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Abstract

We show that Zhang’s sandpile model (N , [a, b]) on N sites and with uniform additions on [a, b]

has a unique stationary measure for all 0 ≤ a < b ≤ 1. This generalizes earlier results of [6]

where this was shown in some special cases.

We define the infinite volume Zhang’s sandpile model in dimension d ≥ 1, in which topplings

occur according to a Markov toppling process, and we study the stabilizability of initial configu-

rations chosen according to some measure µ. We show that for a stationary ergodic measure µ

with density ρ, for all ρ < 1

2
, µ is stabilizable; for all ρ ≥ 1, µ is not stabilizable; for 1

2
≤ ρ < 1,

when ρ is near to 1

2
or 1, both possibilities can occur.
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1 Introduction

Zhang’s sandpile model [14] is a variant of the more common abelian sandpile model [3], which

was introduced in [1] as a toy model to study self-organized criticality. We define the model more

precisely in the next section, but we start here with an informal discussion.

Zhang’s model differs from the abelian sandpile model on a finite grid Λ in the following respects:

The configuration space is [0,1)Λ, rather than {0,1, . . . , 2d−1}Λ. The model evolves, like the abelian

sandpile model, in discrete time through additions and subsequent stabilization through topplings of

unstable sites. However, in Zhang’s model, an addition consists of a continuous amount, uniformly

distributed on [a, b] ⊆ [0,1], rather than one ‘grain’. Furthermore, in a Zhang toppling of an

unstable site, the entire height of this site is distributed equally among the neighbors, whereas

in the abelian sandpile model one grain moves to each neighbor irrespective of the height of the

toppling site.

Since the result of a toppling depends on the height of the toppling site, Zhang’s model is not

abelian. This means that ‘stabilization through topplings’ is not immediately well-defined. However,

as pointed out in [6], when we work on the line, and as long as there are no two neighbouring

unstable sites, topplings are abelian. When the initial configuration is stable, we will only encounter

realizations with no two neighbouring unstable sites, and we have - a fortiori - that the model is

abelian.

In [6], the following main results, in dimension 1, were obtained. Uniqueness of the stationary

measure was proved for a number of special cases: (1) a ≥ 1

2
; (2) N = 1, and (3) [a, b] = [0,1].

For the model on one site with a = 0, an explicit expression for the stationary height distribution

was obtained. Furthermore, the existence of so called ‘quasi-units’ was proved for a ≥ 1/2, that

is, in the limit of the number of sites to infinity, the one-dimensional marginal of the stationary

distribution concentrates on a single value a+b

2
.

In the first part of the present paper, we prove, in dimension 1, uniqueness of the stationary measure

for the general model, via a coupling which is much more complicated than the one used in [6] for

the special case a ≥ 1/2.

In Section 4, we study an infinite-volume version of Zhang’s model in any dimension. A similar

infinite-volume version of the abelian sandpile model has been studied in [10; 8; 7] and we will in

fact also use some of the ideas in these papers.

For the infinite-volume Zhang model in dimension d, we start from a random initial configuration

in [0,∞)Z
d

, and evolve it in time by Zhang topplings of unstable sites. We are interested in whether

or not there exists a limiting stable configuration. Since Zhang topplings are not abelian, for a given

configuration η ∈ [0,∞)Z
d

, for some sequence of topplings it may converge to a stable configuration

but for others, it may not. Moreover we do not expect the final configuration - if there is any - to

be unique. Therefore, we choose a random order of topplings as follows. To every site we attach an

independent rate 1 Poisson clock, and when the clock rings, we topple this site if it is unstable; if it

is stable we do nothing. For obvious reasons we call this the Markov toppling process.

We show that if we choose the initial configuration according to a stationary ergodic measure µ with

density ρ, then for all ρ < 1

2
, µ is stabilizable, that is, the configuration converges to a final stable

configuration. For all ρ ≥ 1, µ is not stabilizable. For 1

2
≤ ρ < 1, when ρ is near to 1

2
or 1, both

possibilities can occur.
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2 Model definition and notation

In this section, we discuss Zhang’s sandpile on N sites, labelled 1,2, . . . , N . We denoted by XN =

[0,∞)N the set of all possible configurations in Zhang’s sandpile model. We will use symbols η and

ξ to denote a configuration. We denote the value of a configuration η at site x by ηx , and refer to

this value as the height, mass or energy at site x . We introduce a labelling of sites according to their

height, as follows.

Definition 2.1. For η ∈ XN , we call site x

empty if ηx = 0,

anomalous if ηx ∈ (0, 1

2
),

full if ηx ∈ [
1

2
, 1),

unstable if ηx ≥ 1.

A site x is stable for η if 0≤ ηx < 1, and hence all the empty, anomalous and full sites are stable. A

configuration η is called stable if all sites are stable, otherwise η is unstable. ΩN = [0,1)N denotes

the set of all stable configurations.

By Tx(η) we denote the (Zhang) toppling operator for site x , acting on η and which is defined as

follows.

Definition 2.2. For all η ∈ XN such that ηx ≥ 1, we define

Tx(η)y =







0 if x = y,

ηy +
1

2
ηx if |y − x |= 1,

ηy otherwise.

For all η such that ηx < 1,Tx(η) = η, for all x.

In other words, the toppling operator only changes η if site x is unstable; in that case, it divides its

energy in equal portions among its neighbors. We say in that case that site x topples. If a boundary

site topples, then half of its energy disappears from the system. Every configuration in XN can

stabilize, that is, reach a final configuration in ΩN , through finitely many topplings of unstable sites,

since energy is dissipated at the boundary.

