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Abstract

In [Schuhmacher, Electron. J. Probab. 10 (2005), 165–201] estimates of the Barbour-Brown

distance d2 between the distribution of a thinned point process and the distribution of a Poisson

process were derived by combining discretization with a result based on Stein’s method. In

the present article we concentrate on point processes that have a density with respect to a

Poisson process, for which we can apply a corresponding result directly without the detour of

discretization. This enables us to obtain better and more natural bounds in the d2-metric, and

for the first time also bounds in the stronger total variation metric.

We give applications for thinning by covering with an independent Boolean model and “Matérn

type I”-thinning of fairly general point processes. These applications give new insight into the

respective models, and either generalize or improve earlier results.
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1 Introduction

We consider thinnings of simple point processes on a general compact metric spaceX , where simple

means that the probability of having multiple points at the same location is zero. The thinning of

such a process ξ according to a [0,1]-valued measurable random field π on X is the point process

ξπ, unique with regard to its distribution, that can be obtained in the following way: for any

realizations ξ(ω) (a point measure on X ) and π(ω, ·) (a function X → [0,1]), look at each point

s of ξ(ω) in turn, and retain it with probability π(ω, s), or delete it with probability 1− π(ω, s),

independently of any retention/deletion decisions of other points. Regard the points left over by

this procedure as a realization of the thinned point process ξπ. We usually refer to ξ as the original

process, and to π as the retention field.

The following is a well-established fact: if we thin more and more, in the sense that we consider a

sequence of retention fields (πn)n∈N with supx∈X πn(x)
D
−→ 0 as n→∞, and compensate for the

thinning by choosing point processes ξn whose intensities increase as n goes to infinity in a way that

is compatible with the retention fields, then we obtain convergence in distribution towards a Cox

process. Convergence in distribution for random measures, and in particular for point processes, is

defined via the convergence of expectations of bounded continuous functions, where continuity is

in terms of the vague topology (for details see [13], Section 4.1).

In order to specify what choice of the sequence (ξn) is compatible with (πn), we introduce the

random measure Λn that is given by Λn(A) :=
∫

A
πn(x) ξn(d x) for every Borel set A in X . The

theorem below was shown in [12] for constant deterministic πn, and in [5] for general πn (in

fact, both times under the more general assumption that X is a locally compact, second countable

Hausdorff space). For a detailed history of this result see [22], p. 167; note also the contribution of

Mecke, who established the fundamental relationship between thinnings and Cox processes [16].

Theorem 1.A (Kallenberg [12], Brown [5]). For the sequences (πn)n∈N and (ξn)n∈N introduced

above, we obtain convergence in distribution of the thinned sequence
�
(ξn)πn

�
n∈N towards a point

process η if and only if there is a random measure Λ on X such that Λn
D
−→ Λ as n→∞. In this case

η∼ Cox(Λ), i.e. η is a Cox process with directing measure Λ.

In [22] the above setting was considered for the situation that the ξn are point processes on [0,1]D

that are obtained from a single point process ξ by gradual contraction of RD
+ using the functions κn

given by κn(x) := (1/n)x for every x ∈ RD
+ (for notational convenience in the proofs, the order of

contracting and thinning was interchanged). Under the additional assumption that ξ and πn satisfy

mixing conditions, which makes it plausible for the limiting process in Theorem 1.A to be Poisson

(see the remark after Theorem 1.A of [22]), several upper bounds for the Wasserstein-type distance

d2 between the distribution of the thinned and contracted process and a suitable Poisson process

distribution were obtained under various conditions. These results were derived by discretizing the

thinned process and the limiting Poisson process, and applying then a discrete version of the “local

Barbour-Brown theorem”, Theorem 3.6 in [2], which is based on Stein’s method (see [24] and [3]).

Although the bounds were of good quality and have proved their usefulness in several applications,

they had some shortcomings, which were mainly related to the fact that they could only be ex-

pressed in terms of discretization cuboids. This made the results rather unpleasant to apply in many

situations where truly non-discrete point processes were considered. However, it had appeared dif-

ficult for quite some time to get control over the “long range weak dependences” in a meaningful

way without resorting to discretization.
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The present article overcomes these difficulties. We derive a slightly adapted version of Theorem 3.6

in [2] that simplifies some of the notation and corrects a minor mistake in the original result, and

are able to employ it directly without the detour of discretization in order to obtain meaningful

upper bounds in a more elegant way. These upper bounds are much more natural and more easily

applied than the previous ones; they hold for the most part under more general conditions and are

qualitatively somewhat better. Furthermore, we also get reasonable estimates in the stronger total

variation metric dT V , which was not possible with the previous method due to the fact that the

distance between a discrete and a continuous point process distribution is always 1 in this metric.

Many of these improvements become evident from looking at the example in Corollary 4.G. In this

example, a Poisson process on RD that is partly covered by a Boolean model of Euclidean balls is

considered when contracting space by a factor n and suitably adapting the LD-norm of the radii

of the balls to stabilize the intensity. We show that the total variation distance for Poisson process

approximation is O
�
(log n)−(D−1)
�

as n→∞. In contrast, all that is obtainable for this setting from

the corresponding considerations in [22] is that, for arbitrarily small ζ > 0, there is a constant c(ζ)

such that the (weaker) d2-distance is bounded by c(ζ)nζD for every n. The latter is not useful at all

and even requires a more involved argument to compute the first and second moment terms of the

retention field because suprema over discretization cuboids have to be considered.

In order to apply our version of Theorem 3.6 in [2], we have to restrict ourselves to point processes

ξ that have a density with respect to the distribution of a simple Poisson process, which is a natural

and common choice for a reference measure and leaves us with a very rich class of processes.

We start out in Section 2 by giving some notation and technical background including our adaptation

of Theorem 3.6 of [2] in Section 2.4. The main results are then presented in Section 3, which can

be read without detailed knowledge of Section 2. We provide upper bounds for the dT V - and the

d2-distances between L (ξπ) and a suitable Poisson process distribution, first in a general setting,

and then for a number of important special cases. The last of these special cases (see Corollary 3.E)

is suitable for comparison with the upper bounds in [22]. Finally, in Section 4, two applications of

the main results are studied. The first one is a more general version of the thinning by covering

with a Boolean model that was mentioned above, and improves on results in [22]. In the second

application, any point of ξ is deleted if there is another point present within a fixed distance r

(following the construction of the Matérn type I hard core process, but using a more general ξ),

and retained with probability q otherwise. The bounds obtained in this setting generalize a result in

[26], where q = 1 and ξ had to be a Poisson process.

2 Preliminaries

We first introduce some basic notation and conventions, before giving an overview of some of the

theoretical background and presenting the more technical definitions in the various subsections. The

reader may want to skip these subsections on first reading, as the gist of non-technical information

is repeated where it first appears in Section 3 or else easily accessible by the cross-references given.

Let (X , d0) always be a compact metric space with d0 ≤ 1 that admits a finite diffuse measure α 6= 0,

where diffuse means that α({x}) = 0 for every x ∈ X . Denote by B the Borel σ-algebra on X ,

and by BA the trace σ-algebra B|A = {B ∩ A; B ∈ B} for any set A⊂ X . Furthermore, write M for

the space of finite measures on X , and equip it with the vague topology (see [13], Section 15.7)

and the corresponding Borel σ-algebra M (see [13], Lemma 4.1 and Section 1.1). Do the same
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for the subspace N ⊂M of finite point measures, and denote the corresponding σ-algebra by N .

Write furthermore N∗ := {̺ ∈ N; ̺({x}) ≤ 1 for all x ∈ X} for the N -measurable set of simple

point measures. A random measure on X is a random element of M, and a point process on X a

random element of N. A point process ξ is called simple if P[ξ ∈ N∗] = 1. By Po(λ) we denote

the distribution of the Poisson process on X with intensity measure λ if λ ∈ M, and the Poisson

distribution with parameter λ if λ is a positive real number.

We think of measures (random or otherwise) always as being defined on all of X . Thus, for any

measure µ on X and any A ∈ B , we denote by µ|A the measure on X that is given by µ|A(B) :=

µ(A∩ B) for all B ∈ B . Let M(A) := {µ|A; µ ∈M}, N(A) := {̺|A; ̺ ∈N},M (A) :=M|M(A) = {C ∩

M(A); C ∈M}, and N (A) :=N |N(A) = {C ∩N(A); C ∈ N }. Furthermore, set N∗(A) :=N(A)∩N∗.

Sometimes absolute value bars are used to denote the total mass of a measure, i.e. |µ| := µ(X ) for

any µ ∈M.

For σ ∈ N∗, we do not notationally distinguish between the point measure and its support. Like

that we can avoid having to enumerate the points of the measure, which sometimes saves us from

tedious notation. Thus, the notation
∫

f dσ =
∑

s∈σ f (s) may be used instead of writing
∫

f dσ =∑v
i=1 f (si), where σ =

∑v
i=1δsi

. The same concept is extended to the realizations of a simple point

process, as long as it is not important what happens on the null set of point patterns with multiple

points. Hence we may also write E
�∫

f dξ
�
= E
�∑

s∈ξ f (s)
�

if ξ is simple. In order to facilitate

the reading of certain formulae, we furthermore make the convention of using the letters x , x̃ , y for

general elements of the state space X , while s, s̃, t are reserved for points of a point pattern in X .

Finally, we sometimes omit the addition “almost surely” or “(for) almost every . . . ” for equations

and inequalities between functions on measure spaces if it is evident and of no importance that the

relation does not hold pointwise.

2.1 Densities with respect to the standard Poisson process distribution P1

Let α 6= 0 be a fixed diffuse measure in M, which we will regard as our reference measure on X .

Typically, if (a superset of)X has a suitable group structure, α is chosen to be (the restriction of) the

Haar measure. If X ⊂ RD, we usually choose α= LebD|X . We write P1 := Po(α) for the distribution

of what we call the standard Poisson process on X , and P1,A := Po(α|A) for the distribution of the

Poisson process on X with expectation measure α|A. It is convenient to admit also α(A) = 0, in

which case P1,A = δ0, where 0 denotes the zero measure on X .

A popular way of specifying a point process distribution is by giving its Radon-Nikodym density

with respect to the distribution of the standard Poisson process (if the density exists; see [17], Sec-

tions 6.1 and 6.2 for a number of examples). The following lemma, which is a simple consequence

of Theorem 3.1.1 in [21], will be useful.

Lemma 2.A. For any a > 0, a density fA of Pa,A := Po(a·α|A) with respect to P1,A is given by

fA(̺) = e(1−a)α(A)a|̺|

for every ̺ ∈N(A).

To avoid certain technical problems, we require our densities to be hereditary whenever we are

dealing with conditional densities.
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Definition. A function f : N → R+ is called hereditary if f (̺) = 0 implies f (σ) = 0 whenever

̺,σ ∈N with ̺ ⊂ σ.

The point processes on X that have a hereditary density with respect to P1 form the class of

Gibbs point processes. These include pairwise and higher order interaction processes (see [17],

Section 6.2). The general form of a Gibbs process density is given in Definition 4.2 of [1].

2.2 Thinnings

In what follows, let ξ always be a point process on X that has density f with respect to P1, and

let π := (π(·, x); x ∈ X ) be a [0,1]-valued random field on X that is measurable in the sense that

the mapping Ω × X → [0,1], (ω, x) 7→ π(ω, x) is σ(π) ⊗B -measurable. In the main part we

strengthen the technical conditions on ξ and π somewhat in order to avoid some tedious detours in

the proofs.

We use the definition from [22] for the π-thinning of ξ.

Definition (Thinning). First, assume that ξ = σ =
∑v

i=1δsi
and π = p are non-random, where

v ∈ Z+, si ∈ X , and p is a measurable function X → [0,1]. Then, a π-thinning of ξ is defined as

ξπ =
∑v

i=1 X iδsi
, where the X i are independent Bernoulli random variables with expectations p(si),

respectively. Under these circumstances, ξπ has a distribution P(σ, p) that does not depend on the

chosen enumeration of σ. We obtain the general π-thinning from this by randomization, that is by

the condition P[ξπ ∈ · |ξ,π] = P(ξ,π) (it is straightforward to see that P(ξ,π) is a σ(ξ,π)-measurable

family in the sense that P(ξ,π)(D) is σ(ξ,π)-measurable for every D ∈N). Note that the distribution

of ξπ is uniquely determined by this procedure.

The following lemma gives the first two factorial moment measures of ξπ. For ̺ =
∑v

i=1δsi
∈ N,

write ̺[2] :=
∑v

i, j=1,i 6= j δ(si ,s j)
for the factorial product measure on X ×X . Remember that the

expectation measure µ1 of ξ is defined by µ1(A) := E(ξ(A)) for every A ∈ B , and that the second

factorial moment measure µ[2] of ξ is defined to be the expectation measure of ξ[2]. Let Λ be the

random measure on X that is given by Λ(A) :=
∫

A
π(x) ξ(d x) for A ∈ B (cf. Λn in Section 1), and

write furthermore Λ[2](B) :=
∫

B
π(x)π( x̃) ξ[2]
�
d(x , x̃)
�

for every B ∈B2.

Lemma 2.B. We obtain for the expectation measure µ(π)1 and the second factorial moment measure µ(π)
[2]

of ξπ

(i) µ(π)1 (A) = E
�
Λ(A)
�

for every A∈B ;

(ii) µ(π)
[2]
(B) = E
�
Λ[2](B)
�

for every B ∈B2.

