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whose solutions are drift–perturbed and exhibit asymptotic behaviour similar to standard Brow-

nian motion. In particular sufficient conditions ensuring that these processes obey the Law of

the Iterated Logarithm (LIL) are given. Ergodic–type theorems on the average growth of these

non-stationary processes, which also depend on the asymptotic behaviour of the drift coefficient,

are investigated. We apply these results to inefficient financial market models. The techniques

extend to certain classes of finite–dimensional equation.
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1 Introduction

The following Law of the Iterated Logarithm is one of the most important results on the asymptotic

behaviour of finite-dimensional standard Brownian motion:

lim sup
t→∞

|B(t)|
p

2t log log t
= 1, a.s. (1.1)

Classical work on iterated logarithm–type results, as well as associated lower bounds on the growth

of transient processes, date back to Dvoretzky and Erdős [5]. There is an interesting literature

on iterated logarithm results and the growth of lower envelopes for self-similar Markov processes

(cf. e.g., Rivero [16], Chaumont and Pardo [4]) which exploit a Lamperti representation [13],

processes conditioned to remain positive (cf. Hambly et al. [10]), and diffusion processes with

special structure (cf. e.g. Bass and Kumagi [3]).

In contrast to these papers, the analysis here is inspired by work of Motoo [15] on iterated logarithm

results for Brownian motions in finite dimensions, in which the asymptotic behaviour is determined

by means of time change arguments which reduce the process under study to a stationary one. Our

paper concentrates mainly on iterated logarithm upper bounds of solutions of stochastic differential

equations, as well as obtaining lower envelopes for the growth rate. Our goal is to establish these

results under the minimum continuity and asymptotic conditions on the drift and diffusion coeffi-

cients. An advantage of this approach is that it enables us to analyse a class of equations of the

form

dX (t) = f (X (t)) d t + g(X (t)) dB(t)

for which x f (x)/g2(x) tends to a finite limit as x → ∞ in the case when f and g are regularly

varying at infinity. Ergodic–type theorems are also presented. We also show how results can be

extended to certain classes of non-autonomous and finite-dimensional equations. We employ exten-

sively comparison arguments of various kinds throughout.

In [1], Appleby et al. studied general conditions which ensure a scalar stochastic differential equa-

tion with Markov switching obeys the Law of the Iterated Logarithm. In our work here, we are

concerned with similar problems for SDEs without switching. In particular, for a parameterised fam-

ily of SDEs, we observe that solutions can change from being recurrent to transient when a critical

value of the bifurcation parameter is exceeded. Despite this, the solutions still obey the Law of the

Iterated Logarithm in the sense of (1.1). Between this paper and [1], we examine the extent to

which the drift can be perturbed so that in the long-run the size of the large deviations remains the

same as those of standard Brownian motion.

In [14], Mao shows that if X is the solution of the d–dimensional equation

dX (t) = f (X (t), t) d t + g(X (t), t) dB(t), t ≥ 0

and if there exist positive real numbers ρ, K such that for all x ∈ Rd and t ≥ 0, x T f (x , t) ≤ ρ, and

||g(x , t)||op ≤ K (where || · ||op denotes the operator norm), then

lim sup
t→∞

|X (t)|
p

2t log log t
≤ K
p

e, a.s. (1.2)

The main steps of the Mao’s proof are as follows: first, make a suitable Itô transformation; then

estimate the size of the Itô integral term by a Riemann integral using the exponential martingale
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inequality (EMI); and finally apply Gronwall’s inequality (GI) to determine the asymptotic rate of

growth.

In contrast, the results in this paper are established through a combination of comparison principles

and Motoo’s theorem. Motoo’s theorem (cf. [15]) determines the exact asymptotic growth rate of

the partial maxima of a stationary or asymptotically stationary process governed by an autonomous

SDE. Motoo [15] also gives a proof of the Law of the Iterated Logarithm for a finite-dimensional

Brownian motion. This proof is crucially reliant on applying a change in both space and scale. He

considers an autonomous non-stationary δ–dimensional Bessel process Rδ, which is governed by

the scalar equation

dRδ(t) =
δ− 1

2Rδ(t)
d t + dB(t) (1.3)

with Rδ(0) = r0 ≥ 0. The Bessel process Rδ is transformed into an autonomous process with finite

speed measure (i.e., a process that possesses a limiting distribution) to which the Motoo’s theorem

can be applied. More precisely, if we let

Sδ(t) = e−tR2
δ(e

t − 1), (1.4)

then

dSδ(t) = (δ− Sδ(t)) d t + 2
p

Sδ(t) dB̃(t). (1.5)

It is reasonable to ask whether a combination of space and scale transformations of this classic type

could reduce a general non-stationary autonomous SDE to one with finite speed measure to which

Motoo’s theorem could then be applied. If we consider general transformations of the form

Y (t) = λ(t)P(X (γ(t)))

where γ : R+ → R+ is increasing, P ∈ C2(R;R) and λ ∈ C1(R+;R+) (and is related to γ), the

resulting SDE for Y will be non–autonomous, and in particular, will have non-autonomous diffu-

sion coefficient. Adapting the proof of Motoo’s theorem to cope with SDEs with non-autonomous

diffusion coefficients introduces formidable difficulties, because the independence of excursions, on

which the proof relies, can no longer be assured.

However, in this paper, with the well–known stochastic comparison principle (which assumes an

order on the drift coefficients), we are able to investigate a much wider class of SDEs which are

related to (1.3) through (1.4) and which give rise to equations of the type (1.5). In addition, with

ordinary Itô transformations, we could map an even wider class of nonlinear equations onto a family

of SDEs whose asymptotic behaviour is understood. This is shown in [2]. A detailed discussion on

the relative advantages and disadvantages of this comparison-Motoo technique with the existing

EMI–Gronwall approach can also be found in [2].

Also in [1], Appleby et al. applied processes obeying the Law of the Iterated Logarithm to financial

market models which are inefficient in the sense of Fama. In this paper, we further investigate some

ergodic–like properties of these processes. Under some reasonable assumptions of regarding the

market, we establish two main results. First, we show that the largest fluctuations from the trend

growth rate of the price are of the same size as in a related efficient market model. Second, we

show that these fluctuations are “on average” greater than those in the efficient model, in a sense

later made precise.

This paper considers a number of closely related equations, and proves a number of diverse asymp-

totic results. In order to understand the relationships between these results and to ease the readers’
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path through the paper, we give a synopsis and discussion about the main results, as well as their ap-

plications in Section 3. Full statements of the theorems and detailed proofs are found in succeeding

sections.

2 Preliminaries

Throughout the paper, the set of non-negative real numbers is denoted by R+. The space of d ×m

matrices with real entries is denoted by Rd×m; in the case when m = 1, we write Rd×1 = Rd . Let

L1([a, b];Rd) be the family of Borel measurable functions h : [a, b]→ Rd such that
∫ b

a
|h(x)|d x <

∞. If x and y are two real numbers, then the maximum and minimum of x and y are denoted by

x ∨ y and x ∧ y respectively. Let |x | be the Euclidean norm of a column or a row vector x ∈ Rd ; ||A||
and ||A||op denote the Frobenius norm and operator norm respectively for any A∈ Rd×m. Note that

||A||op ≤ ||A|| and ||A|| ≤
p

m||A||op.

Moreover, we use the Landau symbol for functions f : R→ R and g : R→ R:

f = O (g−1) ⇐⇒ lim sup
t→∞

|g(t)|| f (t)|<∞.

We use (Ω,F , {F (t)}t≥0,P) to denote a complete filtered probability space. The abbreviation a.s.

stands for almost surely. We always assume that both the drift and the diffusion coefficients of

SDEs being studied satisfy the local Lipschitz condition even if this is not explicitly stated. If an

autonomous scalar SDE has drift coefficient f (·) and non-degenerate diffusion coefficient g(·), then

a scale function and speed measure of the solution of this SDE are defined by

sc(x) =

∫ x

c

e
−2
∫ y

c

f (z)

g2(z)
dz

d y, m(d x) =
2d x

s′(x)g2(x)
, c, x ∈ I := (l, r) (2.1)

respectively, where I is the state space of the process. These functions help us to determine the

recurrence and stationarity of a process on I (cf. e.g. [12]). Moreover, Feller’s test for explosions

(cf. e.g. [12]) allows us to examine whether a process will never escape from its state space in finite

time. This in turn relies on whether

v(l+) = v(r−) =∞

or not, where v is defined as

vc(x) =

∫ x

c

s′c(y)

∫ y

c

2dz

s′c(z)g
2(z)

d y, c, x ∈ I . (2.2)

As mentioned in the introduction, Motoo’s Theorem is an important tool in determining the pathwise

largest deviations for stationary or asymptotically stationary processes. We state Motoo’s theorem

in this section for future use.

Theorem 2.1. (Motoo) Let X be the unique continuous real-valued process satisfying the following

equation

dX (t) = f (X (t)) d t + g(X (t)) dB(t), t ≥ 0,
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with X (0) = x0. Let s and m be the scale function and speed measure of X as defined in (2.1), and let

h : (0,∞)→ (0,∞) be an increasing function with h(t)→∞ as t →∞. If X is recurrent on (l,∞) (or

[l,∞) in the case when l is an instantaneous reflecting point) and m(l,∞)<∞, then

P

�
lim sup

t→∞

X (t)

h(t)
≥ 1

�
= 1 or 0

according to whether

∫ ∞

t0

1

s(h(t))
d t =∞ or

∫ ∞

t0

1

s(h(t))
d t <∞, for some t0 > 0.

The following lemma may be proven by applying Motoo’s theorem directly to it. We will use it

frequently.

Lemma 2.2. Let U be the unique continuous adapted solution of the following equation

dU(t) = (−aU(t) + b) d t + c
p
|U(t)| dB(t), t ≥ 0,

with U(0) = u0 > 0, where a, b and c are positive real numbers. Then U(t) ≥ 0 for all t ≥ 0 a.s.

Moreover U is recurrent, has finite speed measure, and obeys

lim sup
t→∞

U(t)

log t
=

c2

2a
, a.s.

Throughout the paper, we repeatedly use Doob’s theorem for the representation of a continuous

martingale in terms of standard one-dimensional Brownian motion. We state the theorem in this

section for notational convenience and future reference.

Theorem 2.3. (Doob) Suppose M is a continuous local martingale defined on a probability space

(Ω,F ,P), and the square variation 〈M〉 is an absolutely continuous function of t for P-almost every ω.

Then there is an extended space (Ω̃, F̃ , P̃) of (Ω,F ,P) on which is defined a one-dimensional Brownian

motion W = {W (t), F̃ (t); 0≤ t <∞} and a F̃ (t)-adapted process X with P̃-a.s.

∫ t

0

X 2(s)ds <∞, 0≤ t <∞,

such that we have the representations P̃-a.s.

M(t) =

∫ t

0

X (s) dW (s), 〈M〉(t) =
∫ t

0

X 2(s) ds, 0≤ t <∞.

In the proof of the above theorem, the new Brownian motion W is constructed by a continuous local

martingale with respect to the original probability space (Ω,F ,P) and another Brownian motion,

say bB, which is defined on the extended part of (Ω,F ,P) in (Ω̃, F̃ , P̃). Moreover, bB is independent

of M . Therefore in this paper, any conclusion made with respect to the extended measure P̃ about

the underlying semimartingale (with martingale component M) defined on (Ω,F ,P) coincides with

that for the measure P. Therefore we do not make explicit reference to the probability spaces when

stating results.
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3 Synopsis and Discussion of Main Results

In this section, we give a brief discussion of the results proven in this paper. First, we state the Law

of the Iterated Logarithm and other results on asymptotic growth bounds for transient solutions of

autonomous SDEs. Second, we discuss general non-autonomous equations for which the LIL holds,

under some uniform estimates on the drift. Third, we give comprehensive results for a parame-

terised family of autonomous SDEs with constant diffusion coefficient which do not require uniform

estimates on the drift. Finally, we discuss some extensions of these results to multi–dimensional

SDEs, as well as applications of the results to weakly inefficient financial markets.

3.1 Transient processes

Our first main result, Theorem 4.3, concerns transient solutions of the scalar autonomous stochastic

differential equation

dX (t) = f (X (t)) d t + g(X (t)) dB(t) (3.1)

where f : R→ R, g(x) = σ for x ∈ R, and

lim
x→∞

x f (x) = L∞ >
σ2

2
. (3.2)

If we define A := {ω : limt→∞ X (t,ω) =∞}, then P[A] > 0, and we can show that the solution X

obeys

lim sup
t→∞

X (t)
p

2t log log t
= |σ|, a.s. on A (3.3)

and

lim inf
t→∞

log
X (t)p

t

log log t
= −

1

2L∞
σ2 − 1

, a.s. on A.

X exhibits similar transient behaviour at minus infinity if

lim
x→−∞

x f (x) = L−∞ >
σ2

2
. (3.4)

These results are established by comparing X with a general Bessel process which has similar be-

haviour to X . The asymptotic behaviour of the Bessel process is given in Lemma 4.1. The modulus

of a finite-dimensional Brownian motion (i.e., a Bessel process) with dimension greater than two is

known to be transient, and when the dimension is less than or equal to two, the process is recurrent

on the positive real line. However, for general Bessel processes, the critical dimension altering its

behaviour does not have to be an integer. This fact is eventually captured in Theorem 4.3 by condi-

tion (3.2) (or (3.4)). More precisely, if exactly one of the parameters L∞ and L−∞ is greater than

the critical value σ2/2, then the process tends to infinity or minus infinity almost surely while still

obeying the Law of the Iterated Logarithm. If on the other hand L∞ and L−∞ are both greater than

σ2/2, and we denote the event {ω : limt→∞ X (t,ω) = −∞} by Ã, we have that P[Ã] = 1− P[A].
Furthermore both probabilities are positive and can be computed explicitly in terms of the scale

function and the deterministic initial value of the process (cf. [12, Proposition 5.5.22]). Motoo’s

theorem also helps us to find an exact pathwise lower bound on the growth rate of the process.
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This result could also be very useful in determining the pathwise decay rates of asymptotically

stable SDEs. In Theorem 4.5, the constant diffusion coefficient σ is replaced by a state–dependent

coefficient g(·) tending to σ as x tends to infinity, and similar results are obtained by means of

a random time–change argument. Theorem 4.3 lays the foundation for further results concerning

transient solutions of more general equations with unbounded diffusion coefficients. For example,

suppose X obeys (3.1), where g is strictly positive and regularly varying at infinity with index β

(0< β < 1), and f and g are related via

lim
x→∞

x f (x)

g2(x)
= L∞ >

1

2
.

Then by Itô’s rule, if A is as previously defined, it is easy to show that

lim sup
t→∞

X (t)

G−1(
p

2t log log t)
= 1, a.s. on A

and

lim inf
t→∞

log
G(X (t))p

t

log log t
=−

1− β
2L∞ − 1

, a.s. on A,

where G is defined as

G(x) =

∫ x

c

1

g(y)
d y, c ∈ R.

We leave the details of this result to the interested reader. Another application of these results is

given in the next section: we make use of the upper envelope of the growth rate (3.3) to determine

upper bounds for a more general type of equation whose solutions obey the Law of the Iterated

Logarithm.

