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Abstract In this paper, we investigate the rate of convergence of the solution u. of the random
elliptic partial difference equation (V¥*a(x/e,w)V® + 1)us(z,w) = f(x) to the corresponding
homogenized solution. Here z € ¢Z% and w €  represents the randomness. Assuming that
a(x)’s are independent and uniformly elliptic, we shall obtain an upper bound £ for the rate
of convergence, where « is a constant which depends on the dimension d > 2 and the deviation
of a(xz,w) from the identity matrix. We will also show that the (statistical) average of u.(x,w)
and its derivatives decay exponentially for large x.
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1. INTRODUCTION.

In this paper we shall be concerned with the problem of homogenization of elliptic equations
in divergence form. Let (€2, F,u) be a probability space and a : Q@ — R 4+1/2 be a bounded
measurable function from €2 to the space of symmetric d x d matrices. We assume that there
are positive constants A, A such that

(1.1) My <a(w)<Al;, weQ,

in the sense of quadratic forms, where I; is the identity matrix in d dimensions. We assume
that Z? acts on Q by translation operators 7, : Q@ — Q, = € Z%, which are measure preserving
and satisfy the properties 7,7y = 7,4y, 70 = identity, x,y € Z?. Using these operators we can
define a measurable matrix valued function on Z% x Q by a(z,w) = a(r,w), =€ Z% weQ.

Let Z¢ = £Z9 be the ¢ scaled integer lattice where ¢ > 0. For functions g : Z¢ — R we define
the discrete derivative V5g of g in the ith direction to be

Ve g(2) L g(x + cei) — g(a)) Je, = € Z,

where e; € Z¢ is the element with entry 1 in the ith position and 0 in other positions. The
formal adjoint of V5§ is given by V§*, where

de

V5 g(z) L [g(a — ce;) — gla))/e, weZl

We shall be interested in solutions of the elliptic equation,

)=

d
(1.2) Z A\ [aij (g, w) Vius(:c,w)] + ue(z,w) = f(z),z € Z¢, we Q.
1

Here f : RY — R is assumed to be a smooth function with compact support and a;j(y,w) are
the entries of the matrix a(y,w), y € Z%.

It is well known [7, 4] that, under the assumptions of ergodicity of the translation operators
Te, © € Z%, the solution of (1.2) converges as € — 0 to the solution of the homogenized equation,

d
0%u
1. - i = f(a), RY.
(13) 3. g, + ) = o), w e

Here ¢ = [¢;5] is a symmetric positive definite matrix determined from a(w), w € Q. If we denote
expectation value on €2 by < > and

def.
/d.’EgEdE,
d
Z r€Zd

then one has

(1.4) liy < /Zd e () — u(x)(2dx> 0.

See [2] for extensions to unbounded, non-symmetric a’s.

Our goal in this paper is to estimate the rate of convergence in the limit (1.4). To do this
we shall need to make rather restrictive assumptions on the matrix a(-) beyond the uniform
boundedness assumptions (1.1). We can however prove a result, just assuming (1.1), which is
helpful for us in studying the rate of convergence in (1.4). To motivate it observe that since



(1.3) is a constant coefficient equation it is easy to see that the solution is C'* and that for any
n tuple a = (a1, ...,ap) with 1 < a; <d, i =1,...,n, one has

(T 2wt

where 6 > 0 can be chosen to be fixed and A, is a constant depending only on « and f. Consider
now the problem of proving an inequality analogous to (1.5) for the expectation (u.(z,-)) of
the solution w.(z,w) of (1.2). In view of the uniform boundedness (1.1) there exists & > 0,
independent of € such that

(1.5) sup
zeR4

< Ao,

sup e‘5|‘”|u5(:c,w)‘ <C, weq,

reR?
where C is a constant. To prove this one needs to use the deep theory of Nash [3]. One evidently
can immediately conclude that

sup
zeR4

Nash’s methods will not however yield similar inequalities on derivatives of
(ue(z,-)). In §3 we prove the following analogue of (1.5):

el (u (z, .)>‘ <cC.

Theorem 1.1. Suppose (1.1) holds, f : R — R is a C™ function with compact support and
ue(z,w) is the solution of (1.2). Then there exists a constant 6 > 0 depending only on X\, A, such
that for any n tuple o = (a1, ..., ) with 1 < «; < d, i =1,...,n, one has

el (ﬁ VZZ) (ue(z,))

i=1

sup <A,

zcR4

where A, depends only on A\, A, and f.

We can obtain a rate of convergence in (1.4) if we assume that the random matrix a(-) satisfies
(1.1) and that the matrices a(7,-),r € Z%, are independent. Our first theorem is as follows:
Theorem 1.2. Suppose a(-) satisfies (1.1), the matrices a(1,-),r € Z%, are independent, and

v =1-)/A, |y| < 1. Let u-(x,w) be the solution of (1.2) where f : R — R is assumed to be a
C™ function of compact support. Then for d > 2 there is the inequality

</Zd |ue(@,-) — (uc(z, )| dx> < e,

where a > 0 is a constant depending only on ~v, and C only on v and f. If d > 3 then one can
take o = 1 for sufficiently small v > 0. For d = 2, « can be taken arbitrarily close to 1 if v > 0
is taken sufficiently small.

Remark 1. One can see by explicit computation that when d =1, then o = 1/2.

Theorem 1.2 is independent of the dimension d when d > 3. We also have a theorem which is
dimension dependent for all d.

Theorem 1.3. Suppose a(-) and f satisfy the same conditions as in Theorem 1.2. Let g : R —
R be a C*° function of compact support. Then for d > 2 there is the inequality,

<{/Zd 9(x) [ug(x, ) — <ua(x,-)>}dx}2> <ceh.

where B > 0 is a constant depending only on v, and C only on v,g and f. The number B can
be taken arbitrarily close to d if v > 0 is taken sufficiently small.



Remark 2. Theorem 1.3 only gives more information than Theorem 1.2 in the case when d > 3.

We first prove Theorems 2 and 3 under the assumption that the a(z,w), = € Z%, w € Q, are
given by independent Bernoulli variables. This is accomplished in §4. We put

(1.6) a(z,) = (1+1Yy)ly, zcZ

where the random variables Y, ,z € Z¢, are assumed to be iid Bernoulli, Y, = +1 with equal
probability. We must take v in (1.6) to satisfy |y| < 1 to ensure a(-) remains positive definite.
In §5 the method is extended to the general case. The methods can also be extended to deal
with variables a(z,-), x € Z%, which are weakly correlated. To carry this out one must have,
however, rather detailed knowledge on the decay of correlation functions.

To prove theorem 1.2 we use an idea from the proof of (1.4) in [7]. Thus we make an approxi-
mation u.(z,w) =~ u(z)+ random term, where u(z) is the solution of (1.3). The random term is
obtained from the solution ¥(w) of a variational problem on  (see lemma 2.2). The difference
between u.(z,w) and the above approximation is estimated in proposition 2.1. One can obtain
a new proof of the homogenization result (1.4) from proposition 2.1 by using the fact that ¥
is square integrable on 2 and applying the von Neumann ergodic theorem. For the proof of
theorem 1.2 one needs to show that W is p integrable for some p < 2. This p integrability is
not in the conventional sense < |U|P > < oco. If a(z, ) is given by (1.6), one expands ¥ in the
orthonormal basis of Walsh functions for L?(§2) generated by the Bernoulli variables Y, = € Z¢.
We say that ¥ is p integrable if the coefficients of ¥ in this basis are p summable. Evidently if
p = 2 then p integrability of ¥ and < |U|P > < oo are equivalent, but not if p is different from
2. We use the Calderon-Zygmund theorem [3] to show that ¥ is p integrable for some p < 2.

Observe that when a(z,-) is given by (1.6) then the entries of the matrix a(-) generate a 2
dimensional subspace of L?(€2). One can readily generalise the proof described in the previous
paragraph to all random matrices a(-) whose entries generate a finite dimensional subspace of
L?(€2). The main task of §5 is to extend the argument to the situation where the entries of a(-)
generate an infinite dimensional subspace of L?(€2). To carry this out we introduce the Legendre
polynomials P;(z) to give us an approximately orthogonal basis for the space generated by the
entries of a(-). We use in a crucial way the fact that the ratio of the L> norm of P, to the L?
norm, on the interval [—1,1], is polynomially bounded in [ (in fact v/20 + 1 ).

We cannot use proposition 2.1 to prove theorem 1.3. Instead, we have to make use of the Fourier
representation for u.(z,w) given in §3. This representation appears to have considerable power.
To illustrate this we use it to prove theorem 1.1. The remainder of the proof of theorem 1.3
then follows along the same lines as the proof of theorem 1.2

The research in this paper was motivated by previous work of Naddaf and Spencer [6]. Let
A : R — RU4H1D/2 1e a bounded measurable function from R to the space of real symmetric
d x d matrices. Assume that there are positive constants A, A, such that

Mg < A(p) <Alg, ¢<€R.

Let ¢(z,w), z € Z¢, w € Q, be an Euclidean field theory satisfying the Brascamp-Lieb inequality
[5]. The matrices a(z,w), = € Z%, w € Q, are obtained by setting

a(r,w) = A(p(z,w)), € Z% weQ

Naddaf and Spencer prove that the results of Theorem 1.3 hold under the assumption that ¢ is
a massive field theory and A has bounded derivative. They further prove that if v is sufficiently



small then one can take 3 = d. They also have corresponding results when ¢ is assumed to be
massless.

The Russian literature [8, 11] contains some previous work on the rate of convergence to ho-
mogenisation. This appears not to be rigorous.

2. VARIATIONAL FORMULATION.

In this section we set out the variational formulation for the solution of (1.2) and for the effective
diffusion matrix ¢ = [g;;] in (1.3). Let H*(Z¢ x Q) be the space of all measurable functions
u. : Z4 x Q — R which satisfy

(2.1) e 70 = <Z/ VEuE d:):—i—/Zd ue(m, ) dx> < 0.

Evidently H!(Z¢ x Q) is a Hilbert space with norm defined by (2.1). We define a functional G
on H'(ZZ x Q) corresponding to the equation (1.2) by

(2.2) ) < Z /dexam vsus( ,-)Viue(z, )+

2,7=1
%/ngx ug(x,-)Q—/zgdxf(x)us(:c, .)>.

The following lemma is then a consequence of the Banach-Alaoglu theorem [9].

Lemma 2.1. The functional G : H(Z2 x Q) — R has a unique minimizer u. € H'(Z< x Q)
which satisfies the Fuler-Lagrange equation,

<Z/ d“w ~ V%( )Viua(x,-)+/ngw5(g¢,.)u5($7.)_

ij=1
/Zg dxf(x)¢€(x’.)> o,

for all . € HY(ZZ x Q).

Next we turn to the variational formulation of the diffusion matrix ¢ in (1.3). To do this we
use the translation operators 7, on 2 to define discrete differentiation of a function on 2. Let
¢ : 2 — R be a measurable function. For i = 1,...,d we define 0;p by

Oip(w ) = ‘P(Tez ) — o(w), w € Q.

The formal adjoint 9] of ; is given by

07 o(w) L p(r_ew) — p(w), w € .

The discrete gradient of ¢, Vi is then a function Vo : Q — R? given by Vip(w) =
(010(w), ..., 0ap(w)), w € Q. For a function ¥ : Q — R let ||¥||5 denote the L? norm,

d
df
o <zw3 >
i=1



where ¥ = (U, ..., U;). We consider the linear space
E={Vy:Q—RYp:Q— R is measurable and ||¢[]z < oo}.
Evidently if ¥ € £, ¥ = (¥y,...,¥y), then (V) = 0 and 0;¥; = 0;¥;, 1 < 4,5 < d. Hence if
H(S2) is the completion of £ under the norm || |2, one also has
(2.4) (U) =0, 0;¥;=0;;, 1<i,j<d, ¥eH(Q).
For each k, 1 <k < d, we define a functional G on H(2) by

d d

def. 1

Gr(¥) = < B D a(OT()() + D ari ()W5() >
ij=1 j=1

We have then again from Banach-Alaoglu:

Lemma 2.2. The functional Gy, : H(Q) — R has a unique minimizer ¥ € H(QY) which satisfies
the Fuler-Lagrange equation,

d d
(3 om0 + Yoy (w,0)) =0,
ij—1 =1

for all ¥ € H(R).
The matrix ¢ = [qrx] is given by
(2.5) ae L (lex + T O)a() e + ¥ ())).

In view of the fact that (U*) =0, k = 1,...,d, it follows that g is strictly positive definite. From
the Euler-Lagrange equation one has the alternative expression,

d
(2.6) g = (o () + Y a (VT ().
j=1
Next, let A be the discrete Laplacian on Z¢. Thus if u : Z¢ — R, then Au is defined by
d
Au(x) def. Z[u(m + ;) + u(z — ;) — 2u(z)], =eZ
i=1

We denote by G}, the Green’s function for the operator —A + 1, where > 0 is a parameter.
Thus

(2.7) ~AG,(2) + nGy(x) = §(x), =€z,

and d is the Kronecker § function; d(z) = 0 if z # 0, 6(0) = 1. For any ¥ € H(£2) we can use
G, to define a function x : Z% x QO — R by the formula

d
(2.8) x(z,w) o Z ZGn(ac —y)0; ¥ (ryw), = € Z% weq.
yeZd j=1

Lemma 2.3. For each v € Z¢ the function x(x,-) on Q is in L?(Q). Furthermore, for 1 <1i <d,
(2.9) Vix(z,w) =x(z +ej,w) — x(z,w) = Vi(r,w) — 1 Z Gz — y)Vi(ryw),
yeZd

reZlweq.



Proof. The fact that x(z,-) is in L?() follows easily from the exponential decay of G,. To
prove (2.9) we use the relations (2.4). Thus

vix(xaw) = ZZG r—vy w](Ty-i-eZ ) 8;1bj(7yw)]
yGZdJ 1
- ZZG y) 050,V j(Tyw)
yEZd] 1
- ZZG y)050; 0 (Tyw)
yeZd j=1

from (2.4). Now a summation by parts yields

Vix(z,w) Z —AG)(z —y)¥;(Tyw),

yezZa

which gives (2.9) on using (2.7). O

The proof of homogenization [7, 4] proceeds by writing the minimizer u. in Lemma 2.1 approx-
imately as

d
(2.10) us(z,w) ~u(z)+¢ ZXk. (g,w) Viu(z), € 28, we,
k=1

where y}, is the function (2.8) corresponding to the minimizer ¥* of G; in Lemma 2.2. Clearly
the parameter 7 must be chosen appropriately, depending on €. Now let Z.(x,w) be the RHS
of (2.10) minus the LHS,

d
(2.11) Ze(z,w) et u(z) +e Zxk (g,w> Viu(z) — us(z,w),
k=1

and 1. be an arbitrary function in H!(Z¢ x Q). Then from Lemma 2.1 we have that

(2.12) <Z/ dray; (2.) Vive(e, ) JZ(:c,')+/ngx¢6(:c,')25(x,~)>:

i,j=1
d x
< Z / dx aw Vewg( [V?u(x) + Z ViXk (E, ) Viu(z + cej)
1,j=1 k=1

+};5Xk (g) Ve ;u(x)] Jr/zg dx¢5(x,~)[u(x)+€zd:><k (g) ZU(w)]

- [ des@ete).