Proof. Write ξ =
∑V

i=1δSi
, where V and Si are σ(ξ)-measurable random elements with values in

Z+ and X , respectively. Such a representation exists by Lemma 2.3 in [13].
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(i) For every A∈B we have

µ(π)1 (A) = E
�
ξπ(A)
�
= E
�
E
�
ξπ(A)
�� ξ,π
��

= E

� V∑

i=1

π(Si)I[Si ∈ A]

�

= E

�∫

A

π(x) ξ(d x)

�
.

(ii) For every B ∈B2 we have

µ(π)
[2]
(B) = E
�
ξ[2]π (B)
�
= E
�
E
�
ξ[2]π (B)
�� ξ,π
��

= E

�
V∑

i, j=1
i 6= j

π(Si)π(S j)I[(Si,S j) ∈ B]

�

= E

�∫

B

π(x)π( x̃) ξ[2]
�
d(x , x̃)
��

.

2.3 Metrics used on the space of point process distributions

We use two metrics on the space P(N) of probability measures on N. The one that is more widely

known is the total variation metric, which can be defined on any space of probability measures. For

P,Q ∈P(N) it is given by

dT V (P,Q) = sup
C∈N

��P(C)−Q(C)
��

or, equivalently, by

dT V (P,Q) = min
ξ1∼P
ξ2∼Q

P[ξ1 6= ξ2]. (2.1)

See [4], Appendix A.1, for this and other general results about the total variation metric.

The second metric we use is a Wasserstein type of metric introduced by Barbour and Brown in [2],

and denoted by d2. It is often a more natural metric to use on P(N) than dT V , because it takes the

metric d0 on X into account and metrizes convergence in distribution of point processes. The total

variation metric on the other hand is strictly stronger, and at times too strong to be useful.

Define the d1-distance between two point measures ̺1 =
∑|̺1|

i=1 δs1,i
and ̺2 =
∑|̺2|

i=1 δs2,i
in N as

d1(̺1,̺2) :=





1 if |̺1| 6= |̺2|,

minτ∈Σv

�1
v

∑v
i=1d0(s1,i, s2,τ(i))

�
if |̺1|= |̺2|= v > 0,

0 if |̺1|= |̺2|= 0,

(2.2)

where Σv denotes the set of permutations of {1,2, . . . , v}. It can be seen that (N, d1) is a complete,

separable metric space and that d1 is bounded by 1. Now let F2 := { f : N→ R; | f (̺1)− f (̺2)| ≤
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d1(̺1,̺2) for all ̺1,̺2 ∈N}, and define the d2-distance between two measures P,Q ∈P(N) as

d2(P,Q) := sup
f ∈F2

����

∫
f dP −

∫
f dQ

����

or, equivalently, as

d2(P,Q) = min
ξ1∼P
ξ2∼Q

Ed1(ξ1,ξ2). (2.3)

See [22], [23], and [26] for this and many other results about the Barbour-Brown metric d2. By

(2.1) and (2.3) we obtain that d2 ≤ dT V .

2.4 Distance estimates for Poisson process approximation of point processes with a

spatial dependence structure

In this subsection, a theorem is presented that provides upper bounds for the total variation and

d2 distances between the distribution of a point process with a spatial dependence structure and

a suitable Poisson process distribution. This result is very similar to Theorems 2.4 and 3.6 in [2],

but deviates in several minor aspects, two of which are more pronounced: first, we use densities

with respect to a Poisson process distribution instead of Janossy densities, which simplifies part of

the notation considerably; secondly, we take a somewhat different approach for controlling the long

range dependence within ξ (see the term for φ̆(x) in Equation (2.11)), which avoids the imposition

of an unwelcome technical condition (cf. Remark A.C).

Let ξ be a point process on X whose distribution has a density f with respect to P1 and whose

expectation measure µ= µ1 is finite. Then µ has a density u with respect to α that is given by

u(x) =

∫

N

f (̺+δx) P1(d̺) (2.4)

for α-almost every x ∈ X , which is obtained as a special case of Equation (2.8) below.

For A∈B , we set

fA(̺) :=

∫

N(Ac)

f (̺+ ˜̺) P1,Ac (d ˜̺) (2.5)

for every ̺ ∈N(A), which gives a density fA : N→ R+ of the distribution of ξ|A with respect to P1,A

(we extend fA on N\N(A) by setting it to zero). This can be seen by the fact that integrating fA over

an arbitrary set C ∈N(A) yields

∫

C

fA(̺) P1,A(d̺) =

∫

N(A)

∫

N(Ac)

I[̺ ∈ C] f (̺+ ˜̺) P1,Ac (d ˜̺) P1,A(d̺)

=

∫

N

I[σ|A ∈ C] f (σ) P1(dσ)

= P[ξ|A ∈ C],

where we used that (η|A,η|Ac ) ∼ P1,A⊗ P1,Ac for η ∼ P1. Note that the argument remains correct if

either α(A) or α(Ac) is zero.
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We introduce a neighborhood structure (Nx)x∈X on X , by which we mean any collection of sets that

satisfy x ∈ Nx for every x ∈ X (note that we do not assume Nx to be a d0-neighborhood of x in the

topological sense). We require this neighborhood structure to be measurable in the sense that

N(X ) := {(x , y) ∈ X 2; y ∈ Nx} ∈ B
2. (2.6)

This measurability condition is slightly stronger than the ones required in [2] (see the discussion

before Remark 2.1 in [7] for details), but quite a bit more convenient. The Nx play the role of

regions of strong dependence: it is advantageous in view of Theorem 2.C below to choose Nx not

too large, but in such a way that the point process ξ around the location x depends only weakly on

ξ|N c
x
. Write Ṅx for Nx \ {x}.

We use the following crucial formula about point process densities, which is proved as Proposi-

tion A.A in the appendix. For any non-negative or bounded measurable function h : X ×N→ R,

we have

E

�∫

X

h(x ,ξ|N c
x
) ξ(d x)

�
=

∫

X

∫

N(N c
x )

h(x ,̺) fN c
x∪{x}

(̺+δx) P1,N c
x
(d̺) α(d x). (2.7)

As an important consequence we obtain by choosing h(x ,̺) := 1A(x) that

u(x) =

∫

N(N c
x )

fN c
x∪{x}

(̺+δx) P1,N c
x
(d̺) (2.8)

for α-almost every x ∈ X , which implies Equation (2.4) if we set Nx = {x}.

In many of the more concrete models, the density f of ξ is hereditary and therefore ξ is a Gibbs

process, in which case the above expressions can be simplified by introducing conditional densities.

Let K :=
⋃

x∈X

�
{x} ×N(N c

x )
�
⊂ X ×N, which can be seen to be in B ⊗N by Condition (2.6)

using a monotone class argument. Define a mapping g :X ×N→ R+ by

g(x;̺) :=
fN c

x∪{x}
(̺+δx)

fN c
x
(̺)

(2.9)

for (x ,̺) ∈ K and g(x;̺) := 0 otherwise, where the fraction in (2.9) is taken to be zero if the

denominator (and hence by hereditarity also the numerator) is zero. For (x ,̺) ∈ K the term g(x;̺)

can be interpreted as the conditional density of a point at x given the configuration of ξ outside of

Nx is ̺. Equation (2.7) can then be replaced by the following result, which is a generalization of the

Nguyen-Zessin Formula (see [19], Equation (3.3)): for any non-negative or bounded measurable

function h :X ×N→ R, we have

E

�∫

X

h(x ,ξ|N c
x
) ξ(d x)

�
=

∫

X

E
�
h(x ,ξ|N c

x
)g(x;ξ|N c

x
)
�
α(d x). (2.10)

This formula was already stated as Equation (2.7) in [2] for functions h that are constant in x and

as Equation (2.10) in [7] for general functions, both times however under too wide conditions.

See Corollary A.B for the proof and Remark A.C for an example that shows that an additional

assumption, such as hereditarity, is required. As an analog to (2.8), we obtain for the density u of

the expectation measure of ξ that

u(x) = E
�

g(x;ξ|N c
x
)
�

for α-almost every x ∈ X .

We are now in a position to derive the required distance bounds.
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Theorem 2.C (based on Barbour and Brown [2], Theorems 2.4 and 3.6). Suppose that ξ is a point

process which has density f with respect to P1 and finite expectation measure µ. Let furthermore

(Nx)x∈X be a neighborhood structure that is measurable in the sense of Condition (2.6). Then

(i) dT V

�
L (ξ), Po(µ)
�
≤

∫

X

µ(Nx) µ(d x) +E

�∫

X

ξ(Ṅx) ξ(d x)

�
+

∫

X

φ̆(x) α(d x);

(ii) d2

�
L (ξ), Po(µ)
�
≤ M2(µ)

�∫

X

µ(Nx) µ(d x) +E

�∫

X

ξ(Ṅx) ξ(d x)

��

+M1(µ)

∫

X

φ̆(x) α(d x);

where

M1(µ) =min

�
1,

1.647
p
|µ|

�
, M2(µ) =min

�
1,

11

6|µ|

�
1+ 2 log+
�6|µ|

11

���
,

and

φ̆(x) =

∫

N(N c
x )

�� fN c
x∪{x}

(̺+δx)− fN c
x
(̺)u(x)
�� P1,N c

x
(d̺)

= 2 sup
C∈N (N c

x )

����

∫

C

�
fN c

x∪{x}
(̺+δx)− fN c

x
(̺)u(x)
�

P1,N c
x
(d̺)

����.
(2.11)

If f is hereditary, φ̆ can be rewritten as

φ̆(x) = E
��g(x;ξ|N c

x
)− u(x)
��. (2.12)

Remark 2.D. We refer to the three summands in the upper bound of Theorem 2.C.(i) as basic term,

strong dependence term, and weak dependence term, respectively. The basic term depends only on

the first order properties of ξ and on α(Nx). The strong dependence term controls what happens

within the neighborhoods of strong dependence and is small if α(Nx) is not too big and if there is

not too much positive short range dependence within ξ. Finally, the weak dependence term is small

if there is only little long range dependence.

Remark 2.E. Theorem 5.27 in [26] (which is based on several earlier results by various authors)

gives an alternative upper bound for the d2-distance above, which when carefully further estimated

is in many situations superior to the one in [2], insofar as the logarithmic term in M2(µ) can often

be disposed of. After applying the same modifications as in the proof of Theorem 2.C below, it can

be seen that

d2

�
L (ξ), Po(µ)
�
≤

∫

X

E
��3.5

|µ|
+

2.5

ξ(N c
x ) + 1

�
ξ(Nx)
�
µ(d x)

+E

�∫

X

�3.5

|µ|
+

2.5

ξ(N c
x ) + 1

�
ξ(Ṅx) ξ(d x)

�
+M1(µ)

∫

X

φ̆(x) α(d x).

Since working with this inequality requires a more specialized treatment of the thinnings in our

main result, and since the benefit of removing the logarithmic term is negligible for most practical

purposes, we do not use this bound in the present article.
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Proof of Theorem 2.C. Following the proof of Theorems 2.4 and 3.6 in [2] (applying Equations (2.9)

and (2.10) of [2], but not Equation (2.11)), we obtain by using Stein’s method that

��E f̃ (ξ)−E f̃ (η)
��≤∆2h̃

�∫

X

Eξ(Nx) µ(d x) +E

�∫

X

ξ(Ṅx) ξ(d x)

��

+

����E
∫

X

�
h̃(ξ|N c

x
+δx)− h̃(ξ|N c

x
)
��
ξ(d x)−µ(d x)
�
����

(2.13)

for every f̃ ∈ FT V = {1C ; C ∈ N } [or f̃ ∈ F2 in the case of statement (ii)], where η ∼ Po(µ)

and h̃ := h̃ f̃ are the solutions of the so-called Stein equation (see [2], Equation (2.2)), which have

maximal first and second differences

∆1̃h := sup
̺∈N, x∈X

��h̃(̺+δx)− h̃(̺)
��

and

∆2h̃ := sup
̺∈N, x ,y∈X

��h̃(̺+δx +δy)− h̃(̺+δx)− h̃(̺+δy) + h̃(̺)
��

that are bounded by 1 [or ∆1̃h ≤ M1(µ) and ∆2h̃ ≤ M2(µ) in the case of statement (ii); see [26],

Propositions 5.16 and 5.17].

All that is left to do is bounding the term in the second line of (2.13), which is done as follows.

Setting C+x :=
�
̺ ∈N(N c

x ); fN c
x∪{x}

(̺+ δx)> fN c
x
(̺)u(x)
	
∈ N (N c

x ), we obtain

����E
∫

X

�
h̃(ξ|N c

x
+δx)− h̃(ξ|N c

x
)
��
ξ(d x)−µ(d x)
�
����

=

����

∫

X

∫

N(N c
x )

�
h̃(̺+δx)− h̃(̺)

��
fN c

x∪{x}
(̺+δx)− fN c

x
(̺)u(x)
�

P1,N c
x
(d̺) α(d x)

����

≤∆1̃h

∫

X

∫

N(N c
x )

�� fN c
x∪{x}

(̺+ δx)− fN c
x
(̺)u(x)
�� P1,N c

x
(d̺) α(d x)

= 2∆1̃h

∫

X

∫

C+x

�
fN c

x∪{x}
(̺+δx)− fN c

x
(̺)u(x)
�

P1,N c
x
(d̺) α(d x)

= 2∆1̃h

∫

X

sup
C∈N (N c

x )

����

∫

C

�
fN c

x∪{x}
(̺+δx)− fN c

x
(̺)u(x)
�

P1,N c
x
(d̺)

���� α(d x),

(2.14)

where we use Equation (2.7) for the second line and

∫

N(N c
x )

�
fN c

x∪{x}
(̺+ δx)− fN c

x
(̺)u(x)
�

P1,N c
x
(d̺) = 0

for the fourth line, which follows from Equation (2.8). The integrands with respect to α(d x) in the

last three lines of (2.14) are all equal to

∫

N

�� fN c
x∪{x}

(σ|N c
x
+δx)− fN c

x
(σ|N c

x
)u(x)
�� P1(dσ)
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and hence B -measurable by the definition of fA and the fact that Condition (2.6) implies the mea-

surability of the mapping
�
X ×N→X ×N, (x ,σ) 7→ (x ,σ|N c

x
)
�

(see [7], after Equation (2.4)).