3.2 General conditions and ergodicity

In Section 5, we state and prove three theorems which give sufficient conditions ensuring Law of the

Iterated Logarithm–type asymptotic behaviour, and which enable us to prove further results later in

the paper. We will study the one-dimensional non-autonomous equation

dX (t) = f (X (t), t) d t +σ dB(t), t ≥ 0, (3.5)

with X (0) = x0. From the results in Section 4, in Theorem 5.1 it can be shown that

sup
(x ,t)∈R×R+

x f (x , t) = ρ > 0 (3.6)

implies

lim sup
t→∞

|X (t)|
p

2t log log t
≤ |σ|, a.s. (3.7)

Furthermore, in Theorem 5.3, we prove that

inf
(x ,t)∈R×R+

x f (x , t) = µ > −
σ2

2
(3.8)
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implies

lim sup
t→∞

|X (t)|
p

2t log log t
≥ |σ|, a.s. (3.9)

Hence if both (3.6) and (3.8) are satisfied, we can determine the exact growth rate of the partial

maxima. Moreover, we establish an ergodic–type theorem on a suitably scaled the average value of

the process, as described by the following inequalities:

lim sup
t→∞

∫ t

0

X 2(s)

(1+s)2
ds

log t
≤ 2ρ+σ2, a.s. (3.10)

lim inf
t→∞

∫ t

0

X 2(s)

(1+s)2
ds

log t
≥ 2µ+σ2 > 0, a.s. (3.11)

These results can be deduced from [17, Exercise XI.1.32]. (3.7) is obtained by the construction of

two transient processes as described in Section 4. This gives an alternative proof to Theorem 3.1

in [1].

It appears that a condition of the form (3.6) is necessary to ensure that the solution obeys the LIL.

Suppose for instance in equation (3.1) that there is α ∈ (0,1) such that xα f (x)→ C > 0 as x →∞.

Then X (t)→∞ on some event Ω′ with positive probability and

lim
t→∞

X (t)

t
1

1+α

= [C(1+α)]
1

1+α , a.s. on Ω′,

which obviously violates the Law of the Iterated Logarithm (cf. [9, Theorem 4.17.5]).

It is worth noticing that ρ does not appear in the estimate in (3.7). This fact is used in Theorem 7.3

which deals with multi-dimensional systems. However ρ does affect the average value of X in the

long-run, as seen in (3.10). As mentioned in the introduction, by the Motoo–comparison approach,

the estimate on the constant on the righthand side of (3.7) has been reduced by a factor of
p

e

compared to that obtained by the EMI-Gronwall method. In addition, this approach enables us to

find the lower estimate (3.9), which is the same size as the upper estimate. This has not been

achieved to date by the exponential martingale inequality approach. Condition (3.8) is sufficient

but not necessary for securing an LIL–type of lower bound, as will be seen in Theorem 5.6.

We noted already that the parameters ρ and µ in the drift do not affect the growth of the partial

maxima as given by (3.7) and (3.9). However, (3.10) and (3.11) show that these parameters are

important in determining the “average” size of the process, with larger contributions from the drift

leading to larger average values. To cast further light on this we consider the related deterministic

differential equation

x ′(t) = f (x(t)), t ≥ 0, (3.12)

where x f (x) → C > 0 as x → ∞. Then it is easy to verify that x2(t)/2t → C as t → ∞, which

implies

lim
t→∞

∫ t

0

x2(s)

(1+s)2
ds

log t
= 2C . (3.13)

This simple example is interesting for a number of reasons. Firstly, it can be seen as motivating

the stochastic results (3.10) and (3.11), or as an easily and independently verified corollary of
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(3.10) and (3.11). Secondly, it gives insight into the “average” long-run value of X : the fact that

x(t)/
p

t →
p

2C as t → ∞ obeys (3.13) suggests, in the sense of (3.10) and (3.11), that |X (t)|2
is “on average” C2

1 t as t → ∞ for some constant C1. (3.10) and (3.11) may also be seen as a

generalisation of a known result for Brownian motions without drift. Indeed, using (3.10) and

(3.11) with ρ = µ= 0, the Brownian motion X (t) := σB(t) must also obey

lim
t→∞

∫ t

0

X 2(s)

(1+s)2
ds

log t
= σ2, a.s. (3.14)

(3.14) indicates that the large excursions of Brownian motion excursions in the solution of (3.5)

contributes the σ2 term in (3.10) and (3.11). In this case, the statement that |X (t)|2 is “on average”

σ2 t is justified not only in the sense of (3.14), but because E[X 2(t)] = σ2 t. These two extreme cases

(where there is no diffusion in the first, and no drift in the second) indicate that the contributions

of drift and diffusion are of similar magnitude, and this is reflected in (3.10) and (3.11). Finally, it

is an easy consequence of Theorem 5.1 and 5.3 that |X (t)|2 grows “on average” like t as t → ∞,

because

x2
0 + (2µ+σ

2)t ≤ E[X 2(t)]≤ x2
0 + (2ρ+σ

2)t, t ≥ 0.

Theorem 5.6 deals with processes with integrable drift coefficients. For an autonomous equation

with drift coefficient f ∈ L1(R;R) and constant diffusion coefficient, there exist positive constants

{Ci}i=1,2,3,4 such that

C1 ≤ lim sup
t→∞

X (t)
p

2t log log t
≤ C2, a.s.

−C3 ≤ lim inf
t→∞

X (t)
p

2t log log t
≤−C4, a.s.

Formulae for the constants in these estimates can be found in Section 5. These processes are re-

current and can be transformed to other processes which are drift-free, have bounded diffusion

coefficient, and which preserve the largest fluctuation size. This result is consistent with those in [9,

Chapter 4], which roughly say that if the drift coefficient is zero on average along the real line and

the diffusion coefficient g(x) has a positive limit σ as |x | → ∞, the process has a limiting normal

distribution with mean zero and variance σ2 t. This is precisely the distribution of the Brownian

motion σB(t) at time t.

3.3 Recurrent processes

In Section 6, we investigate the scalar autonomous equation

dX (t) = f (X (t)) d t +σ dB(t) (3.15)

where the drift coefficient satisfies

lim
x→∞

x f (x) = L∞ ≤ σ2/2 and lim
x→−∞

x f (x) = L−∞ ≤ σ2/2. (3.16)

These hypotheses are complementary to those discussed in Section 3.1. Using Feller’s test (cf.[12]),

it can be shown that under condition (3.16), X is no longer transient but in fact recurrent on the real
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P
P

P
P

P
P

P
PP

L−∞

L∞ (−∞,−1

2
) [−1

2
, 0) (0, 1

2
] (1

2
,∞)

asymptotically sta-

tionary

recurrent recurrent limt→∞ X (t) =∞

(−∞,−1

2
) violates LIL C, D B A

Theorem 6.1 Theorem 6.4 Theorem 6.7 Part

(i)

Theorem 4.3

recurrent recurrent recurrent limt→∞ X (t) =∞
[−1

2
, 0) C, D C, D B A

Theorem 6.4 Theorem 6.3 Theorem 6.7 Part

(i)

Theorem 4.3

recurrent recurrent recurrent limt→∞ X (t) =∞
(0, 1

2
] B B C, D A

Theorem 6.7 Part

(ii)

Theorem 6.7 Part

(ii)

Theorem 6.3 Theorem 4.3

limt→∞ X (t) =−∞ limt→∞ X (t) =−∞ limt→∞ X (t) =−∞ limt→∞ X (t) =±∞
(1

2
,∞) A A A A

Corollary 4.4 Corollary 4.4 Corollary 4.4 Theorem 4.3,

Corollary 4.4

Figure 1: Asymptotic behaviour of X obeying (3.1) where limx→∞ x f (x) = L∞ and

limx→−∞ x f (x) = L−∞ and g(x) = 1. A signifies that X obeys the Law of the Iterated Logarithm ex-

actly; B that |X (t)| is bounded above and below by
p

2t log2 t as t →∞; C that X has a polynomial

upper Liapunov exponent equal to 1/2; and D that the asymptotic behaviour is consistent with the

Law of the Iterated Logarithm.

line. However results in Section 4 together with Theorem 5.6 (which deals with integrable drift)

suggest that solutions should still have asymptotic behaviour similar to the LIL. This idea motivates

us to prove similar results in the recurrent case to those already obtained for transient processes. The

upper bound (3.3) given by Theorem 5.1 automatically applies, while difficulties arise in finding the

lower bound on the limsup without condition (3.8), particularly when L∞ and L−∞ are of the same

sign. The subdivision of the main result into various theorems is necessitated by slight distinctions

in the proofs, which in turn depends on the value of both L∞ and L−∞. The results are summarised

in the case σ = 1 in Figure 1.

Theorem 6.1 is a direct result of Motoo’s theorem: it shows that −σ2/2 is another critical value at

which the behaviour of the process changes from being stationary (or asymptotically stationary) to

non-stationary. The LIL is no longer valid when L±∞ < −σ2/2. By constructing another asymptot-

ically stationary process as a lower bound for X 2 and X in Theorem 6.3 and 6.4 respectively, we

obtain the following exact estimate on the polynomial Liapunov exponent of |X |:

lim sup
t→∞

log |X (t)|
log t

=
1

2
, a.s. (3.17)

(3.17) is of course a less precise result than the LIL. It shows that the partial maxima of the solution

grows at least as fast as Kǫ t
(1−ǫ)/2 for ǫ ∈ (0,1) and some positive Kǫ. However, (3.17) is still
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consistent with the LIL. Using the same construction (see Lemma 6.6) and comparison techniques,

together with Theorem 5.6, we obtain Theorem 6.7, which gives upper and lower estimates on the

growth rate of the partial maxima.

Note that we have excluded the cases L±∞ = 0 from Figure 1 for the purpose of stating consistent

results on pairs of intervals for L∞ and L−∞. Nonetheless Theorem 6.7 covers the case when at least

one of L±∞ = 0 and the drift coefficient f changes sign an even number of times. In particular, if f

remains non–negative or non–positive on the real line, X can be pathwise compared with the Brow-

nian motion {σB(t)}t≥0 directly, so an exact estimate can be obtained (Corollary 6.8). Otherwise,

Theorem 6.3 and 6.4 are sufficient to cover the rest of the cases (Remark 6.5).

3.4 Multi-dimensional processes

In Section 7, we generalise results from Section 5 to the following d-dimensional equation driven

by an m–dimensional Brownian motion

dX (t) = f (X (t), t) d t + g(X (t), t) dB(t). (3.18)

Theorem 7.1 extends the result of Theorem 5.1 to SDEs with bounded diffusion coefficients under a

condition similar to (3.6). Using a random time-change, we prove that

lim sup
t→∞

|X (t)|
p

2t log log t
≤ Ca, a.s.

where Ca := sup(x ,t)∈Rd×R+ ||g(x , t)||op. In a similar manner, Theorem 7.2 extends Theorem 5.3 in

Rd . The generalisation of these results to unbounded diffusion coefficients can be found in [2].

Finally, Theorem 7.3 shows under multi-dimensional analogues of conditions (3.6) and (3.8), the

asymptotic large deviations of Euclidean norm of a multi-dimensional process are O (
p

2t log log t).

Moreover under some additional assumptions, the largest fluctuations of the norm is given by the

co-ordinate process with the largest fluctuations. This result is an extension of the LIL for a d-

dimensional Brownian motion (1.1). Mao (cf. [14]) pointed out the fact that the independent

individual components of the multi-dimensional Brownian motion are not simultaneously of the

order
p

2t log log t, for otherwise we would have
p

d rather than unity on the right-hand side of

(1.1). We establish these facts for drift–perturbed finite–dimensional Brownian motions. To simplify

the analysis, we look at the following equation in Rd :

dX (t) = f (X (t), t) d t +Γ dB(t), t ≥ 0 (3.19)

where Γ is a d × d diagonal invertible matrix with diagonal entries {γi}1≤i≤d . If 〈x , f (x , t)〉 ≤ ρ,

then

lim sup
t→∞

|X (t)|
p

2t log log t
≤ max

1≤i≤d
|γi |, a.s.

Furthermore if there exists one coordinate process X i with drift coefficient fi satisfying (3.8), then

we have

lim sup
t→∞

|X (t)|
p

2t log log t
≥ |γi |, a.s.
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In the more general case that Γ is any invertible matrix, with the same conditions as above, the

proof of this result can be easily adapted to show that with respect to the norm |x |Γ := |Γ−1 x |, the

solution of (3.19) satisfies

lim sup
t→∞

|X (t)|Γp
2t log log t

= 1, a.s.

3.5 Applications to inefficient financial markets

According to Fama [6; 7], when efficiency refers only to historical information which is contained

in every private trading agent’s information set, the market is said to be weakly efficient (cf.[8, Defi-

nition 10.17]. Weak efficiency implies that successive price changes (or returns) are independently

distributed. Formally, let the market model be described by a probability triple (Ω,F ,P). Suppose

that trading takes place in continuous time, and that there is one risky security. Let h> 0, t ≥ 0 and

let rh(t + h) denote the return of the security from t to t + h, and let S(t) be the price of the risky

security at time t. Also let F (t) be the collection of historical information available to every market

participant at time t. Then the market is weakly efficient if

P[rh(t + h)≤ x |F (t)] = P[rh(t + h)≤ x], ∀ x ∈ R, h> 0, t ≥ 0.

Here the information F (t) which is publicly available at time t is nothing other than the generated

σ-algebra of the price F S(t) = σ{S(u) : 0 ≤ u ≤ t}. An equivalent definition of weak efficiency in

this setting is that

rh(t + h) is F S(t)-independent, for all h> 0 and t ≥ 0. (3.20)

Geometric Brownian Motion is the classical stochastic process that is used to describe stock price

dynamics in a weakly efficient market. More concretely, it obeys the linear SDE

dS(t) = µS(t) d t +σS(t) dB(t), t ≥ 0 (3.21)

with S(0) > 0. Here S(t) is the price of the risky security at time t, µ is the appreciation rate of the

price, and σ is the volatility. It is well-known that the logarithm of S grows linearly in the long-run.

The increments of log S are stationary and Gaussian, which is a consequence of the driving Brownian

motion. That is, for a fixed time lag h,

rh(t + h) := log
S(t + h)

S(t)
= (µ−

1

2
σ2)h+σ(B(t + h)− B(t))

is Gaussian distributed. Clearly rh(t + h) is F B(t)-independent, because B has independent incre-

ments. Therefore if F B(t) = F S(t), it follows that the market is weakly efficient. To see this, note

that S being a strong solution of (3.21) implies that F S(t)⊆F B(t). On the other hand, since

log S(t) = log S(0) + (µ−
1

2
σ2)t +σB(t), t ≥ 0,

we can rearrange for B in terms of S to get that F B(t)⊆F S(t), and hence F B(t) =F S(t). Due to

this reason, equation (3.21) has been used to model stock price evolution under the classic Efficient

Market Hypothesis.
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In order to reflect the phenomenon of occasional weak inefficiency resulting from feedback strategies

widely applied by investors, in [1] SDEs whose solutions obey the Law of the Iterated Logarithm are

applied to inefficient financial market models. More precisely, a semi-martingale X , which is slightly

drift-perturbed and obeys the Law of the Iterated Logarithm, is introduced into equation (3.21) as

the driving semimartingale instead of Brownian motion. It is shown that if a process S∗ satisfies

dS∗(t) = µS∗(t) d t + S∗(t) dX (t), t ≥ 0, S∗(0)> 0, (3.22)

then S∗ preserves some of the main characteristics of the standard Geometric Brownian Motion S.

