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Abstract

We consider a class of interacting particle systems with values in [0,∞)Zd

, of which the binary

contact path process is an example. For d ≥ 3 and under a certain square integrability condition

on the total number of the particles, we prove a central limit theorem for the density of the

particles, together with upper bounds for the density of the most populated site and the replica

overlap.

Key words: central limit theorem, linear systems, binary contact path process, diffusive behavior,

delocalization.

AMS 2000 Subject Classification: Primary 60K35; Secondary: 60F05, 60J25.

Submitted to EJP on November 11, 2008, final version accepted April 3, 2009.

∗Supported in part by JSPS Grant-in-Aid for Scientific Research, Kiban (C) 17540112

960

http://www.math.washington.edu/~ejpecp/
http://www.sigmath.es.osaka-u.ac.jp/~nagahata/
http://www.math.kyoto-u.ac.jp/~nobuo/


1 Introduction

We write N = {0,1,2, ...}, N∗ = {1,2, ...} and Z = {±x ; x ∈ N}. For x = (x1, .., xd) ∈ Rd , |x | stands

for the ℓ1-norm: |x | =
∑d

i=1 |x i |. For η = (ηx)x∈Zd ∈ RZd

, |η| =
∑

x∈Zd |ηx |. Let (Ω,F , P) be a

probability space. We write P[X ] =
∫

X dP and P[X : A] =
∫

A
X dP for a r.v.(random variable) X

and an event A.

1.1 The binary contact path process (BCPP)

We start with a motivating simple example. Let ηt = (ηt,x)x∈Zd ∈ NZd

, t ≥ 0 be binary contact path

process (BCPP for short) with parameter λ > 0. Roughly speaking, the BCPP is an extended version

of the basic contact process, in which not only the presence/absence of the particles at each site,

but also their number is considered. The BCPP was originally introduced by D. Griffeath [4]. Here,

we explain the process following the formulation in the book of T. Liggett [5, Chapter IX]. Let τz,i,

(z ∈ Zd , i ∈ N∗) be i.i.d. mean-one exponential random variables and T z,i = τz,1 + ...+ τz,i. We

suppose that the process (ηt) starts from a deterministic configuration η0 = (η0,x)x∈Zd ∈ NZd

with

|η0|<∞. At time t = T z,i , ηt− is replaced by ηt randomly as follows: for each e ∈ Zd with |e|= 1,

ηt,x =

¨
ηt−,x +ηt−,z if x = z + e,

ηt−,x if otherwise
with probability λ

2dλ+1
,

(all the particles at site z are duplicated and added to those on the site z = x + e), and

ηt,x =

¨
0 if x = z,

ηt−,x if x 6= z
with probability 1

2dλ+1

(all the particles at site z disappear). The replacement occurs independently for different (z, i) and

independently from {τz,i}z,i . A motivation to study the BCPP comes from the fact that the projected

process �
ηt,x ∧ 1

�
x∈Zd , t ≥ 0

is the basic contact process [4].

Let

κ1 =
2dλ− 1

2dλ+ 1
and ηt = (exp(−κ1 t)ηt,x)x∈Zd .

Then, (|ηt |)t≥0 is a nonnegative martingale and therefore, the following limit exists almost surely:

|η∞|
def
= lim

t
|ηt |.

Moreover, P[|η∞|] = 1 if

d ≥ 3 and λ > 1

2d(1−2πd)
, (1.1)

where πd is the return probability for the simple random walk on Zd [4, Theorem 1]. It is known

that πd ≤ π3 = 0.3405... for d ≥ 3 [7, page 103].

We denote the density of the particles by:

ρt,x =
ηt,x

|ηt |
1{|ηt |> 0}, t > 0, x ∈ Zd . (1.2)
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Interesting objects related to the density would be

ρ∗t =max
x∈Zd
ρt,x , and Rt =

∑

x∈Zd

ρ2
t,x . (1.3)

ρ∗t is the density at the most populated site, while Rt is the probability that a given pair of particles

at time t are at the same site. We call Rt the replica overlap, in analogy with the spin glass theory.

Clearly, (ρ∗t )
2 ≤ Rt ≤ ρ∗t . These quantities convey information on localization/delocalization of

the particles. Roughly speaking, large values of ρ∗t or Rt indicate that the most of the particles are

concentrated on small number of “favorite sites" (localization), whereas small values of them imply

that the particles are spread out over a large number of sites (delocalization).

As a special case of Corollary 1.2.2 below, we have the following result, which shows the diffusive

behavior and the delocalization of the BCPP under the condition (1.1):

Theorem 1.1.1. Suppose (1.1). Then, for any f ∈ Cb(R
d),

lim
t→∞

∑

x∈Zd

f
�

x/
p

t
�
ρt,x =

∫

Rd

f dν in P( · ||η∞|> 0)-probability,

where Cb(R
d) stands for the set of bounded continuous functions on Rd , and ν is the Gaussian measure

with ∫

Rd

x idν(x) = 0,

∫

Rd

x i x jdν(x) =
λ

2dλ+ 1
δi j , i, j = 1, .., d.

Furthermore,

Rt = O (t−d/2) as t ր∞ in P( · ||η∞|> 0)-probability.