€

The first two terms on the RHS of the last equation can be rewritten as,



(2.13) <Z/ dxa,] Vawg( )[V§u(x)+zd:\p§(rx/e -)Viu(x)]>

,j=1 k=1
d
< Z /Zd dx CLZ] VEQ)Z)E Z Tx/s . vku(x +5e]) iu(x)]>
i,j=1 k=
<Z/ drai (5.°) Veveto Z e +eenx X Gy (£-0) W)
zd €
i,j=1 k= yeZ?

The first term in the last expression can be rewritten as

< Z /dexvs¢g ) Viu(z) [am (Tw/e *) +Zalk (Twse *) Tx/s )} >

i,7=1
Observe next that

Vive(z, ) Viu(z) = P (z, ) Vi Viu(z) + V5 [P (2, ) Viu(z — ce;)] .
We have now that

(2.14) < Z /Zd dx V5 [1e (x ) u(zr — ee;)] [GZ](Tx/E 9+ iazk (Twse )V (Tx/s )] >

- d d k .1. d )
— Z< > o, @’J(-)[azj(-) +Zaik(.)qji(.)] >’
Jj=1 i=1 k=1
where

oo (w) def. -1 /Zd dze(z, 7_p/e w)Viu(z —ce;), we Q.

Since ¥. € HY(Z¢ x Q) and u(z) can be assumed to be converging exponentially to zero as
|| — oo, it follows that &%/ € L?(€)). Defining ®/ € L?() by

dI (W) def. 51/ da e (2, 7_y.w) Viu(r), weQ,
z

it is clear that

P (w) = & (w) —|—/ d e (2,7_y)ew) Vi Viu(z), we.
VA

€

We conclude now from Lemma 2.2 that (2.14) is the same as

@19 S (S]  rteorege ) St + 3 ar0] )

7j=1 =1 €

Hence the first term in (2.13) is the sum of (2.15) and

(2.16) <Z /Z dw (o, ) V5 V(@) [ais (e ) £ o m/g)}>.

k=1



Now, let us define Q;; € L*(2) by

QU( )dgf 0; { Zazk ] —l—aw Za’k — qij, w € K,

where g;; is given by (2.5). It follows from (2.6) that (Q;;) = 0. Furthermore, from (2.15),
(2.16), we see that the first term in (2.13) is the same as

(2.17) Z/dex ¢€ q”VE*VE ‘|‘ Z/ dx wa ng(Tx/s )>Vf*V§u(x)

)= 1 1,]= 1
We can do a similar integration by parts for the second expression in (2.13). Thus,
(2.18) Viuhu(a, .)[ Su(z + cej) — vzu(x)} -
e (x, )[V”Vku(x +cej) — Vf*Viu(x)]
+ Vf{¢g(x, ) {Viu(w +ce; —ce;) — Viu(r — 5ei)} }

We have that

Z /zd dx aU Z Vs{i/)s ) [Viu(z + cej — ce;)— Viu(z — ce;)] }‘I’?(Tx/s )>

i,7=1

i <3‘I’”k [az‘j(')‘??()] >

t,5,k=1

where

dLIE(W) def- -1 / dx e (2, T_pjew) [Viu(x + cej — ce;) — Viu(z — ce;)], w € Q.
z

Once again it is clear that ®*/** ¢ L2(). Integrating by parts we conclude that

i <3‘Wk [aij(')q’?(')b =

1,5,k=1 i,J

(@75 ()07 [aiy ()W) )

/Z A (e, ) Qg (7aye”) YV Vi — zey),

where



Evidently we have (Q;;r) = 0. Next we take account of the second term in (2.18). Thus we have

d
Z /Zd dx aw Z Ye(z,-) [V Viu(r + cej)— Vi*Viu(z)] \P?(Tx/g )>

1,5=1 k=1

d
-3 / da (1, )iV V5 V(o)
k=1
d
> R R A )
J,k=

where
Rign(w) i ()5 (@) = (ais (50 ) s rige = (ai;(O5())

Evidently (R;;r) = 0. Hence the second term in (2.13) is the same as

d
(2.19) Z / e (o2, )Qus(7ay2) ) V5 V(e — ce)
7,k=

+ Z / dx lbg Z]k(Tx/g )>€Vf*V§ wu(z)

i,5,k=1

+ Z / dx ¢€ ETZ]kVE*VE u(z).

1,7,k=1

Now let us assume that u(x) satisfies the partial difference equation,

d d
(2.20) 5 Z ik Vi ViViu(z) + Z ¢i; Vi Viu(z) + u(z) = f(x), x ezl
irj k=1 ij=1

This equation converges as ¢ — 0 to the homogenized equation (1.3). Note that it is a singular
perturbation of (1.3) and therefore needs to be carefully analyzed. In particular, we shall have
to show that u(z) and its derivatives converge rapidly to zero as |z| — oo. It follows now from

10



(2.12), (2.13), (2.17), (2.19), that

(2.21) Z/de:r aij (= szg( ) ]Zg(x,-)+/dembe($,')Za(93w)>
d

- Z /Zd da: Ve(@,)Qij (Tose -) > Vi Viu(z)

4,j=1 €

+

M‘L

/ dx ¢6 ngk(Tx/s ) > vj iU(.’E — 5ei)
V7

d
=1 €

-
Q
ES

+

=M= =M= 5= :

bel@, VR (e ) ) eV VEVEu(a)

.

Vive(z, ) Viu(z + cej) aU Z Gy ( y) \IJ?(Ty )>

yeZa

.

+

Vite(r oy (2, ) V5 Viale) exelS.0))

.

&/

d
k=172

Proposition 2.1. Let Z. be defined by (2.11). Then

dx <¢€(ac, IViu(x)ex (g, ) >

</ dr 7.2, 7)< C[A1+ A+ As + i+ As + A
2

where C is a constant and

d 2
A= < [ o |e 3 wi6 (2= 0) @utr, 995 Viulen) >
igl=1 \ Y2 — €
d . )
Ay = Z < / dx [5 Z V;Go (——y) Qijk(Ty) V;Viu(sy—sei)} >,
ij k=1 z ez €
d 2
As= ), < / [ ZVZG()( )Rz‘jk(Ty ) eViTV; ZU(Ey)] >
ivj k=1 z ez
2
| o |Viuta - cen 3 Gy (2 - 0) whtr, ] >
z¢ yeZd

I
ot
I
ME
N
i=9
Q
g
<
o.M
ol
>
=
VN
8
N———
[\&]
\/

11



Proof. Let g = g(z,w) be a function in L?(Z¢ x Q). Denote by G, the functional (2.2) on
HY(Z4 x Q) obtained by replacing the function f(z) with g(z,w) in (2.2). Then, according to
Lemma 2.1 there is a minimizer of G, in HY(Z x Q) which we denote by .. It is clear that
lvellzr < Cllgll2 for some constant C, where ||g||2 is the L? norm of g. Furthermore, if we
assume the solutions of (2.20) are rapidly decreasing then it follows that Z. is in H'(Z¢ x Q).
The Euler-Lagrange equations for ). as given by Lemma 2.1 then tells us that the LHS of (2.21)

is the same as
< [ 92 > .
zd

Next we consider the RHS of (2.21). If we use the Schwarz inequality on the sixth expression
it is clear it is bounded by C||¢c||1 Aé/ ? for some constant C, and hence by C llgll2 Aé/ ? for
a different constant C. Similarly the fifth and fourth terms are bounded by C|gll2 AY? and

Cllgll2 Ai/ 2 respectively. To obtain bounds on the first three terms we need to represent . as
an integral of its gradient. We can do this by using the Green’s function Gy which is the solution
of (2.7) when n = 0. To see this observe that

(2.22) Y (Y, w) = Z 5(%, — x’)@bg(sx’,w), y €2 weq.

x'€Zd

Using (2.7) this is the same as

¢E(y’,w) = Z —AG0<%—x’>¢E(5x/,w)

z'eZd
d y
- Z Z VEGO(g - :c/>5 V§¢E(€x/’w)
z'eZd (=1
d .y
— . . »
= [ eavion (2= )

The first term on the RHS of (2.21) is therefore the same as
d
* x *
(2.23) 3 /Z dn{ Vie(e,) Y € ViGo (£ - y) Qun IVEViuley) ).
ijb=1"2%¢ yezd

It follows again from the Schwarz inequality that this last expression is bounded by C/|| gHgA%/ 2,
A similar argument shows that the second and third terms on the RHS of (2.21) are bounded

by C’||g\|2A§/2, C’||g\|2A§/2 respectively. The result follows now by taking g = Z.. O

Proposition 2.1 will help us obtain an estimate on the variance of the minimizer u. of Lemma
2.1. In fact there is the inequality

(2.24) < /Zd dz [ue (z, ) — (ue(, )2 > g2</zd dz Z.(z, .)2>

12



We shall also want to estimate the variance of the random variable

/Z A gus(e,)

where g : RY — R is a C* function with compact support. To help us do this we reformulate
the variational problem of Lemma 2.1. Suppose u. is in Hl(Zg x ). We define a new function
Ve by ve(w,w) = ue (v, 75 /ow), T € ZZ, w € Q. We then have

Viue(z,w) = [uc(z +ece;,w) — us(x,w)]/e
[Ve(T + €€, Ty/eTe,w) — Ve(T, Ty /cw)] /€
= [ve(z +ee;, Tp/eTe,w) — ve(T + g0, Ty ew)] /€

—|—[’U5(£1? tee;, Tx/sw) - ’UE(xv Tx/sw)]/€

= 9wz + cey To/ew) + Vive (T, 7y jew).
Hence from (2.2) we have

G(ue) = Z/dexam [Vive(z,-) + lﬁivg(:c+5ei,~)]><

1,5=1

1
[Vive(z,-) + e t0jv-(x + cej, )] + 5/ dz v (z,-)*—

y
/ o et ).

Next we write v (z,w) = u(x) + eye(z,w) where (¢.(z,-)) = 0. Then we have

(2.25) G(u.) = Z /zd dz aij(-)[Viu(z) + 0ipe (x + €€, -) + eVie(z, )] x

4,j=1

[Viu(z) + 05 (v + ey, ) + eVie(w, )] + % /zg dx u(x)?+

e Aoy ) - / e F@ua)) Tl ).

Let H'(ZY) be the space of functions u : Z¢ — R which satisfy

|31 déf’/ dx u(x —|—Z/ dx [Viu(x)]?* < oo.

Let H}(Z4 x Q) be the subspace of H!(ZZ x Q) consisting of functions v.(z,w) which satisfy
(Ye(z,)) =0, z € Z4.

Lemma 2.4. If ¢ > 0 the functional F. : HY(Z%) x H{(Z4 x Q) — R defined by (2.25) has
a unique minimizer (u,v.) with u € HY(Z2), . € H(ZE x Q). The minimizer satisfies the
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Euler-Lagrange equation,

Z/de:ra” NVEu(@) + Oipe( + cei, ) + eVEpe(, )X

4,j=1

[Viu(z) + 05 (v + eey, ) + eVie(w, )] + /zd dx v(z)u(x)

e /Z o, el ) /Z e fapu(a) =0,

for all v € HYZY), . € H{(ZE x Q). Further, if we put uc(z,w) = u(z) + etpe (2, 740 w),
r € Z2, weQ, then u. is the unique minimizer of Lemma 2.1.

Proof. To apply the Banach-Alaoglu theorem we need to show there are constants Ci,Cy > 0
such that
[lFa + llpellfn < Cr+ CoFelv,6e), v € HUZL), o € Ho(ZE x Q).

Observe now that

1
Fulv.00) 2 Z [, ) + e e ) Vil P ) =g [ e,
zd 2 Jza

where A > 0 is as in (1.1).
Now, using the fact that (p-(x,-)) = 0 we conclude

P

Flvoo) 23 30 oo <o)+ V(e )
d 1
5 2 2
+ = Zl/zd da [Vio(x)]? - 3 ng(:c) dz

We have then from the Schwarz inequality

2 2|1 2 2

lvll70 < < |3 f@)de + Fo(v,0:)| +4 fz)de + Fo(v,0c)| -
A2z z¢

Using the fact that

QZ</ 4o [Vige(a, )] >S8d</ do el ) )

/ 1305 x—l—eel, ) —|—EV§Q05(.’E7-)]2 >7
Z

we have
4 16d 2 1
2 2
||§05HH1 < [@ + 8—4 + 5—2] [5 2 f(x)*dx + fg(%‘ﬁs)] .
The Euler-Lagrange equation follows in the usual way. To verify that u.(z,) = wu(z) +
e (z,7ye +) is the minimizer of Lemma 2.1 we need only observe that, with this substitu-
tion, the Euler-Lagrange equation here is the same as that of Lemma 2.1. O
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If we let € — 0 in the expression (2.25) for F.(u,1.) we formally obtain a functional Fo(u, )
given by

Folu, def< Zzl/Rdde [a“( ) 4 o, )}

[63; L+ opute, ﬂ >+%/Rd dz u(z)? —/Rd dz f(z)u(z).

Consider now the problem of minimizing Fo(u, ). If we fix 2 € R? and minimize over all
(x,-) € L3(Q) then by Lemma 2.2 the minimizer is given by

8U( )
oxp

(2.26) o(z, ) = wrL), i=1,....d

k=1
where the U* € H(Q) are the minimizers of Lemma 2.2. If we further minimize with respect to
the function u(x) then it is clear that u(z) is the solution of the pde (1.3), where the matrix ¢ is
given by (2.6). Hence in the minimization of Fy we can separate the minimization problems in
w and z variables. The function v defined by (2.26) has, however, no longer the property that
Uz, ) € L*(Q).
We wish now to defined a new functional, closely related to F. as ¢ — 0, which has the property

that the minimization problems in w and x variables can be separated and also that the minimizer
Y(z,w) has ¥(z,-) € L*(Q). For u € HY(Z) and 1. € HL(Z2 x Q) we define Fg(u,1:) by

(2.27)  Fs.(u, lbe = Z /dexaw NViu(z) + 0ivhe(z, )] ¥
i,j=1
[Viu(x) + 05t (w, )] + % /zg dru(z)? + %52 /zg da e (z, ) —

/Z 4 @) ).

It is clear that the formal limit of Fg. as € — 0 is, like the formal limit of F¢, given by F¢. The
advantage of Fg. over F. is that the minimization problem separates. We shall prove this in
the following lemmas. First we have the analogue of Lemma 2.4:

Lemma 2.5. If ¢ > 0 the functional Fs. : H(Z9) x H{(Z4 x Q) — R defined by (2.27) has
a unique minimizer (u,v.) with u € HY(Z2), . € HH(ZE x Q). The minimizer satisfies the
Euler-Lagrange equation,

(2.28) <Z/dexaw IViv(@) + drpe(w, )][Viu(@) + Oye(a, )]

1,5=1

—|—/Zg dzv(x)u(x) + &2 /Zg dx . (z, ) e (z,-)

- [ e ste) > 0,

€

for allv € HY(Z9), p. € H{(Z x Q).