More precisely, the size of the long-run large deviations from the linear trend of the cumulative

returns is preserved, along with the exponential growth of S. This is despite the fact that the

increments of log S∗ are now correlated and non-Gaussian.

In this paper, we further investigate the effect of this drift perturbation on the cumulative returns

in (3.22) with the process X satisfying (3.5) or (3.15), say. We do not wish to provide a compli-

cated and empirically precise model, but rather a simple and tractable model, and to interpret the

mathematical results.

With a modest bias in the trend (e.g. captured by condition (3.6) and (3.8)), the excursions in

prices from the linear trend are no longer independent. The largest possible sizes of these excursions

coincide with those under no bias (as seen in (3.7) and (3.9)). However, by ergodic–type results

(e.g. (3.10) and (3.11)), the stronger the positive bias that the investors have, the larger the average

values of price excursions, and consequently the smaller the volatility that arises around the average

values. This causes the price to persist on average further from the long-run growth trend that the

GBM model would allow. This is made precisely in (3.24) below. This persistence could make

investors believe that the cumulative returns are close to their true values and are unbiased, which

might cause a more dramatic fall in cumulative returns later on. Moreover, if the market is even

more pessimistic after a relatively large drop in returns, the bias tends to have a longer negative

impact on the market.

In the model presented below, we presume that the returns evolve according to the strength of the

various agents trading in the market. At a given time, each agent determines a threshold which

signals whether the market is overbought or oversold. The agents become more risk averse in their

trading strategies when these overbought or oversold thresholds are breached. If we make the

simplifying assumption that one agent is representative of all, then the threshold level is simply the

weighted average of the threshold for all the individuals.

Using these ideas, we are led to study the equation

dX (t) = f (X (t))[1−αI{|X (t)|>kσ
p

t}] d t +σ dB(t). (3.23)

Here f is assumed continuous and odd on R so that the positive and negative returns are treated

symmetrically. Moreover, in order that the bias be modest, we require lim|x |→∞ x f (x) = L ∈
(0, σ2/2]. In (3.23), I is the indicator function, and α ∈ (0,1] measures the extent of short-selling

or “going long” in the market. Here an increased α is associated with an increased tendency to sell

short or go long. We presume that investors believe that the de–trended security returns are given

by Brownian motion without drift, and the returns obey the Law of the Iterated Logarithm. More-

over, we assume that the investors can estimate the value of σ by tracking the size of the largest

deviations.
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We briefly indicate how the threshold level is arrived. The standard Brownian motion (which the

investors believe models the security return) is scaled by σ, and therefore, at time t, has standard

deviation σ
p

t. If each agent i chooses a multiple ki of this standard deviation as his/her threshold

level, and assuming that all agents are representative, there exists a weighted coefficient k, such that

kσ
p

t measures the overall market threshold level. In practice, the value of k might be different for

price increases and falls. We treat two situations with one fixed k here for simplicity.

Given these assumptions, we prove the following. First, X is recurrent on R and obeys the Law of

the Iterated Logarithm by the results in Section 5 and 6. Second, we determine the long-run average

value of the de–trended cumulative returns by proving the following ergodic–type theorem:

lim
t→∞

∫ t

0

X 2(s)

(1+s)2
ds

log t
= ΛL,σ,α,k > σ

2, a.s. (3.24)

Here, ΛL,σ,α,k measures the market bias from the unbiased value of σ2. It can be computed and is

given in Section 8. Our assumptions on parameters ensure that ΛL,σ,α,k > σ
2. This means that the

presence of bias increases the “average size” of the departures of the returns from the trend growth

rate.

To establish (3.24), we first transform the solution X of (3.23) into a process Y by a change in both

time and scale; second, we construct two equations with continuous and time-homogenous drift

coefficients and with finite speed measures, such that Y is trapped between the solutions of these

equations; third, by adjusting certain auxiliary parameters, we obtain an ergodic–type theorem for

Y , which in turn implies (3.24). From a mathematical point of view, we have proved an ergodic–type

theorem for a non–autonomous equation using the stochastic comparison principle.

Finally, we confirm that equation (3.22) with X satisfying (3.23) does represent an inefficient market

in the weak sense, i.e., we want to show that

r∗,h(t + h) is F S∗(t)-dependent, for all h> 0 and t ≥ 0, (3.25)

where r∗ is the return. It is easy to verify that

S∗(t) = S∗(0)e
(µ− 1

2
σ2)t+X (t), X (t) = log

S∗(t)

S∗(0)
− (µ−

1

2
σ2)t, t ≥ 0.

Therefore F S∗(t) = F X (t). In the proof of the main result of this section, we establish the strong

existence and uniqueness of the solution of equation (3.23) (this requires a little care because of the

discontinuity of the drift coefficient). Since X (0) = 0 is deterministic, and X is a strong solution, we

have F X (t)⊆F B(t) for t ≥ 0. On the other hand, by writing F(t, x) := f (x)[1−αI{|x |>kσ
p

t}], we

get

B(t) =
1

σ

�
X (t)−

∫ t

0

F(s, X (s))ds

�
, t ≥ 0.

Hence F B(t) ⊆ F X (t) for t ≥ 0. Consequently F S∗(t) = F B(t) = F X (t) for t ≥ 0. So we may
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replace F S∗(t) by F B(t) in (3.25). Next, the increments r∗,h of log S∗ obey

r∗,h(t + h) := log
S∗(t + h)

S∗(t)

= (µ−
1

2
σ2)h+σ(B(t + h)− B(t)) +

∫ t+h

t

F(s, X (s))ds

= (µ−
1

2
σ2)h+ (X (t + h)− X (t)).

Now suppose for some t ≥ 0, that r∗,h(t + h) is F B(t)-independent. Since [(µ− 1

2
σ2)h+σ(B(t +

h) − B(t))] is F B(t)-independent,
∫ t+h

t
F(s, X (s))ds must also be F B(t)-independent. However,

by the Markov property of X ,
∫ t+h

t
F(s, X (s))ds is a functional of X (t) and the increments of B.

Hence,
∫ t+h

t
F(s, X (s))ds is F X (t)-dependent, and since F X (t) =F B(t), this gives a contradiction.

Therefore (3.25) is proved.

4 Asymptotic Behaviour of Transient Processes

In this section, we study processes which obey (3.1) and are transient, obeying |X (t)| → ∞ as

t →∞. To do this, we introduce an auxiliary process: let δ > 2 and consider

dY (t) = σ2
δ− 1

2Y (t)
d t +σ dB(t) for t ≥ 0, (4.1a)

Y (0) = y0 > 0, (4.1b)

where y0 is deterministic. The solution of the above equation is a generalised Bessel process of

dimension higher than 2. δ > 2 does not have to be an integer. If δ > 2 is an integer, then

Y (t) = σ|W (t)| where W is a δ–dimensional Brownian motion. Therefore, in the general case, we

expect Y to grow to infinity like e.g. a three-dimensional Bessel process. This can be confirmed

by [12, Chapter 3.3 Section C]. In fact, as proven in the following lemma, Y should also obey the

Law of the Iterated Logarithm. The proof is the same in spirit as that in Motoo [15], but is briefly

given here in the language of stochastic differential equations in order to be consistent with the

techniques of this paper. We moreover employ Motoo’s techniques to establish a lower bound on the

growth rate.

Lemma 4.1. Let δ > 2 and Y be the unique continuous adapted process which obeys (4.1). Then Y is

a positive process a.s., and satisfies

lim sup
t→∞

Y (t)
p

2t log log t
= |σ| a.s. (4.2)

and

lim inf
t→∞

log
Y (t)p

t

log log t
=−

1

δ− 2
, a.s. (4.3)
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Proof. Let Z(t) = Y (t)2. By Itô’s rule, we get

dZ(t) = σ2δ d t + 2
p

Z(t)σ dbB(t), t ≥ 0

with Z(0) = y2
0 , where by Doob’s martingale representation theorem, we have replaced the original

Brownian motion B by bB in an extended probability space. Therefore

Z(et − 1) = y2
0 +

∫ et−1

0

σ2δ ds+

∫ et−1

0

2
p

Z(s)σ dbB(s)

= y2
0 +

∫ t

0

σ2δes ds+

∫ t

0

2σ
p

Z(es − 1)e
s

2 dW (s),

where W is again another Brownian motion. If eZ(t) = Z(et − 1), then

deZ(t) = σ2δet d t + 2σ
p
eZ(t)e

t

2 dW (t), t ≥ 0.

If H(t) := e−t eZ(t), then H(0)> 0 and H obeys

dH(t) = (σ2δ− H(t)) d t + 2σ
p

H(t) dW (t), t ≥ 0. (4.4)

Therefore by Lemma 2.2, we have

lim sup
t→∞

H(t)

2 log t
= σ2, a.s. (4.5)

Using the definition of Y in terms of H and Z we obtain (4.2).

To prove (4.3), consider the transformation H∗(t) := 1/H(t). H∗ is well-defined, a.s. positive, and

by Itô’s rule obeys

dH∗(t) = [(4σ
2−σ2δ)H2

∗ (t) + H∗(t)] d t − 2σ
H2
∗ (t)p
H∗(t)

dW (t), t ≥ 0.

It is easy to show that the scale function of H∗ satisfies

sH∗(x) = K1

∫ x

1

y
δ−4

2 e
1

2σ2 y d y, x ∈ R,

for some positive constant K1, and H∗ obeys all the conditions of Motoo’s theorem. By L’Hôpital’s

rule, for some positive constant K2, we have

lim
x→∞

sH∗(x)

x
δ−2

2

= K2.

Let h1(t) = t2/(δ−2). Then for some t1 > 0,

∫ ∞

t1

1

sH∗(h1(t))
d t ≥

∫ ∞

t1

2

K2 t
d t =∞.
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Hence

lim sup
t→∞

H∗(t)

t
2

δ−2

≥ 1, a.s.

On the other hand, for ε ∈ (0,δ− 2),

lim
x→∞

sH∗(x)

x
δ−2−ε

2

=∞.

Let h2(t) = t2/(δ−2−ε−θ ), where θ ∈ (0,δ− 2− ε). Then for some t2 > 0, we get
∫ ∞

t2

1

sH∗(h2(t))
d t ≤

∫ ∞

t2

1

t
δ−2−ε
δ−2−ε−θ

d t <∞,

a.s. on an a.s. event Ωε,θ := Ωε ∩Ωθ , where Ωε and Ωθ are both a.s. events. From this by letting

ε ↓ 0 and θ ↓ 0 through rational numbers, it can be deduced that

lim sup
t→∞

log H∗(t)

log t
=

2

δ− 2
, a.s. on ∩ε,θ∈QΩε,θ .

Using the relation between H∗ and Y , we get the desired result (4.3).

Corollary 4.2. Let δ > 2 and Y be the unique continuous adapted process which obeys (4.1a), but

with Y (0) = y0 < 0. Then Y obeys

lim inf
t→∞

Y (t)
p

2t log log t
= −|σ|, a.s. (4.6)

and

lim inf
t→∞

log
|Y (t)|p

t

log log t
= −

1

δ− 2
, a.s. (4.7)

Proof. Letting Y∗(t) =−Y (t) and applying the same analysis as Lemma 4.1 to Y∗, the results can be

easily shown. The details are omitted.

We are now in a position to determine the asymptotic behaviour of (3.1) when the diffusion coeffi-

cient is constant.

Theorem 4.3. Let X be the unique continuous adapted process which obeys (3.1). Let A := {ω :

limt→∞ X (t,ω) =∞}. If

lim
x→∞

x f (x) = L∞; (4.8)

g(x) = σ, x ∈ R,

where σ 6= 0 and L∞ > σ
2/2, then P[A] > 0 and X satisfies

lim sup
t→∞

X (t)
p

2t log log t
= |σ| a.s. on A, (4.9)

and

lim inf
t→∞

log
X (t)p

t

log log t
=−

1

2L∞
σ2 − 1

, a.s. on A. (4.10)
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Proof. First note that given L∞ > σ
2/2, the existence of such a non-null event A in the sample space

is guaranteed by Feller’s test [12, Proposition 5.5.22]. From now on, we assume that we are working

in A, and will frequently suppress ω-dependence and A a.s. qualifications accordingly. We compare

X with Y+ε, where Y+ε is given by

dY+ε(t) =
L∞ + ε

Y+ε(t)
d t +σ dB(t), t ≥ 0

with Y+ε(0)> 0 and (L∞+ε)> (L∞−ε)> σ2/2, so that L∞ takes the same role as δ in (4.1) as we

let ε ↓ 0. Since limx→∞ x f (x) = L∞ and limt→∞ X (t) =∞, there exists T1(ε,ω) > 0, such that for

all t ≥ T1(ε,ω), L∞ − ε < X (t) f (X (t)) < L∞ + ε and X (t) > 0. Hence (L∞ − ε)/X (t) < f (X (t)) <

(L∞ + ε)/X (t), t ≥ T1(ε,ω). Let ∆(t) = Y+ε(t)− X (t). We now consider three cases:

Case 1: if X (T1)< Y+ε(T1), i.e., ∆(T1)> 0, we claim that

for all t > T1(ε,ω), X (t)< Y+ε(t).

Suppose to the contrary there exists a minimal t∗ > T1(ε,ω) such that X (t∗) = Y+ε(t
∗). Then

∆(t∗) = 0 and ∆′(t∗)≤ 0. But

∆′(t) =
L∞ + ε

Y+ε(t)
− f (X (t))>

L∞ + ε

Y+ε(t)
−

L∞ + ε

X (t)
, for all t ≥ T1(ε,ω),

so

∆′(t∗)>
L∞ + ε

Y+ε(t
∗)
−

L∞ + ε

X (t∗)
= 0,

which gives a contradiction.

Case 2: if X (T1)> Y+ε(T1)> 0, i.e., ∆(T1)< 0, we show that

for all t ≥ T1(ε,ω), X (t)≤ Y+ε(t)−∆(T1).

Now for all t ≥ T1(ε,ω),

∆′(t) =
L∞ + ε

Y+ε(t)
− f (X (t))>

L∞ + ε

Y+ε(t)
−

L∞ + ε

X (t)
=
−∆(t)(L∞ + ε)

Y+ε(t)X (t)
. (4.11)

In particular

∆′(T1)>
−∆(T1)(L∞ + ε)

Y+ε(T1)X (T1)
> 0. (4.12)

There are now two possibilities: either X (t)> Y (t) for all t > T1(ε,ω) or there is T2(ω)> T1(ε,ω),

such that X (T2) = Y+ε(T2). If X (t) > Y+ε(t), ∀ t > T1(ε,ω), then ∆′(t) > 0, so ∆ is increasing on

[T1(ε,ω),∞). Therefore Y+ε(t)− X (t) = ∆(t) >∆(T1), we are done. The analysis of the situation

where there exists T2(ω)> T1(ε,ω) such that X (T2) = Y+ε(T2) is dealt with by case 3.

Case 3: if X (T1) = Y+ε(T1), i.e., ∆(T1) = 0, we claim that

for all t > T1(ε,ω), X (t)< Y+ε(t).

