
= αcβ , P -a.s.

because g is a function that is regularly varying at infinity with an index 0 < 1/β and (21). For

every ω ∈B := {lim inft→∞
ξt

g(t)
= cβ} and every ε > 0 there exists a t(ε,ω) such that

ξs(ω)≥ (1− ε)cβ g(s), s ≥ t(ε,ω).
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Therefore, ∫ t

0

exp{αξs}ds ≥

∫ t

t(ε,ω)

exp{(1− ε)αcβ g(s)}ds, ∀t ≥ t(ε,ω),

and by Theorem 4.12.10 in [12] we can ensure that

lim
t→∞

log
�∫ t

t(ε,ω)
exp{(1− ε)αcβ g(s)}ds

�

(1− ε)αcβ g(t)
= 1.

This implies that for every ω ∈B and ε > 0

lim inf
t→∞

log
�
Ct(ω)

�

g(t)
≥ (1− ε)αcβ .

Thus, by making ε→ 0+ we obtain that for every ω ∈B

lim inf
t→∞

log
�
Ct(ω)

�

g(t)
= αcβ ,

which finishes the proof of the first claim because P (B) = 1.

We will now prove the second claim. Indeed, as before we have that

lim sup
t→∞

log
�
Ct

�

ξt

≤ lim sup
t→∞

log(t) +αξt

ξt

= α, P -a.s.

on account of the fact

lim
t→∞

ξt

t
= E(ξ1) =∞, P -a.s.

Furthermore, it is easy to verify that for every ω ∈B

αcβ = lim inf
t→∞

log(Ct)(ω)

g(t)
≤

�
lim inf

t→∞

ξt(ω)

g(t)

��
lim sup

t→∞

log
�
Ct(ω)

�

ξt(ω)

�
,

and therefore that

α≤ lim sup
t→∞

log
�
Ct

�

ξt

, P -a.s.

This finishes the proof of the a.s. estimate in equation (19). Now to prove the estimate in (20) we

observe that by (18) it follows that

lim inf
t→∞

log(log(Ct))

log(g(t))
= 1, P -a.s.

Now, Theorem III.13 in [3] and the regular variation of φ, imply that for ε > 0,

lim sup
t→∞

ξt

t(1−ε)/β
=∞, lim

t→∞

ξt

t(1+ε)/β
= 0, P -a.s.

Using the strong law of large numbers for subordinators we deduce that the former limsup is in fact

a limit. The latter and former facts in turn imply that

P

�
log(ξt)≥

(1+ ε)

β
log(t), i.o. t →∞

�
= 0= P

�
log(ξt)≤

(1− ε)

β
log(t), i.o. t →∞

�
.
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Therefore, we obtain that
log(ξt)

log(t)
= 1/β , P -a.s.

Moreover, a consequence of the fact that g is a 1/β -regularly varying function and Proposition 1.3.6

in [12] is the estimate

lim
t→∞

log(g(t))

log(t)
= 1/β .

Using these facts together with (19) we infer that

lim sup
t→∞

log(log(Ct))/ log(g(t)) = 1, P -a.s.

Using Lemma 3 and the estimate (19) the first assertion in Theorem 3 is straightforward. To prove

the second assertion in Theorem 3 we will furthermore need the following technical result.

Lemma 5. Under the assumptions of (b) in Theorem 3 for any increasing function f with positive

increase we have that

∫ ∞
φ
�
1/ f (g(t))

�
dt <∞⇐⇒

∫ ∞
φ
�
1/ f (cg(t))

�
dt <∞ for all c > 0

⇐⇒

∫ ∞
φ
�
1/ f (cg(t))

�
dt <∞, for some c > 0 (22)

Proof. Our argument is based on the fact that φ and g are functions of regular variation at 0, and

∞, respectively, with index β and 1/β , respectively, and on the fact that f has positive increase. Let

c > 0. We can assume that there is a constant constant M > 0 such that M < lim infs→∞
f (s)

f (2s)
. Thus

for all t, s large enough we have the following estimates for g and φ

1

2
≤

g(tcβ)

cg(t)
≤ 2,

1

2
≤
φ (M/s)

Mβφ (1/s)
≤ 2.