Proof. Same as Lemma 2.4. O
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Next we need an analogue of Lemma 2.2. For ¢ > 0 define a functional Gy, . : L?(Q2) — R, where
1<k<d, by

d d

def. / 1 1

G (6) L (£ ay(O0u0) + 1 200 + 3 (o) ).
ij=1 j=1

Lemma 2.6. The functional G : L*(Q) — R has a unique minimizer vy . € L*(Q) which

satisfies (Yrc(-)) = 0 and the Euler-Lagrange equation,

d
< Z )0jtne() + %0 ( e () Zak] >—0,
for all p € L2(Q),

Proof. Same as Lemma 2.2. Observe that since Gi (¢ — (¢)) < Gg (%) for all ¢ € L*(Q) we
have (1) = 0. O

Next, in analogy to (2.5) we define a matrix ¢° by

G = { e + Ve (al)lew + Ve o()] ) + 2 (bre(Yow (),

where the 1., k = 1,...,d are the minimizers of Lemma 2.6. Evidently ¢° is a symmetric
positive definite matrix. Using the Euler-Lagrange equation we have a representation for g,
analogous to (2.6), namely

(2.29) Qi = < apr (+) + Zak] 0Py ')>

Let G. : HY(Z9) — R be the functional

i 15 [ e i inta i+ [ asuter - [ o piaco

i,j=1 Ze

Lemma 2.7. The functional G- : HY(Z2) — R has a unique minimizer u € HY(Z) which
satisfies the equation

(2.30) > ¢V Viu(a) +u(z) = f(x), e Z.
i,j=1

Proof. Standard. O

Proposition 2.2. Let Y. , k= 1,...,d be the minimizer of Lemma 2.6 and u the minimizer
of Lemma 2.7. Then (u,1).), where

d
w) =) Viu@)pe(w), v€2Z, weQ

is the minimizer of Lemma 2.5.
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Proof. Since u(x) satisfies (2.30) it follows that u(z) and its derivatives decrease exponentially
as |z| — oo. Hence u € HY(ZZ). Since also 1. € L*Q) and (o) = 0 it follows that
Ve € HY(ZI x Q). To show that (u,1b.) is the minimizer for the functional of Lemma 2.5 it
will be sufficient to show (u,1).) satisfies the Euler- Lagrange equation (2.28). Using the Euler-
Lagrange equation of Lemma 2.6 we see that the LHS of (2.28) is the same as

Z /Z drag()[Vie(@)Viu(e) + Viu(@)du-(z, )]

i,7=1
+ /Zg e v(z)u(z) — /Zg dz f(z)v(z).

If we use now (2.29) we see this last expression is the same as

Z/dewquv‘f z)Viu(z) + /ngwv(:v)U(:C)—/ dz f(z)v(z).

1,5=1 zZ

In view of (2.30) this last expression is zero. O

3. ANALYSIS IN FOURIER SPACE

In this section we apply Fourier space methods to the problems of section 2. First we shall be
interested in finding a solution to the partial difference equation (2.20), where f : R? - Ris a
C*° function with compact support. If we let € — 0 in (2.20) then we get formally the singular
perturbation problem,

d

(3.1) —€ Z Tijk s —Fa— (z) Z q“éﬂu(m) +u(z) = f(z), = € R%
Nyt K 6x28x]8xk 52 Y Ox;0z; ’

Evidently this is a singular perturbation of the homogenized equation (1.3). It is easy to see
that this equation has a solution wu(z), all of whose derivatives decrease exponentially fast to
zero as |x| — oo. Furthermore this decrease is uniform in € as ¢ — 0. Now let us write equation

(2.20) as
(3.2) Lou(z) = f(z), z € Zg,

where the operator L. is given by the LHS of (2.20). In contrast to the case of (3.1) we cannot
assert that (3.2) has a solution in general. We can however assert that it has an approximate
solution.

Proposition 3.1. Let f : R — R be a C™ function with compact support. Then there exists
a function u : Z¢ — R with the following properties:

(a) There exists a constant § > 0 such that for any n tuple a = (ai,...,an) with 1 < a; <

d,i=1,...,n, one has

17
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(b) The function u(x) satisfies the equation Lou(z) = f(x)+ge(z) and g-(x) has the property
that

l9: ()] < Ce¥ exp[—dlz]), = € ZZ,

where v > 0 can be chosen arbitrarily large and the constant C is independent of €.

Proof. We go into Fourier variables. For u : Z¢ — C, the Fourier transform of u is given by
; -7 7]¢
(3.3) ae) = / dz u(z)d™E, € € [—, —] .
zd 9 9

The function u can be obtained from its Fourier transform by the formula,

1 .
— ~ —ix-£ d
u(z) o) /[E",’Ef]d u(§)e ' odE, x e Zf.

The equation (3.2) is given in Fourier variables by

d

{ Z Tijk€—2(eieei-§ o 1)(e—i€ej-§ o 1)(e—i€ek~§ o 1)+
ij,k=1

d d
> g e e - 1) 1) = ), e | I

1,7=1

We can rewrite this as

: i x sin(ee; -
W1+ 4 ayexplic(e; - o) g/ 20 2 nlEes 62

< £
i,j=1
d :
—8i E Tk explie(e; — ej — ey,) - £/2] sin(ee; - £/2) sin(ee; - £/2) X
g, k=1 ¢ ¢

sin(ee; - £/2) } = £(©)

Since the matrix ¢ is positive definite it is clear that provided ¢|¢| < 1 then the coefficient of
4(§) in the last expression is non-zero. On the other hand if || = O(1) then this coefficient
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could become zero. To get around this problem we define a function u(z) by

d : i 2) si .. 2
(3.0 ﬂ(@‘){l N 4”21 s explic(er — o) - £/2 sm(seE £/ )sm(ee; £/2)

d N1t
~8i|1+A (1 — eleeit)(1 — eieeirt) ] X

{2 j
d
Z Tiji explic(e; —ej —ey) - /2] x
irj,k=1

sin(ee; - £/2) sin(ee; - £/2)
5 5

sin(eer - £/2)} = (),
HEHE

In this last expression N is a positive integer and A a positive constant chosen large enough,
depending on N, so that the coefficient of 4(¢) is nonzero for all £ € [—7/e,n/e]?. Hence (3.4)
defines a function u : Zg — C uniquely.

Since f is C*° with compact support it follows that f is analytic. In particular, for any positive
integer m and 6 > 0 there exists a constant C, s, independent of ¢, such that

- d
(35) (+ I +in] < Cnse €€ | TI| L el <o

Observe next that the function @(€) defined in (3.4) is periodic in the cube [=X, Z]4. Furthermore
there exists 6 > 0, independent of ¢, such that (¢ + in) is analytic in & +in € C¢ provided
In| < 8. We have therefore that u(z) is given by the formula,

B6) @)= g [ HE el € in)d, @ < 21l <o

Now if A is large and § > 0 is taken sufficiently small it is easy to see that the modulus of the
coefficient of @(¢ 4 in) on the LHS of (3.4) is strictly positive for & € [~m/e,7/e]?, |n| < 6. Tt
follows then from (3.5), (3.6) that part (a) of proposition 3.1 holds.
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To prove part (b) we use (3.6) to compute L.u(x) — f(z). We have for z € Z¢,

Leute) = 1) = (o [ e (e v in i €+ in)

d

81A{ (1 — expliee; - (€ + in)]) (1 — exp[—iece; - (£ + in)]) }Nx

7

1+ A{ i (1 — explice; - (€ + 177)]) (1 — exp[—iee; - (€ + in)]) }N]

=1

-1

X Z rijk exp [ie(e; —ej —eg) - (€ +in) /2] x
i,5,k=1
sin(ee; - [ +1in]/2) sin(ce; - [€ + 7] /2)

sin(eey.[§ +1in]/2).

In view of (3.5) it follows that there is a constant C, independent of &, such that
|Leu(z) — f(x)| < C*Nexpln - 2], @€ Z2,[n| < 6.

Part (b) follows from this last inequality. O

Next we wish to rewrite the functional F. of lemma 2.4 in Fourier variables. First observe
that if we define the space Hl([ T Z]4) as the set of all functions @ : [=T, Z]¢ — C such that

a(§) = a(=¢) and

d
N det. 1 . _ ices €12
il L o [ de [la©P + Yo7 1 e PlaP] < oc,
@m) Jize 210 =

then HY(Z?) and HY([=Z,Z]%) are unitarily equivalent via the Fourier trans-

form (3.3). Similarly we can define a space Ho([? T4 x Q) as all functions

¥ 1 [ZZ, T)9 x Q — C such that (€, ) = ¥(—¢,-),

d
1B, 2 { ﬁ /i 08 (1€, ) + 32— =€ Ppie, 2] ) < o,

j=1

(&) = 0, & € [==,I% Again it is clear that H)(Z¢ x Q) and
HE([ZE, Z]¢ x Q) are unitarily equivalent via the Fourier transform,

d
S N
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It is also clear that the functional F. defined by (2.25) satisfies

(3.7) Felu,ge) = Fe(a ,1&)
= < > [ a0 [ - ey
2,7=1

eﬂifaiwg(s, )+ (7= — 1) (€, )] x
[ — TE) + ¢ €016, ) + (7€ — (6,

1 1 .
_ d ~ 2 -2 d N2
T3 /[W,gd SlaQf + 5 /[ o EE)

L f<§>a<5>>,
for u € HY(Z2), . € H) (Z2 x Q).

We now follow the development of lemma 2.4 through proposition 2.2, but in Fourier space
variables. First we have:

Lemma 3.1. The functional F. : H' ([=X, T]%) x HY([ZE, Z]% x Q) — R defined by (3.7) has

e e
a unique minimizer (4,v.) with @ € H'([Z=, Z]%), . € HY (55, Z]4 x Q). The minimizer
satisfies the Euler-Lagrange equation,

d

(3.8) (&) + Y [eis(eﬂ'ei)'éaj’-‘[aij(~)3¢¢e(§a‘)]

ij=1

eises € (gmioent 1)0; [aij() - (&,°)]

efisei.f(eiiejf _ 1){aij( ) Z@bs(f, )= <aij(’)8i¢6(§7 )>}
(eiaej.g _ 1)(e—ieei-§ _ 1){%]( ) 5(5, ) — <az‘j(')¢€(£v )>}
el (eieet 1)@(5){ e 68*(%]( )

+ o+ 4+ o+

+ (€9 = 1)[ay () — (ai; ()] }] =0,

z-:*l(eisej'5 — 1)5*1 (e*ieei'é -1) < aij(-)>ﬁ(§)

+ E—l(eiaej.f _ 1)e—ieeZ <aZ]( ) Z¢E(§7 )>
P (et = 1) (@S~ 1 {ay (ke (6, >>] .

Conversely if there exists @i € H' (==, Z1%) and V. € HY([=Z 7 T1d % Q) which satisfy the Euler-
Lagrange equations (3.8), (3.9) then (4, Ve ) is the unique minimizer for F..
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Proof. Standard. O

Next for e > 0,1 < k < d and £ € [F, Z]¢ we define a functional G¢ .. : L?(2) — R by

2 £
i,j=1

d
Ge 1o () & <1 > ai() [T D) + (T~ 1)) |

[y

~ ~

[eisej.fajw(.) + (eisej-f — 1)%} + _52‘¢(')‘2

[\

d
+ Ry iy () [0, () + (%€ = 150 >
j=1

Observe that the functional Ge . at £ = 0 is identical to the functional Gy, . of lemma 2.6. The
following lemma corresponds to lemma 2.6.

Lemma 3.2. Let LZ(Q) be the square integrable functions ¢ : Q@ — C such that <1@()> = 0.
The functional Ge i, - : L3(Q2) — R has a unique minimizer Q/A)kya(f, ) € LE() which satisfies the
Euler-Lagrange equation,

(3.10)
d
Pheele) + Y [eis(%e”'fa;-‘<az-j<'>anz3k,e<fa )
ij=1
4 eise] (*1561 — )8 ( ()¢ks(£v ))
4 emicei(giceif { )0itbne () — <az’j(')3ﬂ@k,e(5= )>}
+ (eisej-é . 1)(e*i€ei'§ _ ){QZ]( )¢k€(§7 ) <aij(')¢k,6(§v )>}]
d
I Z [ ice;- fa* ak] )) + (eisej-f _ 1)[akj(') — <ak]()>]] =0.
j=1
Proof. Standard. .

Observe now that if @ZA)kﬁ(f, -) satisfy (3.10), k =1,...,d, then 1&6(57 -) defined by
d
(3.11) Pe(€) = D e e — Da(E)ne (€, )

satisfies (3.8). It follows from uniqueness of the minimizer in Lemma 3.2 that 1. (€, -) = 1.(—¢, -).
Making the substitution (3.11) for ¢, in (3.9) we see that (3.9) is the same as

(3.12) f(&) = 26 (e —1)e™ (e — 1) ¢5(€),

i,7=1
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where

d
(313) aiw(€) F (anw () + Y e ar; ()€ ) + (7 = agy (W o6, ))-
J=1

We can obtain an alternative expression for ¢, (£) by using the Euler-Lagrange equation, (3.10).
We have

d

(3.14) ¢5p(6) = < Z ai;(*) <5M X eisei-gai%’s(g’ ) + (et _ 1)157,5(5, .))

ij=1
<5k’j +e 5D (€, ) + (6750 = 1) o (€, ')) >
+ £2 <77;7,8(£7 ')¢k/,s(§v )>

It is clear from this last expression that the matrix ¢°(§) = [q5;/(§)] is Hermitian, non-negative
definite. In view of the fact that <1ﬁk,g(£ , )> = 0 it follows that it is bounded below by the

matrix Alg, where A is given by (1.1). Hence the equation (3.12) can be solved uniquely for (&)
in terms of f(&).

Suppose now that we know the minimizer ¢k7€(§ ,+) of Lemma 3.2 is continuous as a function
from [=F ’;] — L3(Q),k =1,...,d. Hence if we define 4() by (3.12) then it is easy to see that
() is continuous and

/()]

d
—T T

()] < - ! 56[_’_} '
[4(©) L+ AYL e 2feieeit — 12 ©c

A~

Since we are assuming f is C* of compact _support it follows that f 1is in
L2([==,Z)%), whence @ is in H'([=Z,Z]?). Defining ¢.(&,-) by (3.11) it is easy to see that

e ?
Ve (€,-) is in HY([=X T T19 % ). We conclude that (), (&, -) defined by (3.12) and (3.11) are
the unique solution to the variational problem of lemma 3.1.

We still need to establish the continuity of the 1&]975(5, ),k =1,---,d. We can actually assert
more than this.

Proposition 3.2. For ¢ € R? let 1@;{76(5, -) be the minimizer of lemma 3.2. Then
(a) Vr.c(&, ") regarded as a function from R? to L3(Q) is continuous and periodic,

Dre <§+27T—n )—zﬁk,g(ﬁ,-) if £eRYneZl.

(b) There exists o > 0, independent of €, such that 1&;@75 : R4 — LE(Q) has an analytic continua-
tion into the region {¢ +in € C?: &, ne RY, |n| < a}.

(¢) For any 6 > 0, the number a > 0 can be chosen, independent of €, such that the matriz ¢°(§)
defined by (3.13) satisfies the inequality,

g5 (E+in) — 5 (6)] <6, 1< kK <d, &, neR, |y <a.
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To prove proposition 3.2 we define operators from L%(Q) to L2(Q) as follows: If ¢ € L?(2) let
() be the solution of the equation,

Mg_

(3.15) (aj vl e*iaerf) (&- +1- eigei'f)w(') + %ﬂ(-) —

1=1
(e=er€a; + =o€ — 1) (o) — (¢}),
where A is given in (1.1).

The operator Tj . ¢ is defined by putting ¢ = T - ¢¢. Let || || denote the usual L? norm and for
¢ € RY define || ||.¢ by

d 2
def. ice;- €
16 2637 0+ 1= e 2 5 2.
i=1

It is easy to see that Tj.¢ is a bounded operator from L?(Q), equipped with the standard
norm, to L2(€2), equipped with the norm || ||.¢, and that the operator norm of T} . ¢ satisfies
| Thee 1< 1.