1.2 The results

We generalize Theorem 1.1.1 to a certain class of linear interacting particle systems with values in

[0,∞)Zd

[5, Chapter IX]. Recall that the particles in BCPP either die, or make binary branching. To

describe more general “branching mechanism", we introduce a random vector K = (Kx)x∈Zd which

is bounded and of finite range in the sense that

0≤ Kx ≤ bK1{|x |≤rK} a.s. for some non-random bK , rK ∈ [0,∞). (1.4)

Let τz,i, (z ∈ Zd , i ∈ N∗) be i.i.d. mean-one exponential random variables and T z,i = τz,1+ ...+τz,i .

Let also Kz,i = (Kz,i
x )x∈Zd (z ∈ Zd , i ∈ N∗) be i.i.d. random vectors with the same distributions as

K , independent of {τz,i}z∈Zd ,i∈N∗ . We suppose that the process (ηt)t≥0 starts from a deterministic

configuration η0 = (η0,x)x∈Zd ∈ [0,∞)Zd

with |η0| < ∞. At time t = T z,i , ηt− is replaced by ηt ,

where

ηt,x =

¨
K

z,i
0 ηt−,z if x = z,

ηt−,x + K
z,i
x−zηt−,z if x 6= z.

(1.5)

The BCPP is a special case of this set-up, in which

K =

¨
0 with probability 1

2dλ+1�
δx ,0+δx ,e

�
x∈Zd with probability λ

2dλ+1
, for each 2d neighbor e of 0.

(1.6)
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A formal construction of the process (ηt)t≥0 can be given as a special case of [5, page 427, Theorem

1.14] via Hille-Yosida theory. In section 1.3, we will also give an alternative construction of the

process in terms of a stochastic differential equation.

We set

κp =
∑

x∈Zd

P[(Kx −δx ,0)
p], p = 1,2, (1.7)

ηt = (exp(−κ1 t)ηt,x)x∈Zd . (1.8)

Then,

(|ηt |)t≥0 is a nonnegative martingale. (1.9)

The above martingale property can be seen by the same argument as in [5, page 433, Theorem 2.2

(b)]. For the reader’s convenience, we will also present a simpler proof in section 1.3 below. By

(1.9), following limit exists almost surely:

|η∞|
def
= lim

t
|ηt |. (1.10)

To state Theorem 1.2.1, we define

G(x) =

∫ ∞

0

P0
S (St = x)d t, (1.11)

where ((St)t≥0, P x
S ) is the continuous-time random walk on Zd starting from x ∈ Zd , with the

generator

LS f (x) = 1

2

∑

y∈Zd

�
P[Kx−y] + P[Ky−x]

��
f (y)− f (x)

�
. (1.12)

As before, Cb(R
d) stands for the set of bounded continuous functions on Rd .

Theorem 1.2.1. Suppose (1.4) and that

the set {x ∈ Zd ; P[Kx] 6= 0} contains a linear basis of Rd , (1.13)∑

y∈Zd

P[(Ky −δy,0)(Kx+y −δx+y,0)] = 0 for all x ∈ Zd\{0}. (1.14)

Then, referring to (1.7)–(1.12), the following are equivalent:

(a)
κ2

2
G(0)< 1,

(b) sup
t≥0

P[|ηt |2]<∞,

(c) lim
t→∞

∑

x∈Zd

f
�
(x −mt)/

p
t
�
ηt,x = |η∞|

∫

Rd

f dν in L2(P) for all f ∈ Cb(R
d),

where m=
∑

x∈Zd x P[Kx] ∈ Rd and ν is the Gaussian measure with

∫

Rd

x idν(x) = 0,

∫

Rd

x i x jdν(x) =
∑

x∈Zd

x i x j P[Kx], i, j = 1, .., d. (1.15)
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Moreover, if
κ2

2
G(0)< 1, then, there exists C ∈ (0,∞) such that

∑

x ,ex∈Zd

f (x − ex)P[ηt,xηt,ex]≤ C t−d/2|η0|2
∑

x∈Zd

f (x) (1.16)

for all t > 0 and f : Zd → [0,∞) with
∑

x∈Zd f (x)<∞.

The main point of Theorem 1.2.1 is that the condition (a), or equivalently (b), implies the central

limit theorem (c) (See also Corollary 1.2.2 below). This seems to be the first result in which the

central limit theorem for the spatial distribution of the particle is shown in the context of linear

systems. Some other part of our results ((a) ⇒ (b), and Theorem 1.2.3 below) generalizes [4,

Theorem 1]. However, this is merely a by-product and not a central issue in the present paper.

The proof of Theorem 1.2.1, which will be presented in section 3.1, is roughly divided into two

steps:

(i) to represent the two-point function P[ηt,xηt,ex] in terms of a continuous-time Markov chain on

Z
d ×Zd via the Feynman-Kac formula (Lemma 2.1.1 and Lemma 2.1.4 below),

(ii) to show the central limit theorem for the “weighted" Markov chain, where the weight comes

from the additive functional due to the Feynman-Kac formula (Lemma 2.2.2 below).