We define the (N , [a, b]) model as a discrete time Markov process with state space ΩN , as follows.

The process starts at time 0 from configuration η(0) = η. For every t = 1,2, . . ., the configuration

η(t) is obtained from η(t − 1) as follows: a random amount of energy U(t), uniformly distributed

on [a, b], is added to a uniformly chosen random site X (t) ∈ {1, . . . , N}, hence P(X (t) = j) = 1/N

for all j = 1, . . . , N . The random variables U(t) and X (t) are independent of each other and of

the past of the process. We stabilize the resulting configuration through topplings (if it is already

stable, then we do not change it), to obtain the new configuration η(t). By Eη and Pη, we denote

expectation resp. probability with respect to this process.

3 Uniqueness of the stationary distribution

In Zhang’s sandpile model, it is not obvious that the stationary distribution is unique, since the state

space is uncountable. For the three cases: (1) N = 1, (2) a ≥ 1

2
and N ≥ 2, (3) a = 0, b = 1 and
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N ≥ 2, it is shown in [6] that the model has a unique stationary distribution, and in addition, in

case (2) and (3), for every initial distribution ν , the measure at time t, denoted by ν
a,b,N
t , converges

in total variation to the stationary distribution. In the case N = 1, there are values of a and b where

we only have time-average total variation convergence, see Theorem 4.1 of [6].

In all these cases (except when N = 1) the proof consisted of constructing a coupling of two copies

of Zhang’s model with arbitrary initial configurations, in such a way that after some (random) time,

the two coupled processes are identical. Each coupling was very specific for the case considered. In

the proof for the case a ≥ 1

2
and N ≥ 2, explicit use is being made of the fact that an addition to a

full site always causes a toppling. The proof given for the case a = 0 and b = 1 and N > 1 can be

generalized to other values of b, but a = 0 is necessary, since in the coupling we use that additions

can be arbitrarily small. In the special case N = 1, the model is a renewal process, and the proof

relies on that.

To prove the following result, we will again construct a coupling of two copies of Zhang’s model

with arbitrary initial configurations, in such a way that after some (random) time, the two coupled

processes are identical. Such a coupling will be called ‘successful’, as in [13]. Here is the main result

of this section; note that only the case a = b is not included.

Theorem 3.1. For every 0 ≤ a < b ≤ 1, and N ≥ 2, Zhang’s sandpile model (N , [a, b]) has a unique

stationary distribution which we denote by µa,b,N . Moreover, for every initial distribution on [0,1)N ,

the distribution of the process at time t converges exponentially fast in total variation to µa,b,N , as

t →∞.

We introduce some notation. Denote η,ξ ∈ ΩN as the initial configurations, and η(t),ξ(t) as two

independent copies of the processes, starting from η and ξ respectively. The independent additions

at time t for the two processes starting from η,ξ are Uη(t) and Uξ(t), addition sites are Xη(t), X ξ(t)

respectively. Often, we will use ‘hat’-versions of the various quantities to denote a coupling between

two processes. So, for instance, η̂(t), ξ̂(t) denote coupled processes (to be made precise below)

with initial configurations η and ξ respectively. By X̂η(t) and X̂ ξ(t) we denote the addition sites at

time t in the coupling, and by Ûη(t) and Ûξ(t) the addition amounts at time t.

In this section, we will encounter configurations that are such that they are empty at some site x ,

1 ≤ x ≤ N , and full at all the other sites. We denote the set of such configurations Ex . By Eb, we

denote the set of configurations that have only one empty boundary site, and are full at all other

sites, that is, Eb = E1 ∪ EN .

The coupling that we will construct is rather technical, but the ideas behind the main steps are not

so difficult. In the first step, we make sure that the two copies of the process simultaneously reach a

situation in which the N -th site is empty, and all other sites are full. In step 2, we make sure that the

heights of the two copies at each vertex are within some small ε of each other. This can be achieved

by carefully selecting the additions. Finally, in step 3, we show that once the heights at all sites are

close to each other, then we can make the two copies of the process equal to each other by very

carefully couple the amounts of mass that we add each time.

In order to give the proof of Theorem 3.1, we need the following three preliminary results, the proof

of which will be given in Sections 3.1, 3.2 and 3.3 respectively.

Lemma 3.2. For all η, ξ in ΩN , η(t) and ξ(t) are a.s. simultaneously in Eb infinitely often.
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Lemma 3.3. Let η and ξ be two configurations in EN and let, for all ε > 0,

tε = 2⌈
2

a+ b
⌉ · ⌈log

(1−2
−⌈ 3N

2
⌉
)
(
2ε

N
)⌉.

Consider couplings (η̂(t), ξ̂(t)) of the process starting at η and ξ respectively. Let, in such a coupling,

T be the first time t with the property that

max
1≤x≤N

| η̂x(t)− ξ̂x(t) |< ε (3.1)

and

η̂(t) ∈ EN , ξ̂(t) ∈ EN . (3.2)

There exists a coupling such that the event T ≤ tε has probability at least (2N)−tε , uniformly in η and

ξ.

Lemma 3.4. Let

εa,b,N =
b− a

6+ 16ΠN−1
l=1
(1+ 2N−2−l)

.

Consider couplings (η̂(t), ξ̂(t)) of the process starting at η and ξ respectively, with the property that

max
1≤x≤N

| ηx − ξx |< εa,b,N . (3.3)

Let T ′ be the first time t with the property that η̂(t) = ξ̂(t). Then there exists a coupling such that the

event T ′ < (N − 1)⌈ 1

a+b
⌉ has probability bounded below by a positive constant that depends only on a,

b and N.