We note first from (4.12) that ∆′(T1) > 0. Hence, there exists T3(ω) > T1(ε,ω) such that ∆(t) > 0

for t ∈ (T1, T3). Suppose, in contradiction to the claim, that T3(ω) is such that ∆(T3) = 0. Then

∆′(T3)≤ 0, which is impossible by (4.11).
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Combining the above results, for almost all ω in A, there exists a random variable C+ such that

X (t,ω)≤ Y+ε(t,ω) + C+(T1(ε,ω)), t ≥ T1(ε,ω). (4.13)

Therefore

lim sup
t→∞

X (t)
p

2t log log t
≤ lim sup

t→∞

Y+ε(t)p
2t log log t

. (4.14)

A lower estimate on X can now be deduced by a similar argument. For the same ε, define Y−ε by

dY−ε(t) =
L∞ − ε
Y−ε(t)

d t +σ dB(t), t ≥ 0

with Y−ε(0)> 0. Note that L∞− ε > σ2/2, so Y−ε is guaranteed to be positive. Then, by arguing as

above, we obtain an analogous result to (4.13), namely that

X (t,ω)≥ Y−ε(t,ω)− C−(T4(ε,ω)), t ≥ T4(ε,ω), (4.15)

for some T4(ε,ω)> 0 and random variable C−. This implies

lim sup
t→∞

X (t)
p

2t log log t
≥ lim sup

t→∞

Y−ε(t)p
2t log log t

. (4.16)

We are now in a position to prove (4.9). Using (4.14), and letting Ω∗ε be the a.s. event on which

lim sup
t→∞

Y+ε(t)p
2t log log t

= σ,

we have

lim sup
t→∞

X (t)
p

2t log log t
≤ |σ|, a.s. on Ω∗ε ∩ A.

Letting Ω∗ = ∩ε∈Q+∩(0,1)Ω
∗
ε, it follows that

lim sup
t→∞

X (t)
p

2t log log t
≤ |σ|, a.s. on Ω∗ ∩ A, (4.17)

as required. Similarly using (4.16), and letting Ω∗−ε be the a.s. event on which

lim sup
t→∞

Y−ε(t)p
2t log log t

= σ,

we have

lim sup
t→∞

X (t)
p

2t log log t
≥ |σ|, a.s. on A∩Ω∗ε.

With Ω∗∗ = ∩ε∈Q∩(0,1)Ω
∗
−ε, it follows that

lim sup
t→∞

X (t)
p

2t log log t
≥ |σ|, a.s. on A∩Ω∗∗ (4.18)
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as required. Combining (4.17) and (4.18) gives (4.9).

To prove (4.10), notice that Y+ε obeys (4.1) with δ = δε = 1+ 2(L∞ + ε)/σ
2. Then, by (4.3) we

have

lim inf
t→∞

log
Y+ε(t)p

t

log log t
= −

1

δε− 2
=−

1

2(L∞ + ε)/σ
2− 1

, a.s. on Ω+ε (4.19)

where Ω+ε is an almost sure event. Therefore by (4.13), a.s. on A∩Ω+ε we have

lim inf
t→∞

log
X (t)p

t

log log t
≤ −

1

2(L∞ + ε)/σ
2− 1

.

If A∗ = A∩ {∩ε∈Q∩(0,1)Ω
+
ε }, then A∗ is an a.s. subset of A and

lim inf
t→∞

log
X (t)p

t

log log t
≤−

1

2L∞/σ
2− 1

, a.s. on A∗. (4.20)

Proceeding similarly with Y−ε and using (4.15) we can prove that

lim inf
t→∞

log
X (t)p

t

log log t
≥−

1

2L∞/σ
2− 1

, a.s. on A∗∗, (4.21)

where A∗∗ is an a.s. subset of A. Combining (4.20) and (4.21) now yields (4.10).

Depending on the value of L−∞, by Feller’s test, we can compute the probability of the event A

defined in the previous theorem. Suppose that L∞ > σ
2/2. If L−∞ ≤ σ2/2, then P[A] = 1. If

L−∞ > σ
2/2, and we define Ã := {ω : limt→∞ X (t,ω) =−∞}, then A∪ Ã is an a.s. event, and P[A],

P[Ã] ∈ (0,1). The exact values of P[A] and P[Ã] depend on the deterministic initial value of X . In

a similar manner, we can prove similar results when the roles of L∞ and L−∞ are interchanged. By

Corollary 4.2, it is not difficult to show the following result. The details of the proof are omitted.

Corollary 4.4. Let X be the unique continuous adapted process which obeys (3.1). Let Ã := {ω :

limt→∞ X (t,ω) =−∞}. If

lim
x→∞

x f (x) = L−∞, g(x) = σ, x ∈ R

where σ 6= 0 and L−∞ > σ
2/2, then P[Ã]> 0 and X satisfies

lim inf
t→∞

X (t)
p

2t log log t
= −|σ| a.s. on Ã,

and

lim inf
t→∞

log
|X (t)|p

t

log log t
= −

1

2L−∞
σ2 − 1

, a.s. on Ã.

Theorem 4.3 can now be used to prove a more general result for (3.1), where instead of being

constant, g now obeys

∀ x ∈ R, g(x) 6= 0, lim
x→∞

g(x) = σ ∈ R/{0}. (4.22)
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Theorem 4.5. Let X be the unique continuous adapted process which obeys (3.1). Let A := {ω :

limt→∞ X (t,ω) = ∞}. If there exist positive real numbers L∞ and σ such that L∞ > σ
2/2, f obeys

(4.8), and g obeys (4.22), then X satisfies (4.9) and (4.10).

Proof. Define the local martingale

M(t) =

∫ t

0

g(X (s)) dB(s), t ≥ 0.

Therefore, by (4.22) we have

lim
t→∞

1

t
〈M〉(t) = lim

t→∞

1

t

∫ t

0

g2(X (s)) ds = σ2, a.s. on A. (4.23)

For each 0 ≤ s <∞, define the stopping time ν(s) := inf{t ≥ 0 : 〈M〉(t) > s}. By the time-change

theorem for martingales [12, Theorem 3.4.6], the process defined as W (t) := M(ν(t)) is a standard

Brownian motion with respect to the filtration Q(t) :=F (ν(t)). If eX (t) := X (ν(t)), then

d eX (t) =
f (eX (t))
g2(eX (t))

d t + dW (t), t ≥ 0.

Now, since limt→∞ x f (x)/g2(x) = L∞/σ
2 > 1/2, by Theorem 4.3, for almost all ω ∈ A,

lim sup
t→∞

eX (t)
p

2t log log t
= 1, lim inf

t→∞

log
eX (t)p

t

log log t
=−

1

2L∞
σ2 − 1

.

That is for almost all ω ∈ A,

lim sup
t→∞

X (t)
p

2〈M〉(t) log log 〈M〉(t)
= 1, lim inf

t→∞

log
X (t)p
〈M〉(t)

log log 〈M〉(t) = −
1

2L∞
σ2 − 1

. (4.24)

Combining (4.23) with these limits, the desired assertion can be obtained.

A similar result can be developed in the case when X (t) → −∞ as t → ∞ under the assumptions

that x f (x)→ L−∞ > σ
2/2 and g(x)→ σ as x →−∞. The proof is essentially the same as that of

Theorem 4.5, and hence omitted.

5 General Conditions Ensuring the Law of the Iterated Logarithm and

Ergodicity

Theorem 5.1. Let X be the unique continuous adapted process satisfying (3.5). If there exists a positive

real number ρ such that

∀ (x , t) ∈ R×R+, x f (x , t)≤ ρ, (5.1)

then

lim sup
t→∞

|X (t)|
p

2t log log t
≤ |σ|, a.s. (5.2)
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and

lim sup
t→∞

∫ t

0

X 2(s)

(1+s)2
ds

log t
≤ 2ρ+σ2, a.s. (5.3)

Proof. Without loss of generality, we can choose ρ > σ2/2. Then by Itô’s rule,

dX 2(t) = (2X (t) f (X (t), t) +σ2) d t + 2X (t)σ dB(t).

Let Z(t) = X 2(t), t ≥ 0. Define γ(x) = x/|x | for x 6= 0 and γ(0) = 1. Then

W (t) :=

∫ t

0

γ(X (s))dB(s)

is a standard Brownian motion with respect to F B, and we have

dZ(t) = (2X (t) f (X (t), t) +σ2)d t + 2σ
p

Z(t)dW (t).

Now consider the process Xu defined by

dXu(t) = (2ρ+σ
2)d t + 2σ

p
|Xu(t)|dW (t) (5.4)

with Xu(0)> X 2(0). Arguing as in the forthcoming Theorem 5.3, it can be shown that Xu(t)≥ 0 for

all t ≥ 0 a.s. This means that the absolute values in the diffusion coefficient in (5.4) can be omitted.

Hence by the Ikeda and Watanabe comparison theorem (cf. [11]), Xu(t) ≥ X 2(t) for all t ≥ 0 a.s.

From the proof of Lemma 4.1, we know that P[limt→∞ Xu(t) =∞] = 1. Moreover, Xu obeys

lim sup
t→∞

Xu(t)

2t log log t
≤ σ2 a.s.

Hence the assertion (5.2) is obtained.

The second part of the theorem can be easily deduced from the fact Xu(t)≥ X 2(t) for all t ≥ 0 a.s.,

and (5.4) by Exercise XI.1.32 in [17], which is stated below as Lemma 5.2.

Lemma 5.2. Suppose that Q is the unique continuous adapted process satisfying

dQ(t) = δ d t + 2
p

Q(t) dB(t), t ≥ 0

with Q(0)≥ 0 and δ > 0. Then Q obeys

lim
t→∞

∫ t

1

Q(s)

s2 ds

log t
= δ, a.s.

We now establish lower bounds corresponding to the upper bounds given in the previous theorem.

Theorem 5.3. Let X be the unique continuous adapted process satisfying (3.5). If there exists a real

number µ such that

inf
(x ,t)∈R×R+

x f (x , t) = µ >−
σ2

2
, (5.5)
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then

lim sup
t→∞

|X (t)|
p

2t log log t
≥ |σ|, a.s. (5.6)

Moreover,

lim inf
t→∞

∫ t

0

X 2(s)

(1+s)2
ds

log t
≥ 2µ+σ2, a.s. (5.7)

Proof. We begin with a change in both time and scale on X to transform it to a process which can

be compared with a stationary process. Let Y (t) = e−t X (1

2
(e2t − 1)). By Itô’s rule, it can be shown

that for t ≥ 0

dY 2(t) =

�
− 2Y 2(t) + 2Y (t)et f

�
Y (t)et ,

1

2
(e2t − 1)

�
+σ2

�
d t + 2σ

p
Y 2(t) dW (t)

with Y 2(0) = x2
0 where W is the F B–adapted standard Brownian motion introduced in the proof of

Theorem 5.1. Consider the processes governed by the following two equations,

dY1(t) = (−2Y1(t) + 2µ+σ2) d t + 2σ
p
|Y1(t)| dW (t), (5.8)

dY2(t) = (−2Y2(t)) d t + 2σ
p
|Y2(t)| dW (t) (5.9)

with x2
0 ≥ Y1(0) ≥ Y2(0) = 0. Instead of applying Lemma 2.2 directly, we give more details on

estimating the asymptotic growth rate of Y1 using Motoo’s theorem. By Yamada and Watanabe’s

uniqueness theorem (cf.[12, Proposition 5.2.13]), Y2(t) = 0 for all t ≥ 0 a.s. for all t ≥ 0. Applying

the Ikeda-Watanabe comparison theorem twice, we have Y 2(t)≥ Y1(t)≥ Y2(t) = 0 for all t ≥ 0 a.s.

Hence the absolute values in (5.8) can be removed. Now it is easy to check that a scale function and

the speed measure of Y1 are

sY1
(x) = e

− 1

σ2

∫ x

1

e
y

σ2 y
− 2µ+σ2

2σ2 d y, mY1
(d x) =

1

2
σ2e
− 1

σ2 e
−x

σ2 x
2µ+σ2

2σ2 −1
d x

respectively. Without loss of generality, we can choose µ ∈ (−σ2/2,σ2/2]. Then sY1
(∞) = ∞,

sY1
(0) > −∞ and mY1

(0,∞) < ∞. In addition, the function defined by (2.2) and associated with

Y1 satisfies v(0) <∞. So by Feller’s test for explosions, Y1 reaches zero within finite time on some

event. A direct calculation confirms that mY1
({0}) = 0. By the definition of an instantaneously

reflecting point (cf. e.g.[17, Chapter VII, Definition 3.11]), we conclude that zero is a reflecting

barrier for Y1, and hence Y1 is an a.s. recurrent process with finite speed measure. Thus Motoo’s

theorem in Section 2 can be applied. Let h(t) = σ2 log t. Since µ ∈ (−σ2/2,σ2/2], by L’Hôpital’s

rule

lim
x→∞

sY1
(x)

e
x

σ2

= lim
x→∞

x
− 2µ+σ2

2σ2 = 0.

This implies that there exists x∗ > 0 such that for all x > x∗, sY1
(x)< ex/σ2

. Since h is an increasing

function, there exists t0 > 0 such that for all t > t0, h(t)> x∗, so sY1
(h(t))< t. Hence

∫ ∞

t0

1

sY1
(h(t))

d t ≥
∫ ∞

t0

1

t
d t =∞.
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Therefore, by Motoo’s theorem

lim sup
t→∞

Y 2(t)

log t
≥ lim sup

t→∞

Y1(t)

log t
≥ σ2, a.s.

Using the relation between X and Y , we get the desired result (5.6).

For the second part of the conclusion, consider the following equation

dZ(t) = (2µ+σ2) d t + 2σ
p
|Z(t)| dW (t), t ≥ 0,

with Z(0) ≤ x2
0 . Then X 2(t) ≥ Z(t) ≥ 0 for t ≥ 0 a.s. Again, by applying Lemma 5.2 to Z , (5.7) is

proved.

The following corollary combines Theorem 4.5 with Theorem 5.1, and shows that the condition that

the diffusion coefficient be constant can be relaxed.

Corollary 5.4. Let X be the unique continuous adapted process satisfying the equation

dX (t) = f (X (t), t) d t + g(X (t)) dB(t), t ≥ 0,

with X (0) = x0. Suppose g : R→ R is even and satisfies

∀ x ∈ R, g(x) 6= 0, lim
|x |→∞

g(x) = σ ∈ R/{0}. (5.10)

Let g also satisfy

∀ x , y ∈ R, |g(x)− g(y)| ≤ h(|x − y |),
where h : R+→ R+ is increasing and

∫
0+

h−2(u)du=∞. If there exists a positive constant ρ such that

f satisfies (5.1), then X obeys (5.2).