The above strategy was adopted earlier by one of the authors for branching random walk in random

environment [10]. There, the Markov chain alluded to above is simply the product of simple random

walks on Zd , so that the central limit theorem with the Feynman-Kac weight is relatively easy. Since

the Markov chain in the present paper is no longer a random walk, it requires more work. However,

the good news here is that the Markov chain we have to work on is “close" to a random walk. In

fact, we get the central limit theorem by perturbation from that for a random walk case.

Some other remarks on Theorem 1.2.1 are in order:

1) The condition (1.13) guarantees a reasonable non-degeneracy for the transition mechanism

(1.5). On the other hand, (1.14) follows from a stronger condition:

P[(Kx − δx ,0)(Ky −δy,0)] = 0 for x , y ∈ Zd with x 6= y , (1.17)

which amounts to saying that the transition mechanism (1.5) updates the configuration by “at most

one coordinate at a time". A typical examples of such K ’s are given by ones which satisfy:

P(K = 0) +
∑

a∈Zd\{0}
P
�

K = (δx ,0+ Kaδx ,a)x∈Zd

�
= 1.

These include not only BCPP but also models with asymmetry and/or long (but finite) range.

Here is an explanation for how we use the condition (1.14). To prove Theorem 1.2.1, we use a

certain Markov chain on Zd ×Zd , which is introduced in Lemma 2.1.1 below. Thanks to (1.14), the

Markov chain is stationary with respect to the counting measure on Zd ×Zd . The stationarity plays

an important role in the proof of Theorem 1.2.1– see Lemma 2.1.4 below.

2) Because of (1.13), the random walk (St) is recurrent for d = 1,2 and transient for d ≥ 3.
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Therefore,
κ2

2
G(0) < 1 is possible only if d ≥ 3. As will be explained in the proof,

κ2

2
G(0) < 1 is

equivalent to

P0
S

�
exp

�
κ2

2

∫ ∞

0

δ0(St)d t

��
<∞.

3) If, in particular,

P[Kx] =

¨
c > 0 for |x |= 1,

0 for |x | ≥ 2,
(1.18)

then, (St)t≥0
law
= (bS2dct)t≥0, where (bS·) is the simple random walk. Therefore, the condition (a)

becomes
κ2

4dc(1−πd)
< 1. (1.19)

By (1.6), the BCPP satisfies (1.13)–(1.14). Furthermore, κ2 = 1 and we have (1.18) with c = λ

2dλ+1
.

Therefore, (1.19) is equivalent to (1.1).

4) The dual process of (ηt) above (in the sense of [5, page 432]) is given by replacing the linear

transform in (1.5) by its transpose:

ηt,x =

¨ ∑
y∈Zd K

z,i
y−xηt−,y if x = z,

ηt−,x if x 6= z.
(1.20)

As can be seen from the proofs, all the results in this paper remain true for the dual process.

5) The central limit theorem for discrete time linear systems is discussed in [6].

We define the density and the replica overlap in the same way as (1.2)–(1.3). Then, as an immediate

consequence of Theorem 1.2.1, we have the following

Corollary 1.2.2. Suppose (1.4), (1.13)–(1.14) and that
κ2

2
G(0) < 1. Then, P[|η∞|] = 1 and for all

f ∈ Cb(R
d),

lim
t→∞

∑

x∈Zd

f
�
(x −mt)/

p
t
�
ρt,x =

∫

Rd

f dν in P( · ||η∞|> 0)-probability,

where m=
∑

x∈Zd x P[Kx] ∈ Rd and ν is the same Gaussian measure defined by (1.15). Furthermore,

Rt = O (t−d/2) as t ր∞ in P( · ||η∞|> 0)-probability.

Proof: The first statement is immediate from Theorem 1.2.1(c). Taking f (x) = δx ,0 in (1.16), we

see that

P[
∑

x∈Zd

η2
t,x]≤ C t−d/2|η0|2 for t > 0.

This implies the second statement. �

For a ∈ Zd , let ηa
t be the process starting from η0 = (δa,x)x∈Zd . As a by-product of Theorem 1.2.1,

we have the following formula for the covariance of (|ηa
∞|)a∈Zd . For BCPP, this formula was obtained

by D. Griffeath [4, Theorem 3].
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Theorem 1.2.3. Suppose (1.4), (1.13)–(1.14) and that
κ2

2
G(0)< 1. Then,

P[|ηa
∞||η

b
∞|] = 1+

κ2G(a− b)

2− κ2G(0)
, a, b ∈ Zd .

The proof of Theorem 1.2.3 will be presented in section 3.2. We refer the reader to [11] for similar

formulae for discrete time models.

1.3 SDE description of the process

We now give an alternative description of the process in terms of a stochastic differential equation

(SDE), which will be used in the proof of Lemma 2.1.1 below. We introduce random measures on

[0,∞)× [0,∞)Zd

by

N z(dsdξ) =
∑

i≥1

1{(T z,i , Kz,i) ∈ dsdξ}, N z
t (dsdξ) = 1{s≤t}N

z(dsdξ). (1.21)

Then, N z , z ∈ Zd are independent Poisson random measures on [0,∞)×[0,∞)Zd

with the intensity

ds× P(K ∈ dξ).