We now present the coupling that constitutes the proof of Theorem 3.1, making use of the results

stated in Lemma 3.2, Lemma 3.3 and Lemma 3.4.

Proof of Theorem 3.1. Take two probability distributions ν1,ν2 on ΩN , and choose η and ξ according

to ν1,ν2 respectively. We present a successful coupling {η̂(t), ξ̂(t)}, with η̂(0) = η and ξ̂(0) = ξ.

If we assume that both ν1 and ν2 are stationary, then the existence of the coupling shows that

ν1 = ν2 = ν . If we take ν1 = ν and ν2 arbitrary, then the existence of the coupling shows that any

initial distribution ν2 converges in total variation to ν .

The coupling consists of three steps, and is described as follows.

• step 1. We evolve the two processes independently until they encounter a configuration in Eb

simultaneously. From Lemma 3.2 we know this happens a.s. By symmetry, we can assume

that both configurations are in EN as soon as both processes have reached a configuration in

Eb. From that moment on, we proceed to

• step 2. We use the coupling as described in the proof of Lemma 3.3. That amounts to choosing

X̂ ξ(t) = X̂η(t) = Xη(t), and Ûξ(t) = Ûη(t) = Uη(t). As the proof of Lemma 3.3 shows,

if Uη(t) and Xη(t) satisfy certain requirements for at most tε time steps, then we have that

(3.1) and (3.2) occur, with ε = εa,b,N . If during this step, at any time step either Uη(t) or

Xη(t) does not satisfy the requirements, then we return to step 1. But once we have (3.1) and

(3.2) (which, by Lemma 3.3, has positive probability), then we proceed to
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• step 3. Here, we use the coupling as described in the proof of Lemma 3.4. Again, we choose

X̂ ξ(t) = X̂η(t) = Xη(t) and Ûη(t) = Uη(t), but the dependence of Ûξ(t) on Uη(t) is more

complicated; the details can be found in the proof of Lemma 3.4. As the proof of Lemma 3.4

shows, if Uη(t) and Xη(t) satisfy certain requirements for at most (N − 1)⌈ 1

a+b
⌉ time steps,

then we have that η̂(t) = ξ̂(t) occurs, and from that moment on the two processes evolve

identically. By Lemma 3.4, this event has positive probability. If during this step, at any time

step, either Uη(t) or Xη(t) does not satisfy the requirements, we return to step 1.

In the coupling, we keep returning to step 1 until step 2 and subsequently step 3 are successfully

completed, after which we have that η̂(t) = ξ̂(t). Since each step is successfully completed with

uniform positive probability, we a.s. need only finitely many attempts. Therefore we achieve η̂(t) =

ξ̂(t) in finite time, so that the coupling is successful.

Now, we will proceed to give the proof of Lemma 3.2, Lemma 3.3 and Lemma 3.4.

3.1 Proof of Lemma 3.2

In this section, we show that starting two independent processes from any two configurations η and

ξ, the two processes will a.s. be in Eb simultaneously infinitely often. The proof will be realized in

two steps.

Lemma 3.5. Let η be a configuration in ΩN . The process starting from η visits EN within (N+1)⌈ 1

a+b
⌉

time steps, with probability at least ( 1

2N
)
(N+1)⌈ 1

a+b
⌉
.

Proof. We prove this by giving an explicit event realizing this, that has the mentioned probability. In

this step, we always make heavy additions to site N , that is, additions with value at least (a+ b)/2.

First, starting from configuration η, we make heavy additions to site 1 until site 1 becomes unstable.

Then an avalanche occurs and a new configuration with at least one empty site is reached. The

leftmost empty site denoted by r1. If r1 = N we are done. If r1 6= N , then it is easy to check that site

r1+ 1 is full. The total number of additions needed for this step is at most 2⌈ 1

a+b
⌉.

Then, if r1 6= N , we continue by making heavy additions to site r1 + 1 until site r1 + 1 becomes

unstable. Then an avalanche starts from site r1 + 1. During this avalanche, sites 1 to r1 − 1 are not

affected, site r1 becomes full and we again reach a new configuration with at least one empty site,

the leftmost of which is denoted by r2. If r2 = N we are done. If not, note that r2 ≥ r1 + 1 and that

all sites 1, ..., r2 − 1 and r2+ 1 are full. At most ⌈ 1

a+b
⌉ heavy additions are needed for this step.

If r2 6= N , we repeat this last procedure. After each avalanche, the leftmost empty site moves at least

one site to the right, and hence, after the first step we need at most N − 1 further steps.

Hence, the total number of heavy additions needed for the above steps is bounded above by (N +

1)⌈ 1

a+b
⌉. Every time step, with probability 1

N
, a fixed site is chosen and with probability 1

2
, an

addition is a heavy addition. Therefore, the probability of this event is at least (2N)
−(N+1)⌈ 1

a+b
⌉.

Lemma 3.6. Let ξ(0) ∈ Eb, then ξ(1) ∈ Eb with probability at least 1

N
.
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Proof. Again, we give an explicit possibility with probability 1

N
. Starting in ξ ∈ Eb, we make one

addition to the site next to the empty boundary site. If this site does not topple, then of course ξ(1)

is still in Eb. But if it does topple, then every full site will topple once, after which all sites will be full

except for the opposite (previously full) boundary site. In other words, then ξ(1) is also in Eb. The

probability that the addition site is the site next to the empty boundary site, is 1

N
. Then ξ(1) ∈ Eb

with probability at least 1

N
.