We can rewrite the Euler-Lagrange equation (3.10) using the operators Tj .. First let b(-)
be the random matrix defined by b(-) = [AI; — a(-)]/A. Evidently b(-) is symmetric positive
definite and b(-) < (1 —A/A)I;. Substituting for a(-) in terms of b(:) into (3.10) yields then the
equation,

(3.16) Up.(€,) Z { {*ieeifaﬁe*iwif—1]%,6(5, -)}+

1,5=1
d
Z jeglagi(-) = 0.

We define an operator T, . ¢ on L3(Q) by

(3.17) Toeeo(s) Z { [e7=€i g, + et — 1]@(')}, p € LE(9),
i,7=1

where b(-) is an arbitrary random real symmetric matrix. We define || b || to be

||b||—sup{|ZbU POVE ZA2_1weQ}

i,7=1

Thus || b || is the maximum over w € 2 of the spectral radii of b(w). It is easy to see now that
To.c ¢ is a bounded operator on L3(Q2) equipped with the norm || || ¢ and that the corresponding
operator norm satisfies || Th - ¢ [|<[| b ||.

Our goal now is to show that the operators T} . ¢ and Ty, . ¢ can be analytically continued from
¢ € R% to astrip {¢ +in: & n € R |n| < a} in C? Furthermore, the norm bounds we have
obtained continue to approximately hold.
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Lemma 3.3. (a) Assume L*(Q) is equipped with the standard mnorm and let
B(L%*(Q)) be the corresponding Banach space of bounded operators on L*(Q). Then there
erists a > 0, independent of €, such that the mapping & — Tj o ¢ from R to B(L?(2)) can be
analytically continued into the region {€ +in € C%: &,n e RY, |n| < a}.

(b) For £&,m € R |n| < a consider Tk etin as a bounded operator from L*(Y), equipped with
the standard norm, to L3(Q), equipped with the norm | ||.e. We denote the corresponding
operator norm also by || ||l-.c. Then, for o sufficiently small, independent of €, there exists a
constant C,, depending only on «, such that

| Thegtin — Theg lleg< Calnl, &m e R 0| < o

Proof. We can write down the solution of (3.15) by using a Green’s function. Thus, in analogy
0 (2.7), let G, ¢ be the solution of the equation,

d
(3.18) Z [Vi +1-— e—ieei.f} {Vf 1 eieei-f} Geg(r) + —Geelz) =0(z), z€ zd
=1

Then T}, . ¢ is given by

(819)  Theed() = Y [T, 4 1] Guely) [6(r) — (0)], @ € LX),

yeZd

The function G, ¢(y) decays exponentially as |y| — co. Hence the RHS of (3.19) is in L3(Q). It
is a simple matter to verify that 1 = T}, . ¢¢, defined by (3.19), satisfies (3.15).

To prove part (a) we need to analyze the solution of (3.18). To do this we go into Fourier

variables. Thus if
O = Z Gs,é(x)em'ga QS [_Waﬂ]da
z€ZI
then from (3.18) we have that

d -1

(8200 GeelO) = {Z 7ot — grieene] |elent _ gicect] sQ/A} € [omm]t.
i=1

Taking the inverse Fourier transform we reconstruct G. ¢ from és,é by the formula,

1

(3.21) Geglz) = (n)

/[ . Goe(Qe™™de, x € Z°.

Observe now that there exists a > 0, independent of ¢, such that G, £(Q), regarded as a function
of ¢ and ¢, is analytic in the region {(¢,¢) € C2¢: |Im £| < a, |[Im (| < ea}. From (3.20), (3.21)
we have that

1 . .
- dCe_w.Celaek'EX
(27r)d / m,m]4

d
[e*iek( e icen: 5] { Z —ie; ¢ 15ei-§] [eiei ¢ _ gieeir ] + 2 /A} 1

=1

R ey, 4 elFer s 1} G.e(x) =



By deforming the contour of integration in ¢ in (3.21) into the complex space C? we see that
for every o € Z¢ the function [e!*®* ¢V}, + e!*®+¢ — 1]x G, ¢(z) is analytic in ¢ for £ € C? with
| Im & |< . Furthermore there is a universal constant C' such that

(3.22) | [V + e _1]GL¢(x) |[< Cexp[—ealz]], xe€Z%&eC|Imé|<a.

Note that a similar inequality for G, ¢(x) holds if d > 3 but not if d = 2. Part (a) follows now
since it is clear that the RHS of (3.19) is analytic if we have a finite summation instead of the
sum over all of Z9. The inequality (3.22) gives uniform convergence in the norm of B(L?(f)),
whence the result of part (a).

We turn to the proof of part (b). We have from (3.19) that

[Ty e 4in® — Thee B2

= >t Y (i[hm,x) — hj(0.2)] [ 1,2 = n) = B (0,2 — )

nezd z€zZd  j=1
+ [h(n, x) — h(0, «’13)] [ﬁ(n, z—n)—h(0,z ~ n)} )’

where I' is the correlation function,

r(n) = ([6(r) = (6)] [6(r0) = (B)] ).m € 2,

and the h, h; are given by

(3.23) h(n,z) = % [eiEek.(Eer)vk 4 eleer (§+in) _ 1} Gecrin(x), €2

hi(n, @) = |e=or Gy, 4 efeon(EHin) _ 1] [W 1= eieejf] Gegrin(e), weZ1<j<d

Now I'(n) is a positive definite function. Hence by Bochner’s theorem [9] there is a finite positive
measure djug on [—m,7]¢ such that

L(n) _/[ ]dein'cd%(f), n ez,
and,

/Hm]dd%@) =ll¢ = (D)I* < llol>.
It follows that

| Theerin® — Theed |12 =

d
[ [0 =00 + 1htn, 0 (0, OF]due(c) <
—m,T =1

d
lolF sw {2 1hs0,Q) = By (0.0 + h(m,¢) = h(0, Q) .
7j=1

CE|—m,m :



From (3.20) , (3.23) we have that
h(,€) = = exp Jicer (€ +in) — ie | ~ 1}Geein(©)
hy(n. Q) = { exp [izen - (6 +in) —iex - ¢| — 1} {e™ ¢ — e hG e Q).

Hence,

d
> 1hi(n,¢) = hi (0,01 + h(n,¢) — h(0, Q)] =
j=1
agaﬂéwﬁmtwmfaﬁmo—éwﬂwmﬂagm?

It is easy to see that we can choose « sufficiently small, independent of €, such that this last
expression is less that C|n|? for all ¢ € [—7, 7]%, |n| < a, where the constant C' is independent of
€. The result follows. 0

Corollary 3.1. Let Ty, ; ¢1iy be the analytic continuation of the operator Ty, . ¢ of (3.17). Then,
for a sufficiently small, independent of €, there exists a constant Cy, depending only on «, such
that || Ty ceqin — Toee e < Calnl || b || . Here the operator norm || ||c¢ is that induced on
bounded operators on LE(SY), equipped with the norm || ||c¢.

Proof. Follows from lemma 3.3 and Taylor expansion. O

Proof of Proposition 3.2. (From (3.16), (3.17) the function &k,e(fy’) can be obtained as the
solution of the equation,

d
N 1
(&) = Toegtre(,) +3 Z jeglari (1) =0,

where the matrix b has || b |[< 1 — A/A. In view of lemma 3.3 and corollary 3.1 there exists
«a > 0, independent of ¢, such that the equation

(3.24) Ure(€+in,) = To e erinne(€ +in,-) +3 Z e e+in(ari(+)) =0,

has a unique solution @k,g(f +in,-) € L3(Q), provided ¢, € RY, |n| < a. Further, a can be
chosen sufficiently small, independent of ¢, such that

(3'25) H Qz)k,a(f + i777 ) - &k,e(& ) HE,ES Ca|77|7

where the constant C, is independent of . It is easy to see that the function ﬁkﬁ(& +in,) is
the analytic continuation of 1&;“5(5, ), € € R In fact we just write the solution of (3.24) as
a perturbation series. A finite truncation of the series is clearly analytic in & +in € C%. Now
we use the fact that lemma 3.3 and corollary 3.1 gives us uniform convergence in the standard
norm on L3(£)) to assert the analyticity of the entire series. This proves parts (a) and (b).
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To prove part (c) we use the representation (3.13) for ¢°(§). Thus
d
G (6 + ) = 4 (&) = (D an ()
j=1
[eiigejfaj + (e — 1)} [@Z’kce(f +in, ) — Y e(€, )]>

d
+ <Z ak]’(~)(e_i€ej'(§+in) _ e—iaejf)(aj + 1)&1&,5(5 + irn’ )>
j=1
Hence from the Schwarz inequality,

g (€ +10) — G (O)] < C || Ypr (€ +im,-)
— (&) lee +Cl || i (€ +10,) Jlce

where the constant C' depends only on « and the uniform bound A on the matrix a(-). The
result follows now from (3.25).

Proof of Theorem 1.1. From proposition 3.2 there exists o > 0 such that the matrix ¢°(£) has an
analytic continuation into the region {f—i—in dnl < a}. From (3.12) we have then that 4(£) can

also be analytically continued into this region. The result follows now by using the deformation
of contour argument of proposition 3.1, the fact that ¢°(¢) is bounded below as a quadratic form
by Al; and part (c) of proposition 3.2.

4. A BERNOULLI ENVIRONMENT.

In this section we consider a situation in which the random matrix a : @ — R d1/2 jg
generated by independent Bernoulli variables. For each n € Z? let Y}, be independent Bernoulli
variables, whence Y,, = +1 with equal probability. The probability space (£2, F,u) is then the
space generated by all the variables Y;,, n € Z% A point w € Q is a set of configurations
{(Yn, n) : n € Z%}. For y € Z¢ the translation operator 7, acts on Q by taking the point
w={(Yn, n):n € Z¥ to yw = {(Yoty, n): n € Z}. The random matrix a is then defined
by
def. d
a(w) = (1+vY0)lg, w={(Y,,n):ncZ%,
where I; is the identity d X d matrix and ~ is a number satisfying 0 < v < 1. Evidently, we have
a(z,w) = (1+~Y,)1y, » € Z%
For N = 1,2,..., let Z»" be the collection of all sets of N distinct elements {ny,...,ny} with
n; € Z%, 1< j < N. For 1 <p< oo a function ¢y : Z4YN — R is in LP(Z4V) if
lowlp < 32 Tew(m)P < o
meZaN

For each y € Z% we may define a translation operator Ty on Z4N by

def.
Ty{n17"'7nN} = {’I’ll —Y,.-sNN _y}

We can then define the convolution of two functions ¥y, N : Z4N — R. This is a function
PN * N - Z4 — R given by

(4.1) Unxen(y) = Y. Un(m)en(rym), ye -

meZhN
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If N =1 this is just the standard discrete convolution. We have the following generalization of
Young’s inequality:

Proposition 4.1. Suppose p,q satisfy 1 < p,q < oo and I% + % =1+ % with 1 <r < oo. Then
if oy € LP(ZY) and pn € LY(ZEN) it follows that ¥y * o € L"(Z?) and

(4.2) [N+ onllr < [N lpllenllq-

Proof. We follow the standard procedure. If r = oo the result follows from Holder’s inequality
applied to (4.1). For p = 1 we have from Hélder’s inequality that

xron@l < [ X k] X Wewm)lenmm)
mezZaN meZLN

lewllf™ Y fon(m)llen (rym)|“.

meZ4N

IN

Now if we sum this last inequality over y € Z? we get the inequality (4.2) with r = q. For the
general case we have

](1*01)1“/p><

e on @) <[ D owm)P

meZaN
(1-B)r/q
[ Y lenml] > lowm)Plen(rm)l,
meZ4N meZ4N

where «, 8 are given by ra = p, 78 = q. The result follows from this last inequality by summing
over y € Z°. [l

Next we define the Fock space corresponding to the N body spaces Lp(Zd’N), N=12.... We
denote by ¢ a set {t)x : N =0,1,2,...} of functions ¢ : Z¥Y — R, N = 1,2,... and 9y € R.
The LP Fock space which we denote by FP(Z?) is all such ¢ which satisfy

1[5 = [3hol? + Z [N h < oco.

N=1

For two functions ¢ = {5y : N = 0,1,2,...} and ¢ = {ony : N = 0,1,2,...} we define the
convolution 1 * ¢ : Z¢ — R by

(4.3) Vro) C Y v ronly), yezl
N=1

Arguing as in Proposition 4.1 we have a version of Young’s inequality for this situation.

Corollary 4.1. Suppose p,q,r are as in Proposition 4.1, and ) € FP(Z?), ¢ € FI(Z?). Then
Yx e L'(Z) and || * ol < [[9llpllellg-

The point in defining the Fock spaces FP(Z%) here is the fact that F2(Z) is unitarily equivalent
to L2(Q). In fact if ¢ = {¢yn : N =0,1,2,...} with ¢pp € R and ¢y : Z%V — R we can define a
function U1 on 2 by

Up =g+ » > UN (M) Y, Yy Yo

N=1 {m={n1,...;nn}eZ4N}
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Evidently U : F2(Z%) — L?(Q) is unitary. We now define LP(Q) for 1 < p < oo as the image
of FP(Z%) under U equipped with the induced norm. Evidently we can define the convolution
for functions in LP(2) and Young’s inequality holds as in Corollary 4.1. Observe now that
LP(Q) is contained in L*(Q) if 1 < p < 2. We have seen in Lemma 2.2 that the minimizer
Uk = (Th, ..., \Il’j) has \Ilf € L*(Q), i = 1,...,d. We can strengthen this result here as follows:

Proposition 4.2. Suppose the random matriz a(w) is given by a(w) = (1+~Yy)Ig with 0 < v <
1, and ¥F = (\Illf, - \IIS) 1s the minimizer for the corresponding variational problem as given in
Lemma 2.2. Then there exists p, 1 < p < 2, depending on ~y such that \Iff”‘ € Lr(Q), i=1,...d.
The number p can be chosen arbitrarily close to 1 provided v > 0 is taken sufficiently small.

Proof. Writing U; = 9;®, i = 1, ...,d and assuming ® is an arbitrary function in L?(£2) it is clear
that the Euler-Lagrange equation in Lemma 2.2 is the same as

d d
(4.4) > 05 |ay@) W @)] + Y e (w) = o.
j=1

ij=1
Thus if we can find U* € H(N) satisfying (4.4) then U* is the unique solution to the variational
problem of Lemma 2.2.

For any k = 1,...,d we define an operator T}, : L?(Q2) — H(Q) as follows: Suppose ® € L?().
Then, in analogy to our derivation of (4.4) we see that there is a unique ¥ € H(£2) such that

d
(4.5) > 0 = ;0.
=1

We put U = T3, ®. It is easy to see that T} is a bounded operator with ||T%|| < 1. Next, for
k =1,....,d and n > 0 we define an operator Ty, : L*(2) — H(f) as follows: Suppose ® € L%(1).
Then by using the variational argument of Lemma 2.2 one sees that there is a unique ®,, € L?(Q)
such that

d
(4.6) > 05 0 By + Py = ;P
i=1
We put V&, =T}, ,®. It is again clear that T}, is a bounded operator and ||T} [ < 1.