Plugging (2.14) into (2.13) and taking the supremum over f̃ completes the proof for general f . If

f is hereditary, we have fN c
x∪{x}

(̺+δx) = g(x;̺) fN c
x
(̺), so that the additional representation of φ̆

claimed in (2.12) follows from the third line of Inequality (2.14).

3 The distance bounds

We begin this section by presenting the general setting for our main result, Theorem 3.A, partly

compiling assumptions that were already mentioned, partly adding more specialized notation and

conditions. Thereafter the main result and a number of corollaries are stated, and in the last sub-

section the corresponding proofs are given.

3.1 Setting for Theorem 3.A

Let ξ be a point process on the compact metric space (X , d0) which has density f with respect to

the standard Poisson process distribution P1 = Po(α) (see Subsection 2.1) and finite expectation

measure µ = µ1. For any A∈ B , write fA for the density of ξ|A that is given by (2.5). Furthermore,

let π =
�
π(·, x); x ∈ X
�

be a [0,1]-valued random field. We assume that π when interpreted as

a random function on X takes values in a space E ⊂ [0,1]X which is what we call an evaluable

path space (i.e. Φ : E ×X → [0,1], (p, x) 7→ p(x) is measurable) and that there exists a regular

conditional distribution of π given the value of ξ. Neither of these assumptions presents a serious

obstacle; we refer to Appendix A.3 for details. Let then Λ be the random measure given by Λ(A) :=∫
A
π(x) ξ(d x) for A∈B , and set Λ[2](B) :=

∫
B
π(x)π( x̃) ξ[2]
�
d(x , x̃)
�

for any B ∈B2.

Choose a neighborhood structure (Nx)x∈X that is measurable in the sense of Condition (2.6). We

assume for every x ∈ X that π(x) and π|N c
x

are both strictly locally dependent on ξ in such a way

that the corresponding “regions of dependence” do not interfere with one another. More exactly,

this means the following: introduce an arbitrary metric d̃0 on X that generates the same topology

as d0, and write B(x , r) for the closed d̃0-ball at x ∈ X with radius r ≥ 0 and B(A, r) := {y ∈

X ; d̃0(y, x) ≤ r for some x ∈ A} for the d̃0-halo set of distance r ≥ 0 around A⊂ X . Suppose then

that we can fix a real number R≥ 0 such that

B(x ,R)∩B(N c
x ,R) = ; (3.1)

and

π(x)⊥⊥ξ|B(x ,R)
ξ|B(x ,R)c and π|N c

x
⊥⊥ξ|B(Nc

x ,R)
ξ|B(N c

x ,R)c (3.2)

for every x ∈ X , where X ⊥⊥Z Y denotes conditional independence of X and Y given Z . If Z is

almost surely constant, this is just the (unconditional) independence of X and Y ; in particular we

require π(x) ⊥⊥ ξ if α(B(x ,R)) = 0. Set Aint := Aint(x) := B(x ,R) and Aext := Aext(x) := B(N c
x ,R),

where we usually suppress the location x when it is clear from the context.

We introduce two functions to control the dependences in (ξ,π). The function β̆ :X → R+ is given
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by

β̆(x) :=

∫

N(Aint)

E
�
π(x)
�� ξ|Aint

= ̺int+δx

�

·

∫

N(Aext)

�� f̄ (̺ext,̺int+ δx)
�� P1,Aext

(d̺ext) P1,Aint
(d̺int),

(3.3)

where f̄ (̺ext,̺int+δx) := fAext∪Aint
(̺ext+̺int+δx)− fAext

(̺ext) fAint
(̺int+δx), and hence controls the

long range dependence within ξ, as well as the short range dependence of π on ξ. If α(Aint) = 0, the

conditional expectation above is to be interpreted as E(π(x)) for every ̺int ∈N(Aint). The function

γ̆ :X → R+ is taken to be a measurable function that satisfies

∫

N

ess sup
C∈σ(π|Nc

x
)

���cov
�
π(x), 1C

�� ξ= ̺+δx

���� f (̺+ δx) P1(d̺)≤ γ̆(x), (3.4)

and hence controls the average long range dependence within π given ξ. For the definition of

the essential supremum of an arbitrary set of measurable functions (above, the functions
�
̺ 7→��cov(π(x), 1C |ξ= ̺+δx)

��� for C ∈ σ(π|N c
x
)), see [18], Proposition II.4.1.

Special cases:

In order to better understand the somewhat involved requirements on the neighborhood structure

(Nx)x∈X , the “catchment radius” R, and the “dependence controlling functions” β̆ and γ̆, consider

the following special cases, which will be examined in more detail in subsequent parts of the paper:

1) Independence of ξ and π: In this case it is possible to satisfy Conditions (3.1) and (3.2) with any

measurable neighborhood structure (Nx)x∈X by setting R= 0. Doing so, we obtain

β̆(x) = E
�
π(x)
�
φ̆(x) and sup

C∈σ(π|Nc
x
)

��cov(π(x), 1C)
�� · u(x)≤ γ̆(x)

as conditions for β̆ and γ̆, where φ̆ is given in Equation (2.11). We will encounter this situation in

Corollary 3.B and in the application in Subsection 4.1, where π is a constant times the indicator of

the complement of a Boolean model.

2) Local functional dependence of π on ξ: Assume that, for some R ≥ 0, we can write π(x) =

p(x ,ξ|B(x ,R)) for a (deterministic) measurable function p :X ×N→ [0,1]. Then the neighborhoods

Nx have to be chosen large enough to satisfy Condition (3.1) (e.g. choose Nx ⊃ B(x , 2R) for every

x ∈ X ), whereas Condition (3.2) always holds, by the definition of π. We then can set

β̆(x) =

∫

N

p
�

x ,̺|Aint
+δx

��� f̄
�
̺|Aext

,̺|Aint
+δx

��� P1(d̺) and γ̆(x) = 0.

We will encounter this situation in the application in Subsection 4.2, where p(x ,̺) is essentially a

constant times the indicator of
�
̺
�
B(x ,R) \ {x}
�
= 0
	
.

3) Constant deterministic retention field: As a specialization of either of situations 1) and 2), we have

the case where π≡ p ∈ [0,1] is deterministic, so that the thinning is obtained by keeping each point
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with probability p, independently of its position, and of the positions and the retention/deletion

decisions of other points. As seen in the first special case above we can have any measurable

neighborhood structure and set R = 0. We then have β̆(x) = p φ̆(x) and may set γ̆(x) = 0. This

situation is the subject of Corollary 3.C.

3.2 Results

We are now in the position to formulate our main theorem. The metrics dT V and d2 have been

defined in Subsection 2.3. Note that (EΛ)2 denotes the product measure of the expectation measure

EΛ with itself.

Theorem 3.A. Suppose that the assumptions of Subsection 3.1 hold and write µ(π) = µ(π)1 = EΛ for the

expectation measure of ξπ. We then have

(i) dT V

�
L (ξπ), Po(µ(π))

�
≤
�
EΛ
�2�

N(X )
�
+EΛ[2]
�
N(X )
�

+

∫

X

β̆(x) α(d x) + 2

∫

X

γ̆(x) α(d x);

(ii) d2

�
L (ξπ), Po(µ(π))

�
≤ M2

�
µ(π)
���
EΛ
�2�

N(X )
�
+EΛ[2]
�
N(X )
��

+M1

�
µ(π)
��
∫

X

β̆(x) α(d x) + 2

∫

X

γ̆(x) α(d x)

�
;

where

M1(µ
(π)) =min

�
1,

1.647
p
EΛ(X )

�
, and

M2(µ
(π)) =min

�
1,

11

6EΛ(X )

�
1+ 2 log+
� 6

11
EΛ(X )
���

.

If ξ and π are independent, we obtain an interesting special case, where the upper bound can be

expressed in terms of essentially the quantities appearing in Theorem 2.C, which are based solely

on ξ, and some rather straightforward quantities based on π.

Corollary 3.B (Independent case). Suppose that ξ is a point process on (X , d0) which has density f

with respect to P1 and finite expectation measure µ = µ1. Denote the density of µ with respect to the

reference measure α by u (cf. Eq. (2.4)). Let π=
�
π(·, x); x ∈ X
�

be a [0,1]-valued random field that

has an evaluable path space E ⊂ [0,1]X and is independent of ξ. Choose an arbitrary neighborhood

structure (Nx)x∈X that is measurable in the sense of Condition (2.6), and take γ̆ : X → R+ to be a

measurable function that satisfies

sup
C∈σ(π|Nc

x
)

��cov(π(x), 1C)
�� · u(x)≤ γ̆(x). (3.5)

Note that the expectation measure of ξπ is µ(π)(·) = EΛ(·) =
∫
·

Eπ(x) µ1(d x), and let M1(µ
(π)) and
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M2(µ
(π)) be defined as in Theorem 3.A. We then obtain

(i) dT V

�
L (ξπ), Po(µ(π))

�

≤

∫

X

∫

Nx

Eπ(x)Eπ( x̃) µ1(d x̃) µ1(d x) +

∫

N(X )

E
�
π(x)π( x̃)
�
µ[2]
�
d(x , x̃)
�

+

∫

X

Eπ(x) φ̆(x) α(d x) + 2

∫

X

γ̆(x) α(d x);

(ii) d2

�
L (ξπ), Po(µ(π))

�

≤ M2

�
µ(π)
��
∫

X

∫

Nx

Eπ(x)Eπ( x̃) µ1(d x̃) µ1(d x) +

∫

N(X )

E
�
π(x)π( x̃)
�
µ[2]
�
d(x , x̃)
��

+M1

�
µ(π)
��
∫

X

Eπ(x) φ̆(x) α(d x) + 2

∫

X

γ̆(x) α(d x)

�
;

where φ̆ is given by Equation (2.11) and, if f is hereditary, by Equation (2.12).

A further corollary is given for the case of a deterministic retention field, which means that the

retention decisions are independent of each other given the point process ξ. We formulate only

a very special case, where the point process lives on RD and various spatial homogeneities are

assumed, which leads to a particularly simple upper bound. The corollary also illustrates how we

can deal with the issue of boundary effects in the neighborhood structure by extending the Nx

beyondX in such a way that they are translated versions of each other and that the same holds true

for their “complements” Mx \ Nx .

We always tacitly assume that RD is equipped with the Euclidean topology. Write |A| := LebD(A) for

any Borel set A ⊂ RD, and X +X ′ := {x + x ′; x ∈ X , x ′ ∈ X ′} and X − x := { x̃ − x; x̃ ∈ X}

for X ,X ′ ⊂ RD and x ∈ RD. For the definition of point processes on non-compact spaces and

elementary concepts such as stationarity, we refer to the standard point process literature (e.g. [13]

or [8]).

Corollary 3.C (Constant case). LetX ,Y ⊂ RD be two compact sets, whereX has positive volume and

X +
⋃

x∈X (X − x) ⊂ Y , and consider a metric d0 ≤ 1 on X that generates the Euclidean topology

(typically, d0(x , y) =min(|x − y |, 1) for all x , y ∈ X ).

Suppose that ζ is a stationary point process on RD whose restriction ξ := ζ|Y is a Gibbs process with

density f with respect to P1 = Po(LebD|Y ) and finite expectation measure µ= µ1 = m1LebD|Y . Denote

by K the second reduced moment measure of ζ (see around Equation (4.7) for details). Let (Nx)x∈X
and (Mx)x∈X be two neighborhood structures whose sets Nx := x+N and Mx := x+M (not necessarily

⊂ X now!) are translated copies of single bounded measurable sets N , M ⊂ RD which are chosen in

such a way that N ⊂ M andX ⊂ Mx ⊂ Y for every x ∈ X . Choosing our retention field π≡ p ∈ [0,1]

to be deterministic and constant and noting that µ(p)|X = p m1LebD|X , we then have

(i) dT V

�
L (ξp|X ), Po(p m1LebD|X )

�
≤ p2m2

1|X |(|N |+K (N)) + p|X |E|Γ−EΓ|;

(ii) d2

�
L (ξp|X ), Po(p m1LebD|X )

�

≤min
�

p m1|X |,
11

6

�
1+ 2 log+
�6p m1|X |

11

���
p m1(|N |+K (N))

+min
�p

p m1|X |, 1.647
�p

p m1|X |
1

m1
E|Γ−EΓ|,

1093



where Γ is an arbitrary random variable that has the same distribution as g ′(x;ξ|Mx\Nx
) =

f(Mx\Nx )∪{x}
(ξ|Mx\Nx

+δx)
�

fMx\Nx
(ξ|Mx\Nx

) (for one and therefore every x ∈ X ).