The precise definition of the process (ηt)t≥0 is then given by the following stochastic differential

equation:

ηt,x = η0,x +
∑

z∈Zd

∫
N z

t (dsdξ)
�
ξx−z −δx ,z

�
ηs−,z . (1.22)

By (1.4), it is standard to see that (1.22) defines a unique process ηt = (ηt,x), (t ≥ 0) and that (ηt)

is Markovian.

Proof of (1.9): Since |ηt | is obviously nonnegative, we will prove the martingale property. By

(1.22), we have

|ηt |= |η0|+
∑

z∈Zd

∫
N z

t (dsdξ) (|ξ| − 1)ηs−,z ,

and hence

(1) |ηt |= |η0| − κ1

∫ t

0

|ηs|ds+
∑

z∈Zd

∫
N z

t (dsdξ) (|ξ| − 1)ηs−,z .

We have on the other hand that

κ1

∫ t

0

|ηs|ds =
∑

z∈Zd

∫ t

0

ds

∫
P(K ∈ ξ)(|ξ| − 1)ηs,z .

Plugging this into (1), we see that the right-hand-side of (1) is a martingale. �

966



2 Lemmas

2.1 Markov chain representations for the point functions

We assume (1.4) throughout, but not (1.13)–(1.14) for the moment. To prove the Feynman-Kac

formula for two-point function, we introduce some notation.

For x , y, ex , ey ∈ Zd ,

Γx ,ex ,y,ey
def
= P[(Kx−y −δx ,y)δex ,ey + (Kex−ey −δex ,ey)δx ,y]

+P[(Kx−y −δx ,y)(Kex−y −δex ,y)]δy,ey , (2.1)

V (x)
def
=

∑

y,ey∈Zd

Γx ,0,y,ey = 2κ1+
∑

y∈Zd

P[(Ky −δy,0)(Kx+y −δx+y,0)]. (2.2)

Note that

V (x − ex) =
∑

y,ey∈Zd

Γx ,ex ,y,ey . (2.3)

Remark: The matrix Γ introded above appears also in [5, page 442, Theorem 3.1], since it is a

fundamental tool to deal with the two-point function of the linear system. However, the way we use

the matrix will be different from the ones in the existing literature.

We now prove the Feynman-Kac formula for two-point function, which is the basis of the proof of

Theorem 1.2.1:

Lemma 2.1.1. Let (X , eX ) = ((X t , eX t)t≥0, P
x ,ex
X ,eX ) be the continuous-time Markov chain on Zd × Zd

starting from (x , ex), with the generator

LX ,eX f (x , ex) =
∑

y,ey∈Zd

Γx ,ex ,y,ey
�

f (y, ey)− f (x , ex)
�

,

where Γx ,ex ,y,ey is defined by (2.1). Then, for (t, x , ex) ∈ [0,∞)×Zd ×Zd ,

P[ηt,xηt,ex] = P
x ,ex
X ,eX

�
exp

�∫ t

0

V (Xs − eXs)ds

�
η0,X t

η0,eX t

�
, (2.4)

where V is defined by (2.2).

Proof: We first show that u(t, x , ex) def
= P[ηt,xηt,ex] solves the integral equation

(1) u(t, x , ex)− u(0, x , ex) =
∫ t

0

(LX ,eX + V (x − ex))u(s, x , ex)ds.

By (1.22), we have

ηt,xηt,ex −η0,xη0,ex =
∑

y∈Zd

∫
N y(dsdξ)Fx ,ex ,y(s−,ξ,η),
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where

Fx ,ex ,y(s,ξ,η)

= (ξx−y −δx ,y)ηs,exηs,y + (ξex−y −δex ,y)ηs,xηs,y + (ξx−y − δx ,y)(ξex−y −δex ,y)η
2
s,y

Therefore,

u(t, x , ex)− u(0, x , ex) =
∑

y∈Zd

∫ t

0

ds

∫
P[Fx ,ex ,y(s,ξ,η)]P(K ∈ ξ)

=

∫ t

0

∑

y,ey∈Zd

Γx ,ex ,y,eyu(s, y, ey)ds

(2.3)
=

∫ t

0



∑

y,ey∈Zd

Γx ,ex ,y,ey(u(s, y, ey)− u(s, x , ex)) + V (x − ex)u(s, x , ex)


 ds

=

∫ t

0

(LX ,eX + V (x − ex))u(s, x , ex)ds.

We next show that

(2) sup
t∈[0,T]

sup
x ,ex∈Zd

|u(t, x , ex)|<∞ for any T ∈ (0,∞).

We have by (1.4) and (1.22) that, for any p ∈ N∗, there exists C1 ∈ (0,∞) such that

P[η
p
t,x]≤ C1

∑

y:|x−y|≤rK

∫ t

0

P[ηp
s,y]ds, t ≥ 0.

By iteration, we see that there exists C2 ∈ (0,∞) such that

P[η
p
t,x]≤ eC2 t

∑

y∈Zd

e−|x−y|(1+ηp

0,y), t ≥ 0,

which, via Schwarz inequality, implies (4).