Assume that the integral in the left side of the equation (22) is finite. It implies that the integral
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∫∞
φ
�

1/ f (g(cβ t))
�

dt is finite and so that

∞ >

∫ ∞
φ
�

1/ f (g(cβ t))
�

dt

≥

∫ ∞
φ
�
1/ f (2cg(t))

�
dt

=

∫ ∞
φ

�
f (cg(t))

f (2cg(t))

1

f (cg(t))

�
dt

≥

∫ ∞
φ

�
M

1

f (cg(t))

�
dt

= Mβ
∫ ∞ φ

�
M 1

f (cg(t))

�

Mβφ
�

1

f (cg(t))

�φ
�

1

f (cg(t))

�
dt

≥
Mβ

2

∫ ∞
φ

�
1

f (cg(t))

�
dt,

where to get the second inequality we used that f and φ are increasing and the estimate of g, in the

fourth we used the fact that f has positive increase and in the sixth inequality we used the estimate

of φ.

To prove that if the integral on the left side of equation (22) is not finite then that the one in the

right is not finite either, we use that lim sups→∞
f (s)

f (s/2)
< M−1, and the estimates provided above for

g and φ, respectively. We omit the details.

Now we have all the elements to prove the second claim of Theorem 3.

Proof of Theorem 3 (b). The proof of this result is based on Lemma 4 in [2] concerning the rate of

growth of subordinators when the Laplace exponent is regularly varying at 0. Let f be a function

such that the hypothesis in (b) in Theorem 3 is satisfied and the condition in (6) is satisfied. A

consequence of Lemma 5 is that
∫ ∞
φ
�

1/ f (αcβ g(t))
�

dt <∞.

According to the Lemma 4 in [2] we have that

lim sup
t→∞

ξt

f (αcβ g(t))
= 0, P -a.s.

Let Ω1 be the set of paths for which the latter estimate and the one in (18) hold. It is clear that

P
�
Ω1

�
= 1. On the other hand, for every ω ∈ Ω1 there exists a t0(ω, 1/2) such that

αcβ g(s)/2≤ log
�
Cs(ω)

�
, ∀s ≥ t0(ω, 1/2),

with cβ as in the proof of Lemma 4. Together with the fact lim supt→∞
f (t)

f (t/2)
<∞, this implies that

for ω ∈ Ω1,

lim sup
s→∞

ξs(ω)

f
�
log
�
Cs(ω)

�� ≤ lim sup
s→∞

ξs(ω)

f (αcβ g(s))

f (αcβ g(s))

f
�
αcβ g(s)/2

� = 0.
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In this way we have proved that

lim sup
s→∞

ξs

f
�
log
�
Cs

�� = 0, P -a.s.

Using Lemma 3 we infer that

lim sup
s→∞

log(X (s))

f
�
log (s)

� = 0, IP1 -a.s.

Now, let f be an increasing function with positive increase such that (8) holds for some ǫ > 0.

It is seen using the regular variation of g and elementary manipulations that the function t 7→

f (g(t)1+ǫ), is also an increasing function with positive increase. The integral test in Lemma 4 in [2]

implies that

lim sup
t→∞

ξt

f ((g(t))1+ǫ)
=∞, P -a.s.

On account of (20) we can ensure that for all t large enough

g(t)1−ǫ ≤ log(Ct)≤ g(t)1+ǫ.

These facts together imply that

lim sup
t→∞

ξt

f (log(Ct))
=∞, P -a.s.

The proof of the claim in (7) follows from Lemma 3.

7 An application to self-similar fragmentations

The main purpose of this section is to provide an application of our results into the theory of self-

similar fragmentation processes, which are random models for the evolution of an object that splits

as time goes on. Informally, a self-similar fragmentation is a process that enjoys both a fragmentation

property and a scaling property. By fragmentation property, we mean that the fragments present

at a time t will evolve independently with break-up rates depending on their masses. The scaling

property specifies these mass-dependent rates. We will next make this definition precise and provide

some background on fragmentation theory. We refer the interested reader to the recent book [7] for

further details.