Proof. Since f satisfies (5.1), then ∀ (x , t) ∈ R/{0} × R+ and ε > 0, −(ρ + ε)/|x | < f (x , t) <

(ρ+ ε)/|x |. Without loss of generality, we can choose ρ > σ2/2∨ g2(0)/2. Consider the equation

dXu(t) =
ρ+ ε

Xu(t)
d t + g(Xu(t)) dB(t), t ≥ 0 (5.11)

with Xu(0) > x0 ∨ 0. It is easy to check that the scale function of Xu satisfies sXu
(∞) < ∞ and

sXu
(0) = −∞. Thus P [limt→∞ Xu(t) = ∞] = 1. Moreover vXu

(∞) = vXu
(0) = ∞, which implies

that P [Xu(t) > 0; ∀0 < t <∞] = 1. Therefore by the Ikeda–Watanabe comparison theorem [11,

Chapter VI, Theorem 1.1], X (t) ≤ Xu(t) for t ≥ 0 a.s. Similarly, we can construct another process

X l which also satisfies (5.11), but with X l(0) < x0 ∧ 0. Then P [limt→∞ X l(t) = −∞] = 1 and

P [X l(t)< 0; ∀0< t <∞] = 1. Thus X (t)≥ X l(t) for t ≥ 0 a.s. Now by Theorem 4.5,

lim sup
t→∞

Xu(t)p
2t log log t

=− lim inf
t→∞

X l(t)p
2t log log t

= |σ|, a.s.

Therefore X obeys (5.2).

The next corollary applies the ergodic theorem conclusions of Theorem 5.1, 5.3 and Lemma 5.2 to

the process with non-constant diffusion coefficient dealt with in Theorem 4.5. The proof, which we

supply here, is similar to that of Lemma 5.2.
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Corollary 5.5. Let X be the unique continuous adapted process which obeys (3.1). Let A := {ω :

limt→∞ X (t,ω) = ∞}. If there exist positive real numbers L∞ and σ such that L∞ > σ
2/2, f obeys

(4.8), and g obeys (4.22), then X satisfies

lim
t→∞

∫ t

0

X 2(s)

(1+s)2
ds

log t
= 2L∞ +σ

2, a.s. on A. (5.12)

Proof. Applying the transformation Y (t) := (e−t/2X (et − 1))2 for t ≥ 0, we get

Y (t) = x2
0 −
∫ t

0

Y (s) ds+

∫ t

0

2X̃ (s) f (X̃ (s)) ds+

∫ t

0

g2(X̃ (s)) ds

+

∫ t

0

2X̃ (s)e
−s

2 g(X̃ (s)) dB̃(s), (5.13)

where X̃ (t) := X (et − 1), and as before, B̃ is another standard Brownian motion in an extended

probability space. It can be verified that for almost all ω ∈ A,

lim
t→∞

1

t

∫ t

0

X̃ (s) f (X̃ (s)) ds = L∞, lim
t→∞

1

t

∫ t

0

g2(X̃ (s)) ds = σ2. (5.14)

Let

M(t) :=

∫ t

0

2X̃ (s)e
−s

2 g(X̃ (s)) dB̃(s),

so that M has the quadratic variation

〈M〉(t) :=

∫ t

0

4X̃ 2(s)e−s g2(X̃ (s)) ds.

We have

lim
t→∞

〈M〉(t)
∫ t

0
Y (s) ds

= 4σ2, a.s. on A. (5.15)

Suppose D := {ω : limt→∞〈M〉(t)<∞} with P [D] > 0. Then
∫∞

0
Y (s) ds <∞, a.s. on A∩ D. Thus

lim
t→∞

Y (t)

t
= 2L∞ +σ

2, a.s. on A∩ D,

which contradicts

lim sup
t→∞

X (t)
p

2t log log t
= |σ|, a.s. on A. (5.16)

Therefore P [limt→∞〈M〉(t) =∞] = 1. Note that (5.16) implies limt→∞ Y (t)/t = 0 a.s. on A. Also,

lim
t→∞

M(t)
∫ t

0
Y (s) ds

= lim
t→∞

M(t)

〈M〉(t) ·
〈M〉(t)
∫ t

0
Y (s) ds

= 0, a.s. on A.
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Now since for all t ≥ 0, Y (t)≥ 0 a.s., we have

∫ t

0

Y (s) ds ≤ x2
0 +

∫ t

0

2X̃ (s) f (X̃ (s)) ds+

∫ t

0

g2(X̃ (s)) ds+M(t).

By first dividing both sides by
∫ t

0
Y (s) ds, then taking limits as t →∞ and using (5.14), and finally

by rearranging the resulting inequality, we get

lim inf
t→∞

t
∫ t

0
Y (s) ds

≥
1

2L∞ +σ
2

, a.s. on A.

Hence

lim sup
t→∞

∫ t

0
Y (s) ds

t
≤ 2L∞ +σ

2, a.s. on A.

Finally, since

lim
t→∞

M(t)

t
= lim

t→∞

M(t)
∫ t

0
Y (s) ds

·
∫ t

0
Y (s) ds

t
= 0, a.s. on A,

by (5.13) we get

lim
t→∞

1

t

∫ t

0

Y (s) ds = 2L∞ +σ
2, a.s. on A,

from which the desired result (5.12) can be obtained.

Besides being of independent interest, the following result will be used extensively in Section 6 to

prove comparison results. It is a special case of a result in [1]. The result in [1] covers equations

with Markovian switching.

Theorem 5.6. Let X be the unique continuous adapted process satisfying (3.15) with X (0) = x0. If

f ∈ L1(R;R), then there exist positive real numbers {Ci}i=1,2,3,4 such that

C1 ≤ lim sup
t→∞

X (t)
p

2t log log t
≤ C2, a.s. (5.17)

−C3 ≤ lim inf
t→∞

X (t)
p

2t log log t
≤−C4, a.s. (5.18)

where

C1 =
|σ|e

−2

σ2 supx∈R
∫ x

0
f (z)dz

e
−2

σ2

∫∞
0

f (z)dz
, C2 =

|σ|e
−2

σ2 infx∈R
∫ x

0
f (z)dz

e
−2

σ2

∫∞
0

f (z)dz
,

C3 =
|σ|e

−2

σ2 infx∈R
∫ x

0
f (z)dz

e
2

σ2

∫ 0

−∞ f (z)dz
, C4 =

|σ|e
−2

σ2 supx∈R
∫ x

0
f (z)dz

e
2

σ2

∫ 0

−∞ f (z)dz
.
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6 Recurrent Processes with Asymptotic Behaviour Close to the Law of

the Iterated Logarithm

In this section, we again study solutions of (3.15), where the drift coefficient satisfies

lim
x→∞

x f (x) = L∞ ≤
σ2

2
and lim

x→−∞
x f (x) = L−∞ ≤

σ2

2
. (6.1)

As mentioned previously, the solutions are no longer transient but are now recurrent on the real

line. The results obtained vary according to the values of L∞ and L−∞. We classify these results into

four main cases. The first result is a direct and easy application of Motoo’s theorem. However, we

state it as a theorem here for two reasons: first, it shows that −σ2/2 is another critical value for the

process; second, it provides a way to construct a process with known behaviour to which we can

compare processes in the other three cases.

Theorem 6.1. Let X be the unique continuous adapted process satisfying (3.15). If f satisfies (6.1)

and L∞ ∈ (−∞,−σ2/2), L−∞ ∈ (−∞,−σ2/2), then X is recurrent and has finite speed measure.

Moreover X obeys

lim sup
t→∞

log X (t)

log t
=

1

1− 2L∞/σ
2

, lim sup
t→∞

log (−X (t))

log t
=

1

1− 2L−∞/σ
2

, a.s.

Hence

lim sup
t→∞

log |X (t)|
log t

=
1

1− 2(L∞ ∨ L−∞)/σ
2

, a.s.

Proof. Condition (6.1) implies that for any ε > 0, there exists xε > 0 such that

L∞ − ε < x f (x)< L∞ + ε <−
σ2

2
, x > xε;

L−∞ − ε < x f (x)< L−∞ + ε <−
σ2

2
, x < −xε.

It can be shown that setting c = xε in (2.1), for any x > xε, a scale function of X satisfies

∫ x

xε

�
y

xε

�−2(L∞+ε)
σ2

d y ≤ s(x)≤
∫ x

xε

�
y

xε

�−2(L∞−ε)
σ2

d y. (6.2)

Since L∞ ∈ (−∞,−σ2/2), we have s(∞) =∞. A similar estimate can be used to get s(−∞) =−∞.

For some constants K1,ε and K2,ε, the speed measure can be estimated by

m(0,∞)≤ K1,ε+ K2,ε

∫ ∞

xε

x
2(L∞+ε)
σ2 d x <∞.

Similarly m(−∞, 0) < ∞, so m(−∞,∞) < ∞. Hence X is recurrent on R and has finite speed

measure. We can therefore apply Motoo’s theorem to X . By L’Hôpital’s rule, we have

0≤ lim sup
x→∞

s(x)

x
1− 2(L∞−ε)

σ2

≤ lim
x→∞

e
− 2

σ2

∫ xε

0
f (z) dz− 2

σ2

∫ x

xε

L∞−ε
z

dz

(1− 2(L∞−ε)
σ2 )x−2(L∞−ε)/σ2

=
K3,xε

1− 2(L∞−ε)
σ2
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for some positive real number K3,xε
. So if h1(t) = t1/[1−2(L∞−ε)/σ2], we get

∫ ∞

1

1

s(h1(t))
d t ≥

∫ ∞

1

1

K4,ε t
d t =∞,

for some positive real number K4,ε. Hence

lim sup
t→∞

X (t)

t
1

1−2(L∞−ε)/σ2

≥ 1, a.s. on an a.s. event Ωε,

which implies

lim sup
t→∞

log X (t)

log t
≥

1

1− 2(L∞ − ε)/σ2
, a.s. on Ωε.

By considering the a.s. event Ω∗ = ∩ε∈QΩε, we have

lim sup
t→∞

log X (t)

log t
≥

1

1− 2L∞/σ
2

, a.s. on Ω∗. (6.3)

Similarly using (6.2) for some positive constant K5,ε, we obtain

lim inf
x→∞

s(x)

x1−2(L∞+ε)/σ2
≥

K5,ε

1− 2(L∞+ε)
σ2

> 0.

If we choose h2(t) = t
1+ε

1−2(L∞+ε)/σ2 , then for some positive constant K6,ε,

∫ ∞

1

1

s(h2(t))
d t ≤

∫ ∞

1

1

K6,ε t
1+ε

d t <∞.

Hence

lim sup
t→∞

X (t)

t
1+ε

1−2(L∞+ε)/σ2

≤ 1, a.s. on Ωε. (6.4)

Letting ε ↓ 0 through rational numbers, and combining with (6.3) we get

lim sup
t→∞

log X (t)

log t
=

1

1− 2L∞/σ
2

, a.s. on Ω∗. (6.5)

Now let Y (t) = −X (t), g(x) =− f (−x) and B̃(t) =−B(t). Then

lim
x→∞

x g(x) = lim
x→∞
−x f (−x) = lim

y→−∞
y f (y) = L−∞

and

dY (t) = g(Y (t)) d t +σ dB̃(t).

Hence by applying the line of argument above we obtain

lim sup
t→∞

Y (t)

t
1

1−2(L−∞−ε)/σ2

≥ 1, a.s. on some a.s. event Ω̃ε,

lim sup
t→∞

Y (t)

t
1+ε

1−2(L−∞+ε)/σ2

≤ 1, a.s. on Ω̃ε,
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and so as before, we have

lim sup
t→∞

log Y (t)

log t
=

1

1− 2L−∞/σ
2

, a.s. on some a.s. event Ω̃∗.

Finally combining the above limit with (6.5), we get

lim sup
t→∞

log |X (t)|
log t

=
1

1− 2(L∞ ∨ L−∞)/σ
2

, a.s.

The previous theorem is not the main focus of this paper, as it applies to stationary or asymptotic

stationary processes. It shows that such processes do not behave asymptotically in a manner close

to the LIL. However, taking the results of Theorem 6.1, Theorem 4.3 and Theorem 4.5 together, we

can exclude the necessity to study these regions of (L∞, L−∞,σ2) parameter space further.

The rest of our analysis focusses on the regions of (L∞, L−∞,σ2) parameter space not covered by

these results. Before moving on to the next theorem, we give a lemma which allows us to construct

appropriate comparison processes.

Lemma 6.2. Suppose f : R→ R is locally Lipschitz continuous and satisfies (6.1). If L∞ ∈ [−σ2/2,∞)
and L−∞ ∈ [−σ2/2,∞) and f (0) = 0, then for every ε > 0 there exists an odd function qε : R→ R
such that

qε is locally Lipschitz continuous on R; (6.6a)

lim
x→±∞

xqε(x) =−
σ2

2
− ε; (6.6b)

f (x)≥ qε(x), x ≥ 0; (6.6c)

f (x)≤ qε(x), x ≤ 0. (6.6d)

Moreover, the function Gε : (−∞,∞) → R defined by Gε(x) =
p
|x |qε(

p
|x |) is globally Lipschitz

continuous on (−∞,∞).

Proof. For every ε > 0 there exists xε > 1 such that

L∞ −
ε

2
< x f (x)< L∞ +

ε

2
, x > xε, (6.7)

L−∞ −
ε

2
< x f (x)< L−∞ +

ε

2
, x < −xε. (6.8)

Since f is locally Lipschitz continuous, there is a constant K > 0 such that

| f (x)− f (y)| ≤ K |x − y |, |x | ∨ |y | ≤ 1. (6.9)

Now define fε : [xε,∞)→ R by fε(x) = (L∞ ∧ L−∞ − ǫ/2)x−1 and

Cε = 1+ K +

�
(− min

x∈[1,xε]
f (x))∨ max

x∈[−xε,−1]
f (x)∨ 0

�
+ [− fε(xε)]

+,
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where

[x]+ :=

¨
x , x ≥ 0,

0, x < 0.

Then

Cε ≥ 1+ K; Cε+ fε(xε)≥ 1. (6.10)

Also

− Cε < f (x), x ∈ [1, xε] (6.11)

and

Cε > f (x), x ∈ [−xε,−1]. (6.12)

By the second inequality in (6.10), and the fact that L∞ ∧ L−∞ ≥ −σ2/2, we may define δε :

[xε,∞)→ [0,∞) by

δε(x) =

σ2

2
+ L∞ ∧ L−∞ +

ε

2

σ2

2
+L∞∧L−∞+

ε
2

fε(xε)+Cε
+ x − xε

, x ≥ xε.

Now we define the candidate function qε. It is given for x ≥ 0 by

qε(x) =





−Cεx , x ∈ [0,1],

−Cε, x ∈ (1, xε],

fε(x)− δε(x), x > xε,

and extended for x ≤ 0 according to qε(x) = −qε(−x). Clearly qε is odd by definition, and is

obviously Lipschitz continuous on (−xε, xε). Since

lim
x→x+ε

qε(x) = fε(xε)−δε(xε) = fε(xε)− fε(xε)− Cε =−Cε = qε(xε),

we have that qε is locally Lipschitz continuous on R. Noting that

lim
x→∞

x fε(x) = L∞ ∧ L−∞ −
ε

2
, lim

x→∞
xδε(x) =

σ2

2
+ L∞ ∧ L−∞ +

ε

2
,

we get

lim
x→∞

xqε(x) = L∞ ∧ L−∞ −
ε

2
−
�
σ2

2
+ L∞ ∧ L−∞ +

ε

2

�
= −
σ2

2
− ε.

Since qε is odd, the same limit pertains as x →−∞.

Finally, we show that x f (x)≥ xqε(x), x ∈ R. For x ∈ [0,1], because f (0) = 0, and (6.9) holds, we

have | f (x)| ≤ K |x |= K x . Hence

f (x)≥−K x ≥ −K x − x ≥−Cεx = qε(x).