The solution to (1) subject to (2) is unique, for each given η0. This can be seen by using Gronwall’s

inequality with respect to the norm ‖u‖ =
∑

x ,ex∈Zd e−|x ||u(x , ex)|. Moreover, the RHS of (2.4) is a

solution to (1) subject to the bound (2). This can be seen by adapting the argument in [8, page

5,Theorem 1.1]. Therefore, we get (2.4). �

Remark: The following Feynman-Kac formula for one-point function can be obtained in the same

way as Lemma 2.1.1:

P[ηt,x] = eκ1 t P x
X [η0,X t

], (t, x) ∈ [0,∞)×Zd , (2.5)

where κ1 is defined by (1.7) and ((X t)t≥0, P x
X ) is the continuous-time random walk on Zd starting

from x , with the generator

LX f (x) =
∑

y∈Zd

P[Kx−y]
�

f (y)− f (x)
�

.
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Lemma 2.1.2. We have ∑

y,ey∈Zd

Γx ,ex ,y,ey =
∑

y,ey∈Zd

Γy,ey ,x ,ex , (2.6)

if and only if (1.14) holds. In addition, (1.14) implies that

V (x) = 2κ1+ κ2δx ,0. (2.7)

Proof: We let c(x) =
∑

y∈Zd P[(Ky −δy,0)(Kx+y −δx+y,0)]. Then, c(0) = κ2 and,

∑

y,ey∈Zd

Γx ,ex ,y,ey = 2κ1+ c(x − ex), cf. (2.2)–(2.3),

∑

y,ey∈Zd

Γy,ey ,x ,ex = 2κ1+δx ,ex
∑

y∈Zd

c(y).

These imply the desired equivalence and (2.7). �

We assume (1.14) from here on. Then, by (2.6), (X , eX ) is stationary with respect to the counting

measure on Zd×Zd . We denote the dual process of (X , eX ) by (Y, eY ) = ((Yt , eYt)t≥0, P
x ,ex
Y,eY ), that is, the

continuous time Markov chain on Zd ×Zd starting from (x , ex), with the generator

LY,eY f (x , ex) =
∑

y,ey∈Zd

Γy,ey ,x ,ex
�

f (y, ey)− f (x , ex)
�

. (2.8)

Thanks to (2.6), LX ,eX and LY,eY are dual operators on ℓ2(Zd ×Zd).

Remark: If we additionally suppose that P[K
p
x ] = P[K

p
−x] for p = 1,2 and x ∈ Zd , then, Γx ,ex ,y,ey =

Γy,ey ,x ,ex for all x , ex , y, ey ∈ Zd . Thus, (X , eX ) and (Y, eY ) are the same in this case.

The relative motion Yt − eYt of the components of (Y, eY ) is nicely identified by:

Lemma 2.1.3. ((Yt − eYt)t≥0, P
x ,ex
Y,eY ) and ((S2t)t≥0, P x−ex

S ) (cf. (1.12)) have the same law.

Proof: Since (Y, eY ) is shift invariant, in the sense that Γx+v,ex+v,y+v,ey+v = Γx ,ex ,y,ey for all v ∈ Zd ,

((Yt − eYt)t≥0, P
x ,ex
Y,eY ) is a Markov chain. Moreover, its jump rate is computed as follows. For x 6= y ,

∑

z∈Zd

Γy+z,z,x ,0 = P[Kx−y] + P[Ky−x] +δx ,0

∑

z∈Zd

P[(Ky+z −δy,z)(Kz −δ0,z)]

(1.14)
= P[Kx−y] + P[Ky−x].

�

To prove Theorem 1.2.1, the use of Lemma 2.1.1 is made not in itself, but via the following lemma.

It is the proof of this lemma, where the duality of (X , eX ) and (Y, eY ) plays its role.
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Lemma 2.1.4. For a bounded g : Zd ×Zd → R,

∑

x ,ex∈Zd

P[ηt,xηt,ex]g(x , ex)

=
∑

x ,ex∈Zd

η0,xη0,ex P
x ,ex
Y,eY

�
exp

�
κ2

∫ t

0

δ0(Ys − eYs)ds

�
g(Yt , eYt)

�
. (2.9)

In particular, for a bounded f : Zd → R,

∑

x ,ex∈Zd

P[ηt,xηt,ex] f (x − ex) =
∑

x ,ex∈Zd

η0,xη0,ex P x−ex
S


exp

 
κ2

2

∫ 2t

0

δ0(Su)du

!
f (S2t)


 . (2.10)

Proof: It follows from Lemma 2.1.1 and (2.7) that

(1) LHS of (2.9)=
∑

x ,ex∈Zd

P
x ,ex
X ,eX

�
exp

�
κ2

∫ t

0

δ0(Xs − eXs)ds

�
η0,X t

η0,eX t

�
g(x , ex).

We now observe that the operators

f (x , ex) 7→ P
x ,ex
X ,eX

�
exp

�
κ2

∫ t

0

δ0(Xs − eXs)ds

�
f (X t , eX t)

�
,

f (x , ex) 7→ P
x ,ex
Y,eY

�
exp

�
κ2

∫ t

0

δ0(Ys − eYs)ds

�
f (Yt , eYt)

�

are dual to each other with respect to the counting measure on Zd ×Zd . Therefore,

RHS of (1)= RHS of (2.9).