First, we introduce the set of non-negative sequence whose total sum is finite

S ↓ =

(
s= (si)i∈N : s1 ≥ s2 ≥ · · · ≥ 0,

∞∑

i=1

si <∞

)
.

Let Y = (Y (t), t ≥ 0) be a S ↓-valued Markov process and for r ≥ 0, denote by Qr the law of Y

started from the configuration (r, 0, . . .). It is said that Y is a self-similar fragmentation process if:

• for every s, t ≥ 0 conditionally on Y (t) = (x1, x2, . . .), Y (t + s), for s ≥ 0, has the same law

as the variable obtained by ranking in decreasing order the terms of the random sequences

Y 1(s), Y 2(s), . . . where the random variables Y i(s) are independent with values in S ↓ and

Y i(s) has the same law as Y (s) under Qx i
, for each i = 1,2, . . .
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• there exists some α ∈ R, called index of self-similarity, such that for every r ≥ 0 the distribution

under Q1 of the rescaled process (rY (rα t), t ≥ 0) is Qr .

Associated to Y there exists a characteristic triple (α, c,ν), where α is the index of self similarity,

c ≥ 0 is known as the erosion coefficient and ν is the so called dislocation measure, which is a

measure over S ↓,∗ :=
¦
s= (si)i∈N : s1 ≥ s2 ≥ · · · ≥ 0,

∑∞
i=1 si ≤ 1

©
that does not charge (1,0, . . .)

such that ∫

S ↓,∗
ν(ds)(1− s1)<∞.

In the sequel we will implicitly exclude the case when ν ≡ 0. Here we will only consider self-similar

fragmentations with self-similarity index α > 0, no erosion rate c = 0, and such that

ν

 
s ∈ S ↓,∗ :

∞∑

i=1

si < 1

!
= 0,

which means that no mass can be lost when a sudden dislocation occurs.

In [6] Bertoin studied under some assumptions the long time behaviour of the process Y under Q1

via an empirical probability measure carried, at each t, by the components of Y (t)

eρt(dy) =
∑

i∈N

Yi(t)δt1/αYi(t)
(dy), t ≥ 0. (23)

To be more precise, he proved that if the function

Φ(q) :=

∫

S ↓,∗

 
1−

∞∑

i=1

s
q+1

i

!
ν(ds), q ≥ 0,

is such that m := Φ′(0+) < ∞, then the measure defined in (23) converges in probability to a

deterministic measure, say eρ∞, which is completely determined by the moments

∫ ∞

0

xαk eρ∞(dx) =
(k− 1)!

αmΦ(α) · · ·Φ(α(k− 1))
, k = 1,2, . . .

with the assumption that the quantity in the right-hand side equals (αm)−1, when k = 1. Bertoin

proved this result by cleverly applying the results in [8] and the fact that there exists an increasing

1/α-pssMp, say eZ =
�eZt , t ≥ 0

�
such that Qr(eZ0 = r) = 1, and for any bounded and measurable

function f : R+→ R+

Q1

�
eρt f
�
= Q1

 
∞∑

i=1

Yi(t) f (t
1/αYi(t))

!
= Q1

�
f
�

t1/α/eZt

��
, t ≥ 0;

and that the process eZ is an increasing 1/α–pssMp whose underlying subordinator has Laplace

exponent Φ. In fragmentation theory the process (1/eZt , t ≥ 0) is called the process of the tagged

fragment.

Besides, it can be viewed using the method of proof of Bertoin that if Φ′(0+) =∞, then the measure

eρt converges in probability to the law of a random variable degenerate at 0. This suggests that in
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the latter case, to obtain further information about the repartition of the components of Y (t) it

would be convenient to study a different form of the empirical measure of Y. A suitable form of the

empirical measure is given by the random probability measure

ρt(dy) =

∞∑

i=1

Yi(t)δ{log(Yi(t))/ log(t)}(dy), t ≥ 0.