Proof of Lemma 3.2. From Lemma 3.5, it follows that the process starting from ξ is in Eb infinitely

often. Let t
ξ

b
be the first time that the process is in Eb, and define

T
η

b
=min{t : t ≥ t

ξ

b
,η(t) ∈ Eb}.

By the same lemma, the probability that 0≤ T
η

b
− t

ξ

b
≤ (N + 1)⌈ 1

a+b
⌉ is at least (2N)

−(N+1)⌈ 1

a+b
⌉.

Repeatedly applying Lemma 3.6 gives that the event that ξ(t
ξ

b
+ 1) ∈ Eb,ξ(t

ξ

b
+ 2) ∈ Eb, ...,ξ(T

η

b
) ∈

Eb, occurs with probability bounded below by ( 1

N
)T
η

b
−t
ξ

b .

We have showed that when ξ(t) ∈ Eb, within at most (N + 1)⌈ 1

a+b
⌉ time steps, the two processes

are in Eb simultaneously with probability at least ( 1

2N2 )
(N+1)⌈ 1

a+b
⌉. Combining this with the fact

that the process starting from ξ is in Eb infinitely often, we conclude the two processes are in Eb

simultaneously infinitely often. �

3.2 Proof of Lemma 3.3

In this part, we couple two processes starting from η,ξ ∈ EN . The coupling consists of choosing the

addition amounts and sites equal at each time step. For this coupling, we present an event that has

probability (2N)−tε , with tε = 2⌈ 2

a+b
⌉ · ⌈log

(1−2
−⌈ 3N

2
⌉
)
(2ε

N
)⌉, and which is such that if it occurs, then

(3.1) and (3.2) are satisfied.

The event we need is that for tε time steps,

1. All additions are heavy.

2. The additions occur to site N until site N becomes unstable, then to site 1 until site 1 becomes

unstable, then to site N again, etcetera.

The probability for an addition to be heavy is 1

2
and the probability for the addition to occur to a

fixed site is 1

N
. Therefore, the probability of this event is (2N)−tε .

Now we show that if this event occurs, then (3.1) and (3.2) are satisfied. Let Û(t) be the addition

amount at time t. Define a series of stopping times {τk}k≥0 by

τ0 = 0,τk :=min{t > τk−1 :

τk
∑

t=τk−1+1

Û(t)≥ 1}, for k ≥ 1, (3.4)

901



and denote

Sk =

τk
∑

t=τk−1+1

Û(t). (3.5)

The times τk (k > 0) are such that in both configurations, only at these times an avalanche occurs.

Indeed, for the first avalanche this is clear because we only added to site N , which was empty before

we started adding. But whenever an avalanche starts at a boundary site, and all other sites are full,

then every site topples exactly once and after the avalanche, the opposite boundary site is empty.

Thus the argument applies to all avalanches.

Since we make only heavy additions,

τk −τk−1 ≤ ⌈
2

a+ b
⌉, for all k. (3.6)

After the k-th avalanche, the height η̂y(τk) is a linear combination of S1, ...,Sk and η1, ...,ηN−1,

which we write as

η̂y(τk) =

k
∑

l=1

Al y(k)Sl +

N
∑

m=1

Bmy(k)ηm, for 1≤ y ≤ N , (3.7)

and a similar expression for ξ̂y(τk). From Proposition 3.7 of [6], we have that

Bmy(k)≤ (1− 2−⌈
3N

2
⌉)max

x
Bmx(k− 1).

By induction, we find

Bmy(k)≤ (1− 2−⌈
3N

2
⌉)k

and hence

max
1≤y≤N

| η̂y(τk)− ξ̂y(τk) | ≤ N(1− 2−⌈
3N

2
⌉)k max

1≤x≤N
| ηx − ξx |

≤
N

2
(1− 2−⌈

3N

2
⌉)k,

where we use the fact that η,ξ ∈ EN implies max1≤x≤N | ηx − ξx |≤
1

2
.

For each ε > 0, choose kε = 2⌈log
(1−2

−⌈ 3N
2
⌉
)
(2ε

N
)⌉. Then N

2
(1− 2−⌈

3N

2
⌉)kε ≤ ε, so that

max
1≤x≤N

| η̂x(τkε
)− ξ̂x(τkε

) |< ε,

and moreover, an even number of avalanches occurred, which means that at time τkε
, both processes

are in EN . By (3.6), τkε
≤ tε = kε⌈

2

a+b
⌉. Thus, τkε

is a random time T as in the statement of Lemma

3.3.
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3.3 Proof of Lemma 3.4

As in the proof of Lemma 3.3, we will describe the coupling, along with an event that has probability

bounded below by a constant that only depends on a, b and N , and is such that if it occurs, then

within (N − 1)⌈ 1

a+b
⌉ time steps, η̂(t) = ξ̂(t). First we explain the idea behind the coupling and this

event, after that we will work out the mathematical details.

The idea is that in both processes we add the same amount, only to site 1, until an avalanche is about

to occur. We then add slightly different amounts while still ensuring that an avalanche occurs in both

processes. After the first avalanche, all sites contain a linear combination of the energy before the

last addition, plus a nonzero amount of the last addition. We choose the difference D1 between the

additions that cause the first avalanche, such that site N will have the same energy in both processes

after the first avalanche, where |D1| is bounded above by a value that only depends on a, b and N .