Remark 3.D. While it seems very appealing to admit Mx = Y = R
D, this case actually requires a

different and somewhat technically involved construction for the conditional density g ′(x;ξ|RD\Nx
),

because it cannot reasonably be assumed that a density of a point process distribution with respect

to the standard Poisson process distribution exists if the state space is RD (consider for example a

hard core process: the hard core event that no two points are closer than some fixed distance r > 0 is

a Po(LebD)-null set). As a matter of fact, the natural setting is that of a Gibbs process on the whole of

RD defined via a stable potential on the set of finite point measures on RD, which essentially provides

us with “compatible” conditional densities for the point process distribution on bounded Borel sets

given the point process outside (see [20], from page 6.9 onwards, for a detailed construction). For

a fixed bounded Borel set Y ⊂ RD we write fB(· |τ) : N(B)→ R+ for the conditional density of ξ|B
given ξ|Y c = τ. It can then be seen that the crucial inequality

E
�� g̃(x;ξ|X\Nx

)−m1

��≤ E
��g ′(x;ξ|Mx\Nx

)−m1

��

(see Inequality (3.14)) and hence the proof of Corollary 3.C can be reproduced under very general

conditions if Mx = R
D, where

g̃(x; ˜̺) =

∫
N(Y c)

f(X\Nx )∪{x}
( ˜̺ + δx |τ) P(ξ|Y c )−1(dτ)

∫
N(Y c)

fX\Nx
( ˜̺ |τ) P(ξ|Y c )−1(dτ)

for every ˜̺ ∈N(X \ Nx), and

g ′(x;̺) =
f(Y \Nx )∪{x}

(̺|Y \Nx
+δx |̺|Y c )

fY \Nx
(̺|Y \Nx

|̺|Y c )

for every ̺ ∈ N(RD \ Nx) (as earlier we set such fractions to zero if the denominator is zero). By

the construction of the Gibbs process on RD (using Equation (6.10) in [20]), the term g ′(x;̺) does

not depend on the choice of Y ⊃ Nx , except for ̺ in a P(ξ|RD\Nx
)−1-null set. It can be interpreted

as the conditional density of a point at x given ξ|RD\Nx
= ̺.

In the next result, the situation of Theorem 3.A and its corollaries is examined for the case where

we compensate for the thinning by contracting the state space as it was done in [22].

Corollary 3.E (Thinning and contraction in RD). Suppose that X is a compact subset of RD and that

α = LebD|X . Let T ≥ 1 and κT : RD → RD, x 7→ 1

T
x. Assume furthermore that the metric d0 on X

generates the Euclidean topology and satisfies d0

�
κT (x),κT (y)
�
≤ d0(x , y) for every x , y ∈ X .

Then Theorem 3.A and Corollaries 3.B and 3.C remain true if the point processes on the left hand sides

of the estimates are replaced by their respective image processes under the contraction κT . We thus

obtain under the general prerequisites of Theorem 3.A

(i) dT V

�
L (ξπκ

−1
T ), Po(µ(π)κ−1

T )
�
≤
�
EΛ
�2�

N(X )
�
+EΛ[2]
�
N(X )
�

+

∫

X

β̆(x) d x + 2

∫

X

γ̆(x) d x;

(ii) d2

�
L (ξπκ

−1
T ), Po(µ(π)κ−1

T )
�
≤ M2

�
µ(π)
���
EΛ
�2�

N(X )
�
+EΛ[2]
�
N(X )
��

+M1

�
µ(π)
��
∫

X

β̆(x) d x + 2

∫

X

γ̆(x) d x

�
.
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Remark 3.F (Comparison with [22]). The setting of Corollary 3.E corresponds in large parts to the

situation in [22], especially if we set X := κ−1
T (J) for a fixed compact set J ⊂ RD and compare our

statement (ii) to Theorem 3.B.

It is more strict in essentially two respects. First, of course, we admit only point processes whose

distributions are absolutely continuous with respect to a homogeneous Poisson process. Secondly,

we require strict local dependence of π on ξ (see Condition (3.2)), which in [22] was only done

for Section 4 (in slightly different form), but which also gives the direct benefit of a conceptually

simpler and more intuitive control of the long range dependences.

On the other hand, the setting of Corollary 3.E gives us more freedom than we had in [22] in the

sense that the objects live on a general compact subset of RD, that there are only minimal conditions

on the moment measures (as opposed to Assumption 1 in [22]), and that the choice of d0 and of

the neighborhoods of strong dependence Nx is much wider.

Regarding the upper bounds obtained we have clearly improved. The terms in our statement (ii)

above have their counterparts in the various terms in Theorem 3.B of [22] (with the integrals over

β̆(x) and γ̆(x) being summerized as a single long range dependence term), but have become simpler

and more natural, without any suprema or infima over discretization cuboids and with explicit and

manageable constants. The bound as a whole is somewhat better (if we use a heuristic approach

for comparing the long range dependence terms) and quite a bit more easily applied, which can be

seen from comparing the application in Subsection 4.1 with the same application in Subsection 3.3

of [22].

Remark 3.G. As pointed out in [22], it may be desirable to approximate the distribution of the

thinned point process by a Poisson process distribution that has a somewhat different expectation

measure. Corresponding distance estimates can easily be obtained from upper bounds for distances

between Poisson process distributions. We have dT V

�
Po(λ), Po(µ)
�
≤ ‖λ − µ‖ for λ,µ ∈ M by

Remark 2.9 in [2], where ‖·‖ denotes the total variation norm for signed measures. For d2 an upper

bound is given as Inequality (A.3) in [22] (which is the same as Inequality (2.8) in [6]).

3.3 Proofs

Proof of Theorem 3.A. By Lemma A.D in the appendix a density f (π) of ξπ with respect to P1 exists,

and the finiteness of µ implies the finiteness of µ(π). Hence we can apply Theorem 2.C.

The integrals in the upper bound can be further evaluated as follows. For the first two integrals

(basic term and strong dependence term), we have by Lemma 2.B that
∫

X

µ(π)(Nx) µ
(π)(d x) =

∫

X

�
EΛ
�
(Nx)
�
EΛ
�
(d x) =
�
EΛ
�2�

N(X )
�

(3.6)

and

E

�∫

X

ξπ(Ṅx) ξπ(d x)

�
= E
�
ξ[2]π
�
N(X )
��
= E
�
Λ[2]
�
N(X )
��

. (3.7)

For the third integral (weak dependence term) some more work is necessary. The term that we

would like to estimate is

2

∫

X

sup
C∈N (N c

x )

����

∫

C

�
f
(π)
N c

x∪{x}
(̺+δx)− f

(π)
N c

x
(̺)u(π)(x)
�

P1,N c
x
(d̺)

���� α(d x), (3.8)

1095



where u(π) is the density of µ(π). Equations (A.3) and (A.4) from the appendix imply that, for almost

every x ∈ X and for C ∈ N (N c
x ),∫

C

f
(π)
N c

x
(̺) P1,N c

x
(d̺) =

∫

N

E
�
Q
(π)
C (σ|N c

x
)
�� ξ= σ
�

f (σ) P1(dσ) (3.9)

and∫

C

f
(π)
N c

x∪{x}
(̺+δx) P1,N c

x
(d̺) =

∫

N

E
�
π(x)Q(π)

C (σ|N c
x
)
�� ξ= σ+δx

�
f (σ+δx) P1(dσ), (3.10)

where Q
(p)

C (σ) =
∑
̺⊂σ,̺∈C

�∏
s∈̺ p(s)
��∏

s̃∈σ\̺(1− p(s̃))
�

for every σ ∈ N∗ and every p ∈ E, so

that
�
(p,σ) 7→Q

(p)

C (σ)
�

is E ⊗N -measurable. By Equation (2.8) we have furthermore that

u(π)(x) =

∫

N(N c
x )

f
(π)
N c

x∪{x}
(̺+δx) P1,N c

x
(d̺) =

∫

N

E
�
π(x)
�� ξ= σ+ δx

�
f (σ+δx) P1(dσ), (3.11)

using that Q
(p)

N(N c
x )
(σ) = 1 for every σ ∈N∗(N c

x ).

The absolute value term in (3.8) can then be estimated as
����

∫

C

�
f
(π)
N c

x∪{x}
(̺+δx)− f

(π)
N c

x
(̺)u(π)(x)
�

P1,N c
x
(d̺)

����

=

����

∫

N

E
�
π(x)Q(π)

C (σ|N c
x
)
�� ξ= σ+δx

�
f (σ+δx) P1(dσ)

−

∫

N

E
�
Q
(π)
C (σ|N c

x
)
�� ξ= σ
�

f (σ) P1(dσ) ·

∫

N

E
�
π(x)
�� ξ= σ+δx

�
f (σ+ δx) P1(dσ)

����

≤

����

∫

N

E
�
π(x)Q(π)

C (σ|N c
x
)
�� ξ= σ+δx

�
f (σ+δx) P1(dσ)

−

∫

N

E
�
Q
(π)
C (σ|N c

x
)
�� ξ= σ+δx

�
E
�
π(x)
�� ξ= σ+δx

�
f (σ+δx) P1(dσ)

����

+

����

∫

N

E
�
Q
(π)
C (σ|N c

x
)
�� ξ= σ+δx

�
E
�
π(x)
�� ξ= σ+δx

�
f (σ+ δx) P1(dσ)

−

∫

N

E
�
Q
(π)
C (σ|N c

x
)
�� ξ= σ
�

f (σ) P1(dσ) ·

∫

N

E
�
π(x)
�� ξ= σ+δx

�
f (σ+δx) P1(dσ)

����

=

����

∫

N

cov
�
π(x),Q(π)

C

�
σ|N c

x

� �� ξ= σ+ δx

�
f (σ+δx) P1(dσ)

����

+

����

∫

N(Aext)

∫

N(Aint)

E
�
Q
(π)
C (̺ext|N c

x
)
�� ξ|Aext

= ̺ext

�
E
�
π(x)
�� ξ|Aint

= ̺int+δx

�

fAext∪Aint
(̺ext+̺int+ δx) P1,Aint

(d̺int) P1,Aext
(d̺ext)

−

∫

N(Aext)

E
�
Q
(π)
C (̺ext|N c

x
)
�� ξ|Aext

= ̺ext

�
fAext
(̺ext) P1,Aext

(d̺ext)

·

∫

N(Aint)

E
�
π(x)
�� ξ|Aint

= ̺int+δx

�
fAint
(̺int+δx) P1,Aint

(d̺int)

����, (3.12)
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where Condition (3.2) was used for the last equality. Note that Q
(π)
C (σ|N c

x
) depends on π only via

π|N c
x
, and does so in a E (N c

x )-measurable way, where E (N c
x ) = σ
�
[p̃ 7→ p̃(x)]; x ∈ N c

x

�
is the

canonical σ-algebra on E(N c
x ) := {p|N c

x
; p ∈ E}.

The first summand on the right hand side of Inequality (3.12) can then be bounded further as
����

∫

N

cov
�
π(x),Q(π)

C

�
σ|N c

x

� �� ξ= σ+δx

�
f (σ+δx) P1(dσ)

����

≤

∫

N

ess sup
h:E(N c

x )→[0,1]

���cov
�
π(x),h(π|N c

x

� �� ξ= σ+δx

���� f (σ+δx) P1(dσ)

=

∫

N

ess sup
h:E(N c

x )→{0,1}

���cov
�
π(x),h(π|N c

x

� �� ξ= σ+δx

���� f (σ+δx) P1(dσ)

≤ γ̆(x),

where the essential suprema are taken over all E (N c
x )-measurable functions with values in [0,1]

and {0,1}, respectively. The third line is obtained by
��cov(X , Y )
��≤ ‖Y ‖L∞
��cov
�
X , sign(Ỹ )
���

≤ 2‖Y ‖L∞max
���cov
�
X , I[Ỹ > 0]
���,
��cov
�
X , I[Ỹ < 0]
���
�

for all random variables X ∈ L1 and Y ∈ L∞, and for Ỹ := E(X |Y )− EX (see [10], Section 1.2,

proof of Lemma 3), where we set X := π(x) and Y := h(π|N c
x
)− 1/2.

For the second summand on the right hand side of Inequality (3.12), we use the notation FC(̺ext) :=

E
�
Q
(π)
C (̺ext|N c

x
)
�� ξ|Aext

= ̺ext

�
and G(̺int+δx) := E

�
π(x)
�� ξ|Aint

= ̺int+δx

�
, and bound it as

����

∫

N(Aext)

∫

N(Aint)

FC(̺ext)G(̺int+δx) f̄ (̺ext,̺int+δx) P1,Aint
(d̺int) P1,Aext

(d̺ext)

����

≤

∫

N(Aint)

G(̺int+δx)

· sup
F :N(Aext)→[0,1]

����

∫

N(Aext)

F(̺ext) f̄ (̺ext,̺int+δx) P1,Aext
(d̺ext)

���� P1,Aint
(d̺int)

=
1

2

∫

N(Aint)

G(̺int+δx)

∫

N(Aext)

�� f̄ (̺ext,̺int+δx)
�� P1,Aext

(d̺ext) P1,Aint
(d̺int),

where the supremum is taken over N (Aext)-measurable functions. The equality is obtained by

setting F0(̺ext) := I
�

f̄ (̺ext,̺int+δx)> 0
�

and noting that F0 : N(Aext)→ [0,1] is measurable and

maximizes the absolute value term after the supremum.

Thus the total estimate for the weak dependence term is

2

∫

X

sup
C∈N (N c

x )

����

∫

C

�
f
(π)
N c

x∪{x}
(̺+δx)− f

(π)
N c

x
(̺)u(π)(x)
�

P1,N c
x
(d̺)

���� α(d x)

≤ 2

∫

X

γ̆(x) α(d x) +

∫

X

β̆(x) α(d x).