We can obtain a representation for the solution ®,, of (4.6) with the help of the Green’s function
Gy, of (2.7). Tt is easy to see that

(4.7) Op(w) = Y ViGy(y)®(rw), weQ,
yeZ

is in L?(Q) and satisfies (4.6). From (4.5), (4.6), we see that for ® € L*(2), T ,® converges
weakly to T3, ® in H(£2) as n — 0 provided the corresponding function ®,, defined by (4.7) satisfies
n®, — 0 weakly in L?(2). This last fact follows from the ergodicity of the translation operators
Ty. One sees this by going to the spectral representation of the 7, [9].

We consider now the case of the a(w) in the statement of Proposition 4.2. In this situation (4.4)

can be rewritten as
d

d
U4y T (UE) + ) Ti(ar) =0.
i=1 =1
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Define T': H(2) — H(Q2) by the formula,
d
TV =) T;(YoV;), ¥eHQ).
j=1
Since the operation of multiplication by Yp is unitary on L?(€2) it follows that T is bounded and
in fact ||T'|| < 1. Hence (4.4) is equivalent to solving the equation

d
(4.8) (I +4T)T* + 3 Tj(ax;) = 0.
j=1
Since ||T'|| < 1 it is evident this equation has a unique solution provided |y| < 1. We can for
n > 0 define an operator T, : H(£2) — H(2) in analogy to the definition of T" by
d
T,0 =Y T;,(Y%0;), e H(Q).
j=1
It is clear that T;, is bounded with ||7,,|| < 1. Hence if |y| < 1 there is a unique solution to the
equation

d
(4.9) (I +AT) T+ " Tjp(ax;) = 0.
j=1
Furthermore the solution W% of (4.9) converges weakly to the solution W* of (4.4) as  — 0 in
H().
For 1 < p < oo we define the spaces HP(2) as follows: Let £, = {Vy : p € LP(Q)}. For ¥ € &,

we define the norm of W, [|W||,, to be given by |5 = % ||W,[[5, where ¥ = (W1, ..., ¥y). The
Banach space HP(Q) is the closure of &, in this norm. Evidently H?(f2) is the same as H(Q). We
can show that there exists p < 2, depending on v < 1 such that (4.9) has a solution in HP(£2).
To see this observe that

d
T0)iw) = 3 3 VIV,G () (o) (rw). w e Q.
Jj=1yezd

Now the RHS of this last equation is just a singular integral. In fact if ¢ = {ony : N =0,1,2,...}
is in LP(§2) then the function 1 defined by

V(W) =) ViViGy)e(nw), weq,
yeZd
is given by ¢ = {¢)ny : N =0,1,2,...} where 19 = 0 and for N > 1, one has
Un(m) =Y ViVGy(y)en(rym), meZ.
yeZd

Thus ¥y is the convolution of a second derivative of a Green’s function with ¢n. We can
therefore invoke the Calderon-Zygmund theorem [10] to conclude the following: Let 1 < p < occ.
Then T;, is a bounded operator on HP(Q2) for every n > 0. Further, there exists a bounded
operator 17" on ‘HP(2) such that lim, .o [|[T¥ — T, V||, = 0 for every ¥ € HP(£2). There exists
p < 2 such that lim, o |75, < 1.

In the last statement we are using the fact that || 7|2 < 1 and the continuity of the operator
norms in p. Hence there exists p < 2 such that for all sufficiently small 1 the equation (4.9) has
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a unique solution %7 in HP(Q). It also follows from the above that as n — 0, X7 converges
in HP(2) to a function U € HP(Q). Since HP(Q) C H2(Q) = H(Q) it follows that this U* is
also the solution of the variational problem. This proves the first part of Proposition 4.2. The
fact that p can be taken arbitrarily close to 1 for sufficiently small ~ is clearly also a direct
consequence of the Calderon-Zygmund theorem. O

Proposition 4.3. Suppose the random matriz a(w) is given by a(w) = (1+~Yy)Ig with0 < v < 1
and Z¢(x,w) is as in Proposition 2.1. Then if d > 2 one has

(4,10) </Zd d:L‘ZE(x’.)2> < Ce2e ’

where o > 0 is a constant depending only on v and C is independent of €. If v is sufficiently
small one can take o = 1.

Proof. From Proposition 2.1 it is sufficient to obtain estimates on Aq, As, Az, A4, As, Ag. We
first consider A;. In view of the boundedness of the matrix a(w) and Proposition 4.2 it follows
that Q;j(w) is in LP(2) for some p, 1 < p < 2, 4,5 = 1,...,d. Taking the expectation value and
using translation invariance we see that A; is given by the expression,

d
" X
A1: Z / dl’EQZ Z VZGO (E—y>><
ijib=1"2¢ yezd y ezd

* * x *
Vi Viu(ey) ViGo (T — o) Vi Viuley') Qu x Quly — ),

where convolution is defined by (4.3). Making the change of variable n = y — 3/, this becomes

d
A = Z g Z hije(n)Qij * Qiz(n),
ijl=1 nezd
where

(@11) hye() = [

» dx Z V;Go (g - y) Vi Viu(ey)x

€ yGZd
* €z ExvTE
ViGo (g oyt n) V5 Veu(ely — n)).

We can estimate the summation with respect to x from our knowledge of the properties of Gy.
We conclude that there is a constant C' independent of € such that

Csd E% €
|hije(n)] Th 2 > Ve Viu(ey)|
yeZd
(Vi Viu(ely —n])| < 5 2 exp|—de|n|],

where C,§ > 0 are independent of . In this last inequality we have used Proposition 3.1. From
Corollary 4.1 it follows that Q;; * Q;; € L"(Z?) where 1/r = 2/p — 1. Since 1 < p < 2 one has
1 < r < oo. Hence from Holder’s inequality we conclude that

1/r’
1

2
A= O D, T

neZzZd

exp[—dr'e|n]] ,
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where 1/r + 1/r' = 1. Evidently this yields
Ay < Ce® max [1, (1/e)?— 4|,
Since r < oo it follows that A; < Ce?® for some a > 0. If « is sufficiently small we can choose

p close to 1 and hence r close to 1. Since d > 2 it follows that A; < Ce? in this case.

It is clear that As and As can be dealt with in exactly the same way as A;. To deal with A4 we
choose n = 2. Arguing as before we have

d
Z et Z h”k(n)\llé€ * \Ilg‘j(n),

i,j,k:l TlEZd
where
hijk(n)—/ dz[Viu(x + ce;)] ZG (—_y> (——y—l—n)
VA
€ yeZd

Again we see from known properties of Green’s functions that

C
()] < ——~— exp|— d>4
|hljk(n)| -1 +‘ ‘d,4 eXp[ 55|n|]7 > )
’ zgk(n)’ < Clog(l/s) exp[ 55’””7 d=4,
C
hige()] < = expl—delnl] d=3.

Using these inequalities and arguing as before we see that Ay < Ce?® with o > 0 and a = 1 if
v is sufficiently small.

To deal with A5 and Ag we use the representation,

x(2o) = > yvi, (Z-v) Wi ).

y€eZd j=1

and argue as previously. O

For d = 2 we can get almost the same result as in Proposition 4.3. We have

Proposition 4.4. Suppose d = 2 in the statement of Proposition 4.3. Then (4.10) holds for
some o > 0 depending on v. The number o can be taken arbitrarily close to 1 provided v is
chosen sufficiently small.

Proof. We consider A; again. The problem is that when d = 2 the summation with respect to
x in (4.11) gives infinity. To get around this we replace Gy in the representation (2.23) of the
first term on the RHS of (2.21) by G, with n = 2. Hence from (2.7), (2.22), we have

= ) -AG, (— —x > Ve (ex’,w)

x'€Zd

+ Z n Gy (——x)¢6(5x’,w), yezZd, weq.

z'€Zd
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We can rewrite this as

nw) — 3 SVie (L) Vvl

x'€Zd (=1
+ Z n Gy (— —x > Ye(ex,w)
z'€Zd
d z y,
= /Zg d.TKZIVZ@Z)E(.’E,W)v;Gn <g - g> 517d

/
—I—/ dz . (x,w)Gy (E — y_) g274,
zd 9 9

The first term on the RHS of (2.21) is therefore the same as

(4.12) Z / dx< Ve (z,-) Z eV, G, (g - y) Qz‘j(Ty-)Vf*Vju(é‘y)>

7]Z 1 yEZd
+ Z / dx < Ye(z Z £G, <_ - y) Qij(Ty) €*V§U(5?/)> .
hj=1 yezd
If we use the Schwarz inequality in (4.12) we see the first term is bounded by C|¢. || Al/ 2
and the second term by C||tc||31 Al,/1 , where

2

Ajg = i < / dr |e Z VG, (g —y) Qij(1y) Vi Viu(ey) > ,
3 0=1 yezZa
2
A = Zd_:</ dz | & ZG ( y) Qij(1y) Vi Viu(ey) >

yeZd

We proceed now as in Proposition 4.3. Thus A; o can be written as

A10 = Z Z h”g Qz] * QZJ( )

i,j,0=1 neZd

where

hige(n) = / dr 30 ViG, (2 ) Veviuley) ViGy (L -yt n) VEVulely — nl).

yeZ?

It is clear now that there are constants C, § > 0 such that
1
|hije(n)] < C log z exp[—de[n/].
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Arguing as before we see that A; o < Ce?* for some o > 0 and « can be chosen arbitrarily close
to 1 if ~y is small. We have a similar representation for A ; given by

d
Arn =Y " Y hij(n)Qij + Qi(n),

u,j=1  neZzd
where in this case h;; is given by
hi(n) = / a3 Gy (2 =) ViViuey) Gy (Z —y+n) Vi Viulely — ).
z¢ yeZd ¢ ¢
The estimate now on h;; is
|hij(n)] < C e™?[log(1/e)]? exp[—de|n]].

We conclude again that A;; < Ce?® for some o > 0 and « can be chosen arbitrarily close to 1
if v is small.

The second and third terms on the RHS of (2.21) can be dealt with exactly the same way we
dealt with the first term. The fourth, fifth and sixth terms are handled in the same way we
handled A4, As, Ag in Proposition 4.3. O

Proof of Theorem 1.2. In view of Proposition 4.3, 4.4 and the inequality (2.24), it is sufficient
for us to estimate

52< /zg dx [éXk(g )Viu(x)] >

Since this quantity is bounded by dAg, we just have to use the estimates from Propositions 4.3,
4.4.

Next we turn to the proof of Theorem 1.3. It is clear from Lemma 2.4 that if u. is the minimizer
for Lemma 2.1 and (u,.) the minimizer for Lemma 2.4 then

2
< [/zg dz g(z)ue(, ) —< /zg dz g(z)ue(z, .)> r > g2 < [/zg dx g(2)e (2, 7y e .)] >

We shall first prove a result when . is the minimizer for the separable problem given in Lemma
2.5.

Proposition 4.5. Let (u,1).) be the minimizer of the functional Fs. given in Lemma 2.5, and
g:RI— R a C® function of compact support. Then

(113) = ([ Ao, )] hsce

for some o > 0, provided |y| < 1. The number o can be taken arbitrarily close to d provided -y
is taken sufficiently small.

Proof. From Proposition 2.2 it is sufficient for us to bound
2
([ [ dra@¥iapinatn. )] ),
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where 1)y, .(+) is the minimizer of Lemma 2.6. This last expression is the same as

2 37 h(n)ie * dre(n),

nezd

where

(4.14) h(n) = /Zd dz g(x)Viu(x)g(x — en)Viu(x —en), n € Z4

We shall see in the next lemma that ey, . € LP(§2) for some p, 1 < p < 2, and that ||y .||, < C
where C' is independent of € as ¢ — (. Further, p can be taken arbitrarily close to 1 for
sufficiently small v > 0. The result follows easily from this and Young’s inequality, Corollary
4.1. Since ey . is in LP(Q2) it follows that 52?/%,3 * g e is in L"(Z%) with 1/r =2/p — 1, and
|2k e * Yrellr < C where C is independent of e. Hence from Hélder’s inequality the LHS of
(4.13) is bounded by
C YA, where 1/r+1/r' =1.

It is easy now to see from (4.14) that [|h||,, < Ce~%". Note that r’ > 1 since p < 2, hence
r < o0.

O

Lemma 4.1. Suppose the random matriz a(w) is given by a(w) = (1 +vYp)Ilg with 0 < vy < 1,
and Yy .(-) is the minimizer for the corresponding variational problem as given in Lemma 2.6.
Then there exists p, 1 < p < 2, depending on 7y such that ey, . € LP(Q) with ||ty ||, bounded
independent of € as € — 0. The number p can be chosen arbitrarily close to 1 provided ~v > 0 is
taken sufficiently small.

Proof. Observe that the result is trivial for p = 2. In fact we have

levrels < < akk(')> + 261 (Vr,e)

< <akk(-) >, ( since Gy (0) =0).

To prove the LP result with p < 2 we proceed similarly to Proposition 4.2. First note that the
Euler-Lagrange equation of Lemma 2.6 is the same as

d d
(4.15) > 07 [aij(w)05n (W) + E¥pc(e) + Y Fagi(w) =0, we Q.
i,5=1 j=1

If we can find ¢y . € L%(2) satisfying (4.15) then ¢y . is the unique solution to the variational
problem of Lemma 2.6.

For any k = 1,...,d define an operator T : L*(2) — L?(Q) as follows: Suppose ¢ € L*(1).
Then, in analogy to our derivation of (4.15) we see that there is a unique 1 € L?(Q) satisfying

d
> 070 + %% = Of.

i=1
We put 1) = T, .. It is easy to see that T} . is a bounded operator with ||T)c| < 2e%. We can
obtain a representation of T} . using the Green’s function G,, of (2.7). We have

Trep(w) = Y ViGa(y)p(rw), we Q.
yeZd
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Putting a(w) = (1 +7Yp)Is we see that (4.15) is the same as
d
(416) wk e+ i Z j,€ Yoaﬂbk 5 Z T’j,E(ak,j) =0.
j=1

Observe that (4.16) cannot necessarily be solved in L?(f2) since the norms of T}, as bounded
operators on L?(f2), can become arbitrarily large as ¢ — 0. To get around this we define a norm
on L?() which depends on e. For ¢ € L%(Q2) let [|¢||c be defined by

d
def.
1012 = D 1050117 + %11

J=1

Let T. be the operator on L?(Q) given by
(4.17) Ty = Z =(Yo0;9).

We show that the operator norm of T. with respect to || ||c on L*(Q) has ||T:||- < 1. In fact
(4.17) implies that

d
[Z 07 0; + €
=1

d
T =Y O (Yods),
j=1

whence

ITewo )12 < | Tetlle e,

which implies the result. We conclude that (4.16) is uniquely solvable for ¢ . in L?(£2) provided
|7] < 1. Following Proposition 4.2, we define a p norm on LP(f2), 1 < p < oo, which depends
on ¢, by

d
(4.18) 12, € ST 0008 + llew |2, w € LP().
j=1

The result follows if we can show that 7} is a bounded operator on LP(2) with the norm ||T¢||c
induced by the vector norm (4.18), bounded independent of € as ¢ — 0. This again is just a
consequence of the Calderon-Zygmund theorem. O

Proof of Theorem 1.3. We need to go into the Fourier representation studied in §3. Thus from
(3.11) we have that

o 1 N No—iz-€
E/zg dz g(x)Ye (2, Tppe) = /zg dx g(x) (2 /[?751(1 P (& T/e)e dg
d

— 1 o
— ;/zg dzg(zx) —(27r)d /[?7§]d(e 1) x
W(E) ke (€ Tayer)e 0 0dE
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Hence

2
< [ 4 o %(smx/eol >
2
L ;
— T dgfl efisek-é — 1D T fdé_fl
dz/aw | et Da()(2m) =

(€~ 1)a() 3 e 2hi(n, € e (€) * . () (),

nezd

IN

1 . A .
diL'g (27T)d /[_ (e—léekf - 1)71(5)1%,5(5’ Tx/e')e_w.gdg

where @k,g(é’),zﬁk,g(ﬁ) denote the functions 1@;{76(5, ), 1&;“5((, -) respectively in L?(Q), and hy, is
given by the formula

mu(n.€.0) = | deglalgle - em)explic - (¢ —€) ~ien .