Sites N −1 will become empty, and the differences between the two new configurations on all other

sites will be larger than those before this avalanche, but can be controlled.

When we keep adding to site 1, in the next avalanche only the sites 1, . . . , N − 2 will topple. We

choose the addition amounts such that after the second avalanche, sites N − 1 will have the same

energy. Since site N did not change in this avalanche, we now have equality on two sites. After the

second avalanche, site N − 2 is empty, and the configurations are still more different on all other

sites, but the difference can again be controlled.

We keep adding to site 1 until, after a total of N − 1 avalanches, the configurations are equal on

all sites. After each avalanche, we have equality on one more site, and the difference increases on

the nonequal sites. We deal with this increasing difference by controlling the maximal difference

between the corresponding sites of the two starting configurations by the constant εa,b,N , so that we

can choose each addition of both sequences from a nonempty interval in [a, b]. The whole event

takes place in finite time, and will therefore have positive probability.

Proof of Lemma 3.4. The coupling is as follows. We choose X̂η(t) = Xη(t), and Ûη(t) = Uη(t). We

choose the addition sites X̂η(t) and X̂ ξ(t) equal, and the addition amounts Ûη(t) and Ûξ(t) either

equal, or not equal but dependent. In the last case, Ûξ(t) is always of the form a+(Ûη(t)+ D− a)

mod (b − a), where D does not depend on Ûη(t). The reader can check that, for any D, Ûξ(t) is

then uniformly distributed on [a, b].

The event we need is as follows. First, all additions are heavy. For the duration of N −1 avalanches,

which is at most (N − 1)⌈ 1

a+b
⌉ time steps, the additions to η occur to site 1, and the amount is for

every time step in a certain subinterval of [a, b], to be specified next.

We denote a+b

2
= a′′ and recursively define

εk+1 = (1+ 2N−k−2)εk,

with ε1 = εa,b,N . Between the (k − 1)-st and k-th avalanche, the interval is [a′′, a′′ + 2εk], and at

the time where the k-th avalanche occurs, the interval is a subinterval of [a′, b] = [a′′ + 3εk, b] of

length b−a′

2
; see below.

The probability of at most (N − 1)⌈ 1

a+b
⌉ additions occurring to site 1, is bounded from below by

N
−⌈ 1

a+b
⌉(N−1). Since εk is increasing in k, the probability of all addition amounts occurring in the

appropriate intervals, is bounded below by (2ε1)
(N−1)(⌈ 1

a+b
⌉−1)
· ( b−a

4
−

3ε(N−1)

2
)N−1. The probability

of the event is bounded below by the product of these two bounds.
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Now we define the coupling such that if this event occurs, then after N−1 avalanches, we have that

η̂(t) = ξ̂(t). In the remainder, we suppose that the above event occurs.

We start with discussing the time steps until the first avalanche. Suppose, without loss of generality,

that η1 ≥ ξ1. We make equal additions in [a′′, a′′+2ε1], until the first moment t such that η1(t)>

1− a′′ − 2ε1. We then know that ξ1(t) > 1− a′′ − 3ε1. If we now choose the last addition for both

configurations in [a′, b] = [a′′+ 3ε1, b], then both will topple.

Define

D1 :=

N−1
∑

y=1

2y−1(ηy − ξy). (3.8)

Let τ1 be the time at which the first avalanche occurs. Then we choose for all t < τ1, Ûη(t) = Ûξ(t),

and Ûξ(τ1)− Ûη(τ1) = D1. Since |D1| < 2N−1ε1 ≤
b−a′

4
, when Ûη(τ1) ∈ [

3a′+b

4
, a′+3b

4
] (the middle

half of [a′, b])

a′ ≤ Ûη(τ1) + D1 < b. (3.9)

So, if Ûη(τ1) is uniformly distributed on [3a′+b

4
, a′+3b

4
], then Ûξ(τ1) = Ûη(τ1) + D1 is uniformly

distributed on [3a′+b

4
+ D1, a′+3b

4
+ D1]⊂ [a

′, b].

Let R1 =
∑τ1−1

t=1 Ûη(t). Then at time τ1, for 1≤ x ≤ N − 2 we have

η̂x(τ1) =
1

2x+1
(η1+ R1+ Ûη(τ1)) +

1

2x
η2+ · · ·+

1

2
ηx+1,

and

η̂N−1(τ1) = 0; η̂N (τ1) = η̂N−2(τ1),

and a similar expression for ξ̂x(τ1). It follows that

η̂N (τ1)− ξ̂N (τ1) =−2(1−N)D1+

N−1
∑

y=1

2y−N (ηy − ξy) = 0

which means that the two coupled processes at time τ1 are equal at site N .

After this first avalanche, the differences on sites 1, . . . , N −3 have been increased. Ignoring the fact

that sites N − 2 happen to be equal (to simplify the discussion), we calculate

max
1≤x≤N

| η̂x(τ1)− ξ̂x(τ1) |≤ max
1≤x≤N

(

1

2x+1
| D1 |+ max

1≤x≤N
| ηy − ξy |

x+1
∑

l=1

1

2l

)

≤ max
1≤x≤N

¨

2N−1

2x+1
+ (1−

1

2x
)

«

max
1≤x≤N

| ηy − ξy |

≤ (1+ 2N−3) max
1≤x≤N

| ηy − ξy |

≤ (1+ 2N−3)ε1 = ε2. (3.10)

We wish to iterate the above procedure for the next N − 2 avalanches. We number the avalanches

1, . . . , N −1, and define τk as the time at which the k-th avalanche occurs. As explained for the case
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k = 1, we choose all additions equal, except at times τk, where we choose Ûξ(τk)− Ûη(τk) = Dk,

with

Dk =

N−k
∑

y=1

2y−1[η̂y(τk−1)− ξ̂y(τk−1)]

and

|Dk| ≤ 2N−k max
1≤x≤N

|η̂x(τk−1)− ξ̂x(τk−1)|.