(3.13)

Plugging (3.6), (3.7), and (3.13) into Theorem 2.C yields statement (i), and, since |µ(π)| = EΛ(X ),

also statement (ii).
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Proof of Corollary 3.B. We aim at applying Theorem 3.A for R= 0. Clearly Condition (3.1) holds for

any neighborhood structure. By the independence of ξ and π we haveL (π) as a regular conditional

distribution of π given the value of ξ and we see that Condition (3.2) is satisfied, that β̆(x) =

E(π(x))φ̆(x) for almost every x , and that Inequality (3.4) simplifies to (3.5) by Equation (2.4).

Using the representation ξ=
∑V

i=1δSi
from the proof of Lemma 2.B, we have furthermore that

EΛ(A) = E

�
E

� V∑

i=1

π(Si)I[Si ∈ A]

���� ξ
��

= E

� V∑

i=1

E
�
π(Si)
�� ξ
�

I[Si ∈ A]

�

= E

� V∑

i=1

�
Eπ(x)
���

x=Si
I[Si ∈ A]

�

=

∫

A

Eπ(x) µ1(d x)

for every A∈B , and by the analogous computations that

EΛ[2](B) =

∫

B

E
�
π(x)π( x̃)
�
µ[2]
�
d(x , x̃)
�

for every B ∈ B2. Based on these results we can apply Theorem 3.A and obtain the upper bounds

stated.

Proof of Corollary 3.C. We apply Corollary 3.B for the point process ξ̃ := ξ|X , which has hereditary

density f̃ := fX with respect to Po(LebD|X ) and expectation measure µ̃ = m1LebD|X , where all of

these objects are interpreted as living on X (as opposed to living on Y and being trivial on Y \X ).

Consider as neighborhood structure (Ñx)x∈X given by Ñx := Nx ∩X , write Ñ c
x for the complement

of Ñx inX , and set N(X ) := {(x , y) ∈ X ×Y ; y ∈ Nx} and Ñ(X ) := {(x , y) ∈ X 2; y ∈ Ñx}, which

are measurable by the fact that the Nx are translated copies of a single measurable set. Denoting

the conditional density based on f̃ by g̃, we obtain for the φ̆(x)-term

E
�� g̃(x; ξ̃|Ñ c

x
)−m1

��

=

∫

N(Ñ c
x )

�� f̃Ñ c
x∪{x}

(̺+δx)− f̃Ñ c
x
(̺)m1

�� P1,Ñ c
x
(d̺)

=

∫

N(X\Nx )

�� f(X\Nx )∪{x}
(̺+δx)− fX\Nx

(̺)m1

�� P1,X\Nx
(d̺)

=

∫

N(X\Nx )

����

∫

N(Mx\(X∪Nx ))

�
f(Mx\Nx )∪{x}

(̺+ ˜̺ +δx)

− f(Mx\Nx )
(̺+ ˜̺)m1

�
P1,Mx\(X∪Nx )

(d ˜̺)

���� P1,X\Nx
(d̺)

≤

∫

N(Mx\Nx )

�� f(Mx\Nx )∪{x}
(σ+δx)− fMx\Nx

(σ)m1

�� P1,Mx\Nx
(dσ)

= E
��g ′(x;ξ|Mx\Nx

)−m1

��,

(3.14)
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and thus by Corollary 3.B that

dT V

�
L (ξp|X ), Po(p m1LebD|X )

�

= dT V

�
L (ξ̃p), Po(µ̃(p))

�

≤ p2

∫

X

µ1(Ñx) µ1(d x) + p2µ[2](Ñ(X )) + p

∫

X

E
�� g̃(x; ξ̃|Ñ c

x
)−m1

�� d x + 0

≤ p2

∫

X

µ1(Nx) µ1(d x) + p2µ[2](N(X )) + p

∫

X

E
��g ′(x;ξ|Mx\Nx

)−m1

�� d x .

Statement (i) follows from this by noting that µ[2](N(X )) = m2
1|X |K (N) (see Equation (4.5)) and

using the various spatial homogeneities that were required. Statement (ii) is obtained likewise,

using additionally that EΛ(X ) = p m1|X |.

Proof of Corollary 3.E. From the definition it is clear that the total variation metric is not affected by

changes of scale of the state space, so that

dT V

�
L (ξπκ

−1
T ), Po(µ(π)κ−1

T )
�
= dT V

�
L (ξπ), Po(µ(π))

�
. (3.15)

The definition of d1 and the inequality required for d0 imply that d1(̺1κ
−1
T ,̺2κ

−1
T )≤ d1(̺1,̺2) for

all ̺1,̺2 ∈N, whence, by Equation (2.3),

d2

�
L (ξπκ

−1
T ), Po(µ(π)κ−1

T )
�
≤ d2

�
L (ξπ), Po(µ(π))

�
. (3.16)

With Equations (3.15) and (3.16) it is seen that all the results from Theorem 3.A to Corollary 3.C

remain correct if we do the proposed replacements; in particular, the upper bounds stated follow

immediately from Theorem 3.A.

4 Applications

We study two applications for a fairly general point process ξ here. The first one concerns the

thinning of ξ by covering it with an independent Boolean model. This is up to a few technical

adjustments the setting that was used in Section 3.3 of [22]. We present this application in order

to illustrate to what degree the results of the current article improve on the main distance bounds

in [22], and give new insight into the high intensity limit behavior. The second application deals

with a Matérn type I thinning of ξ. We present it as an example where the rather involved β̆ -term

is non-zero and can be reasonably simplified. The bound is compared to a result in [26], where the

same thinning was considered for the special case that ξ is a Poisson process.

In this whole section we consider a metric d̃0 on RD that is generated by a norm, and use notation

of the form B(x , r) for closed d̃0-balls in RD and Bc(x , r) for their complements. Write furthermore

BX (x , r) := B(x , r) ∩X for the corresponding balls in X and B c
X (x , r) := X \ BX (x , r). We call

the subset X of RD admissible if it is compact, of positive volume, and has a boundary ∂X that is

of volume zero.

Remark 4.A (d̃0-balls). It can be shown quite easily that, for any symmetric convex body, i.e. any

compact convex set C ⊂ RD that contains the origin as an interior point and is symmetric with
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respect to it, there is a norm in RD whose unit ball B(0,1) is C . Thus the sets B(Yi,Ri) which the

Boolean model is composed of in the first application (see Equation (4.1)) and the “competition

sets” B(s, r) in the second application (see Equation (4.9)) are shifted and scaled versions of an

abitrary symmetric convex body.

4.1 Thinning by covering with an independent Boolean model

The details for this application are as follows.

◊ Model Setting 1. Suppose thatX ⊂ RD is admissible and that ξ is a point process on X which has

a density f with respect to P1 := Po(LebD|X ) and finite expectation measure µ = µ1 with density

u. Let q ∈ [0,1], and take Ξ to be a stationary Boolean model (see [25], Section 3.1) on RD whose

grains are d̃0-balls of random but essentially bounded radius, denoting by l1 > 0 the intensity of the

germ process and by Ri ∈ L∞ the radii of the grains (which are i.i.d.). This means that Ξ takes the

form

Ξ =

∞⋃

i=1

B(Yi ,Ri), (4.1)

where Yi are the points of a Po(l1LebD)-process that is independent of (Ri)i∈N. Assume furthermore

that ξ and Ξ are independent, and define a retention field by π(ω, x) := q I[x 6∈ Ξ(ω)] for ω ∈ Ω

and x ∈ X . Thinning with respect to π corresponds to deleting all the points that are covered by Ξ,

while retaining uncovered points independently of one another with probability q. ◊

We aim at applying Corollary 3.B in this setting. Assume without loss of generality that P[R1 >

0] > 0 (otherwise Proposition 4.B below is easily checked directly), and remove from Ξ(ω) ∩ X

any lower-dimensional parts, stemming either from balls with radius zero or from balls that only

just touch X from the outside, by taking the closure of its interior in RD. Note that this does not

alter the distribution of the obtained thinning, because only a set of volume zero is removed in this

way and because ξ and π are independent. As a consequence of Proposition A.E(iv), where Y =X

and Σ = QD ∩X , we obtain then that π has an evaluable path space. Let Nx := BX (x , r̄) for some

r̄ ≥ 2‖R1‖L∞ and every x ∈ X , which implies independence of π(x) and π|N c
x

and hence that we

can choose γ̆ ≡ 0 in Inequality (3.5). We set furthermore r := ‖R1‖LD
, so that rD = E(RD

1 ). By the

fact that the capacity functional TΞ of the Boolean model Ξ is given by

TΞ(C) := P[Ξ∩ C 6= ;] = 1− exp
�
−l1E
�
LebD(B(0,R1) + C)

��

for any compact set C ⊂ RD (see [25], Equation (3.1.2)), we obtain for the expectations in the

upper bound of Corollary 3.B

Eπ(x) = q
�
1− TΞ({x})
�
= qe−l1E|B(0,R1)| (4.2)

and

E
�
π(x)π( x̃)
�
= q2�1− TΞ({x , x̃})

�
= q2e−l1E|B(0,R1)∪B( x̃−x ,R1)|. (4.3)

As earlier, we use absolute value bars for a measurable subset of RD to denote its Lebesgue mass.

Defining αD := |B(0,1)| and b : RD → [0,1] by b(y) := E|B(0,R1) \B(y,R1)|
�
E|B(0,R1)|, we then

have the following result.
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Proposition 4.B. Under Model Setting 1 laid down above and letting r̄ ≥ 2‖R1‖L∞ , r := ‖R1‖LD
, and

Nr̄(X ) := {(x , x̃) ∈ X 2; d̃0(x , x̃)≤ r̄}, we obtain that

dT V

�
L (ξπ), Po(µ(π))

�
≤ q2e−2l1αD rD

µ2
1

�
Nr̄(X )
�

+ q2

∫

Nr̄ (X )

e−l1(1+b( x̃−x))αD rD

µ[2]
�
d(x , x̃)
�

+ 2qe−l1αD rD

|X |β̆
(sup)
r̄ ,

where µ(π) = qe−l1αD rD

µ1 and

β̆
(sup)
r̄ := sup

x∈X

sup
C∈N (B c

X (x ,r̄))

����

∫

C

�
fB c
X (x ,r̄)∪{x}(̺+δx)− fB c

X (x ,r̄)(̺)u(x)
�

P1,B c
X (x ,r̄)(d̺)

����. (4.4)

Remark 4.C. Under Assumption 1 made for Proposition 3.G in [22], the above estimate can be

bounded by const ·
�

r̄D|X |q2e−l1αD rD

+ |X |qe−l1αD rD

β̆
(sup)
r̄

�
, which makes it somewhat better than

the one in Proposition 3.G (if we accept β̆
(sup)
r̄ as a natural substitute for β̆ (ind)(m) in [22] and apply

Equation (3.15)), also since the result is formulated in the stronger dT V -metric instead of d2.

However, the main point worth noting here is that the derivation above is considerably simpler and

more elegant than the one for Proposition 3.6, because we do not have to worry about covering

discretization cuboids. For the same reason we are easily able to work with balls that are based on

other metrics than the Euclidean one and can write down the explicit constants in the upper bound.

Remark 4.D (Generalizations of the Boolean model used). By Remark 4.A above, Proposition 4.B

allows statements about Boolean models of randomly scaled symmetric convex bodies of any fixed

shape. More general Boolean models can be treated quite easily, in principle up to stationary Boolean

models Ξ =
⋃∞

i=1(Yi + Ξi) with arbitrary random compact sets Ξi (always i.i.d.), as long as it is

ensured that there is an r̄ ∈ R+ such that Ξ1 ⊂ B(0, r̄/2) almost surely (otherwise we cannot set

γ̆ ≡ 0). We then choose neighborhoods of the form Nx = x + N , where N contains the origin,

is compact, and satisfies P[{0} ∩ (y + Ξ1) 6= ;, N c ∩ (y + Ξ1) 6= ;] = 0 for every y ∈ RD (e.g.

N = B(0, r̄)). An upper bound in the spirit of Proposition 4.B follows by applying Equation (3.1.2)

of [25] in a similar way as for Equations (4.2) and (4.3) above.

If we assume that ξ is second order stationary (i.e. the restriction to X of a second order stationary

point process ζ on RD), the rather complex second factorial moment measure can be replaced by a

term involving the corresponding reduced moment measure. Second order stationarity means that

the second moment measure µ2 of ζ is locally finite (µ2(B) < ∞ for every bounded measurable

B ⊂ RD) and invariant under translations along the diagonal {(x , x); x ∈ RD} (see [8], Definition

10.4.I), and implies stationarity of the expectation measure, so that µ1 = m1LebD for some m1 ∈ R+.

It follows from Lemma 10.4.III in [8] that there is a measureK on RD (unique if m1 > 0) such that

∫

RD×RD

h(x , x̃) µ[2]
�
d(x , x̃)
�
= m2

1

∫

RD

∫

RD

h(x , x + y)K (d y) d x (4.5)
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for every measurable function h :X 2→ R+. Hence
∫

Nr̄ (X )

e−l1(1+b( x̃−x))αD rD

µ[2]
�
d(x , x̃)
�
= m2

1

∫

X

∫

BX−x (0,r̄)

e−l1[1+b(y)]αD rD

K (d y) d x

≤ m2
1|X |

∫

B(0,r̄)

e−l1[1+b(y)]αD rD

K (d y).