€

Since ¢ : R — R is a C™ function with compact support it is easy to see that for every 7/,
1 <7 < oo, h(-&,¢) is in L (Z%) and ||hg(-, €, 0|l < C e=¥"", where C' depends only on g.
We know now from § 3 that
~ Nk
e et~ 1)a(e)| < 7

C
= 77%7 5 c|l—,
L+ g™ € ¢
for any positive integer m, where C), depends only on m. Hence to finish the proof of Theorem
1.3 we need to prove an analogue of Lemma 4.1 for the function v, (&, ) and our bounds must

be uniform for § € [=F, €] This is accomplished by replacing the operator T; of (4.17) by the
operator Ty, . ¢ of (3.17) and following the argument of Lemma 4.1.

5. MORE GENERAL ENVIRONMENTS.

In this section we shall show how to generalize the methods of §4 to prove Theorem 1.2 and
Theorem 1.3. Just as in § 3 we define a random matrix b(-) by b(:) = [Al; —a(-)]/A. Thus b(-)
is a symmetric positive definite matrix and b(:) < (1 — A/A)Iy = I, in the sense of quadratic
forms. Next let S be the set S = {UJ" {ig.jr} : 1 < ip < jp <d, k=1,...,m, 1 <m < oo}.
For s € S we define a random variable, bs by

= H blk,]k()7 S = U{/Lkajk}a
k=1 k=1

and a random variable Yy ¢ = bs — (bs). For s € S;n € Z¢ we define Y, s as the translate of Y{ .
Thus Yy, s(-) = Yo s(7 ). It follows from our assumptions that the variables Y}, s, Y, s, are
independent if ny # no. They are not necessarily independent if ny = ny. We can think of the
extra index s on the variable Y;, ; as denoting a spin. We are therefore led to define a Fock space
fg(Zd) of many particle functions where the particles move in Z? and have spin in S. Thus
Y € F5(Z%) is a collection of N particle functions ¢ = {¢)y : N =0,1,2,...} where 19 € R and
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Yy ZPV x SN R, N =1,2,.... Each ¢y is in LP(Z%Y x SN) with LP norm given by

lenl2 < ST jun(m)P.

meZhN x SN

The norm on F5(Z%) is given as before by

o0
def.
lollp = 1ol” + > Il
N=1

For s = UpY {ig, ji} € S, let |s| = m. Given a parameter a > 0 we define a mapping U, from
F2(Z4) to functions on 2 by

def. >
(5.1) Untp = aho + Z Z Yn(ni,s1,n2,52, ..., WN, SN) X

N=1 {ni,..nn}eZdN
$;€8, 1<i<N
S1|+...+|s
a' 2 ol Ynhslym,sz e YTLN,SN'

Lemma 5.1. For any o > 0 the number v can be chosen sufficiently small so that U, is a
bounded operator from F2(Z9) to L*(Q) and |U, || < 1.

Proof. Since (Yps) =0, s € S, we have

[e.e]
1Ua ¥113 =45+ > > Y (N1, 81,02, 82, N, SN) X

N=1 {nq,..ny}eZdN,
si,5,€8, 1<i<N

/ / MBS
T TS SN)a\s1|+ +lsn|+[s] [+ +lsy] <Ym751 Yn178/1> X
<Yn2,52 Yng,s/2> to <Y7’LN75N YTLN75§V>

o0
<3+ > [UN (11,81, NN, SN[ X

N=1 {n;,..nn}€ZsN,
5i,5,€85,1<i<N

‘wN(nl’ 83, “"nN’ si]v)‘(S'Sl'Jr+|SN|+‘81‘++‘SN‘ R
where § > 0 can be chosen arbitrarily small provided v > 0 is taken sufficiently small. It is
evident now that for fixed (n1,...,ny) € Z%" one has

Z |¢N(nlu 51y .- UN, SN)| |11Z)N(n17 ‘9/17 ey N, Si]\/')|><
s54,5,€5,1<i<N

N
5\51\+---+\5N\+|s’1|+...+|s§\,\ < [Z 62s|] Z |¢N(n17517 ...,TZN,SN)|2.

seS $;€5,1<i<N

The result follows now by taking § small enough so that ) _ g §2lsl < 1. O
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Our first goal here will be to prove an analogue of Proposition 4.2. Let Ty, : H(Q) — H(2) be
the operator defined by

d
(5.2) T =Y Ti(bij(-)\lfj), T e H(Q),
ij=1

where the operators T} are given by (4.5). It is clear that || T},|| < v and that the minimizer ¥*
of Lemma 2.2 is the unique solution to the equation

d
1
(5.3) Uk = T, — 0 > Ti(ary)-
j=1

For each y € Z? we can define a translation operator Ty on Fé(Zd) as follows:

Ty%o = Yo,

TyN(n1, 51, ..,nN, 8N) = YNn(n1 — Y, 51, ..., nn — Y, 5n), N > 1.

It is clear that 7,Uy = Uy, ¥y € Z% o > 0. Just as in §2 we can use the translation operators
to define derivative operators 0;, 9, 1 <1 <d, on Fg(Zd). We define the space of gradients of
functions in F2(Z%), which we denote by H%(Z?), in analogy to the definition of H(Q2). Thus
for p € F2(Z%) let Vi be the gradient (01, ...,04¢). Then H%(Z4) is the completion of the
space of gradients {V¢ : ¢ € F2(Z%)} under the norm || ||z,

d
1[5 = W[5, © = (¥y,...,Tq), ¥; € FE(Z), 1<i<d.
i=1

We wish to define an operator Ty o 7 on H%(Zd) which has the property that if Ty, is the
operator of (5.2) then U, Ty, o7 = ThU,. First we define operators Tj, 7 : fg(Zd) — H%(Zd),
1 < k < d. These are defined exactly as in (4.5). Thus, note that for ® € F2(Z9) there is a
unique ¥ € H%(Z?) such that

d
> o, = 0.
=1

We can see this by a variational argument as previously. We put then ¥ = T}, #® and it is easy
to see that Tj, r is bounded with || Ty #|| < 1. It is also clear that U,Ty 7 = T,U,, where T}, is
defined by (4.5).

Next we need to define analogues of the multiplication operators b;;(-), 1 < 7,5 < d. For any
pair (i,) with 1 <4, < d and a > 0 define an operator B; ;o : F2(Z%) — F2(Z?) as follows:
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Suppose ¢ € F2(Z9), o = {on : N =0,1,2,..}. Then B jo ¢ =9 = {¢n : N =0,1,2,....}.
Here v is given in terms of ¢ by

wN(nla 81,3 N, SN) - <bl,]()>()0N(n17 81,3 N, SN)

+ ) [{biibs) — (big) (bs)]ad® o1 (0, 5,11, 51,00, SK),
seSs

ifn,#0, 1<kE<N, NZ>0;
YN (0, 51,12, 82,...,nN,5N) = 0,
ifng #0, 2<k<N, and {i,j} not contained in sq;

?,Z)N(O, 81,M2,52,...,UN, SN) = OZ_IQON(O, 51\{i7j}7 ng,82,...,N, 5N)7
ifng #0, 2<k <N, and {i,j} strictly contained in sq;

-1
wN(O, $1,NM2,82, ..., NN, SN) = (pN_l(ng, 82,...,N, SN)

— Z<b5>a|s‘71 ©n(0,5,n9,82,...,;nN, SN ),
ses
ifng#0, 2<k<N and{i,j}=s1.

Observe that Uy B jo = b;j(-)Uq. It is clear that if we define T, o 7 by

d
Toor V= Z TiF (Bivj}a\ljj)a U e H%(Zd)v
i,5,=1

then U, Ty, 7 = ToUq.

We wish to obtain an equation in H%(Z%) which corresponds to the equation (5.3) in H(2). For
1 <k,j <d define @ ; € F2(Z%) by &) ; = {@{L :N=0,1,2,...} with <1>kNj =0if N #1 and
@,ﬁ’j(n, s)=0ifn#0or s #{k,j}, @,1%]-(0, {k,j}) = 1. The equation corresponding to (5.3) is
given by

d
(5.4) VF = Tho 7 U + a7 Y T 2(Dy ).
j=1
It is easy to see that we have the following:
Lemma 5.2. (a) The number v can be chosen sufficiently small so that for some o > 1 the
operator Ty, o 7 15 a bounded operator on H%(Zd) with norm strictly less than 1.

(b) Suppose v, have been chosen so that part (a) holds and also Lemma 5.1. Then if U¥ is the
unique solution to (5.4) the function U, ¥ is in H(Q) and satisfies (5.3).

We can use the same method of proof as in Proposition 4.2 to prove the corresponding analogue
for the solution of (5.4).

Lemma 5.3. Suppose UF = (\Illf,,\lllj) is the solution of (5.4) given by Lemma 5.2. Then
for v,a~ ' sufficiently small there exists p, 1 < p < 2, depending only on ~,a~ ' such that
\Ilf: € Fg(Zd), i=1,...,d. The number p can be chosen arbitrarily close to 1 provided v,o ™ are
taken small enough.

Lemma 5.4. Letp satisfy 1 < p < 2 and) € fg(Zd) C F2(Z%) wherep = {¢n : N =0,1,2,...}
with g = 0. Assume v > 0 is chosen small enough so that Uytp € L?(Q). Let g : Z¢ — R be
the function g(n) = (Uatb(-\Ua®(7y, -)), n € Z%. Then v > 0 can be chosen small enough so that
g € L"(Z%) where 1/r =2/p — 1.
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Proof. Similarly to Lemma 5.1 we have that

lg(n)| < Z Z [N (n1, 81,0, N, SN )| X
N

=1 {ni,...ny}eZbN,
s5i,5,€8, 1<i<N

’ ’
|Tn¢N(n17 5/17 <y UN, SIJV)|6|Sl|+”'+|SN|+‘81|+”'+|SN|7

where § > 0 can be taken arbitrarily small. We now use the method of Proposition 4.1 to finish
the proof. 0O

The previous three lemmas can be used to prove part of Theorem 1.2, the case when v may
be taken arbitrarily small. This is done by simply following through the corresponding proofs
for the Bernoulli case given in §4. Next we wish to consider the case of Theorem 1.2 when ~ is
assumed only to be strictly less than 1. First we shall deal with the case where the variables
bs(+), s € S, are finitely generated. This means there exist variables Y (), £ = 0,1,..., M such
that (Y3Yiy) = 0k, 1 < k, k' < M and Yy = 1. Furthermore, for any ¢,7, 1 <4,j < d, and k,
0 < k < M, the variable b; ;(-)Y) is in the linear span of the variables Yj/, 0 < k¥ < M. This
was the situation in § 4 where we could take M = 1.

We proceed now as before, taking our spin space S to be the set of integers {1,2,..., M }. Letting
Yos =Y, s=1,...,M, we may define as before the spaces fg(Zd) and the transformation Uj.
It is clear that the following holds:

Lemma 5.5. U is a bounded operator from F2(Z%) to L*(Q) and |U|| < 1.

Next, let fgd(Zd) be the space of vectors ¥ = (Uy,...,¥y) with ¥; € fg(Zd), 1 <i<d. The
norm of W is given by

d
MeiE = (1wl .
i=1

We can define an operator B on F§ d(Zd) with the property that

d
(W B®); = > b ;(-)(U1D);, 1<i<d.
j=1
To do this let us write
M
bij()We = Bijiw Ye, 1<ij<d 0<k<M.
k'=0
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For a function ¢ € F5(Z9), ¢ = {on : N = 0,1,2,...}, we put Bijo = ¥ = {¢by : N
0,1,2,...}, where 9 is given in terms of ¢ as follows:

M
(5.5) o =Bijoo0 po+ Y Bijroe1(0,k);
k=1
YN (i, ki onn, Ey) = Bijooen (i, ks nn, k)
M
+ Z Bi,j,k,O‘PN—I—l(Oa k,ni, ki, ...,nnN, kN),
k=1

ifng£0,1<k<N, N>I;
Yn(ni, ki, onn, kn) = Bijoken—1(n2, k2, ....nn, kn)
M
+ ZBi,j,k,k1WN(nlakan2ak2a---anNak'N)a
k=1
if ny = 0.

It is clear that for any ¢ € fg(Zd) one has U;(B; jo) = b; j(-)U1 ¢. It follows that the operator
B is given by

d
(BY); => Bi;¥;, U= (U,.., V) € F§,4(27).
j=1

Lemma 5.6. There exists pg < 2 depending only on v, M such that if pg < p < 2 then B is a
bounded operator on F& (Z%) with norm, |B| < 2v/(1 + 7).

Proof. For 1 < i < d, 0 < k < M, let \;;, be real parameters. Then it follows from the
orthogonality of the variables Y}, and the bound on the quadratic form b(:) that

d M [d M 2 d M

2 2
DD (2200 Buwadin| <770 Ak
i=1 k=0 | j=1k'=0 i=1 k=0

Suppose now ¢ = (W), ..., @) € ngd(zd). From (5.5) and the previous inequality we have

d d ‘ 2
> { [Z Bi o) (n1, ki, ooy, k'N):l

=1 j=1
M d ] 2
+Z [ZBi,j@%)_i_l(ouk7n17k17"'7nN7kN):| }

k=1 Lj=1
d ) M A
<42 Z {tp%’(m, ki,...nn, kN)2 + Z @5@)(0, k,ni,k1,...,nN, kN)Q},
=1 k=1
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if n. #0, 1 <7 < N. Applying Hélder’s inequality this yields for 1 < p < 2 the inequality

d d ‘ p
Z { l:ZBi,jSOg\j[)(nlvkl’""nN’kN :| +Z [ZBZJ('ON—I—I 0 k‘,nl,k‘l,...,n]v,k‘]v):| }
=1

Jj=1

< [d(M + 1)~ /242 Z {@Q(nl, ko, k)P

=1
M .
+ 5NV (0,kny ke, k:N)p}.
k=1

The result follows now by summing the last inequality over n;,k;,1 < j < N, N =0,1,2,... .
O

Next we define an operator T'r : fg’d(zd) — HZ%(Z?) by

Ty ZTZ; , W e F2 (2,

where the operators T; r are defined as before. It is easy to see that Tr is bounded with
|T7|| < 1. Let @ ; € F2(Z%) have the property that Ui®,j = by,j(-). Then if Uk e HE(Z9)
satisfies the equation

(5.6) B T B + 3 T (@),
7j=1

the function U;¥* € H(Q) is the unique solution to (5.3). It is clear from Lemma 5.6 that the
following holds:

Lemma 5.7. Suppose Wk = (Uk . \Illj) is the solution of (5.6). Then there existsp, 1 <p < 2,
depending only on v < 1 such that UF € FE(Z%), 1 <i<d.