Taking g(x , ex) = f (x − ex) in particular, we have by (2.9) and Lemma 2.1.3 that

LHS of (2.10) =
∑

x ,ex∈Zd

η0,xη0,ex P
x ,ex
Y,eY

�
exp

�
κ2

∫ t

0

δ0(Ys − eYs)ds

�
f (Yt − eYt)

�

=
∑

x ,ex∈Zd

η0,xη0,ex P x−ex
S

�
exp

�
κ2

∫ t

0

δ0(S2u)du

�
f (S2t)

�
= RHS of (2.10).

�

Remark: In the case of BCPP, D. Griffeath obtained a Feynman-Kac formula for

∑

y∈Zd

P[ηt,xηt,ex+y]

[4, proof of Theorem 1]. However, this does not seem to be enough for our purpose. Note that

the Feynman-Kac formulae in the present paper (Lemma 2.1.1 and Lemma 2.1.4) are stronger, since

they give the expression for each summand of the above summation.
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2.2 Central limit theorems for Markov chains

We prepare central limit theorems for Markov chains, which is obtained by perturbation of random

walks.

Lemma 2.2.1. Let ((Zt)t≥0, P x) be a continuous-time random walk on Zd starting from x, with the

generator

LZ f (x) =
∑

y∈Zd

ay−x( f (y)− f (x)),

where we assume that ∑

x∈Zd

|x |2ax <∞.

Then, for any B ∈ σ[Zu ; u ∈ [0,∞)], x ∈ Zd , and f ∈ Cb(R
d),

lim
t→∞

P x[ f ((Zt −mt)/
p

t) : B] = P x(B)

∫

Rd

f dν ,

where m=
∑

x∈Zd xax and ν is the Gaussian measure with

∫

Rd

x idν(x) = 0,

∫

Rd

x i x jdν(x) =
∑

x∈Zd

x i x jax , i, j = 1, .., d. (2.11)

Proof: By subtracting a constant, we may assume that
∫
Rd f dν = 0. We first consider the case that

B ∈ Fs
def
= σ[Zu ; u ∈ [0, s]] for some s ∈ (0,∞). It is easy to see from the central limit theorem for

(Zt) that for any x ∈ Zd ,

lim
t→∞

P x[ f ((Zt−s −mt)/
p

t)] = 0.

With this and the bounded convergence theorem, we have

P x[ f ((Zt −mt)/
p

t) : B] = P x[PZs[ f ((Zt−s −mt)/
p

t)] : B]−→ 0 as t ր∞.

Next, we take B ∈ σ[Zu ; u ∈ [0,∞)]. For any ǫ > 0, there exist s ∈ (0,∞) and eB ∈ Fs such that

P x[|1B − 1eB|]< ǫ. Then, by what we already have seen,

lim
t→∞

P x[ f ((Zt −mt)/
p

t) : B]≤ lim
t→∞

P x[ f ((Zt −mt)/
p

t) : eB] + ‖ f ‖ǫ = ‖ f ‖ǫ,

where ‖ f ‖ is the sup norm of f . Similarly,

lim
t→∞

P x[ f ((Zt −mt)/
p

t) : B]≥−‖ f ‖ǫ.

Since ǫ > 0 is arbitrary, we are done. �

Lemma 2.2.2. Let Z = ((Zt)t≥0, P x) be as in Lemma 2.2.1 and and D ⊂ Zd be transient for Z. On the

other hand, let eZ = ((eZt)t≥0, eP x) be the continuous-time Markov chain on Zd starting from x, with the

generator

LeZ f (x) =
∑

y∈Zd

eax ,y( f (y)− f (x)),
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where we assume that eax ,y = ay−x if x 6∈ D ∪ {y} and that D is also transient for eZ. Furthermore, we

assume that a function v : Zd → R satisfies

v ≡ 0 outside D,

ePz

�
exp

�∫ ∞

0

|v(eZt)|d t

��
<∞ for some z ∈ Zd .

Then, for f ∈ Cb(R
d),

lim
t→∞

ePz

�
exp

�∫ t

0

v(eZu)du

�
f ((eZt −mt)/

p
t)

�
= ePz

�
exp

�∫ ∞

0

v(eZt)d t

��∫

Rd

f dν ,

where ν is the Gaussian measure such that (2.11) holds.

Proof: Define

HD(eZ) = inf{t ≥ 0 ; eZt ∈ D}, TD(eZ) = sup{t ≥ 0 ; eZt ∈ D},

et = exp

�∫ t

0

v(eZs)ds

�
.

Then, for s < t,

ePz
�

et f ((eZt −mt)/
p

t)
�

= ePz
�

et f ((eZt −mt)/
p

t) : TD(eZ)< s
�
+ ǫs,t

= ePz
�

es f ((eZt −mt)/
p

t) : TD(eZ)< s
�
+ ǫs,t

= ePz
h

es1eZs 6∈D
eP eZs

�
f ((eZt−s −mt)/

p
t) : HD(eZ) =∞

�i
+ ǫs,t , (2.12)

where

|ǫs,t | =
���ePz
�

et f ((eZt −mt)/
p

t) : TD(eZ)≥ s
����

≤ ‖ f ‖ePz

�
exp

�∫ ∞

0

|v(eZt)|d t

�
: TD(eZ)≥ s

�
→ 0 as s→∞.