(4.6)

If ζ is stationary and m1 > 0, it can be seen by Equation (4.10) (see [25], beginning of Section 4.5)

that the measure K is given as

K (B) =
1

m1

Eζ!
0(B) (4.7)

for every Borel set B ⊂ RD, where ζ!
0 denotes the reduced Palm process of ζ given a point in 0 (see

[13], Lemma 10.2 and Section 12.3), so that Eζ!
0(B) can be interpreted as the expected number

of points of ζ in B given there is a point in 0. The measure K is usually referred to as second

reduced moment measure, although some authors prefer defining it as m1 (or even m2
1) times the

above measure. Set furthermore K(r̃) :=K
�
B(0, r̃)
�

for every r̃ ∈ R+, which, if d̃0 is the Euclidean

metric, defines Ripley’s K-function.

We examine the situation of Corollary 3.H in [22], waiving two technical conditions that were

needed there, but insisting on second-order stationarity in order to bring the second summand in

the upper bound in a nicer form.

◊ Model Setting 1′. Suppose that J ⊂ RD is admissible, that n ∈ N, and that X = Xn = κ
−1
n (J),

where κn(x) = (1/n)x for every x ∈ RD. Let ξ be a second order stationary point process on X

which has density f with respect to P1 = Po(LebD|X ) and expectation measure µ= µ1 = m1LebD|X
for some m1 ∈ R+. We assume that ξ is the restriction to X of one and the same point process ζ on

RD for every n, and suppress the index n in any quantities that depend on n only by virtue of this

restriction. Choose a sequence (qn)n∈N with 1/nD ≤ qn ≤ 1, and a sequence (Ξn)n∈N of stationary

Boolean models on RD of d̃0-balls with radii Rn,i ∈ L∞ (i.i.d. for every n) and germ process intensity

l1 > 0 such that

rn :=


Rn,1




LD
=
� 1

l1αD

log(qnnD)
�1/D

. (4.8)

Assume that ξ and Ξn are independent for every n ∈ N, and define retention fields by πn(ω, x) :=

qnI[x 6∈ Ξn(ω)] for ω ∈ Ω and x ∈ X . Let furthermore r̄n ≥ 2‖Rn,1‖L∞ , and note that µ(π)κ−1
n =

1

nDµ1κ
−1
n = m1LebD|J . ◊

By (4.6) and since dT V

�
L (ξπn

κ−1
n ), Po(m1LebD|J )

�
= dT V

�
L (ξπn

), Po(
m1

nD LebD|X )
�

by Equa-

tion (3.15), we have the following consequence of Proposition 4.B.

Corollary 4.E. Under Model Setting 1′ we obtain that

dT V

�
L (ξπn

κ−1
n ), Po(m1LebD|J )

�

≤ m2
1|J |αD

� r̄n

n

�D
+m2

1|J |qn

∫

B(0,r̄n)

(qnnD)−b(y) K (d y) + 2|J |β̆
(sup)
r̄n

≤ |J |

�
m2

1αD

� r̄n

n

�D
+m2

1qnK(r̄n) + 2β̆
(sup)
r̄n

�
,

where β̆
(sup)
r̄ was defined in Equation (4.4).
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Remark 4.F. Note that Assumption 1b) in [22] implies that K(r̄n) = O(r̄D
n ) for n→∞. Compared

with the corresponding result in [22] (Corollary 3.H) we therefore have again somewhat better

bounds with explicit constants that were obtained in a more direct way.

A rather nice result can be derived from Corollary 4.E in the Poisson case.

Corollary 4.G. Under Model Setting 1′ and the additional assumptions that ζ is a Poisson process with

expectation measure m1LebD, that qn = 1 for every n ∈ N, that d̃0 is the Euclidean metric, and that

‖Rn,1‖L∞ = O(rn) for n→∞, we have

dT V

�
L (ξπn

κ−1
n ), Po(m1LebD|J )

�
= O
�
(log n)−(D−1)� for n→∞.

Remark 4.H. The following (partly heuristical) arguments suggest that the order claimed in Corol-

lary 4.G is sharp for m1 > 0. Assume for simplicity that J = [0,1]D.

For D = 1 it is readily understood that ξπn
κ−1

n cannot converge in distribution to a Poisson process.

The reason is that the uncovered part of R in the domain of the contraction, i.e. R \Ξn, is made up

of intervals whose lengths are exponentially distributed with mean 1/l1 (no matter how the Rn,i are

distributed), so that the probability of having two or more points within the first uncovered interval

that lies completely in R+ does not depend on n. Hence we have a constant positive probability that

the first two points of the thinned contracted point process in R+ are within distance 1/(l1n), say,

which cannot be true for a sequence that converges towards a homogeneous Poisson process.

For D ≥ 2 the situation is more complicated. By Theorem 1 in [11] (compare also statement (ii) on

page 244), it can be seen that the uncovered “chinks” of Ξn in the domain of the contraction have

a volume that is of order 1
��

log(nD)
�D−1

for large n, so that the argument of the constant-sized

chinks is not valid for general D. Heuristically, the order of the chink volumes together with the

fact that the number of chinks in a bounded measurable set is Poisson distributed (see [11], p. 244,

statement (i); note the slightly different scaling) suggest that we can think of the process ξπn
κ−1

n for

n large as a compound Poisson process
∑Vn

i=1 Z
(n)

i
δ

S
(n)

i

with intensity of the Poisson process
∑Vn

i=1δS
(n)

i

of order
�
log(nD)
�D−1

and i.i.d. clump sizes Z
(n)

i
, for which P[Z

(n)

1 ≥ 1] is of order
�
log(nD)
�−(D−1)

and P[Z
(n)

1 ≥ 2] is of order
�
log(nD)
�−2(D−1)

(by the fact that ξ is a Poisson process). It is easily

seen that such a process converges towards a homogeneous Poisson process η as n→∞ by noting

that dT V

�
L (
∑Vn

i=1 Z
(n)

i
δ

S
(n)

i

),L (
∑Vn

i=1 I[Z
(n)

i
≥ 1]δ

S
(n)

i

)
�
→ 0, and
∑Vn

i=1 I[Z
(n)

i
≥ 1]δ

S
(n)

i

D
−→ η, but

that its convergence rate in the total variation metric is bounded from below by P[∃i ∈ {1, . . . , Vn} :

Z
(n)

i
≥ 2], which is of order

�
log(nD)
�−(D−1)

or, what is the same, order (log n)−(D−1).

Proof of Corollary 4.G. Our starting point is the first upper bound in Corollary 4.E, where we set

r̄n := 2‖Rn,1‖L∞ . Since ζ is Poisson, the third summand is zero, whereas the first summand is clearly

O
�
(log n)−(D−1)
�
. We investigate the integral in the second summand. We have K = LebD by

Equation (4.7) in combination with L (ζ!
0) =L (ζ) (see [17], Proposition C.2). Define b̃ : [0,2]→

[0,1] by b̃(u) = |B(0,1)\B(y, 1)|
�
|B(0,1)|, where y is an arbitrary element of RD with |y |= u, and

note that b(y)≥ b̃(2|y |/r̄n) for y ∈ B(0, r̄n). Since d̃0 is the Euclidean metric, it can be shown that

there is a constant κ > 0 such that b̃(u) ≥ κ
2
u for every u ∈ [0,2]. Writing ωD for the surface area
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of the unit sphere in RD, we then can bound the required integral as

∫

B(0,r̄n)

(qnnD)−b(y) K (d y)≤

∫

B(0,r̄n)

(nD)−κ|y|/r̄n LebD(d y)

=
ωD

κD
r̄D

n

∫ κ

0

(nD)−r rD−1 dr

≤
(D− 1)!ωD

κD
r̄D

n

�
log(nD)
�−D
(1− n−κD),

where the last inequality follows from integration by parts. Since r̄n = O
�
(log(nD))1/D
�
, we thus

obtain that also the second summand in the first upper bound of Corollary 4.E is O
�
(log n)−(D−1)
�
.

4.2 Thinning by Matérn type I competition

Again we base our retention field on a random closed set Ξ, but this time we choose a situation

where Ξ is completely determined by the point process ξ. The resulting procedure is the one used

for the construction of the Matérn type I hard core process, in which a point is deleted whenever

there is any other point within a fixed distance r. The details are as follows.

◊Model Setting 2. Suppose that r > 0 and thatX ,X ′ ⊂ RD are two compact sets, whereX is admis-

sible and B(X , r) ⊂ X ′. Let furthermore ξ be a stationary point process on X ′ (i.e. the restriction

of a stationary point process ζ on RD) which has density f with respect to P1 := Po(LebD|X ′) and

a finite expectation measure µ = µ1 = m1LebD|X ′ for some m1 ∈ R+. By defining ξ on X ′, but

considering the thinned point process only on X , we avoid boundary effects, which would lead to

more complicated notation because of spatial inhomogeneities in the thinned process.

In order to have a Ξ whose realizations are closed sets that are jointly separable, we proceed as

follows. Write ξ as
∑V

i=1δSi
, where V and Si are σ(ξ)-measurable random elements with values in

Z+ and X ′, respectively, and denote by Ti the d̃0-distance between Si and its nearest neighbor. Let

then

Bi(ω) :=
�

y ∈ X ′; 1

3
min(Ti(ω), r)≤ d̃0(y,Si(ω))≤ r

	

for every ω ∈ Ω, and set

Ξ :=

V⋃

i=1

Bi .

Choose q ∈ [0,1] and define a retention field on X ′ by setting π(ω, x) := q I[x 6∈ Ξ(ω)] if ω ∈ Ω

and x ∈ X and π(ω, x) := 0 if ω ∈ Ω and x ∈ X ′ \X . Note that

π(ω, s) = qI
�

s ∈ X ,ξ(ω)(Ḃ(s, r)) = 0
�

(4.9)

forω ∈ Ω and s ∈ ξ(ω), where Ḃ(x , r) := B(x , r)\{x} for every x ∈ X . Hence, onX , thinning with

respect to π corresponds to deleting all those points that see any other point of the process within

distance r (regardless whether this point is itself deleted or not), while retaining points that do not

have this property independently of one another with probability q. ◊
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This time, we aim at applying Theorem 3.A for the state space X ′. By Proposition A.E(iv), π has an

evaluable path space (after removing from Ξ(ω)∩X possible lower-dimensional parts by taking the

closure of its interior in RD, which has no influence on the distribution of the resulting thinning).

Since π is completely determined by ξ we have the corresponding Dirac measure as a regular

conditional distribution of π given the value of ξ. Condition (3.2) is satisfied for a catchment radius

of R = r, so that Nx := BX ′(x , r̄) for some r̄ ≥ 2r is a legitimate choice for the neighborhoods of

strong dependence. We can furthermore choose γ̆≡ 0 in Inequality (3.4).

Write ξ!
x for the reduced Palm process of ξ given a point in x , and ξ!

x , x̃ for the second-order reduced

Palm process of ξ given points in x and x̃ (see [13], Section 12.3, pp. 109 & 110; note that ν ′n = µ[n]
for obtaining the distributions of the n-th order reduced Palm processes). The first and second order

Campbell-Mecke equations state that

E

�∫

X ′
h(x ,ξ−δx) ξ(d x)

�
=

∫

X ′
Eh(x ,ξ!

x) µ1(d x) (4.10)

and

E

�∫

X ′2
h(x , x̃ ,ξ−δx −δ x̃) ξ

[2]�d(x , x̃)
��
=

∫

X ′2
Eh(x , x̃ ,ξ!

x , x̃) µ[2]
�
d(x , x̃)
�

(4.11)

for non-negative measurable functions h. These equations follow immediately by standard extension

arguments from the defining equations of Palm processes (see e.g. [17], Equation (C.4), for the first

one). We then obtain by Equation (4.9) that

EΛ(A) = E

�∫

A∩X

qI
�
ξ(Ḃ(x , r)) = 0
�
ξ(d x)

�

= q

∫

A∩X

P
�
ξ!

x

�
B(x , r)
�
= 0
�
µ1(d x) = m1q
�
1− G(r)
�
|A∩X |

(4.12)

for any A ∈ B =B(X ′), where G : R+ → [0,1], G(r̃) := P
�
ζ!

0

�
B(0, r̃)
�
≥ 1
�
= P
�
ζ!

x

�
B(x , r̃)
�
≥

1
�

for arbitrary x ∈ RD, denotes the nearest neighbor function of ζ, i.e. the distribution function

of the distance from a “typical point” to its nearest neighbor, which is a frequently used tool in

spatial statistics; see e.g. [1] (Section 3.4), [9], or [17]. In a very similar way, using in addition

Equation (4.5) to obtain the last equality, we have with Nr̄(X
′) := {(x , x̃) ∈ X ′

2
; d̃0(x , x̃)≤ r̄} and

Nr̄(X ) := Nr̄(X
′)∩X 2 that

EΛ[2]
�
Nr̄(X

′)
�
= E

�∫

Nr̄ (X )

q2I
�
ξ(Ḃ(x , r)) = 0
�

I
�
ξ(Ḃ( x̃ , r)) = 0
�
ξ[2]
�
d(x , x̃)
��

= q2

∫

Nr̄ (X )

I
�

d̃0(x , x̃)> r
�
P
�
ξ!

x , x̃

�
B(x , r)∪B( x̃ , r)

�
= 0
�
µ[2]
�
d(x , x̃)
�

= m2
1q2

∫

X

∫

(B(0,r̄)\B(0,r))∩(X−x)

�
1− G2,y(r)
�
K (d y) d x ,

(4.13)

where G2,y : R+ → [0,1], G2,y(r̃) := P
�
ζ!