For x ∈ [−1,0] we have | f (x)| ≤ K |x |=−K x . Hence

f (x)≤−K x ≤ −K x − x ≤−Cεx = qε(x),

where we have used the first inequality of (6.10) to deduce the third inequality in each case, and

the definition of qε and the fact that it is an odd function at the last steps.
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By (6.11), for x ∈ [1, xε] we have qε(x) = −Cε < f (x), and as qε is odd, for x ∈ [−xε,−1] using

(6.12) we get qε(x) = Cε > f (x). It remains to establish inequalities on (xε,∞) and (−∞,−xε).

We noted earlier that δε(x)> 0 for x > xε. Hence, by the definition of qε, this fact and (6.7) yield

qε(x) = fε(x)− δε(x)< fε(x) =
L∞ ∧ L−∞ − ε/2

x
≤

L∞ − ε/2
x

< f (x),

for x > xε, as required. We now consider the case when x < −xε. Since qε is odd, we get

qε(x) = −qε(−x) =− fε(−x) +δε(−x)>− fε(−x),

the last step coming from the fact that δε(−x)> 0 for −x > xε. By the definition of fε, we have

qε(x)>
L∞ ∧ L−∞ − ε/2

x
, x <−xε.

Thus, as x < 0, we get

xqε(x)< L∞ ∧ L−∞ −
ε

2
≤ L−∞ −

ε

2
< x f (x),

using (6.8) at the last step. Hence xqε(x)< x f (x) for x < −xε.

We conclude by dealing with the continuity of Gε. For x ∈ [0,1] we have Gε(x) = −Cεx , so Gε
is Lipschitz continuous on [0,1). Since for any M > 1 the functions x 7→ px and x 7→ qε(x)

are Lipschitz continuous from [1, M] → [1,
p

M] and [1,
p

M] → R respectively, the composition

[1, M] → R : x 7→ qǫ(
p

x) is Lipschitz continuous. Thus the product Gε : [1, M] → R : x 7→
Gε(x) =

p
xqε(
p

x) is Lipschitz continuous. Since M > 1 is arbitrary, recalling that Gε is Lipschitz

continuous on [0,1) and continuous at x = 1, we have that Gε is locally Lipschitz continuous on

[0,∞). Moreover, as
p· and qε(·) are actually globally Lipschitz continuous on [1,∞), and Gε is

Lipschitz continuous on [0,1], it follows that Gε is globally Lipschitz continuous on [0,∞). Finally

since Gε is an even function, it is also globally Lipschitz continuous on R.

Armed with this result, we are now in a position to determine the asymptotic behaviour for X when

L∞ ∈ [−σ2/2,σ2/2], L−∞ ∈ [−σ2/2,σ2/2].

Theorem 6.3. Let X be the unique continuous adapted process satisfying (3.15). Suppose f satisfies

(6.1) and there exists at least one x∗ ∈ R such that f (x∗) = 0. If L∞ ∈ [−σ2/2,σ2/2] and L−∞ ∈
[−σ2/2,σ2/2], then X is recurrent and satisfies

lim sup
t→∞

|X (t)|
p

2t log log t
≤ |σ|, a.s.

Moreover

lim sup
t→∞

log |X (t)|
log t

=
1

2
, a.s. (6.13)

Proof. Again, the first part of the conclusion can be obtained immediately by Theorem 5.1. There-

fore we also have the following upper estimate

lim sup
t→∞

log |X (t)|
log t

≤
1

2
, a.s.
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For the rest of the proof, the main idea is to compare X 2 with a squared stationary process described

in Theorem 6.1. In what follows we fix ε ∈ (0,1). By hypothesis, there exists at least one x∗ ∈ R
such that f (x∗) = 0. Consider the process eX governed by the following equation,

d eX (t) = f̃ (eX (t)) d t +σ dB(t), t ≥ 0,

where eX (t) = X (t)− x∗ and f̃ (x) = f (x + x∗). Thus f̃ (0) = 0. By Itô’s rule, we have

d eX 2(t) =
�
2eX (t) f̃ (eX (t)) +σ2

�
d t + 2eX (t)σ dB(t)

=
�

2
�eX (t) f̃ (eX (t))− eX (t)qε(eX (t))

�
+ 2eX (t)qε(eX (t)) +σ2

�
d t + 2eX (t)σ dB(t).

If qε is defined as in the previous lemma, then for all t ≥ 0, φ(t) := X̃ (t) f̃ (X̃ (t))−X̃ (t)qε(X̃ (t))≥ 0.

Since qε is odd, we can rewrite the above equation governing eX 2(t) =: Y (t) as

dY (t) = (2φ(t) + 2
p
|Y (t)|qε(

p
|Y (t)|) +σ2) d t + 2

p
|Y (t)|σ dW (t)

where Y (0) = (x0 − x∗)
2 and W is another Brownian motion in an extended space (Ω̃, F̃ , P̃). Con-

sider now the processes governed by the following two equations

dYε(t) = (2
p
|Yε(t)|qε(

p
|Yε(t)|) +σ2) d t + 2

p
|Yε(t)|σ dW (t)

dY0(t) = (2
p
|Y0(t)|qε(

p
|Y0(t)|)) d t + 2

p
|Y0(t)|σ dW (t)

with Y (0) ≥ Yε(0) ≥ Y0(0) = 0. Since the drift coefficient of Y0 is globally Lipschitz continuous

by the previous lemma, we can use Yamada and Watanabe’s uniqueness theorem, as well as the

Ikeda-Watanabe comparison theorem to show that for every ε ∈ (0,1), there exists an a.s. event Ωε,

such that Y (t) ≥ Yε(t) ≥ Y0(t) = 0 for all t ≥ 0 a.s. on Ωε. Therefore all the absolute values can be

removed. Now by the definition and properties of qε, it is easy to check that the scale function and

the speed measure of Yε satisfy

s(∞) =∞, s(0)> −∞, and m(0,∞)<∞

respectively. A similar argument to that used in Theorem 5.3 shows that zero is a reflecting bar-

rier for Yε. Therefore Yε is a recurrent process on R+ with finite speed measure to which we can

apply Motoo’s theorem in order to determine the growth rate of its largest deviations. Now since

limx→∞
p

xq(
p

x) =−σ2/2− ε, for the same ε, there exists xε such that for all x > xε,

−
σ2

2
− ε(1+ ε)<

p
xqε(
p

x)< −
σ2

2
− ε(1− ε).

Let s be the scale function of Yε, then for some real positive constants K1,ε,

0≤ lim sup
x→∞

s(x)

x1+ε(1+ε)/σ2
≤ lim

x→∞

∫ x

xε

�
y

xε

� ε(1+ε)
σ2

d y

x1+ε(1+ε)/σ2
=

K1,ε

1+ ε(1+ ε)/σ2
.

If we choose h(t) = t
1

1+ε(1+ε)/σ2 , then

∫ ∞

1

1

s(h(t))
d t ≥

∫ ∞

1

1

t
d t =∞.
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Again by Motoo’s theorem we have

lim sup
t→∞

Yε(t)

t1/(1+ε(1+ε)/σ2)
≥ 1, a.s. on an a.s. event Ω∗ε,

which implies

lim sup
t→∞

log Yε(t)

log t
≥

1

1+ ε(1+ ε)/σ2
, a.s. on Ω∗ε.

Hence on the a.s. event Ω∗∗ε = Ωε ∩Ω∗ε,

lim sup
t→∞

log Y (t)

log t
≥

1

1+ ε(1+ ε)/σ2
a.s.

Considering the a.s. event Ω∗ = ∩ε∈QΩ∗∗ε , we have

lim sup
t→∞

log Y (t)

log t
≥ 1, a.s.

which implies

lim sup
t→∞

log |eX (t)|
log t

≥
1

2
, a.s.,

and hence the result.

Using the same technique employed to prove Theorem 6.3, we may construct a locally Lipschitz

continuous function qε such that for all x ∈ R, f (x) ≥ qε(x), and lim|x |→∞ xqε(x) = −σ2/2− ε.
Instead of comparing pathwise with X 2, we construct a solution with drift coefficient qε and directly

compare it with X . The proof is left to the reader.

Theorem 6.4. Let X be the unique continuous adapted process satisfying (3.15). Suppose f satisfies

(6.1) and there exists at least one x∗ ∈ R such that f (x∗) = 0. If L−∞ ∈ (−∞,−σ2/2) and L∞ ∈
[−σ2/2,0], or L∞ ∈ (−∞,−σ2/2) and L−∞ ∈ [−σ2/2,0], then X is recurrent and obeys

lim sup
t→∞

|X (t)|
p

2t log log t
≤ |σ|, a.s.

Moreover,

lim sup
t→∞

log |X (t)|
log t

=
1

2
, a.s.

Remark 6.5.

Even though zeros are not included on the intervals for L±∞ in Figure 1 in Section 3, the construction

of qε in either Theorem 6.3 or Theorem 6.4 covers the case when at least one of L∞ and L−∞ is zero.

Therefore (6.13) always holds provided the drift coefficient f reaches zero at least once. However,

if f changes its sign an even number of times, more precise estimates on the growth rate can be

obtained, even when at least one of L∞ and L−∞ is zero. Lemma 6.6 and Theorem 6.7 deal with

this case. In particular, if f remains non-negative (or non-positive) on the real line, we can compare

X with the Brownian motion {σB(t)}t≥0 directly. This fact is stated in Corollary 6.8 without proof.

In order to apply a comparison argument to the next category of parameter values, we need to

construct an appropriate drift coefficient, just as was done in Lemma 6.2 and Theorem 6.3.
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Lemma 6.6. Suppose f : R→ R is locally Lipschitz continuous and satisfies (6.1).

(i) If L−∞ ∈ (−∞, 0] and L∞ ∈ [0,∞), and there exists x∗ > 0 such that for all |x |> x∗, f (x)≥ 0,

then there exists an even function qx∗ : R→ R such that for all x ∈ R, f (x)≥ qx∗(x).

(ii) If L∞ ∈ (−∞, 0] and L−∞ ∈ [0,∞), and there exists x∗ > 0 such that for all |x |> x∗, f (x)≤ 0,

then there exists an even function qx∗ : R→ R such that for all x ∈ R, f (x)≤ qx∗(x).

Moreover, qx∗ in either case is globally Lipschitz continuous.

Proof. Under the conditions in Part (i), define C :=minx∈[−x∗,x∗] f (x) ∧0 and construct qx∗ accord-

ing to:

qx∗(x) =





C , |x |< x∗,
−C x + C + C x∗, x∗ ≤ x ≤ x∗+ 1,

C x + C + C x∗, −x∗ − 1≤ x ≤−x∗,
0, |x |> x∗+ 1.

It is obvious that qx∗ is even, globally Lipschitz continuous, and f (x) ≥ qx∗(x) for all x ∈ R. By a

similar argument, we get the second part of the assertion.

Theorem 6.7. Let X be the unique continuous adapted process satisfying (3.15), and suppose f satisfies

(6.1).

(i) If L−∞ ∈ (−∞, 0] and L∞ ∈ [0,σ2/2], and there exists x∗ > 0 such that for all |x | > x∗,
f (x)≥ 0, then X is recurrent and there exists a deterministic ς > 0 such that

ς≤ lim sup
t→∞

X (t)
p

2t log log t
≤ |σ|, a.s.

(ii) If L∞ ∈ (−∞, 0] and L−∞ ∈ [0,σ2/2], and there exists x∗ > 0 such that for all |x | > x∗,
f (x)≤ 0, then X is recurrent and there exists a deterministic ς > 0 such that

−|σ| ≤ lim inf
t→∞

X (t)
p

2t log log t
≤ −ς, a.s.

Proof. We show assertion (i) first. Consider another process Y governed by the equation

dY (t) = qx∗(Y (t)) d t +σ dB(t), t ≥ 0,

with Y (0) ≤ X (0), where qx∗ is the function defined in Lemma 6.6. Note that qx∗ ∈ L1(R;R), so by

Theorem 5.6, we have

ς≤ lim sup
t→∞

Y (t)
p

2t log log t
, a.s.

where

ς=
|σ|e

−2

σ2 supx∈R
∫ x

0
qx∗ (z) dz

e
−2

σ2

∫∞
0

qx∗ (z) dz
.
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By Lemma 6.6 part (i), f (x)≥ qx∗(x) for all x ∈ R, so a comparison argument gives

ς≤ lim sup
t→∞

Y (t)
p

2t log log t
≤ lim sup

t→∞

X (t)
p

2t log log t
, a.s.

Combining this with the result of Theorem 5.1, we get the first part of the theorem. For part (ii), let

X̄ (t) = −X (t), f̄ (x) =− f (−x) and B̄(t) = B(t). Then X̄ obeys

dX̄ (t) = f̄ (X̄ (t)) d t +σ dB̄(t).

Now

lim
x→∞

x f̄ (x) = lim
y→−∞

(−y)(− f (y)) = lim
y→−∞

y f (y) = L−∞ > 0.

Similarly limy→−∞ y f̄ (y) = L∞ < 0. Therefore by the first part of the proof we get

ς≤ lim sup
t→∞

X̄ (t)
p

2t log log t
, a.s.

which implies

lim inf
t→∞

X (t)
p

2t log log t
≤−ς, a.s.

Combining this limit with the result of Theorem 5.1, the second assertion is proved.

Corollary 6.8. Let X be the unique continuous adapted process satisfying (3.15).

(i) Suppose f is non-negative on the real line. If L−∞ ∈ (−∞, 0] and L∞ ∈ [0,σ2/2], then X is

recurrent and satisfies

lim sup
t→∞

X (t)
p

2t log log t
= lim sup

t→∞

|X (t)|
p

2t log log t
= |σ|, a.s.

(ii) Suppose f is non-positive on the real line. If L∞ ∈ (−∞, 0] and L−∞ ∈ [0,σ2/2], then X is

recurrent and satisfies

lim inf
t→∞

X (t)
p

2t log log t
= lim sup

t→∞

−|X (t)|
p

2t log log t
= −|σ|, a.s.

The lower estimate on the asymptotic growth rate of partial maxima of |X | in this section can

also be obtained when the limit in condition (6.1) is replaced by a limit superior or limit infe-

rior in the appropriate way. For example, in Theorem 6.3, we can amend the condition (6.1) to

lim infx→−∞ x f (x) = L−∞ and lim supx→∞ x f (x) = L∞. Hence we are able to estimate the growth

rate of the partial maxima (or minima) of solutions in this section in terms of either the Law of the

Iterated Logarithm or the polynomial Liapunov exponent for all real values of L∞ and L−∞.
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7 Generalisation to multi-dimensional Systems

In this section, we generalize some of the main results in the scalar case to finite-dimensional pro-

cesses. We show that analogous results can be obtained by using the same technique under adjusted

conditions.