The arguments provided by Bertoin are quite general and can be easily modified to prove the fol-

lowing consequence of Theorem 1, we omit the details of the proof.

Corollary 2. Let Y be a self-similar fragmentation with self-similarity index α > 0, c = 0 and dis-

location measure ν . Assume that ν
�

s ∈ S ↓,∗ :
∑∞

i=1 si < 1
�
= 0, and that the function Φ is regularly

varying at 0 with an index β ∈ [0,1]. Then, as t → ∞, the random probability measure ρt(dy)

converges in probability towards the law of −α−1− V, where V is as in Theorem 1.

To the best of our knowledge in the literature about self-similar fragmentation theory there is no

example of self-similar fragmentation process whose dislocation measure is such that the hypotheses

about the function Φ in Corollary 2 is satisfied. So, we will next extend a model studied by Brennan

and Durrett [13; 14] to provide an example of such a fragmentation process. We will finish this

section by providing a necessary condition for a dislocation measure to be such that the hypothesis

of Corollary 2 is satisfied.

Example 1. In [13; 14] Brennan and Durrett studied a model that represents the evolution of a

particle system in which a particle of size x waits an exponential time of parameter xα, for some

α > 0, and then undergoes a binary dislocation into a left particle of size U x and a right particle

of size (1− U)x . It is assumed that U is a random variable that takes values in [0,1] with a fixed

distribution and whose law is independent of the past of the system. Assume that the particle system

starts with a sole particle of size 1 and that we observe the size of the left-most particle and write lt

for its length at time t ≥ 0. It is known that the process X := {X (t) = 1/lt , t ≥ 0} is an increasing

self-similar Markov process with self-similarity index 1/α, starting at 1, see e.g. [13; 14] or [8]. It

follows from the construction that the subordinator ξ associated to X via Lamperti’s transformation

is a compound Poisson process with Lévy measure the distribution of − log(U). That is, the Laplace

exponent of ξ has the form

φ(λ) = IE
�

1− Uλ
�

, λ ≥ 0.

In the case where IE
�
− log(U)

�
<∞, it has been proved in [13; 14] and [8] that lt decreases as a

power function of order −1/α, and the weak limit of t1/αlt as t →∞ is 1/Z , where Z is the random

variable whose law is described in (2) and (3); so the limit law depends on the whole trajectory of

the underlying subordinator. Whilst if the Laplace exponent φ is regularly varying at zero with an

index β ∈]0,1[, which holds if and only if x 7→ IP(− log(U)> x) is regularly varying at infinity with

index −β , and in particular the mean of − log(U) is not finite, we can use our results to deduce the

asymptotic behaviour of X . Indeed, in this framework we have that

− log(lt)

log(t)

Law
−−→
t→∞

V +
1

α
,

where V is a random variable whose law is described in Theorem 1. Besides, the first part of

Theorem 3 implies that

lim sup
t→∞

log(lt)

log(t)
=−1/α, a.s.
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The lim inf can be studied using the second part of Theorem 3. Observe that the limit law of

− log lt/ log(t) depends only on the index of self-similarity and that one of regular variation of the

right tail of − log(U).

Another interesting increasing pssMp arising in this model is that of the tagged fragment. It will be

described below after we discuss a few generalities for this class of processes.

It is known, see [5] equation (8), that in general the dislocation measure, say ν , of a self-similar

fragmentation process is related to the Lévy measure, say Π, of the subordinator associated via

Lamperti’s transformation to the process of the tagged fragment, through the formula

Π]x ,∞[=

∫

S ↓,∗

 
∞∑

i=1

si1{si<exp(−x)}

!
ν(ds), x > 0.

So the hypothesis of Corollary 2 is satisfied with an index β ∈]0,1[ whenever ν is such that

• the function x 7→
∫
S ↓,∗

�∑
i si1{si<exp(−x)}

�
ν(ds), x > 0, is regularly varying at infinity with an

index −β .