Theorem 1.2, in the case when + is close to 1, follows from lemma 5.7 just as before. To complete
the proof of Theorem 1.2, in the case when ~ is close to 1, we need to deal with the situation
where the variables b; ;(+) are not finitely generated. To do this let 1 be the subspace of L?(2)
generated by the constant function. For k£ > 1 we define the linear space V) inductively as
the span of the spaces Vi1 and b; j(-)Vi—1, 1 < 4,5 < d. By our assumption Vj_; is strictly
contained in V, k > 1. We suppose further for the moment that b; ;(-) = b(-)d; ;, 1 <i,j <d,
whence |b(-)| < . It follows that the dimension of the space Vi is k + 1, k > 0. Let Yp, Y1, ...
be an orthonormal set of variables in L?(£2) with the property that Yy = 1 and V}, is spanned
by the variables Y, 0 < k' <k, k=0,1,2,.... For k=0,1,2,... we write
k+1

(5.7) b)Yy = Z BuwYu -
k'=0

Let S be the set of integers {1,2,...} and F5(Z?) be the corresponding Fock space defined as
before. For s € S let the modulus of s, |s| = s. Then for any o > 0 we can define the mapping
U, from F2(Z<) to functions on Q by (5.1). Let B, be the operator on F2(Z¢) with the property
that

Ua Ba Y = b(')UOz@a NS ‘Fg'(zd)
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Then B, is given as follows: For ¢ = {on : N =0,1,2,...} we put Boy = ¢ = {¢yy : N =
0,1,2,...}, where v is defined in terms of ¢ by,

o
(5.8) o = Boopo+ Y Brop1(0,k) ;
k=1

YN (n1, k1, .nn, ky) = Boopn (na, ki, .onn, k)
[eS)
+ ZakBk,OspNJrl(ou k’,’l’ll, kl? oy NUN, kN))

k=1
ifn; #0, 1<j <N, N >1;

YN (0,1,n2, kay ..,nn, k) = o ' Bo1pn_1(ng, k2, ..., nn, kn)
+Za 'Brapn(0,k,na, ko, oy, k),
ifn; £0, 2<j <N, N> 1
YN (0, k1, na, ko, ooy, k) = Z oM By 1 on (0, na, ko, i, k),

k=k1—1
ifn;#£0, 2<j<N, by >1, N> 1.

Lemma 5.8. There exists a,pg, 0 < a < 1, 1 < pg < 2, depending only on v such that if
po < p <2, then B, is a bounded operator on F5(Z4) with norm, ||Ba| < 2v/(1 + 7).

Proof. For k =0,1,2... let \; be real parameters. Then it follows from (5.7) that

[e%¢) 2 [e%¢) e’} 2 [e%¢)
(5.9) [ Z Bk’,O)\k/] + Z [ Z Bk/,k)\k/] <4? Z e
k'=0 k=1 “k'=k—1 k=0

Observe now from (5.8) that if n; # 0, 1 < j < N, then

o
(5.10) ‘Ba(PN(nlakla--'anNakN)’p+Z‘Ba on+1(0,k,ny, by, onn, k)P

k=1
[ee] D oo S p
Z Oék Bk’,O)\k’ + Z Z ak _kBk/,k)\k/ R
K'=0 k=1 | k'=k—1
where
)\O - @N(ﬂl,kl,...,ﬂ]\[,k}\/’),
)\k = <PN+1(07 k,nl, k‘l, NN, k‘N), k Z 1.

We can use (5.9) to obtaln a bound on the RHS of (5.10) when p = 2. To do this let g, (k) be
defined for £ =0,1,2,... by

00 2
ga(O) = |: Z Clk Bk’,O)‘k’:| s
k'=0

o] 2
ga(k) = { Z ak/Bk’,k)\k’:l k> 1
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Then, when p = 2, the RHS of (5.10) is

i a g, (k) = iga(k) - i [Of% - 04_2('“‘1)] i go(m
k=0 k=0 k=1 m=~k

It follows from (5.9) that
Y galk) < 7 Za%Ai,
k=0
Z ga(m) < A2 Z ®MN k> 1.
m=k

m=k—1

We conclude that
o0

(5.11) Za ) < 072722)\2
k=0

Next let M > 1 be an integer. We have that

0 o) P 0 0 -
I__ I _ _ /
E E Oék kBk/Jg)\k/ < E |: E Oék k’Bk/k‘p/(p 1):| E Oék k‘)\k/‘p
k=0"k'=k+M k=0 “k'=k+M =k+M

by Hélder’s inequality. From (5.9) it follows that
[e.9]
Y Bip<l, k=012,

whence it follows that
[e.e]
> ¥ H B/ <M/ - a).
K =k+M
We conclude from these last inequalities that

o) 0 - P OépM o)
- / ! S E—— p
(5.12) 1Y oM B < Ty > el
k=0"k'=k+M k=0

This last inequality, with p = 2, and (5.11) yields the inequality,

M—1 2 0 k+M—-1 2
/ /
|: E Oék Bk’,O)\kz’:| + E |: E Oék 7kBk/ k)‘k:’:|
k'=0 k=1 k'=k—1

for any § > 0.

Next, let N be an integer, N > M, and n > 0 be an integer. Then we have from the previous
inequality that

M—1 9 Ntn—1 k+M—1 9 NAntM—2
’ ’
[ E of Bk’,o)\k/] + E { E of kBk',k-)\k'} < CapnsM E A7,
k'—0 k=1 Ck—g—1 k=0
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and

N+n+(r+1)N—-1 |:k+M_1 N+n+(r+1)N+M—-2

2
k' —k 2
3 S a Bk%)\k/} <Consn S A =012,
k=N-+n+rN k'=k—1 k=N+n+rN-1
where

2M

@ -1
s(1+677).

_ =22
Caqsm=0a “y*(1+6)+ 1—a)

If we use Holder’s inequality this last inequality implies that for any p, 1 < p < 2, one has

M-1 p  Nin—1 [k+M-1 P N+n+M-2
! I _ 2
E Oék Bk/,O)‘k’ + E E Clk kBk’,k)‘k’ S (N + n)l P/2 CZ/%JJ\/[ E |)\k|p,
k'=0 k=1 k'=k—1 k=0
and
N4n+(r+1)N-1 k+M-1 p
!
E E oF 7kBk/7k)\k/
k=N+n+rN k'=k—1

N+n+(r+1)N+M—-2
< N1-p/2 Cp/2

a,v,0,M Z |AelP, r=20,1,2,....
k=N+4n+rN-1

If we sum this last inequality with respect to r and average over n, 0 < n < N, we obtain the
inequality,

k+M—1

M-1 P o0 P
Zak Bk:’,O At +Z Z akikBk:’,k Ak
k'=0 k=1 ' k'=k—1

1—p/2 ~p/2 1

< @N)TPPO T X

N N4n+M-2 o N+n+(r+1)N+M-2

3| D SRS SR SR

n=0 k=0 r=0 k=N-+n+rN-1

This last inequality together with (5.12) imply that we can choose «,pg, 0 < a < 1, such that
the RHS of (5.10) is bounded by

)
[AklP.
(1—'_7 k=0

To see this we need to see how to choose the constants «,d, M, N, pg. Evidently we can take
o = (14 ,/7)/2. Next we pick § small enough so that a=*(1 + 52 < 2/(1 + 7). Then we
choose M to be large enough so that Cy 53 < 47?/(1 +7)?. Finally we choose N, pg so that
for pp < p < 2 one has

(2N) P21 4 10M/N)CE2 5y < 29/ (L + )P
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We conclude from (5.10) that for this choice of «, pg, if po < p < 2, then

0
‘BOAON(nlv kla < MUN kN)‘p + Z ‘BOAON-Fl(O’ kvnla klv < TUN kN)‘p <
k=1

27 \? >
( 7 ) |:|§0N(n17k17"'7nN7kN)|p+Z|§0N+1(07k7n17k17°'°7nN7kN)|p )

1+ v k=1
if n; #0, 1 <j < N. The result follows now by summing the last inequality with respect to
then;, 1< 7 <N, and N. O

Next we extend the previous method to the case where the random matrix b(-) is assumed to
be a diagonal matrix. We cannot now compute the dimension of the linear spaces Vi defined
after Lemma 5.7. We can however estimate their dimension. It is easy to see that the dimension
of Vj, is bounded above by (k + 1)%. Let Y, 0< 35 < Jp k=0,1,2,..., be an orthonormal
set of variables in L?(2) with the property that Yoo = 1 and Vj is spanned by the variables
Yirj ,0<j<Jw,0<k <k, k=0,1,2,... . For a variable Y}, ; let us denote by s = (k, j) the
spin of that variable with modulus |s| = k. It follows from the definition of the spaces Vj, that
then,

(5.13) bi()Ye= > BissYe, 1<i<d,

|s’|<|s|+1
for appropriate constants B; s . Evidently the variables Yy, |s| > 0, span the space generated
by the b“(), 1 < ) < d.
Let S be the set of spins s defined in the previous paragraph such that |s| > 0. For any integer
M > 1, let Sjs be the set,

Sy = {s €S:|s| <MYU{(r1,....,rq,8) : 8 €8,|s'| = M,

r; non-negative integers , 1 <i<d,r1+---+7g9 > 0}.
We associate a modulus |s| with each s € Sys. If s € SN Sy, then the modulus of s is as in the
previous paragraph. Otherwise if s = (71, ...,74, ') then |s| = ri+...+rg+|s'| = r1+..+rqg+M >

M. We can also associate a variable to each s € Sy;. For s € SN Sy we put Yy = Y, If
s=(r1,..,rq,s") we put

d d
You = [H bii(1)" Yy — <H bz‘z‘(')TiYs’>
i=1 i=1

It is clear that (Y p) =0, (Y52M> <1,s€Sy.

—Tr1—r2——rg
Y .

In analogy to before we define for n € Z%, s € Sy, variables Yoo by Yo onm(:) = Yo m(m ).
We may also define the Fock space .7-"§M (Z%) and a mapping U, ys corresponding to (5.1). Thus
for ¢ € ng(Zd) one has,

(e 9]
Uaht ¥ =0+ »_ > VYN (n1, 81,M2, 82, ..., N, SN) X

N=1 {ni,.,ny}eZ%N,
SZ‘GS]M, 1<i<N

S1|+-+|s
alsl | N‘Ym,SLM Yoo, Yoy s, M-
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Lemma 5.9. Suppose 0 < a < 1. Then M can be chosen sufficiently large, depending only on
a, such that Uy ar i a bounded operator from ng(Zd) to L*(Q) and |Uapm| < 1.

Proof. Just as in Lemma 5.1 we have that

(5.14)  |Uaar 0|3 = 92+

00
Z Z ¢N(n1,81,...,nN,SN)¢N(n1,8,1,...,nN,S§V)><

N=1 {n;,..,nn}€ZLN,
Si,SQESM, 1<i<N

/ ee /
a‘51|+ +|SN|+‘51‘+ +|SN|5M(8178/1)...5M(SN’8/]V)><

Frovsssnt Yo sy ) -+ Vst Yoy syt )
where
Su(s,8) = 0, lshls| <M, s#,
Sm(s,s’) = 1, otherwise.

If we use the Schwarz inequality on the RHS of (5.14) we have

oo
HUOé,M ¢”% < ¢(2) + Z Z w]QV(nhSl"" 7nN78N)><

N=1 {ni,..,nn}€ZsN,
Si,SQESM, 1<i<N

s1|+Asn|+[sh |+ +]s) / /
alstl s [+]s]] SN16ar (51, 84) - ar(sn, Sy ) X

<YT?1781,M> e <YT?N75N7M> :
We consider now the sum,
(5.15) Z o155 (s,8), s € Sar
S/GS]M
If |s| > M this sum is bounded by

M
ol Z ol < ol Z(k +1)%a*
k=1

s'eSn
+all " ant A 4 )% <20l 4+ 1)7/(1 - )
r1+..4+rqg>1
If |s| < M then (5.15) is bounded by
a2\s| +a\s| Z a|s’\ < a2\s| +a\s|+M(M_’_ 1)d/(1 _a)d'
|s'|>M

It is clear from these last two inequalities that we may choose M, depending only on «, such
that (5.15) is bounded above by 1 for all s € Sj;. The result follows now since <Yan7 5; ) <1
1<j<N, N=12, ... O

Next, in analogy to the development following Lemma 5.7, we define for any ¢, 1 < ¢ < d, an
operator B; o a7 on .7-"§M (Z%) which has the property,

Ua,MBi,a,M = bii(')Ua,M-
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For a function ¢ € ng(Zd), o={en N =0,1,2,..} weput Bioym p =% ={n : N =
0,1,2,...}, where v is given in terms of ¢ as follows:

Let B; s s be the parameters defined by (5.13). Then,

e Ifn;#£0, 1<j<N, N>,

le(nl, S1y.e.y N, SN) = Bi7070(p(n1, S1,.--yNMIN, SN)

+ E Oé‘S|BZ‘7S70(pN+1(O,8,711,81,...,nN,SN)
SES]\/[,|S‘<M

+ > ()Y ) ene1(0, 8,1, 51, s,
SESM,|s|>M

e Suppose [s1| > M, s; = (r1,..,r4,5,),nj # 0,2 < j < N. Then
YN (0, s1,m9,82, ..., nN,Sy) =0 if 7, =0,
—1 _
YN (0, 51,m92, 82, ..., NN, SN) = & yon (0,51, n2, 82, ..., NN, SN ),
where 51 = (r1,...,7i—1,7; — 1,7“Z‘+1,...,?“d,8/1) if r; > 1.
e Suppose 1 < |s1] < M, n; #0, 2<j < N. Then
QZ)N(O? 817”27827"'7’”]\778]\[) - Z a|s‘7|81‘Bi,s,Sl @N(O,S,ﬂQ,SQ,...,ﬂN,SN).
[s1]—1<|s|<M

e Suppose |s1| =1, nj #0, 2<j < N. Then

-1
YN (0, 51,192,582, ....,nN,5N) = Biosa " @on—1(n2,82,...,nN, SN)
-1 M-1
+ E alsl Bi s.s,on(0,8,n92,82,....,nN,SN) — Bi 0,5, %
1<|s|<M
d
—1\ri4..4r
>~ (ay Tyt

|s|=1,
r1+..4+74>0

bjj(-)’"st> X

7=1

YN (07 (’rla -5 Tdy 8)7 Nn2,82; -, MIN, SN)-
Lemma 5.10. There exists o, My, 0 < o < 1, My a positive integer, depending only on vy, such

that if M > My then B; o v is a bounded operator on ]:L%M(Zd) with norm || B o 1] < 27v/(147),
1 <3 <d.