The maximal difference between corresponding sites in the two resulting configurations has the

following bound:

max
1≤x≤N

|η̂x(τk)− ξ̂x(τk)|

≤ max
1≤x≤N

(

1

2x+1
|Dk|+

x+1
∑

l=1

1

2l
max

1≤x≤N
|η̂x(τk−1)− ξ̂x(τk−1)|

)

≤ (1+ 2N−k−2) max
1≤x≤N

|η̂x(τk−1)− ξ̂x(τk−1)|

≤ (1+ 2N−k−2)εk = εk+1.

(3.11)

Hence for all k, |Dk| is bounded from above by εk+12N−k, where εk+1 only depends on εk and N .

With induction, we find,

|Dk| ≤ 2N−kΠk−1
l=1
(1+ 2N−l−2)ε1 := dk.

We choose ε1 = εa,b,N such that DN−1 ≤
b−a′

4
. As the upper bound dk is increasing in k, we get

Dk ≤
b−a′

4
, for all k = 1, ..., N − 1. �

It follows from our proof that the convergence to the stationary distribution goes in fact exponen-

tially fast. Indeed, every step of the coupling is such that a certain good event occurs with a certain

minimal probability within a bounded number of steps. Hence, there exists a probabiliy q > 0 and a

number M > 0 such that with probability q, the coupling is succesfull within M steps, uniformly in

the initial configuration. This implies exponential convergence.

4 Zhang’s sandpile in infinite volume

4.1 Definitions and main results

In this section we work in general dimension d. We let X = [0,∞)Z
d

denote the set of infinite-

volume height configurations in dimension d and Ω = [0,1)Z
d

the set of all stable configurations.

For x ∈ Zd , the (Zhang) toppling operator Tx is defined as

Tx(η)y =







0 if x = y,

ηy +
1

2d
ηx if |y − x |= 1,

ηy otherwise.
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The infinite-volume version of Zhang’s sandpile model is quite different from its abelian sandpile

counterpart. Indeed, in the infinite-volume abelian sandpile model, it is shown that if a configuration

can reach a stable one via some order of topplings, it will reach a stable one by every order of

topplings and the final configuration as well as the topplings numbers per site are always the same,

see [8; 10; 7].

In Zhang’s sandpile model in infinite volume, the situation is not nearly as nice. Not only does the

final stable realization depend on the order of topplings, the very stabilizability itself also does. We

illustrate this with some examples.

Consider the initial configuration (in d = 1)

η= (. . . , 0, 0, 1.4,1.2,0,0, . . .).

We can reach a stable configuration in any order of the topplings, but the final configuration as well

as the number of topplings per site depend on which unstable site we topple first. We can choose to

start toppling at the left or right unstable site, or to topple the two sites in parallel (that is, at the

same time); the different results are presented in Table 1.

start at site toppling numbers final configuration

left (. . . , 0, 0, 1, 1,0,0, . . .) (. . . , 0, 0.7, 0.95,0,0.95,0, . . .)

right (. . . , 0, 1, 2, 3,1,0, . . .) (. . . , 0.5, 0.5,0.525,0,0.525,0.55 . . .)

parallel (. . . , 0, 0, 1, 1,0,0, . . .) (. . . , 0, 0.7, 0.6,0.7,0.6,0, . . .)

Table 1: The three possible stabilizations of (. . . , 0, 0, 1.4,1.2,0,0, . . .)

For a second example, let

ξ= (. . . , 0.9, 0.9,0,1.4,1.2,0,0.9,0.9, . . .).

This is a configuration that evolves to a stable configuration in some orders of topplings, but not by

others. Indeed, if we start to topple the left unstable site first, we obtain the stable configuration

(. . . , 0.9, 0.9,0.7,0.95,0,0.95,0.9,0.9, . . .),

but if we topple the right unstable site first, after two topplings, we reach

ξ′ = (. . . , 0.9, 0.9,1,0,1,0.6,0.9,0.9, . . .).

By arguing as in the proof of the forthcoming Theorem 4.3, one can see that this configuration

cannot evolve to a stable configuration.

In view of these examples, we have to be more precise about the way we perform topplings. In the

present paper, we will use the Markov toppling process: to each site we associate an independent

rate 1 Poisson process. When the Poisson clock ‘rings’ at site x and x is unstable at that moment, we

perform a Zhang-toppling at that site. If x is stable, we do nothing. By η(t), we denote the random

configuration at time t. We denote by M(x , t,η) the (random) number of topplings at site x up to

and including time t.

Definition 4.1. A configuration η ∈ X is said to be stabilizable if for every x ∈ Zd ,

lim
t→∞

M(x , t,η)<∞

a.s. In that case we denote the limit random variable by M(x ,∞,η).
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Denote the collection of all stabilizable configurations by S . It is not hard to see that S is shift-

invariant and measurable with respect to the usual Borel sigma field. Hence, if µ is an ergodic

stationary probability measure on X , µ(S) is either 0 or 1.

Definition 4.2. A probability measure µ on X is called stabilizable if µ(S ) = 1.