Theorem 7.1. Let X be the unique continuous adapted process satisfying the d-dimensional equation

(3.18), where X (0) = x0 ∈ Rd , f : Rd ×R+ → Rd , g : Rd ×R+ → Rd×m and B is a m-dimensional

Brownian motion. If there exist positive real numbers ρ, Ca and Cb such that

∀ (x , t) ∈ Rd ×R+, x T f (x , t)≤ ρ; (7.1a)

∀ (x , t) ∈ Rd ×R+, ||g(x , t)||op ≤ Ca, inf
|x |∈Rd/{0}

q∑m

j=1

�∑d

i=1 x i gi j(x , t)
�2

|x | ≥ Cb. (7.1b)

then

lim sup
t→∞

|X (t)|
p

2t log log t
≤ Ca, a.s. (7.2)

Proof. Define

Φ(x , t) =





q∑m

j=1(
∑d

i=1 x i gi j(x))
2

‖x‖ , x 6= 0,

σ ∈ [Cb, Ca], x = 0.

(7.3)

Note that by (7.1b) and the Cauchy-Schwarz inequality,

Cb ≤ Φ(x , t) =

q∑m

j=1(
∑d

i=1 x i gi j(x , t))2

|x | ≤

q∑d

i=1 x2
i

∑m

j=1

∑d

i=1 g2
i j
(x , t)

|x |

=
|x | · ‖g(x , t)‖
|x | = ‖g(x , t)‖ ≤ Ca

p
m, x 6= 0, t ≥ 0. (7.4)

Now define θ by

θ (t) =

∫ t

0

Φ2(X (s), s) ds, t ≥ 0.

Then limt→∞ θ (t) = ∞. Also, define the stopping time η(t) = inf{s > 0 : θ (s) > t}: thus η(t) =

θ−1(t). Define X̃ (t) := X (η(t)) and K (t) =F (η(t)) for all t ≥ 0 (where (F (t))t≥0 is the original

filtration). Then X̃ is K (t)–adapted. Furthermore, for 1≤ i ≤ d, we have

X̃ i(t) = X i(η(t)) = X i(0) +

∫ η(t)

0

fi(X (s)) ds+ Ni(t) (7.5)

where

Ni(t) =

∫ η(t)

0

m∑

j=1

gi j(X (s), s) dB j(s). (7.6)
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N = (N1, N2, . . . , Nd) is a d–dimensional local martingale with respect to the filtration K (t). By

Problem 3.4.5 in [12], it can be verified that the cross variation of N is given by

〈Ni , Nk〉(t) =
∫ η(t)

0

m∑

j=1

gi j(X (s), s)gk j(X (s), s) ds

=

∫ t

0

m∑

j=1

gi j(X̃ (s),η(s))gk j(X̃ (s),η(s))/Φ
2(X̃ (s),η(s)) ds,

Then there is an extension of (Ω̃, F̃ , P̃) of (Ω,F ,P) on which is defined a m–dimensional Brownian

motion B̃ = {(B̃1(t), B̃1(t), . . . , B̃m(t)); K̃ (t); 0≤ t <∞} such that

Ni(t) =

∫ t

0

m∑

j=1

gi j(X̃ (s),η(s))/Φ(X̃ (s),η(s)) dB̃ j(s), eP-a.s.

The filtration K̃ (t) in the extended space is such that X̃ is K̃ (t)–adapted. Similarly, we obtain

∫ η(t)

0

fi(X (s), s) ds =

∫ t

0

fi(X̃ (s),η(s))/Φ
2(X̃ (s),η(s)) ds.

Therefore

dX̃ i(t) =
fi(X̃ (t),η(t))

Φ2(X̃ (t),η(t))
d t +

1

Φ(X̃ (t),η(t))

m∑

j=1

gi j(X̃ (t),η(t)) dB̃ j(t).

Next define a : Rd ×R+→ R+

a(x , t) =

r∑

j=1

 
d∑

i=1

x i gi j(x , t)

!2

. (7.7)

By (7.1b), a(x , t)> 0 for all t ≥ 0 and x 6= 0. Define for j = 1, . . . , m the functions Φ j : Rd×R+→ R

Φ j(x , t) =
1

p
a(x , t)

d∑

i=1

x i gi j(x , t), x 6= 0

and Φ j(x , t) = 1/
p

m for x = 0 and t ≥ 0. Then

1

Φ(x , t)

d∑

i=1

x i gi j(x , t) = |x |Φ j(x , t), x ∈ Rd , (7.8)

m∑

j=1

Φ2
j (x , t) = 1, x ∈ Rd . (7.9)

Now, applying Itô’s rule to Z(t) = |X̃ (t)|2, we get

dZ(t) =

�
2X̃ T (t) f (X̃ (t),η(t)) + ‖g(X̃ (t),η(t))‖2

Φ2(X̃ (t),η(t))

�
d t

+ 2

m∑

j=1

 
1

Φ(X̃ (t),η(t))

d∑

i=1

X̃ i(t)gi j(X̃ (t),η(t))

!
dB̃ j(t)
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so by (7.8) and |X̃ (t)|=
p

Z(t) we have

dZ(t) =

�
2X̃ T (t) f (X̃ (t),η(t)) + ‖g(X̃ (t),η(t))‖2

Φ2(X̃ (t),η(t))

�
d t + 2

p
Z(t)

m∑

j=1

Φ j(X̃ (t),η(t)) dB̃ j(t).

Finally define

W (t) =

∫ t

0

m∑

j=1

Φ j(X̃ (s),η(s)) dB̃ j(s), t ≥ 0.

By (7.9) and e.g. [12, Theorem 3.3.16], W is a standard Brownian motion adapted to (K̃ (t))t≥0

such that

dZ(t) =

�
2X̃ T (t) f (X̃ (t),η(t)) + ‖g(X̃ (t),η(t))‖2

Φ2(X̃ (t),η(t))

�
d t + 2

p
Z(t)dW (t). (7.10)

Now it is easy to see that the drift coefficient of (7.10) is bounded above by Ku := (2ρ +mC2
a )/C

2
b

due to (7.1). Consider the process governed by the equation

dZu(t) = Ku d t + 2
p
|Zu(t)| dW (t), t ≥ 0,

with Zu(0) ≥ x2
0 . A similar argument as given in the proof of Theorem 5.3 shows that Zu is non-

negative. Applying the comparison theorem again, we have, for almost all ω ∈ Ω, 0 ≤ Z(t) ≤ Zu(t)

for all t ≥ 0. Let Vu(t) := e−t Zu(e
t − 1). By Itô’s rule, it can be shown that

dVu(t) = (−Vu(t) + Ku) d t + 2
p
|Vu(t)| dfW (t), t ≥ 0,

where fW is another one-dimensional Brownian motion. Applying Lemma 2.2, we obtain

lim sup
t→∞

Vu(t)

2 log t
= 1, a.s.

Using the relation between Vu and Zu, and then comparing Zu with Z , we get

lim sup
t→∞

Z(t)

2t log log t
≤ lim sup

t→∞

Zu(t)

2t log log t
≤ 1, a.s.

Since η−1(t) = θ (t) and Z(t) = |X (η(t))|2 for t ≥ 0, we have

lim sup
t→∞

|X (t)|2

2θ (t) log logθ (t)
≤ 1, a.s.

By (7.4), C2
b

t ≤ θ (t)≤ C2
a t for all t ≥ 0 a.s. Thus

lim sup
t→∞

|X (t)|2

2t log log t
≤ C2

a , a.s.

The assertion (7.2) is therefore proven.

We now establish the corresponding lower bound.
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Theorem 7.2. Let X be the unique continuous adapted process satisfying the d-dimensional equation

(3.18), where B is a m-dimensional Brownian motion. If (7.1b) holds and there exists a positive real

number µ such that

inf
(x ,t)∈Rd×R+

�
2x T f (x , t) + ||g(x , t)||2

�
= µ, (7.11)

then

lim sup
t→∞

|X (t)|
p

2t log log t
≥ Cb, a.s. (7.12)

Proof. Proceeding in the same way as in the previous theorem, we arrive at the process Z governed

by

dZ(t) =
2X T (η(t)) f (X (η(t)),η(t)) + ||g(X (η(t)),η(t))||2

Φ2(X (η(t)),η(t))
d t + 2

p
Z(t) dW (t),

where Φ is as defined in (7.3). By condition (7.11), it is obvious that the drift coefficient is bounded

below by Kl := µ/(mC2
a ). Let Zl be the non-negative process with Z(0) ≥ Zl(0) ≥ 0 which satisfies

the SDE

dZl(t) = Kl d t + 2
p

Zl(t) dW (t), t ≥ 0.

Then Z(t) ≥ Zl(t), for all t ≥ 0 a.s. Applying the same change in time and scale to Zl as in the

previous proof, and defining Vl(t) := e−t Zl(e
t − 1), we get

dVl(t) = (−Vl(t) + Kl) d t + 2
p
|Vl(t)| dfW (t), t ≥ 0.

Applying Lemma 2.2 again yields

lim sup
t→∞

Vl(t)

2 log t
= 1, a.s.

Following a similar argument as in Theorem 7.1, we get the desired result (7.12).

Our last theorem covers the special case where the diffusion coefficient is constant, diagonal and

invertible. In this result, we use the notation 〈x , y〉 to denote the standard inner product of x and

y in Rd , and ei as the i–th standard basis vector.

Theorem 7.3. Let B be a d-dimensional Brownian motion and X be the unique continuous adapted

process satisfying the d-dimensional equation

dX (t) = f (X (t), t) d t +Γ dB(t), t ≥ 0 (7.13)

with X (0) = x0 ∈ Rd , where f : Rd ×R+ → Rd and Γ is a d × d diagonal and invertible matrix with

diagonal entries {γi}1≤i≤d .

(i) If there exists a positive real number ρ such that

∀ (x , t) ∈ Rd ×R+, x T f (x , t)≤ ρ, (7.14)

then

lim sup
t→∞

|X (t)|
p

2t log log t
≤ max

1≤i≤d
|γi |, a.s. (7.15)
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(ii) If there exists i ∈ {1,2...d} such that

inf
(x ,t)∈Rd×R+

〈x , ei〉〈 f (x , t), ei〉= µ > −
γ2

i

2
, (7.16)

then

lim sup
t→∞

|X (t)|
p

2t log log t
≥ |γi |, a.s. (7.17)

(iii) Moreover, if (7.14) holds, and there exists i ∈ {1,2...d} such that (7.16) holds and |γi | =
max1≤ j≤d |γ j|, then

lim sup
t→∞

|X (t)|
p

2t log log t
= |γi |, a.s.

Proof. It is obvious that part (iii) of the conclusion is a consequence of part (i) and (ii). To prove

part (i), let Y (t) := Γ−1X (t), f̃ (x , t) = Γ−1 f (Γx , t), so that

dY (t) = f̃ (Y (t), t) d t + Id dB(t), t ≥ 0.

Therefore

d|Y (t)|2 = (2Y T (t) f̃ (Y (t), t) + d) d t + 2Y T (t) dB(t), t ≥ 0.

Define Z(t) := |Y (t)|2. Then the above equation can be written as

dZ(t) = (2Y T (t) f̃ (Y (t), t) + d) d t + 2
p

Z(t) dW (t), t ≥ 0,

where W is another one–dimensional Brownian motion. If we can show that

∀ (y, t) ∈ Rd ×R+, y T f̃ (y, t)≤ K , (7.18)

for some positive K , then the non-negative process governed by

dZu(t) = (2K + d) d t + 2
p

Zu(t) dW (t), t ≥ 0,

with Zu(0) ≥ x2
0 satisfies Zu(t) ≥ Z(t) for all t ≥ 0 almost surely. As in the proof of the previous

theorem, we have

lim sup
t→∞

Z(t)

2t log log t
≤ lim sup

t→∞

Zu(t)

2t log log t
≤ 1, a.s.

Thus

lim sup
t→∞

Ç
X 2

1 (t)

γ2
1

+
X 2

2
(t)

γ2
2

+ ...+
X 2

d
(t)

γ2
dp

2t log log t
≤ 1, a.s.

Since

1

max1≤i≤d |γi |
Æ

X 2
1(t) + · · ·+ X 2

d
(t)≤

s
X 2

1(t)

γ2
1

+
X 2

2(t)

γ2
2

+ ...+
X 2

d
(t)

γ2
d

,
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assertion (7.15) is proved. Now it is left to show (7.18). Let y := Γ−1 x , so that for 1 ≤ i ≤ d, the

i-th components are related by yi = x i/γi . Hence condition (7.14) gives

y T f̃ (y, t) = y TΓ−1 f (Γy, t) = Σd
i=1

yi

γi

fi(Γy, t)

= Σd
i=1

x i

γ2
i

fi(x , t)≤
1

min1≤i≤d γ
2
i

Σd
i=1 x i fi(x , t)≤

ρ

min1≤i≤d γ
2
i

.

The proof of part (i) is complete. For part (ii), note for each 1 ≤ i ≤ d and all t ≥ 0, that |X (t)| ≥
|X i(t)|. Consider a particular X i which is governed by

dX i(t) = fi(X (t), t) d t + γi dBi(t), t ≥ 0.

Here by (7.16) and Theorem 5.3, we have

lim sup
t→∞

|X i(t)|p
2t log log t

≥ |γi |, a.s.

and so the inequality (7.17) is obvious.

8 Application to a Financial Market Model

In this section, for the purposes mentioned in Section 3.5, we present an ergodic–type theorem for

the solution of the equation

dX (t) = f (X (t))[1−αI{|X (t)|>kσ
p

t}] d t +σ dB(t). (8.1)

Theorem 8.1. Suppose f is locally Lipschitz continuous and odd on R, and satisfies,

lim
|x |→∞

x f (x) = L ∈ (0,σ2/2], f (x)≥ 0 for all x ≥ 0. (8.2)

Let x0 be deterministic, 0< α≤ 1, σ > 0, k > 0 and I be the indicator function. Then there is a unique

strong continuous solution X of (8.1) with X (0) = x0. Moreover, X obeys

lim sup
t→∞

|X (t)|
p

2t log log t
= σ, a.s.

and

lim
t→∞

∫ t

0

X 2(s)

(1+s)2
ds

log t
= ΛL,σ,α,k a.s., (8.3)

where

ΛL,σ,α,k :=

∫ k2σ2

0
e
−x

2σ2 x
σ2+2L

2σ2 d x + (k2σ2)
Lα

σ2
∫∞

k2σ2 e
−x

2σ2 x
σ2+2L(1−α)

2σ2 d x

∫ k2σ2

0
e
−x

2σ2 x
2L−σ2

2σ2 d x + (k2σ2)
Lα

σ2
∫∞

k2σ2 e
−x

2σ2 x
2L(1−α)−σ2

2σ2 d x

> σ2. (8.4)
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Remark 8.2.

In the case when f (x) = 0, then L = 0, and we can independently prove (3.14), which is consistent

with (8.3) (ΛL,σ,α,k = σ
2). On the other hand, letting L→ 0 in (8.4) yields limL→0+ ΛL,σ,α,k = σ

2.

Remark 8.3.

As claimed earlier, we have ΛL,σ,α,k > σ
2 under the hypotheses of Theorem 8.1. To see this, for

L ∈ (0,σ2/2], let

I :=

∫ k2σ2

0

e
−x

2σ2 x
2L−σ2

2σ2 d x

and

J := (k2σ2)
Lα

σ2

∫ ∞

k2σ2

e
−x

2σ2 x
2L(1−α)−σ2

2σ2 d x .