0,y

�
B(0, r̃) ∪ B(y, r̃)

�
≥ 1
�
= P
�
ζ!

x ,x+y

�
B(x , r̃) ∪ B(x +

y, r̃)
�
≥ 1
�

for arbitrary x ∈ RD, are the natural two-point analogs of the G-function, with y ∈ RD.
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Finally, the term β̆(x) = β̆r̄(x) is zero for x ∈ X ′ \X , and can be evaluated for x ∈ X as

β̆r̄(x) =

∫

N(B(x ,r))

qI[̺int = 0]

∫

N(B c
X ′
(x ,r̄−r))

�� f̄ (̺ext,̺int+δx)
��

P1,B c
X ′
(x ,r̄−r)(d̺ext) P1,B(x ,r)(d̺int)

= qe−αD rD

∫

N(B c
X ′
(x ,r̄−r))

�� f̄ (̺ext,δx)
�� P1,B c

X ′
(x ,r̄−r)(d̺ext)

= qe−αD rD

E

��� fB(x ,r) |B c
X ′
(x ,r̄−r)(δx ;ξ|B c

X ′
(x ,r̄−r))− fB(x ,r)(δx)

���,

(4.14)

where we set fAint |Aext
(̺int;̺ext) := fAext∪Aint

(̺ext + ̺int)
�

fAext
(̺ext) if fAext

(̺ext) > 0 and

fAint |Aext
(̺int;̺ext) := 0 otherwise.

The expectation in the last line of (4.14) is much simpler than the general expression we have

for β̆ , but is typically still hard to estimate. A more directly applicable estimate, which, however,

is very rough and works only with point processes that are not too extreme in a certain sense, is

given as follows. Choose r̄ := 2r, and assume that f > 0 P1-almost surely. We then obtain with

ηext ∼ P1,B c
X ′
(x ,r) that

β̆(x) =

∫

N(B(x ,r))

qI[̺int = 0]

∫

N(B c
X ′
(x ,r))

�� f̄ (̺ext,̺int+δx)
��

P1,B c
X ′
(x ,r)(d̺ext) P1,B(x ,r)(d̺int)

= q

∫

N

I[σ|B(x ,r) = 0]

��� f (σ|B c
X ′
(x ,r)+ δx)− fB c

X ′
(x ,r)(σ|B c

X ′
(x ,r)) fB(x ,r)(δx)

��� P1(dσ)

= q

∫

N

I[σ(B(x , r)) = 0]

����1−
fB c
X ′
(x ,r)(σ|B c

X ′
(x ,r)) fB(x ,r)(δx)

f (σ|B c
X ′
(x ,r)+δx)

���� f (σ+δx) P1(dσ)

≤ m1q
�
1− G(r)
�




1−

fB c
X ′
(x ,r)(ηext) fB(x ,r)(δx)

f (ηext+ δx)






L∞

(4.15)

for x ∈ X , where we used in the last line that

m1E
�
h(x ,ξ!

x)
�
=

∫

N

h(x ,σ) f (σ+δx) P1(dσ)

for almost every x ∈ X ′ and every non-negative measurable function h, which is a consequence

of the first Campbell-Mecke equation and of Equation (2.7) with Nx = {x}. We assume that the

‖·‖L∞ -term is bounded by a constant M ∈ R+ (that depends neither on r nor on x). Two examples

where this is satisfied are given at the end of this subsection.

Plugging (4.12) to (4.15) into Theorem 3.A(i) and choosing now r̄ := 2r everywhere yields the

following result.

Proposition 4.I. Under Model Setting 2 laid down above, we obtain that

dT V

�
L (ξπ), Po(µ(π))

�
≤ m2

1|X |2
DαDrDq2�1− G(r)

�2

+m2
1|X |q

2

∫

B(0,2r)\B(0,r)

�
1− G2,y(r)
�
K (d y)

+ qe−αD rD

∫

X

E

��� fB(x ,r) |B c
X ′
(x ,r)(δx ;ξ|B c

X ′
(x ,r))− fB(x ,r)(δx)

��� d x ,
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where µ(π) = m1q(1 − G(r))LebD|X . If in addition f > 0 P1-almost surely and the ‖·‖L∞ -term in

Inequality (4.15) is uniformly bounded by M ∈ R+, then the last summand can be estimated further by

m1|X |q
�
1− G(r)
�

M.

Remark 4.J. In order to obtain an integrand that does not depend on x in the last summand of

the above bound, we can either proceed as in Corollary 3.C, applying Inequality (3.14) and as

a consequence replace B c
X ′
(x , r) by Mx \ B(x , r) for bounded “outer neighborhoods” Mx that are

shifted copies of one another and that all contain the set X ′; or we can proceed as in Remark 3.D,

using a Gibbs construction on the whole of RD and as a consequence replace B c
X ′
(x , r) by RD \

B(x , r).

Remark 4.K (Generalizations of the “competition rule”). An equivalent way to describe the Matérn

type I competition rule that lends itself to natural generalizations is as follows: assume that each

point s of the point process ξ has a “required territory” C(s) = B(s, r/2) and competition takes

place (resulting in the deletion of the competing points) whenever two such territories overlap. By

Remark 4.A it is clear that Proposition 4.I allows statements about required territories C(s) = s+ C

where C is an arbitrary symmetric convex body. General compact sets C can be treated in the analog

way. Note in this case that

π(ω, s) = qI
�

s ∈ X , (s+ C)∩
⋃

s̃∈ξ(ω)(s̃+ C) = ;
�

= qI
�

s ∈ X ,ξ(ω)
�
(s+ C + C∗) \ {s}

�
= 0
�

,

for ω ∈ Ω and s ∈ ξ(ω), where C∗ denotes the reflection {−x; x ∈ C} of C . We choose the metric

d̃0 and R ≥ 0 such that B(0,R) ⊃ C + C∗ and furthermore Nx ⊃ B(x , 2R), in order to satisfy Con-

ditions (3.1) and (3.2). Then we can proceed in essentially the same way as for Proposition 4.I,

but finish with a result that is slightly more complicated (because of the “gap” between B(0,R) and

C + C∗). While it would be very interesting to consider i.i.d. random compact sets instead of the

single deterministic set C , it appears to be difficult to obtain useful upper bounds in this case.

A more complex competition rule is used for the Matérn type II thinning and its various general-

izations (see for example [14]). In this variant, not all competing points are deleted, but survival

is determined according to i.i.d. weights assigned to the points. Upper bounds for Poisson process

approximation of thinnings under a traditional Matérn type II competition rule were studied in Sec-

tion 4.2 of [22], using a somewhat different approach. Under the present approach, obtaining useful

bounds for such thinnings based on a global assignment of weights appears to be difficult. What

can be treated much more easily are thinnings based on a pairwise assignment of weights (Thinning

number 1 in [14]).

If ξ is a homogeneous Poisson process and q = 1, then ξπ is the usual Matérn type I hard core

process restricted to X , and the above bound takes especially simple form.

Corollary 4.L. Under Model Setting 2 and the additional assumptions that ζ is a Poisson process and

q = 1, we have

dT V

�
L (ξπ), Po(l1LebD|X )

�
≤ |X |2DαDrD l2

1 +m2
1|X |

∫

B(0,2r)\B(0,r)

e−m1|B(0,r)∪B(y,r)| d y

≤ |X |2DαDrD l2
1(1+ e

1
2

m1αD rD

),

where l1 := m1e−m1αD rD

.

1107



Proof. The first inequality follows directly from Propositon 4.I by the fact that ζ is a Poisson process,

and hence the last summand is zero and the one- and two-point G-functions can be easily computed

by L (ζ!
0) = L (ζ) and L (ζ!

0,y) = L (ζ) (see [17], Proposition C.2, for the one-point case; the

two-point case is proved in the analogous way).

The second inequality is a consequence of |B(0, r) ∪ B(y, r)| ≥ 3

2
|B(0, r)| for |y | ≥ r. The latter

is due to the fact that all the d̃0-balls of fixed radius are translated copies of one another that are

convex and symmetric with respect to their centers, and can be seen as follows. The symmetry

implies that any hyperplane through the origin divides the volume of B(0, r) in half, while the

convexity implies the existence of a supporting hyperplane Hx at every point x of the boundary

of B(0, r), which means that Hx contains x and that B(0, r) lies completely in one of the closed

half-spaces defined by Hx . Thus Hx − x and Hx divide RD into three parts, each of which contains

half of B(0, r) or B(x , r), whence we obtain that |B(0, r)∪B(x , r)| ≥ 3

2
|B(0, r)| for |x | = r. Clearly,

|B(0, r)∪B(y, r)| ≥ |B(0, r)∪B(x , r)| if |y | ≥ |x |.

Remark 4.M. In Theorem 6.6 of [26] a situation very similar to the one in Corollary 4.L was

considered in the special case that we choose d̃0 to be the Euclidean metric. The only substantial

difference is that in [26] the Poisson process ξ is defined on X instead of the superset X ′, which

leads to less competition near the boundary of X and consequently to a non-stationary thinned

process. However, this difference enters the upper bounds in [26] only insofar as balls are always

restricted to X instead of being balls in RD.

Disregarding these boundary effects, we see that the estimates in Corollary 4.L are slightly better

than the one for the total variation in [26], because our second estimate above is bounded by

2|X |m1αD(2r)D l1, which is exactly the estimate in [26] if we adapt it to our notation.

The main reason for formulating Corollary 4.L, however, was not to improve on this earlier bound,

but to demonstrate that Proposition 4.I, which holds for a much greater class of point processes,

provides a reasonable estimate in the special case of a Poisson process.

We end this subsection by giving two classes of point processes for which the additional boundedness

condition in Proposition 4.I is satisfied.

Example 1. Consider a point process density of the form f (̺) = λ|̺| f̃ (̺) for a function f̃ that is

bounded and bounded away from zero. One particular instance is the density of the area-interaction

process, which is given by

f (̺) := κλ|̺|γ−Ar̃ (̺)

for every ̺ ∈ N = N(X ′), where Ar̃(̺) := LebD
�⋃

s∈̺ BX ′(s, r̃)
�

and λ,γ, r̃ > 0 are parameters

while κ > 0 is a normalizing constant. The parameter γ governs the type (repulsive or attractive)

and the strength of interaction, whereas r̃ and λ control the range of the interaction and the intensity

of the point process, respectively. For more details on area-interaction processes see Example 6.5 in

[17].

Example 2 (Strauss process). Consider the Strauss process with range r̃ ∈ [0, r] and interaction

strength parameter γ ∈ (0,1] (see [17], Section 6.2.2). This process has a density given by

f (̺) := κλ|̺|γcr̃ (̺)

for every ̺ ∈ N, where cr̃(̺) :=
∑

s,s̃∈̺,s 6=s̃ I[d̃0(s, s̃) ≤ r̃] counts the pairs of points that lie within

distance r̃ of one another, λ > 0 is an intensity parameter, and κ > 0 is a normalizing constant.
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Then, for x ∈ X and σext ∈N
�
B c
X ′
(x , r)
�
,

fB c
X ′
(x ,r)(σext) fB(x ,r)(δx)

f (σext+δx)

≤
1

κλ|σext|+1γcr̃ (σext)

∫

N(B(x ,r))

κλ|σext|+|̺int|γcr̃ (σext) P1,B(x ,r)(d̺int)

·

∫

N(B c
X ′
(x ,r))

κλ|̺ext|+1 P1,B c
X ′
(x ,r)(d̺ext)

= κ

∫

N(B(x ,r))

∫

N(B c
X ′
(x ,r))

λ|̺int|λ|̺ext| P1,B c
X ′
(x ,r)(d̺ext) P1,B(x ,r)(d̺int)

= κ

∫

N

λ|σ| P1(dσ) = κeλ−1,

where we used for the inequality that cr̃(σ+ ̺) ≥ cr̃(σ) for all ̺,σ ∈ N and cr̃(σ+ δx) = cr̃(σ)

for σ ∈ N and x ∈ X with σ(BX ′(x , r̃)) = 0. Thus, M may be chosen to be max(1,κeλ−1 − 1).

Although in most cases κ cannot be computed explicitly, it is easy to find reasonable upper bounds.

Appendix

In what follows we formulate and prove some of the more technical results needed in the main part

of this article.

A.1 Density formulae used for Theorem 2.C

Proposition A.A. For a point process ξ on X with density f with respect to P1 and finite expectation

measure, and for a neighborhood structure (Nx)x∈X that satisfies Condition (2.6), we have

E

�∫

X

h(x ,ξ|N c
x
) ξ(d x)

�
=

∫

X

∫

N(N c
x )

h(x ,̺) fN c
x∪{x}

(̺+δx) P1,N c
x
(d̺) α(d x)

for every non-negative or bounded measurable function h :X ×N→ R.

Corollary A.B (Generalized Nguyen-Zessin formula on compact spaces). Suppose that the conditions

of Proposition A.A hold and that f is hereditary. We then have

E

�∫

X

h(x ,ξ|N c
x
) ξ(d x)

�
=

∫

X

E
�
h(x ,ξ|N c

x
)g(x ,ξ|N c

x
)
�
α(d x)

for every non-negative or bounded measurable function h : X ×N → R, where g is given in Equa-

tion (2.9).

Remark A.C. Note that the statement of Corollary A.B is wrong in the case Nx = {x} for all x ∈ X

if f is not hereditary and P[ξ 6= 0] > 0. As a counterexample consider the process that scatters

a fixed number n ≥ 1 of points uniformly over X (cf. [8], Example 14.2(a)). This process has a
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density given by f (̺) = eα(X ) n!