In the particular case where ν is binary, that is when ν{s ∈ S ↓,∗ : s3 > 0}= 0, the latter condition is

equivalent to the condition

• the function x 7→
∫ exp(−x)

0
yν(s2 ∈ dy) =

∫ 1

1−exp(−x)
(1 − z)ν(s1 ∈ dz), x > 0, is regularly

varying at infinity with an index −β ,

given that in this case s1 is always ≥ 1/2, and ν{s1+ s2 6= 1}= 0, by hypothesis.

Example 2 (Continuation of Example 1). In this model the fragmentation process is binary, the

self-similarity index is α, the erosion rate c = 0, and the associated dislocation measure is such that

for any measurable and positive function f : R+,2→ R+

∫
ν(s1 ∈ dy1, s2 ∈ dy2) f (y1, y2) =

∫

[0,1]

IP(U ∈ dy)
�

f (y, 1− y)1{y≥1/2}+ f (1− y, y)1{y<1/2}

�
.

Therefore the Laplace exponent of the subordinator associated via Lamperti’s transformation to the

process of the tagged fragment is given by

Φ(q) =

∫

[0,1]

IP(U ∈ dy)
�

1− (1− y)q+1− yq+1
�

=

∫

]0,∞[

�
IP(− log U ∈ dz) + IP(− log(1− U) ∈ dz)

�
e−z(1− e−qz), q ≥ 0.

It follows that Φ is regularly varying at 0 with an index β ∈]0,1[ if and only if

H(x) :=

∫

]0,∞[

�
IP(− log U ∈ dz) + IP(− log(1− U) ∈ dz)

�
e−z1{z>x}, x > 0,
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is regularly varying at infinity with index −β . Elementary calculations show that

H(x) = e−x

∫ 1

0

d t IP
�

te−x < U ≤ e−x
�
+ e−x

∫ 1

0

d t IP
�

te−x < 1− U ≤ e−x
�

for x > 0. Hence, the function H is a regularly varying function at infinity if for instance

lim
λ→0

IP (tλ < U ≤ λ)

λ(log(1/λ))β1 L1(log(1/λ))
= 1− t = lim

λ→0

IP (tλ < 1− U ≤ λ)

λ(log(1/λ))β2 L2(log(1/λ))
,

uniformly in t ∈]0,1[; where 0 < β1,β2 < 1, and L1, L2 are slowly varying functions. In this case,

H is regularly varying at infinity with an index β1 ∧ β2.

Alternatively, it may be seen using a dominated convergence argument that a sufficient condition

for H to be regularly varying at infinity is that

lim
λ→0

IP (U ≤ λ)

λ(log(1/λ))β1 L1(log(1/λ))
= 1= lim

λ→0

IP (1− U ≤ λ)

λ(log(1/λ))β2 L2(log(1/λ))
, (24)

with βi , Li , i = 1,2, as above. It is worth mentioning that if this condition is satisfied the mean of

− log(U) and − log(1− U) is finite, respectively. However

Φ′(0+) = IE(U log(1/U)) + IE((1− U) log(1/(1− U))) =∞.

Hence the process of the leftmost particle and that of the tagged fragment bear different asymptotic

behaviour. Indeed, if the condition (24) is satisfied then the process of the left-most particle (lt , t ≥

0) is such that t1/αlt converges in law as t →∞ to a non-degenerate random variable and

−
log(lt)

log(t)
−−→
t→∞

1

α
, a.s.

Besides, in this case the process of the tagged fragment Ft = 1/eZt , t ≥ 0, is not of order t−a for any

a > 0, in the sense described in Remark 5, and

−
log(Ft)

log(t)

Law
−−→
t→∞

1

α
+ V, and lim inf

t→∞

− log(Ft)

log(t)
=

1

α
, lim sup

t→∞

− log(Ft)

log(t)
=∞, a.s.

where V is a non-degenerate random variable whose law is described in Theorem 1.