Integration by parts gives

∫ k2σ2

0

e
−x

2σ2 x
σ2+2L

2σ2 d x =−2e
−k2

2 k
1+ 2L

σ2σ
3+ 2L

σ2 + (σ2+ 2L)I

and

(k2σ2)
Lα

σ2

∫ ∞

k2σ2

e
−x

2σ2 x
σ2+2L(1−α)

2σ2 d x = 2e
−k2

2 k
1+ 2L

σ2σ
3+ 2L

σ2 + (σ2+ 2L(1−α))J .

Then by (8.4)

ΛL,σ,α,k = σ
2+

2LI + 2L(1−α)J
I + J

> σ2,

as claimed.

Proof of Theorem 8.1. We first discuss the existence of a strong solution of (8.1), which is not imme-

diately obvious because the drift coefficient of (8.1) is discontinuous. However, by condition (8.2)

and the continuity of f , the drift coefficient of X is uniformly bounded on [0,∞)×R. Therefore, we

may apply Proposition 5.3.6 and Remark 5.3.7 in [12] (which are based on Girsanov’s theorem) to

obtain a weak solution. Moreover, by Corollary 5.3.11 in [12], the weak solution of (8.1) is unique

in the sense of probability law. On the other hand, Theorem V.41.1 in [18] by Nakao and Le Gall

gives us the pathwise uniqueness of the solution. This, together with the weak existence implies the

existence of a strong solution by Corollary 5.3.23 in [12]. For a given initial value x0, and a fixed

Brownian motion B, this strong solution is unique.

By the Ikeda–Watanabe comparison theorem which only requires the continuity of one of the drift

coefficients in the two equations being compared, the first part of the theorem can easily be obtained

by Theorem 5.1 and 5.3.

Now consider the transformation Y (t) := e−t X 2(et − 1). By Itô’s rule, and the fact that f is odd,

there exists a standard Brownian motion W such that

dY (t) =
�
− Y (t) +σ2+ 2

p
Y (t)e

t

2 f (
p

Y (t)e
t

2 )[1−αI{Y (t)>k2σ2(1−e−t )}]
�

d t

+ 2σ
p

Y (t) dW (t). (8.5)
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For any 0 < ǫ < 1/2, there exists a deterministic T1,ǫ > 0 such that for all t > T1,ǫ, e−t < ǫ,

so k2σ2(1 − ǫ) < k2σ2(1 − e−t) < k2σ2. Due to (8.2) and continuity of f , there exists a K >

L(1 + ǫ) such that for all x ∈ R, x f (x) < K , and there exists a deterministic xǫ > 0 such that

for all x > xǫ, L(1 − ǫ) < x f (x) < L(1 + ǫ). For any 0 < η < 1 ∧ k2σ2(1 − ǫ), there exists a

deterministic T2,ǫ,η > T1,ǫ such that eT2,ǫ,η/2
p
η= xǫ. Thus for all t > T2,ǫ,η and Y (t)> η, L(1−ǫ)<p

Y (t)et/2 f (
p

Y (t)et/2)< L(1+ǫ). Choose θ1, θ2 > 0 so small that θ1 < 2L, θ1∨θ2∨η < k2σ2/6,

which implies η+θ1 < k2σ2(1−ǫ)−θ2. Now consider Yu := Yu,ǫ,η,θ1,θ2
and Yl := Yl,ǫ,η,θ1,θ2

governed

by the following two equations respectively: for t ≥ T2,ǫ,η,

dYu(t) = [−Yu(t) +σ
2+ 2Gu(Yu(t))] d t + 2σ

p
Yu(t) dW (t), (8.6)

dYl(t) = [−Yl(t) +σ
2+ 2Gl(Yl(t))] d t + 2σ

p
Yl(t) dW (t) (8.7)

with Yl and Yu chosen so that 0 ≤ Yl(T2,ǫ,η) < Y (T2,ǫ,η) < Yu(T2,ǫ,η) a.s., where Gu : R+ → R+/{0}
is defined by

Gu(x) =





K , 0≤ x < η,

−K−L(1+ǫ)

θ1
x + (K +

K−L(1+ǫ)

θ1
η), η≤ x < η+ θ1,

L(1+ ǫ), η+ θ1 ≤ x < k2σ2,

− Lα(1+ǫ)

θ2
x + L(1+ ǫ)(1+ αk2σ2

θ2
), k2σ2 ≤ x < k2σ2+ θ ,

L(1−α)(1+ ǫ), k2σ2+ θ2 ≤ x .

Gl : R+→ R+ is defined by

Gl(x) =





0, 0≤ x < η,
L(1−ǫ)
θ1

x − L(1−ǫ)η
θ1

, η ≤ x < η+ θ1,

L(1− ǫ), η+ θ1 ≤ x < kǫ − θ2,

− Lα(1−ǫ)
θ2

x + L(1−α)(1− ǫ) + Lαkǫ(1−ǫ)
θ2

, kǫ − θ2 ≤ x < kǫ,

L(1−α)(1− ǫ), kǫ ≤ x ,

where kǫ := k2σ2(1− ǫ). Note that Gu and Gl are globally Lipschitz continuous on R+. Again by

Ikeda–Watanabe’s comparison theorem, it can be verified that Yl(t)≤ Y (t)≤ Yu(t) for all t ≥ T2,ǫ,η

a.s. on an a.s. event Ω∗ := Ωǫ,η,θ1,θ2
. Choose c ∈ (η+θ1, k2σ2(1− ǫ)−θ2) in definition (2.1). Then
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direct calculations on a scale function and speed measure of Yl give that

ζ1,ǫ,η,θ1,θ2
:=

∫ ∞

0

x mYl
(d x)

=
1

2σ2

�∫ η

0

e
c−2L(1−ǫ)

2σ2

�
η+ θ1

c

�σ2+2L(1−ǫ)
2σ2

�
η

η+ θ1

�−2L(1−ǫ)η/θ1+σ2

2σ2

e
−x

2σ2

�
x

η

� 1

2

d x

+

∫ η+θ1

η

e
c−2L(1−ǫ)(η+θ1)/θ1

2σ2

�
η+ θ1

c

�σ2+2L(1−ǫ)
2σ2

e
2L(1−ǫ)/θ1−1

2σ2 x

�
x

η+ θ1

�σ2−2L(1−ǫ)η/θ1
2σ2

d x

+

∫ k2σ2(1−ǫ)−θ2

η+θ1

e
c−x

2σ2

�
x

c

�σ2+2L(1−ǫ)
2σ2

d x

+

∫ k2σ2(1−ǫ)

k2σ2(1−ǫ)−θ2

�
k2σ2(1− ǫ)− θ2

c

�σ2+2L(1−ǫ)
2σ2

e
c−x−2Lα(1−ǫ)(x−k2σ2(1−ǫ)+θ2)/θ2

2σ2

�
x

k2σ2(1− ǫ)− θ2

�σ2+2L(1−α)(1−ǫ)+2Lαk2σ2(1−ǫ)2/θ2
2σ2

d x

+

∫ ∞

k2σ2(1−ǫ)
c
−σ2−2L(1−ǫ)

2σ2 e
c−2Lα(1−ǫ)

2σ2 (k2σ2(1− ǫ)− θ2)
2Lα(1−ǫ)−2Lαk2σ2(1−ǫ)2/θ2

2σ2

(k2σ2(1− ǫ))
2Lαk2(1−ǫ)2

2θ2 e
−x

2σ2 x
σ2+2L(1−α)(1−ǫ)

2σ2 d x

�
<∞. (8.8)

Similar calculations give
∫∞

0
mYl
(d x) =: ζ2,ǫ,η,θ1,θ2

<∞. Hence by the ergodic theorem [18, Theo-

rem V.53.1], for almost all ω ∈ Ω∗,

lim inf
t→∞

1

t

∫ t

0

Y (s) ds = lim inf
t→∞

1

t

∫ t

T2,ǫ,η

Y (s) ds ≥ lim
t→∞

1

t

∫ t

T2,ǫ,η

Yl(s) ds =
ζ1,ǫ,η,θ1,θ2

ζ2,ǫ,η,θ1,θ2

. (8.9)

Now we let the parameters tend to zero through rational numbers in the order ǫ, θ1, θ2 and η. We

consider each term in the square brackets in (8.8) in turn. As ǫ ↓ 0, the first integral on the interval

(0,η) becomes

J1 := e
c−2L

2σ2 c
−σ2−2L

2σ2 (η+ θ1)
L

σ2

�
η+ θ1

η

� Lη

σ2θ1

∫ η

0

e
−x

2σ2 x
1

2 d x .

Hence

lim
η→0
( lim
θ1→0

J1) = lim
η→0

e
c−2L

2σ2 c
−σ2−2L

2σ2 η
L

σ2 e
L

σ2

∫ η

0

e
−x

2σ2 x
1

2 d x = 0.

Similarly, as ǫ ↓ 0, the second integral becomes

J2 := e
c−2L(η+θ1)/θ1

2σ2 c
−σ2−2L

2σ2 (η+ θ1)
L+Lη/θ1

σ2

∫ η+θ1

η

e
2L/θ1−1

2σ2 x
x
σ2−2Lη/θ1

2σ2 d x .
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Since θ1 < 2L, we have

J2 ≤ e
c

2σ2−
Lη

σ2θ1
− L

σ2
c
−σ2−2L

2σ2 (η+ θ1)
L+Lη/θ1

σ2 e
L(η+θ1)

θ1σ
2
(η+ θ1)

1

2θ1.

Hence limθ1→0 J2 = 0. For the third integral, as ǫ,θ1,θ2 and η tend to zero, it tends to

∫ k2σ2

0

e
c−x

2σ2

�
x

c

�σ2+2L

2σ2

d x .

Also as ǫ ↓ 0, the fourth integral becomes

J4 := e
c

2σ2+
Lαk2

θ2
− Lα

σ2 c
−σ2−2L

2σ2 (k2σ2− θ2)
Lα

σ2−
Lαk2

θ2

∫ k2σ2

k2σ2−θ2

e
−(1+2Lα/θ2)x

2σ2 x
σ2+2L(1−α)+2Lαk2σ2/θ2

2σ2 d x .

It can be verified that

J4 ≤ c
−σ2−2L

2σ2 e
c−k2σ2+θ2

2σ2 (k2σ2− θ2)
Lα

σ2 (k2σ2)
1

2
+

L(1−α)
σ2

�
k2σ2

k2σ2− θ2

� Lαk2

θ2

θ2.

Letting θ2 ↓ 0, since limθ2→0

� k2σ2

k2σ2−θ2

� Lαk2

θ2 = e
Lα

σ2 , we have limθ2→0 J4 = 0. Finally, as ǫ ↓ 0, the last

integral becomes

J5 := c
−σ2−2L

2σ2 e
c

2σ2 e
−Lα

σ2 (k2σ2− θ2)
Lα

σ2

�
k2σ2

k2σ2− θ2

� Lαk2

θ2

∫ ∞

k2σ2

e
−x

2σ2 x
σ2+2L(1−α)

2σ2 d x .

Letting θ2 ↓ 0, we have

lim
θ2→0

J5 = c
−σ2−2L

2σ2 e
c

2σ2 (k2σ2)
Lα

σ2

∫ ∞

k2σ2

e
−x

2σ2 x
σ2+2L(1−α)

2σ2 d x .

Hence

lim
ǫ,θ1,θ2,η→0

ζ1,ǫ,η,θ1,θ2
=

1

2σ2
c
−σ2−2L

2σ2 e
c

2σ2

�∫ k2σ2

0

e
−x

2σ2 x
σ2+2L

2σ2 d x

+ (k2σ2)
Lα

σ2

∫ ∞

k2σ2

e
−x

2σ2 x
σ2+2L(1−α)

2σ2 d x

�
.

In a similar fashion, we can verify that as ǫ ↓ 0, θ1 ↓ 0, θ2 ↓ 0 and η ↓ 0, ζ2,ǫ,η,θ1,θ2
also tends to a

finite limit. Indeed,

lim
ǫ,θ1,θ2,η→0

ζ2,ǫ,η,θ1,θ2
=

1

2σ2
c
−σ2−2L

2σ2 e
c

2σ2

�∫ k2σ2

0

e
−x

2σ2 x
2L−σ2

2σ2 d x

+ (k2σ2)
Lα

σ2

∫ ∞

k2σ2

e
−x

2σ2 x
2L(1−α)−σ2

2σ2 d x

�
.
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This implies that

lim inf
t→∞

1

t

∫ t

0

Y (s) ds ≥ ΛL,σ,α,k, a.s. on Ω∗∗ := ∩{ǫ,η,θ1,θ2∈Q}Ω∗. (8.10)

where ΛL,σ,α,k is given by (8.4) and Ω∗∗ is an a.s. event. In an analogous manner, by the definition

of Gu, we have

κ1,ǫ,η,θ1,θ2
:=

∫ ∞

0

x mYu
(d x)

=
1

2σ2

�∫ η

0

e
c+2K−2L(1+ǫ)

2σ2

�
η+ θ1

c

�σ2+2L(1+ǫ)

2σ2
�

η

η+ θ1

�σ2+2K+2(K−L(1+ǫ))η/θ1

2σ2

e
−x

2σ2

�
x

η

�σ2+2K

2σ2

d x

+

∫ η+θ1

η

e
c+2(K−L(1+ǫ))(η+θ1)/θ1

2σ2

�
η+ θ1

c

�σ2+2L(1+ǫ)

2σ2

e
− 1+2(K−L(1+ǫ))/θ1

2σ2 x

�
x

η+ θ1

�σ2+2K+2(K−L(1+ǫ))η/θ1

2σ2

d x

+

∫ k2σ2

η+θ1

e
c−x

2σ2

�
x

c

�σ2+2L(1+ǫ)

2σ2

d x

+

∫ k2σ2+θ2

k2σ2

e
c+2L(1+ǫ)αk2σ2/θ2

2σ2

�
k2σ2

c

�σ2+2L(1+ǫ)

2σ2

e
− 1+2L(1+ǫ)α/θ2

2σ2 x

�
x

k2σ2

�σ2+2L(1+ǫ)(1+αk2σ2/θ2)

2σ2

d x

+

∫ ∞

k2σ2+θ2

e
c−2L(1+ǫ)α

2σ2

�
k2σ2

c

�σ2+2L(1+ǫ)

2σ2
�

k2σ2+ θ2

k2σ2

�σ2+2L(1+ǫ)(1+αk2σ2/θ2)

2σ2

e
−x

2σ2

�
x

k2σ2+ θ2

�σ2+2L(1−α)(1+ǫ)
2σ2

d x

�
<∞.

Similar calculations give
∫∞

0
mYu
(d x) =: κ2,ǫ,η,θ1,θ2

<∞. Also by the ergodic theorem,

lim sup
t→∞

1

t

∫ t

0

Y (s) ds ≤ lim
t→∞

1

t

∫ t

0

Yu(s) ds =
κ1,ǫ,η,θ1,θ2

κ2,ǫ,η,θ1,θ2

, a.s. on Ω∗. (8.11)

Again, let ǫ ↓ 0, θ1 ↓ 0, θ2 ↓ 0 and η ↓ 0 through rational numbers and proceeding as for Yl , we

get the same limit ΛL,σ,α,k as obtained the lower bound. Combining this with (8.11) and (8.10), we

have

lim
t→∞

1

t

∫ t

0

Y (s) ds = ΛL,σ,α,k, a.s. on Ω∗∗.

Using the relation Y (t) = e−t X 2(et − 1), the desired result (8.3) is obtained.
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