We now observe that

eP x( · |HD(eZ) =∞) = P x( · |HD(Z) =∞) for x 6∈ D,

where HD(Z) is defined similarly as HD(eZ). Hence, for x 6∈ D and fixed s > 0, we have by Lemma

2.2.1 that

lim
t→∞

eP x
�

f ((eZt−s −mt)/
p

t) : HD(eZ) =∞
�
= eP x[HD(eZ) =∞]

∫

Rd

f dν .

Therefore,

lim
t→∞

ePz
h

es1eZs 6∈D
eP eZs

�
f ((eZt−s −mt)/

p
t) : HD(eZ) =∞

�i

= ePz
h

es1eZs 6∈D
eP eZs[HD(eZ) =∞]

i∫

Rd

f dν

= ePz
�

es : TD(eZ)< s
�∫

Rd

f dν .
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Thus, letting t →∞ first, and then s→∞, in (2.12), we get the lemma. �

2.3 A Nash type upper bound for the Schrödinger semi-group

We will use the following lemma to prove (1.16). The lemma can be generalized to symmetric

Markov chains on more general graphs. However, we restrict ourselves to random walks on Zd ,

since it is enough for our purpose.

Lemma 2.3.1. Let ((Zt)t≥0, P x) be continuous-time random walk on Zd with the generator:

LZ f (x) =
∑

y∈Zd

ay−x( f (y)− f (x)),

where we assume that

the set {x ∈ Zd ; ax 6= 0} is bounded and contains a linear basis of Rd ,

ax = a−x for all x ∈ Zd ,

Let v : Zd → R be a function such that

Cv
def
= sup

x∈Zd

P x

�
exp

�∫ ∞

0

|v(Zt)|d t

��
<∞.

Then, there exists C ∈ (0,∞) such that

sup
x∈Zd

P x

�
exp

�∫ t

0

v(Zu)du

�
f (Zt)

�
≤ C t−d/2

∑

x∈Zd

f (x) (2.13)

for all t > 0 and f : Zd → [0,∞) with
∑

x∈Zd f (x)<∞.

Proof: We adapt the argument in [1, Lemma 3.1.3]. For a bounded function f : Zd → R, we

introduce

(Tt f )(x) = P x

�
exp

�∫ t

0

v(Zu)du

�
f (Zt)

�
, x ∈ Zd ,

Th
t f =

1

h
Tt[ f h], where h(x) = P x

�
exp

�∫ ∞

0

v(Zt)d t

��
.

Then, (Tt)t≥0 extends to a symmetric, strongly continuous semi-group on ℓ2(Zd). We now consider

the measure
∑

x∈Zd h(x)2δx on Zd , and denote by (ℓp,h(Zd),‖ · ‖p,h) the associated Lp-space.

Then, it is standard (e.g., proofs of [2, page 74, Theorem 3.10] and [8, page 16, Proposition 3.3])

to see that (Th
t )t≥0 defines a symmetric strongly continuous semi-group on ℓ2,h(Zd) and that for

f ∈ ℓ2,h(Zd),

E h( f , f )
def.
= lim

tց0

1

t

∑

x∈Zd

f (x)( f − Th
t f )(x)h(x)2

= 1

2

∑

x ,y∈Zd

ay−x | f (y)− f (x)|2h(x)h(y).

By the assumptions on (ax), we have the Sobolev inequality:
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(1)
∑

x∈Zd

| f (x)|
2d

d−2 ≤ c1


1

2

∑

x ,y∈Zd

ay−x | f (y)− f (x)|2



d

d−2

for all f ∈ ℓ2(Zd),

where c1 ∈ (0,∞) is independent of f . This can be seen via an isoperimetric inequality [9, page 40,

(4.3)]. We have on the other hand that

(2) 1/Cv ≤ h(x)≤ Cv.

We see from (1) and (2) that

∑

x∈Zd

| f (x)|
2d

d−2 h(x)2 ≤ c2E h( f , f )
d

d−2 for all f ∈ ℓ2,h(Zd),

where c2 ∈ (0,∞) is independent of f . This implies that there is a constant C such that

‖Th
t ‖2→∞,h ≤ C t−d/4 for all t > 0,

e.g.,[3, page 75, Theorem 2.4.2], where ‖ · ‖p→q,h denotes the operator norm from ℓp,h(Zd) to

ℓq,h(Zd). Note that ‖Th
t ‖1→2,h = ‖Th

t ‖2→∞,h by duality. We therefore have via semi-group property

that

(3) ‖Th
t ‖1→∞,h ≤ ‖Th

t/2
‖2

2→∞,h
≤ C2 t−d/2 for all t > 0.

Since Tt f = hTh
t [ f /h], the desired bound (2.13) follows from (2) and (3). �

3 Proof of Theorem 1.2.1 and Theorem 1.2.3

3.1 Proof of Theorem 1.2.1

(a)⇔ (b): Define

h(x) = P x
S

�
exp

�
κ2

2

∫ ∞

0

δ0(St)d t

��
.