Furthermore, the main result in [14] can be used because under assumption (24) the mean of

− log(U) is finite. It establishes the almost sure convergence of the empirical measure

1

N(t)

N(t)∑

i=1

δt1/αYi(t)
(dy),

as t → ∞, where N(t) denotes the number of fragments with positive size, and it is finite almost

surely. The limit of the latter empirical measure is a deterministic measure characterized in terms of

α and the law of U . Besides, as Φ′(0+) =∞ it follows from our discussion and Corollary 2 that

eρt(dy) =

∞∑

i=1

Yi(t)δt1/αYi(t)
(dy)

Probability
−−−−−→

t→∞
δ0(dy)

ρt(dy) =

∞∑

i=1

Yi(t)δlog(Yi(t))/ log(t)(dy)
Probability
−−−−−→

t→∞
IP(−α−1− V ∈ dy),

where V is a non-degenerate random variable that follows the law described in Theorem 1.
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8 Final comments

Lamperti’s transformation tells us that under IP1 the process (
∫ t

0
(X (s))−αds, log(X (t)), t ≥ 0) has

the same law as (τ(t),ξτ(t)), t ≥ 0) under P . So, our results can be viewed as a study of how the

time change τ modifies the asymptotic behaviour of the subordinator ξ. Thus, it may be interesting

to compare our results with those known for subordinators in the case where the associated Laplace

exponent is regularly varying at 0.

On the one hand, we used before that the regular variation of the Laplace exponent φ at 0 with

an index β ∈]0,1] is equivalent to the convergence in distribution of ϕ(1/t)ξt as t →∞ to a real

valued random variable, with ϕ the right-continuous inverse of φ. On the other hand, Theorem 1

tells us that the former is equivalent to the convergence in distribution of ξτ(t)/ log(t), as t → ∞,

to a real valued random variable. Moreover, under the assumption of regular variation of φ with

an index β ∈]0,1], we have that limt→∞ϕ(1/t) log(t) = 0. Thus we can conclude that the effect

of τ(t) on ξ is to slow down its rate of growth, which is rather normal given that τ(t) ≤ t, for all

t ≥ 0, P-a.s. Theorem 1 tells us the exact rate of growth of ξτ, in the sense of weak convergence.

Furthermore, these facts suggest that ϕ(1/τ(t)) and log(t) should have the same order, which is

confirmed by Proposition 2. Indeed, using the regular variation of ϕ and the estimate in (ii) in

Proposition 2 we deduce the following estimates in distribution

ϕ(1/τ(t)) log(t)∼ ϕ(1/τ(t))/ϕ(φ(1/ log(t)))∼ (α−βW )−1/β , as t →∞,

where W follows a Mittag-Leffler law of parameter β . Observe also that if β ∈]0,1[, τ(t) bears the

same asymptotic behaviour as the first passage time for eαξ above t, Llog(t)/α = inf{s ≥ 0, eαξs > t}.

Indeed, it is known that under the present assumptions the process {tξu/φ(1/t),u ≥ 0} converges in

Skorohod’s topology, as t →∞, towards a stable subordinator of parameter β , say {eξt , t ≥ 0}. This

implies that φ(1/s)Ls converges weakly to the first passage time above the level 1 for eξ, and the

latter follows a Mittag-Leffler law of parameter β ∈]0,1[. This plainly justifies our assertion owing

to Proposition 2 and the fact that φ(1/ log(t))Llog(t)/α converges weakly towards a random variable

α−βfW , where fW follows a Mittag-Leffler law of parameter β .

Besides, we can obtain further information about the rate of growth of ξ when evaluated at stopping

times of the form τ. Recall that if φ is regularly varying with an index β ∈]0,1[ then

lim inf
t→∞

ξt

g(t)
= β(1− β)(1−β)/β , P -a.s.,

where the function g is defined in Theorem 3, see e.g. Section III.4 in [3]. This Theorem also states

that

lim inf
t→∞

ξτ(t)

log(t)
=

1

α
, P -a.s.

These, together with the fact that limt→∞
log(t)

g(t)
= 0, confirm that the rate of growth of ξτ(·) is slower

than that of ξ, but this time using a.s. convergence. The long time behaviour of log(t)/g(τ(t)) is

studied in the proof of Theorem 3. The results on the upper envelop of ξ and that of ξτ can be

discussed in a similar way. We omit the details.
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