The next theorem is the main result in this section. When the density of an ergodic translation-

invariant measure µ is at least 1, µ is not stabilizable, and when it is smaller than 1

2
, µ is stabilizable.

The situation when 1

2
≤ ρ < 1 is not nearly as elegant. Clearly, when we take µρ to be the point

mass at the configuration with constant height ρ, then µρ is stabilizable for all 1

2
≤ ρ < 1. On

the other hand, the following theorem shows that there are measures µ with density close to 1

2
and

close to 1 which are not stabilizable.

Theorem 4.3. Let µ be an ergodic translation-invariant probability measure onX with Eµ(η0) = ρ <

∞. Then

1. If ρ ≥ 1, then µ is not stabilizable, that is, µ(S ) = 0.

2. If 0≤ ρ < 1

2
, then µ is stabilizable, that is, µ(S ) = 1.

3. For all 1/2 ≤ ρ < d/(2d − 1) and (2d − 1)/(2d) < ρ < 1, there exists an ergodic measure µρ
with density ρ which is not stabilizable.

Remark There is no obvious monotonicity in the density as far as stabilizability is concerned. Hence

we cannot conclude from the previous theorem that for all 1/2 ≤ ρ < 1 there exists an ergodic

measure µρ which is not stabilizable.

5 Proofs for the infinite-volume sandpile

For an initial measure µ, Eµ and Pµ denote the corresponding expectation and probability measures

in the stabilization process. We first show that no mass is lost in the toppling process.

Proposition 5.1. Let µ be an ergodic shift-invariant probability measure on X with

Eµ(η0) = ρ <∞

which evolves according to the Markov toppling process. Then we have

1. for 0≤ t <∞, Eµη0(t) = ρ,

2. if µ is stabilizable, then Eµη0(∞) = ρ.

Proof. We prove 1. via the well known mass transport principle. Let the initial configuration be

denoted by η. Imagine that at time t = 0 we have a certain amount of mass at each site, and

we colour all mass white, except the mass at a special site x which we colour black. Whenever

a site topples, we further imagine that the black and white mass present at that site, are both
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equally distributed among the neighbours. So, for instance, when x topples for the first time, all its

neighbours receive a fraction 1/(2d) of the original black mass at x , plus possibly some white mass.

We denote by B(y, t) the total amount of black mass at site y at time t. First, we argue that at any

finite time t,
∑

y∈Zd

B(y, t) = ηx , (5.1)

that is, no mass is lost at any finite time t. Indeed, had this not been the case, then we define t∗ to be

the infimum over those times t for which (5.1) is not true. Since mass must be subsequently passed

from one site to the next, this implies that there is a path (x = x0, x1, . . .) of neighbouring sites to

infinity, starting at x such that the sites x i all topple before time t∗, in the order given. Moreover,

since t∗ is the infimum, the toppling times t i of x i satisfies limi→∞ t i = t∗. Hence, for any ε > 0, we

can find i0 so large that for all i > i0, t i > t∗ − ε. Call a site open of its Poisson clock ‘rings’ in the

time interval (t∗−ε, t∗), and closed otherwise. This constitutes an independent percolation process,

and if ε is sufficiently small, the open sites do not percolate. Hence a path as above cannot exist,

and we have reached a contradiction. It follows that no mass is lost at any finite time t, and we can

now proceed to the routine proof of 1. via mass-transport.

We denote by X (x , y, t,η) the amount of mass at y at time t which started at x . From mass

preservation, we have

ηx =
∑

y∈Zd

X (x , y, t,η) (5.2)

and

ηy(t) =
∑

x∈Zd

X (x , y, t,η). (5.3)

Since all terms are non-negative and by symmetry, this gives

Eµη0(0) =
∑

y∈Zd

EµX (0, y, t,η)

=
∑

y∈Zd

EµX (y, 0, t,η) = Eµη0(t).

To prove 2., we argue as follows. From 1. we have that for every t <∞, Eµη0(t) = ρ. Using Fatou’s

lemma we obtain

Eµ(η0(∞)) = Eµ( lim
t→∞
η0(t))≤ lim inf

t→∞
Eµ(η0(t)) = ρ, (5.4)

and therefore it remains to show that Eµ(η0(∞)) ≥ ρ. This can be shown in the same way as

Lemma 2.10 in [7], using the obvious identity

ηx(t) = ηx − L(x , t,η) +
1

2d

∑

|y−x |=1

L(y, t,η) (5.5)

instead of (3) in [7], where L(x , t,η) (for 0 ≤ t ≤∞) denotes the total amount of mass that is lost

from site x via topplings, until and including time t.
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Proposition 5.2. Let η(t) be obtained by the Markov toppling process starting from η ∈ X . Let Λ be

a finite subset of Zd , such that all sites in Λ toppled at least once before time t. Let βΛ be the number of

internal bonds of Λ. Then
∑

x∈Λ

ηx(t)≥
1

2d
βΛ. (5.6)

Proof. Let (x , y) be an internal bond of Λ. By assumption, both x and y topple before time t.

Suppose that x is the last to topple among x and y . As a result of this toppling, at least mass 1/(2d)

is transferred from x to y and this mass will stay at y until time t since y does not topple anymore

before time t. In this way, we associate with each internal bond, an amount of mass of at least

1/(2d), which is present in Λ at time t. Hence the total amount of mass in Λ at time t is at least

1/(2d) times the number of internal bonds.

We can now prove Theorem 4.3.