α(X )n
I[|̺| = n] and hence satisfies g(x ,̺) = 0 for all x ∈ X and

̺ ∈ N, which makes the right hand side in Corollary A.B zero for every function h, whereas, with

h(x ,̺)≡ 1, the left hand side is equal to Eξ(X )> 0.

Since the corollary does not hold generally, its use in the proofs of Theorem 2.4 and 3.6 of [2] and in

the proof of Theorem 2.3 of [7] is not justified unless an additional condition (such as hereditarity)

is imposed.

Proof of Proposition A.A. We proof the statement for non-negative h; the statement for bounded h

follows in the usual way by decomposing h into its positive and negative parts. The Slivnyak-Mecke

theorem (see [17], Theorem 3.2, for the special case X ⊂ RD, and [15], Section 3, for the result on

a general measurable space X ) states that, for η ∼ P1 and measurable h̃ :X ×N→ R+,

E

�∫

X

h̃(x ,η−δx) η(d x)

�
=

∫

X

Eh̃(x ,η) α(d x). (A.1)

Hence, setting h̃(x ,σ) := h(x ,σ|N c
x
) f (σ+δx), we obtain

∫

X

∫

N(N c
x )

h(x ,̺) fN c
x∪{x}

(̺+δx) P1,N c
x
(d̺) α(d x)

=

∫

X

∫

N

h(x ,σ|N c
x
) f (σ+δx) P1(dσ) α(d x)

=

∫

N

∫

X

h(x ,σ|N c
x
) f (σ) σ(d x) P1(dσ)

= E

�∫

X

h(x ,ξ|N c
x
) ξ(d x)

�
.

Proof of Corollary A.B. The statement follows immediately from Proposition A.A, using that

fN c
x∪{x}

(̺+δx) = g(x ,̺) fN c
x
(̺) for every x ∈ X and every ̺ ∈N(N c

x ).

A.2 Density of the thinned process

Let the point process ξ and the random field π be as for the definition of the thinning in Subsec-

tion 2.2. We assume additionally, as in Section 3, that all the realizations of π lie in an evaluable

path space E ⊂ [0,1]D and that there is a regular conditional distribution of π given the value of

ξ (see Appendix A.3). It is essential for the construction below that we use the same such distribu-

tion throughout (i.e. without changing it in between on Pξ−1-null sets), but insignificant, of course,

which one we use.

Set then

q(̺ |σ) := E

�∏

s∈̺

π(s)
∏

s̃∈σ\̺

�
1−π(s̃)
�
���� ξ= σ
�

for almost every σ ∈ N and for ̺ ⊂ σ. It can be easily seen that the mapping
�
N2 × E →

[0,1], (̺, ˜̺, p) 7→
∏

s∈̺ p(s)
∏

s̃∈ ˜̺

�
1−p(s̃)
��

isN 2⊗E -measurable, whence we obtain that q(̺ |σ)

is well-defined and that ϕ : N2→ [0,1], (̺, ˜̺) 7→ q(̺ |̺+ ˜̺
�

is measurable.
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Lemma A.D. A density of the thinned process ξπ with respect to P1 is given by

f (π)(̺) := eα(X )
∫

N

q(̺ |̺+ ˜̺) f (̺+ ˜̺) P1(d ˜̺)

for almost every ̺ ∈N.

Proof. The well-definedness and the measurability of f (π) follow from the measurability of ϕ defined

above.

Consider two independent Poisson processes η, η̃ ∼ P1. Take furthermore χ ∼ P2 and let χ1/2 be a

thinning of χ with retention function p ≡ 1/2, which corresponds to picking a subset of the points

of χ uniformly at random. Note that (η, η̃)
D
= (χ1/2,χ \χ1/2) (see e.g. [17], Proposition 3.7, for

X ⊂ RD; the proof can easily be adapted for general compact metric spaces).

Integration of the proposed density over an arbitrary set C ∈ N , using Lemma 2.A for the fifth line,

yields

∫

C

f (π)(̺) P1(d̺) = eα(X )
∫

C

∫

N

q(̺ |̺+ ˜̺) f (̺+ ˜̺) P1(d ˜̺) P1(d̺)

= eα(X )E
�

I[η ∈ C]q(η |η+ η̃) f (η+ η̃)
�

= eα(X )E
�

I[χ1/2 ∈ C]q(χ1/2 |χ) f (χ)
�

= eα(X )
∫

N

1

2|σ|

∑

̺⊂σ

I[̺ ∈ C]q(̺ |σ) f (σ) P2(dσ)

=

∫

N

∑

̺⊂σ

I[̺ ∈ C]q(̺ |σ) f (σ) P1(dσ)

=

∫

N

E
�
Q
(π)
C (σ)
�� ξ= σ
�

f (σ) P1(dσ)

=

∫

N

P[ξπ ∈ C
�� ξ= σ] f (σ) P1(dσ)

= P[ξπ ∈ C],

(A.2)

where Q
(p)

C (σ) :=
∑
̺⊂σ,̺∈C

�∏
s∈̺ p(s)
��∏

s̃∈σ\̺(1− p(s̃))
�

for every σ ∈ N∗ and every p ∈ E, so

that
�
(p,σ) 7→ Q

(p)

C (σ)
�

is E ⊗N -measurable and Q
(π)
C (ξ) = P[ξπ ∈ C |ξ,π]. From Equation (A.2)

the claim follows.

The proof above yields that

∫

C

f (π)(̺) P1(d̺) =

∫

N

E
�
Q
(π)
C (σ) |ξ= σ
�

f (σ) P1(dσ)
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for every C ∈ N , and hence, by Equation (2.5), that more generally, with A∈B ,
∫

C

f
(π)

A (̺) P1,A(d̺) =

∫

C

∫

N(Ac)

f (π)(̺+ ˜̺) P1,Ac (d ˜̺) P1,A(d̺)

=

∫

eC
f (π)(σ) P1(dσ)

=

∫

N

E
�
Q
(π)
eC (σ)
�� ξ= σ
�

f (σ) P1(dσ)

=

∫

N

E
�
Q
(π)
C (σ|A)
�� ξ= σ
�

f (σ) P1(dσ)

(A.3)

for every C ∈ N (A), where eC := {σ̃ ∈ N; σ̃|A ∈ C}. For the last equality we used that∑
̺⊂σ|Ac

�∏
s∈̺ p(s)
��∏

s̃∈(σ|Ac )\̺(1− p(s̃))
�
= 1.

The various computations in (A.2) remain correct (after the obvious minor modifications) if we add

an extra point to ̺, yielding in the unrestricted case
∫

C

f (π)(̺+δx) P1(d̺) =

∫

N

∑

̺⊂σ

I[̺ ∈ C]q(̺+δx |σ+δx) f (σ+δx) P1(dσ)

=

∫

N

E
�
π(x)Q(π)

C (σ)
�� ξ= σ+ δx

�
f (σ+δx) P1(dσ)

for every C ∈ N , which holds for α-almost every x ∈ X . Hence we obtain in a very similar fashion

as in Equation (A.3) that
∫

C

f
(π)

A∪{x}
(̺+δx) P1,A(d̺) =

∫

N

E
�
π(x)Q(π)

C (σ|A)
�� ξ= σ+δx

�
f (σ+δx) P1(dσ) (A.4)

for every A∈B and every C ∈ N (A), which holds for α-almost every x ∈ X .

A.3 Technical conditions on ξ and π: evaluable path space and regular conditional

distribution

Consider a locally compact, second countable Hausdorff space Y that is equipped with its Borel

σ-algebra B = B(Y ). This is the most common type of space on which general point processes

are defined. Any such space is separable, and a complete metric d̃ can be introduced that generates

its topology. With regard to the main part of this article, Y is usually just our compact state space

X , but it is sometimes useful to consider a natural superset of X (e.g. RD if X ⊂ RD). For sets of

functions Y → [0,1], we introduce the concept of (locally) evaluable path spaces.

Definition. Let E ⊂ [0,1]Y and let E be the canonical σ-algebra on E, which is generated by

the evaluation mappings Ψx : E → [0,1], p 7→ p(x), where x ∈ Y . For U ∈ B set furthermore

E(U) := {p|U ; p ∈ E} and write E (U) for the corresponding σ-algebra generated by ΨU ,x : E(U)→

[0,1], p̃ 7→ p̃(x), where x ∈ U .

(i) Call E an evaluable path space if the mapping Φ : E × Y → [0,1], (p, x) 7→ p(x) is E ⊗B -

measurable.
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(ii) Call E a locally evaluable path space if the mapping ΦU : E(U)× U → [0,1], (p, x) 7→ p(x) is

E (U)⊗BU -measurable for every U ⊂ Y that is open and relatively compact.

It can be easily seen that every locally evaluable path space is also an evaluable path space.

For the main results of this article we assume that π takes values in an evaluable path space and

that there exists a regular conditional distribution of π given the value of ξ. Neither of these

assumptions presents a serious restriction, because they are both naturally satisfied in many practical

applications, and if they are not, we can modify π accordingly (provided it is measurable in the

sense of Subsection 2.2) without changing the distribution of the resulting thinning. To see this let

R be a third of the minimal interpoint distance in ξ, which is positive except on a null set, and let

π̃(ω, x) := π(ω,S(ω)) if there is a point S(ω) of ξ(ω) within distance R(ω) of x and π̃(ω, x) := 0

otherwise. We have as path space E for π the space of all functions p : X → [0,1] that are zero

except on finitely many non-overlapping closed balls of positive radius, on each of which they are

constant. By Proposition A.E(iii) below it can be seen, using the separability of Y , that this is

an evaluable path space. A regular conditional distribution of π̃ given the value of ξ can then be

defined in a very straightforward manner, using the regular conditional distribution of (π(s))s∈σ
given ξ= σ.

Since the above construction looks rather artificial in many situations, we provide a few manageable

conditions under each of which a path space is (locally) evaluable, and hereby substantiate the

statement that an evaluable path space is naturally present in many practical applications. The

proposition below is essentially the “path space version” of Proposition A.D in [22]. Where it was

conveniently possible, we have generalized the conditions from RD
+ to the space Y .

Definition. We call a set E ⊂ [0,1]Y separable from above [or below] if there exists a countable set

Σ ⊂ Y such that for every p ∈ E, every open d̃-ball B ⊂ Y and every y ∈ R we have that p(x) > y

for all x ∈ B ∩Σ implies p(x) > y for all x ∈ B [or p(x) < y for all x ∈ B ∩Σ implies p(x) < y for

all x ∈ B, respectively].

Proposition A.E. A set E ⊂ [0,1]Y is a locally evaluable path space if it satisfies any one of the

following conditions.

(i) Y = RD and there is a closed convex cone A ⊂ RD of positive volume such that every p ∈ E is

continuous from A (see the definition in [22], Appendix A.3);

(ii) Every p ∈ E is lower semicontinuous, and E is separable from above;

(iii) Every p ∈ E is upper semicontinuous, and E is separable from below;

(iv) Every p ∈ E is the indicator of a closed subset of Y , and the family C of these closed subsets is

separable in the sense that the subsets are jointly separable, i.e. there is a countable set Σ ⊂ Y

such that C = C ∩Σ for every C ∈ C , where the bar denotes topological closure.

Proof. (i) This follows with some minor adaptations from Proposition A.D in [22] by letting Ω := E

and defining π to be the identity mapping on Ω, so that π(ω, x) = ω(x) for every ω ∈ Ω and

every x ∈ RD. Proposition A.D(i) in [22] yields then that ΦR : E(R)× R → [0,1], (p, x) 7→ p(x) is

E (R)⊗BR-measurable for every bounded open rectangle R ⊂ RD (it is easy to see that the result

1113



from [22] carries over from RD
+ to RD). The same result for a general bounded open set U instead

of R follows by writing U as a countable union of open rectangles.

(ii) We can essentially reproduce the prove of Proposition A.D(ii) in [22]. Let y ∈ [0,1) and U ⊂ Y

be open and relatively compact. We show that Φ−1
U

�
(y,∞)
�
∈ E (U)⊗BU . Choose a separant Σ as

in the definition of the separability from above and set G := {B
◦

(x , 1/n) ⊂ U; x ∈ Σ′, n ∈ N}, where

B
◦

(x , 1/n) denotes the open d̃-ball with center x and radius 1/n, and Σ′ is an arbitrary countable

dense subset of Y . Noting that p−1
�
(y,∞)
�
∩ U is open by the lower semicontinuity of p ∈ E, we

have

Φ−1
U

�
(y,∞)
�
=
⋃

B∈G

� ⋂

x∈B∩Σ

Ψ−1
U ,x

�
(y,∞)
��
× B ∈ E (U)⊗BU .

(iii) Apply (ii) to E′ := {1− p ; p ∈ E}.

(iv) We apply (iii). It is evident that every p ∈ E is upper semicontinuous. Separability of E from

below is inferred from the separability of C as follows. First note that the definition has to be

checked only for y = 1, because p ∈ E takes only the values 0 and 1. Let Σ be a separant for

C as in statement (iv), and let B be an open ball in Y . Then, for C ∈ C and p = 1C , p(x) < 1

for all x ∈ B ∩ Σ implies that B ∩ Σ ∩ C = ;, hence B ⊂ (C ∩ Σ)c . Since B is open, this implies

B ⊂ int
�
(C ∩Σ)c
�
=
�
C ∩Σ
�c
= C c , where int(A) denotes the interior of the set A for any A ⊂ Y .

Thus p(x)< 1 for all x ∈ B.
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