Since maxx∈Zd h(x) = h(0), we have that

sup
t≥0

P[|ηt |2]
(2.10)
=

∑

x ,ex∈Zd

η0,xη0,exh(x − ex)
¨
≤ h(0)|η0|2,

≥ h(0)
∑

x∈Zd η2
0,x .

Therefore, it is enough to show that (a) is equivalent to h(0) < ∞. In fact, Khas’minskii’s lemma

(e.g., [2, page 71] or [8, page 8]) says that supx∈Zd h(x) < ∞ if
κ2

2
supx∈Zd G(x) < 1. Since

maxx∈Zd G(x) = G(0), (a) implies that h(0)<∞. On the other hand, we have that

exp

�
κ2

2

∫ t

0

δ0(Ss)ds

�
= 1+

κ2

2

∫ t

0

δ0,Ss
exp

�
κ2

2

∫ t

s

δ0(Su)du

�
ds,
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and hence that h(x) = 1+
κ2

2
h(0)G(x). Thus, h(0)<∞ implies (a) and that

h(x) = 1+
κ2G(x)

2− κ2G(0)
. (3.1)

(a),(b)⇒ (c): Since (b) implies that limt→∞ |ηt |= |η∞| in L2(P), it is enough to prove that

Ut
def.
=
∑

x∈Zd

ηt,x f
�
(x −mt)/

p
t
�
−→ 0 in L2(P) as t ր∞

for f ∈ Cb(R
d) such that

∫
Rd f dν = 0.

We set ft(x , ex) = f ((x −m)/
p

t) f ((ex −m)/
p

t). Then, by Lemma 2.1.4,

P[U2
t ] =

∑

x ,ex∈Zd

P[ηt,xηt,ex] ft(x , ex) =
∑

x ,ex∈Zd

η0,xη0,ex P
x ,ex
Y,eY

�
et ft(Yt , eYt)

�
,

where et = exp
�
κ2

∫ t

0
δ0(Ys − eYs)ds

�
. Note that by Lemma 2.1.3 and (a),

(1) P
x ,ex
Y,eY
�

e∞
�
= h(x − ex)≤ h(0)<∞.

Since |η0|<∞, it is enough to prove that for each x , ex ∈ Zd

lim
t→∞

P
x ,ex
Y,eY

�
et ft(Yt , eYt)

�
= 0.

To prove this, we apply Lemma 2.2.2 to the Markov chain eZt
def.
= (Yt , eYt) and the random walk (Zt)

on Zd ×Zd with the generator

LZ f (x , ex) =
∑

y,ey∈Zd

ax ,ex ,y,ey
�

f (y, ey)− f (x , ex)
�

with ax ,ex ,y,ey =





P[Key−ex] if x = y and ex 6= ey ,

P[Ky−x] if x 6= y and ex = ey ,

0 if otherwise.

Let D = {(x , ex) ∈ Zd ×Zd ; x = ex}. Then,

(2) ax ,ex ,y,ey = Γy,ey ,x ,ex if (x , ex) 6∈ D ∪ {(y, ey)},

since

Γy,ey ,x ,ex
= P[(Ky−x −δy,x)δey ,ex + (Key−ex −δey ,ex)δy,x + (Ky−x −δy,x)(Key−x −δey ,x)δx ,ex].

Moreover, by (1.13),

(3) D is transient both for (Zt) and for (eZt).
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Finally, the Gaussian measure ν⊗ν is the limit law in the central limit theorem for the random walk

(Zt). Therefore, by (1)–(3) and Lemma 2.2.2,

lim
t→∞

P
x ,ex
Y,eY

�
et ft(Yt , eYt)

�
= P

x ,ex
Y,eY
�

e∞
�
�∫

Rd

f dν

�2

= 0.

(c)⇒ (b): This can be seen by taking f ≡ 1.

(1.16):By (2.10),

∑

x ,ex∈Zd

P[ηt,xηt,ex] f (x − ex) =
∑

x ,ex∈Zd

η0,xη0,ex P x−ex
S


exp

 
κ2

2

∫ 2t

0

δ0(Su)du

!
f (S2t)


 .

We apply Lemma 2.3.1 to the right-hand-side to get (1.16). �

3.2 Proof of Theorem 1.2.3

By the shift-invariance, we may assume that b = 0. We have by Lemma 2.1.4 that

P[ηa
t,xη

0
t,ex] = P

a,0

Y,eY

�
exp

�
κ2

∫ t

0

δ0(Yu− eYu)du

�
: (Yt , eYt) = (x , ex)

�
,

and hence by Lemma 2.1.3 that

P[|ηa
t ||η

0
t |] = P

a,0

Y,eY


exp

 
κ2

∫ 2t

0

δ0(Yu− eYu)du

!
 = Pa

S


exp

 
κ2

2

∫ 2t

0

δ0(Su)du

!
 .

By Theorem 1.2.1, both |ηa
t | and |η0

t | are convergent in L2(P) if
κ2

2
G(0) < 1. Therefore, letting

t ր∞, we conclude that

P[|ηa
∞||η

0
∞|] = Pa

S

�
exp

�
κ2

2

∫ ∞

0

δ0(Su)du

��
(3.1)
= 1+

κ2G(a)

2− κ2G(0)
.

�
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