Proof of Theorem 4.3. We prove 1. first. Let µ be any ergodic shift-invariant measure with Eµ(η0) =

ρ ≥ 1 and suppose µ is stabilizable. According to Proposition 5.1, we have

Eµ(η0(∞)) = Eµ(η0) = ρ ≥ 1, (5.7)

which contradicts the assumption that η(∞) is stable.

For 2., let µ be any ergodic shift-invariant probability measure on X with Eµ(η0) = ρ <
1

2
, and

suppose that µ is not stabilizable. We will now show that this leads to a contradiction.

Define Cn(t) to be the event that before time t, every site in the box [−n, n]d topples at least once.

Since µ is not stabilizable we have that Pµ(Cn(t))→ 1 as t →∞. Indeed, if a configuration is not

stabilizable, all sites will topple infinitely many times as can be easily seen.

Choose ε > 0 such that 1− ε > 2ρ. For this ε, there exists a non-random time T ε > 0 such that for

all t > T ε,

Pµ(Cn(t))> 1− ε. (5.8)

From Proposition 5.2 we have that at time t ≥ T ε > 0, with probability at least 1− ε, the following

inequality holds:
∑

x∈[−n,n]d ηx(t)

(2n+ 1)d
≥

1

2

(2n)d

(2n+ 1)d
. (5.9)

Therefore, we also have

Eµ

 ∑

x∈[−n,n]d ηx(t)

(2n+ 1)d

!

≥
1

2
(1− ε)

(2n)d

(2n+ 1)d
.

Since 2ρ < 1, we can choose n so large that

(1− ε)
(2n)d

(2n+ 1)d
> 2ρ.

Using the shift-invariance of µ and the toppling process, for t ≥ T ε, we find

Eµη0(t) = Eµ

 ∑

x∈[−n,n]d ηx(t)

(2n+ 1)d

!

≥
1

2
(1− ε)

(2n)d

(2n+ 1)d
> ρ. (5.10)
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However, from Proposition 5.1, we have for any finite t that Eµη0(t) = Eµη0(0) = ρ.

Next we prove 3. We start with ρ > (2d − 1)/(2d). To understand the idea of the argument, it

is useful to first assume that we have an unstable configuration η on a bounded domain Λ (with

periodic boundary conditions) with the property that ηx ≥ 1− 1/(2d), for all x ∈ Λ. On such a

bounded domain, we can order the topplings according to the time at which they occur. Hence

we can find a sequence of sites x1, x2, . . . (not necessarily all distinct) and a sequence of times

t1 < t2 < · · · such that the i-th toppling takes place at site x i ∈ Λ at time t i . At time t1, x1 topples,

so all neighbours of x1 receive at least 1/(2d) from x1. This means that all neighbours of x1 become

unstable at time t1, and therefore they will all topple at some moment in the future. As a result,

x1 itself will also again be unstable after all its neighbours have toppled, and hence x1 will topple

again in the future.

In an inductive fashion, assume that after the k-th toppling (at site xk at time tk), we have that it

is certain that all sites that have toppled so far, will topple again in the future, that is, after time tk.

Now consider the next toppling, at site xk+1 at time tk+1. If none of the neighbours of xk+1 have

toppled before, then a similar argument as for x1 tells us that xk+1 will topple again in the future.

If one or more neighbours of xk+1 have toppled before, then the inductive hypothesis implies that

they will topple again after time tk+1. Hence, we conclude that all neighbours of xk+1 will topple

again which implies, just as before, that xk+1 itself will topple again. We conclude that each sites

which topples, will topple again in the future, and therefore the configuration can not be stabilized.

This argument used the fact that we work on a bounded domain, since only then is there a well-

defined sequence of consecutive topplings. But with some extra work, we can make a similar argu-

ment work for the infinite-volume model as well, as follows.

Let s0 > 0 be so small that the probability that the Poisson clock at the origin ‘rings’ before time s0

is smaller than the critical probability for independent site percolation on the d-dimensional integer

lattice. Call a site open if its Poisson clock rings before time s0. By the choice of s0, all components of

connected open sites are finite. For each such component of open sites, we now order the topplings

that took place between time 0 and time s0. For each of these components, we can argue as in the

first paragraphs of this proof, and we conclude that all sites that toppled before time s0, will topple

again at some time larger than s0. We then repeat this procedure for the time interval [s0, 2s0],

[2s0, 3s0], . . ., and conclude that at any time, a site that topples, will topple again in the future.

This means that the configuration is not stabilizable. Hence, if we take a measure µρ such that

with µρ-probability 1, all configurations have the properties we started out with, then µρ is not

stabilizable.

Next, we consider the case where 1/2 ≤ ρ < d/(2d − 1). Consider a measure µρ whose realiza-

tions are a.s. ‘checkerboard’ patterns in the following way: any realization is a translation of the

configuration in which all sites whose sum of the coordinates is even obtain mass 2ρ, and all sites

whose sum of coordinates is odd obtain zero mass. Consider a site x with zero mass. Since all

neighbours of x are unstable, these neighbours will all topple at some point. By our choice of ρ,

x will become unstable precisely at the moment that the last neighbour topples - this follows from

a simple computation. By an argument pretty much the same as in the first case, we now see that

all sites that originally obtained mass 2ρ, have the property that after they have toppled, all their

neighbours will topple again in the future, making the site unstable again. This will go on forever,

and we conclude that the configuration is not stabilizable. Hence, µρ is not stabilizable.

Remark The arguments in case of parallel topplings are simpler: the case ρ < 1/2 can be done
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as above, while for all ρ ≥ 1/2, the checkerboard pattern is preserved at all times, preventing

stabilization.
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