Proof. We have just as in Lemma 5.8 that if A;, 0 < |s| < M, are parameters then
2
(516) Z Z Bi,s’,s)‘s’ S ’)/2 Z )\g
0<|s|<M |0<|s/|<M 0<|s|<M

Arguing as in Lemma 5.8 we conclude from the above inequality that

2

(5.17) Z Z a|5'\*|8\Bi78/78)\s, < a~2y? Z A2

0<|s|<M |0<|s'|<M 0<|s|<M
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Suppose ¢ € ng(Zd). We fix points {ny,...,ny} € Z4V with n; #0, 1 < j < N, and
sj € Syp, 1 < j < N. We then define parameters \s, s € Sy, and g by

X = @(ni,81,...,nN,5N),
As = on+1(0,8,n1,51,...,nN,SN), S €E Sy
Then,
|Bi,a7Mg0N(n1,81,...,nN,sN)|2—|— Z |B¢7Q,M¢N+1(O,5,n1,$1,...,nN,sN)|2
SESN
2
= Z HBZSO)\—i—Z H<bzz()sM>)‘
0<|s|<M |s|>M

n_ _
+ [ Y B g A = oM Bi g x

s|=1 Lo<|s'|<M

d 2
Z (a,y—l)r1+--+7“d <H bjj(.)rj Y;/> )\(7«1 ,,,,, rd,s’)]
j=1

|s'|=M,
1+ +rg>0
2
> { 3 aIS’ISIBi75,7S)\S,] a2 Y A2
1<|s|<M = |s|-1<|s'|<M |s|>M

From the Schwarz inequality the RHS of the last equation is bounded above by

2

(518) (1+48) > | Y alEB

0<|s|<1 [0<]s[<M

2
+ Z Z alsqils‘Bi,s’,s)\s’ +a7272 Z )‘g

1<|s|<M | 0<|s'|[<M |s|>M
2

+ (@46 | D all b )Yeau) As| (1 +0)x

|s|>M

d 2

Z [aMle’S Z (ay~Lyrttra <H > ( ”'“78,)] ,
|s|=1 |s'|=M, =1

r14-+rg>0

for any 0 > 0. In view of (5.17) the sum of the first three terms in the last expression is bounded

above by
(1+0)a 2y D A2

s|>0
The fourth term is bounded above by
(M +1)
62 | 3 a2 3 a2 < 1+5*1)“M1 +2d2)\2.
s> M |s|>M RIS



The final term in the expression is bounded above by

C1y o (M + 1) 2 2
(1 +0 )O‘ (1 _ a)Qd Z Bi,O,s Z )‘S
|s|=1 |s|>M

2 2
Z Bios<7"
|s|=1

It is also clear from (5.16) that

The result follows from the last set of inequalities by first picking «,d, 0 < a < 1, § > 0, such
that (1 +0)"2a~'y < 2y/(1 + 7). Then My can be chosen large enough, depending on §, o so
that the sum (5.18) is bounded above by

We may easily deduce from the proof of Lemma 5.10 the analogue of Lemma 5.8.

Lemma 5.11. There exists o, My, pg, 0 < o < 1, My a positive integer, 1 < pg < 2, depending
only on vy, such that if po < p < 2, then B; o M, is a bounded operator on ng (Z%) with norm
0

| Bia,mo |l < 27/(1+7)

If we follow the development after Lemma 5.5 we can deduce from Lemma 5.11 the analogue of

Lemma 5.6. Thus we may define a space of vector valued functions .7-"§M d(Zd) and an operator

B, v oon it corresponding to the operators B; o ar,% = 1,...,d. We then have

Corollary 5.1. There exists a, My, po, 0 < a < 1, My a positive integer, 1 < pg < 2,

depending only on vy, such that if po < p < 2, then Ba wm, 5 a bounded operator on ng d(Zd)
07

with norm
B, || < 2v/(1 + 7).

Theorem 1.2, with v close to 1, follows from Corollary 5.1 provided we assume b(-) is diagonal.
Next we deal with the case of nondiagonal b(-). We restrict ourselves first to the case d = 2.
An arbitrary real symmetric 2 x 2 matrix can be written as

cosf  sinf A0 cosf —sind
—sinf cosf 0 u sinf cosd
[ Acos? 0+ p sin?6 (1 — A)sinfcosf
B | (u—A)sinfcost prcos? § + Asin? 0
i # + ’\;“ cos 20 “y‘ sin 26
- _“%)‘sin%? )‘JQF—“—I—“%)‘COSQH

The random matrix
b1 () bia(+)
b() =
bia(-) baa(+)
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induces random values of the variables A, i, 6 as follows:

AC)+p() = bua(s) + baa(),

1/2

AC) = n() = {[bu() = be()]2 + 4b1a()?} 7.

If A(-) > p(-) then 6(-) is the unique angle, 0 < § < , such that
[A() = p()] cos 20 = by (+) — baa(-),
AC) = ()] 5in 20 = —2b15(.).

If A(:) = u(-) then we take 6(:) =

Since A(+), p(+) are the eigenvalues of b(-) it follows that |A(-)], |u(-)] <y < 1. For £ =0,1,2,...,
let Py(z),z € R, be the Legendre polynomials.

Let £,m,r be integers with the property ¢,m > 0. We associate with the 3-tuple (¢,m,r) a
variable Xy, , as follows:

If » > 0 then,
Xomr = \/WPz (%) Vom + 1P, (%) \/§smr0
If r = 0 then
Xeme = V2 + 1P (Q> V2m + 1P, (ﬂ)
If » < 0 then ! !
Xomr = \/WPg (&> 2m + 1P, (MT) 2cosro(-

Observe that if A(+), u(+),0(-) are independent variables, with A(-), p(+) uniformly distributed on
[—7,~] and 6(-) uniformly distributed on [—=, 7|, then the variables X ,, , form an orthonormal
set. This set includes the constant function Xg g .

We can use the recurrence relation for Legendre polynomials,
(20+ 1)2Py(2) = LPp_1(2) + (L + 1) Ppia(2),

to be found in [1], and the addition theorems for trigonometric functions to obtain the result of
multiplying the variables Xy, , by the components of the matrix b(-). In particular we have

bij(')XZ,m,r = Z Fi,j,ﬁ,m,r,f’,m’,r’XZ’,m’,r’7
10 —b)=1,
|m/—m|=1,
I’ |=|rl|=2
where the parameters I'; j ¢ m ¢ v are explicitly computable. In view of the fact that the
variables Xy, , are orthonormal when A(-), uu(-),(-) are uniformly distributed, it follows that

2
[e§) 00

2 2 o] 00
(519) Z Z Z Z Z Z Fi,j,f/,m/,r’,Z,m,T)\j,Z/,m’,r’

i=1 {m=0r=—00 | j=14'm'=07r'=—00

<’YQZ Z Z Azﬂmr?

=1 ¢,m=0r=—00

where the A; s, , are arbitrary parameters.

We consider again the linear spaces Vj, defined after Lemma 5.7. The dimension of V}, is bounded
by (k+ 1)#@+1D/2 which is (k 4+ 1)3 when d = 2. Just as before we let V3. ;, 0 < j < Ji, k =
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0,1,2,... be an orthonormal set of variables in L?(£2) with the property that Yy = 1 and V is

spanned by the variables Y j, 0 < j < Ji, 0 < k' <k, k=0,1,2,.... . For a variable Y}, ; we
denote by s = |s| = k. It follows from the definition of the spaces Vj that then,
(5.20) bij()Ys= D Bijss Y, 1<ij<d,

ls"[<[s|+1

for appropriate constants B; j s +. We conclude in the same way we obtained (5.19) that

2
d d d
(521) Z Z Z Z Bi,j,s’,s)\j,s’ < 72 Z Z )‘12,5 )

i=1 seS |j=1s€eS i=1 s€S
where S is the set of spins s = (k,j) and \; s are arbitrary parameters.
For integers M, K > 1 let Sy i be the set,

Swvx = {SES:O< ls|] < MYyu{(l,m,r k,s):s €S, |s=M,
£, m,r, k integers with £/,m >0, 0 < k < K}

We associate a modulus |s| with each s € Sy . If s € SNS)yr k then the modulus of s is as in the
previous paragraph. Otherwise if s = (¢, m,r, k,s’) then |s| = {+m+|r|+|s'| = +m+|r|+M. We
associate a variable to each s € Sy k. For s € SNSyx weput Yy = Ys. If s = (6, m, 1, k,s)
we put

YS,M,K = Xf,m,’r sz/ - <X€,m,r }/s’> .
It is clear that (Y ar,x) = 0. If we use the fact that the Lo, norm of the Legendre polynomials
is 1 (see, for example,[1]) then we see also that (Y7, r) < 8|s]* +1, s € Sy k.

In analogy to before we define for n € Z?, s € Sk, variables Y, s avrx by Yo om k() =
Ys v,k (Ty -). We may also define the Fock space .7-"§M . (Z%) and a mapping Uy, a1,k corresponding
o (5.1). Thus for ¢ € FSM’K(Zd) one has

o0
Ua, i,k ¥ = o + Z Z YN (N1, 81,02, 82, s N, SN) X

N=1 {n1 ,--,"N}sz’N,
SiESM’K,ISiSN

S1|+-+|s
alsthtHlenly, vk Vigso ik Yoy s M-

Lemma 5.12. Suppose 0 < o < 1 and K > 1. Then M can be chosen sufficiently large,
depending only on a and K, such that Uy a5 a bounded operator from ngK(Zd) to L*(Q)
and |Uappt.icl) < 1.

Proof. We can use the same argument as in Lemma 5.9 since we know that (Y2, ;) < 8|s[> +
1. O

Next we define for any 4,7, 1 < 4,5 < 2, an operator B; j o m,x on ]:gMK(ZQ) which has the

property,
Uam, K Bijamix = bij(-)Ua M K-
For a function ¢ € }%MK(ZQ), o={pn:N=0,1,2,..} we put

Bijamre=1%={Yny:N=0,1,2.1},
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where 1) is given in terms of ¢ as follows: Let B; ; ;¢ be defined as in (5.20). Then
o Ifn, 20, 1<t <N, N >0.

Yn(ni,s1,...,nN,58) = Bijoo0pn(ni, 51, ..., N, SN)

S
+ E CM' ‘Bi,j,s,0¢N+1(0757n17517"'7nN75N)

sESM, K,
|s|<M

+ Z O“S| <sz()YS,M,K> @N+1(0757n17817"°7nN7‘9N) )

SESM,K,
|s|>M

e Suppose |s1| > M, s1 = ({,m,r, k,s}), ne #0, 2 <t < N. Then
YN (0, 51,192,582, ..., NN, SN) = Z L jerm! o 0.mr
om!

0 4+m! || —b—m— / o /
ol Tm | —b=m—|r| @N(O,(f,m,r,k,sl),ng,SQ,...,nN,sN>.

e Suppose 1 < |s1] < M, ny #0, 2 <t < N. Then
¢N(07517n27827"'7nN75N) - Z O“S|7‘81‘Bi,j,s,s1x
[s1]—1<|s|<M
QON(O,S,TZQ,SQ,...,TZN,SN).

e Suppose |s1| = M, s1 = (0,0,0,k,s)), ny #0, 2 <t < N. Then

YN (0,51,n2,82,..., NN, SN) = § L j.0rm 17,0,0,0%
€/7m/7r/
0 4+m/+|r! / / /
« | ‘tpN 0,(¢',m',r' k,s]),n2,82,....nN, SN
1 1
+? E « Bi7j75751<,0N(0,8,n2,82,...,nN,sN).
|s|=ls1]—1

e Suppose |s1| =1, ny #0, 2 <t < N. Then

1
YN (0, 81,m92,82,...,nN,8N) = B o @ @N-1(N2,52,...,nN,SN)
s|l—1
+ E als! B js,s10N(0,5,n2,52,...,;nN,SN)
1<|s|<M

K—-1 oo 00
—a™ I Bijos DY Y > ottt

|s|=M k=0 £,m=0r=—o0
<X€,m,TYS> YN (07 (£7 m,r, k7 8)7 n2,s2,...,NN, 8N> .

Next we may define as previously the space ]:gM . ,(Z?) of vector valued functions ¥ = (¥y, Us)
on Fock space. We define an operator B, ar,x by

2

(Ba,M,K \II)Z = ZB,L‘7‘7'7()é7]\47[(\:[lj7 7 = 1’ 2.
j=1
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Lemma 5.13. There exists a, K, My, 0 < o < 1, K, My positive integers, depending only
on v, such that if M > My then Boymk is a bounded operator on ng (Z2) with norm

[ Baa |l < 2v/(1 + 7).

,K72

Proof. Suppose ¥ € }'L%MK(ZQ). We fix points {ny,...,ny} € Z> with n; #0, 1 <j < N and
5; € S, 1 < j < N. We define parameters \; 5, s € Sy and \;jp,i = 1,2 by

Xio = Yin(ny,st,..nN,sN), =12,
Xis = Vin41(0,8,n1,51,...,nN,5N), € Sukr, =12
Then
2
2
E E B jomx¥YiN(n1,s1,...;nN, SN)
=1 | j=1

2
2 [ 2
+ E E § B jomx¥Yin+1(0,8,11,51,...,nN, SN)

s€Sn ik =1 | j=1

2 2
=D 1D DT IBiaodis+ D0 ol (b ()Y k) Ajis

0<|s|<M |s|>M

2
ER[SLY wna

s|=1i=1 “j=1 *0<|s'|<M

K-1 fe'e) [e%s) 2
SR TTD SED DD DI DL S ps |

|s'|=M k=0 £m=0 r=—o0

2 2
+ Z Z Z Z Q‘S/|7‘S|Bi7jys/7s)\j7sl

1<|s|<M i=1 | j=1 |s|-1<]|s'|<M
K

2 2
z/+m/+ ,r,l
DD 3D 31 D3R D D NI W

y z/’ml’rl

7=1
1 2
g X 07 B )]

57| =s|-1

K-1 2 2
+ Z [Z{ Z Fi,j,é/,m’r’,é,m,r X

|s|=M k=0 (4+m+|r|>0 i=1 -j=1 > m'r’

2
O +m/+|r' | —b—m—|r
a . "t ) 1|

2

2
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From the Schwarz inequality the RHS of the last equation is bounded above by

2

2 2
(1+6) Z Z Z Z alsl‘_|S‘Bi7jys/75)\j7S/

0<|s|<1 i=1 | j=10<|s'|[<M

2
s'|—|s
DI o IEIB; 0 Ay

1<|s|<M i=1 |j=1s|— 1<|s’|<M

2 2
+(1+9) Z Z[Z Z T 0000 N 10

2
O 4+m!+|r' | ——m—|r
a . | 'AJ,(ZCm/,rnk@

2
2 2
+1+6H> 1D (b 5 () Vs ) A
i=1 | j=1|s|>M
2 2
+(1 +5_1) Z Z |:Z {OéM le,j,O,s
|s|=1i=1 L j=1

K-1 o8] 2
5 S S S e ]

|s'|=M k=0 £,m=0r=—0o0

_1 2 2
+% D1 D a'Bisshis
=1

seS|lsl=M =1 |j=1 |s'|=[s|-1

2

for any § > 0. In view of (5.21) it follows that the sum of the first two terms in the last expression
is bounded above by

raey Y A,
=1 0<|s|<M
In view of (5.19) the sum of the next two terms is bounded above by
Gy Y
=1 |s|>M
The fifth term is bounded above by

(1+6 12 22: <[ > 04|S)\z',sYs,M,K}2> <1+ 5_1)72[ > (@l + 1)a2|8‘} 22: Ao

=1 \|s|>M

57



The sixth term is bounded above by

(1407 22[ Sl VBRE T ]

i=1 |s[>M

2
<+ Y ElsP a2 33 g,

s|>M =1 |s|>M
The final term is bounded by

ﬂi QZZA

i=1 |s|=M—1

The result follows now exactly as in Lemma 5.10 by choosing a, 0 < a < 1, such that a3y <
2v/(1 + ), then choosing § small and K large so that (14 d~1)/K is small. O

We can easily extend the argument in Lemma 5.13 to obtain:

Corollary 5.2. There exists a, My, Ko,po, 0 < a < 1, My, Ko positive integers, 1 < pg < 2,
depending only on ~y such that if po < p < 2 then By, K, %5 a bounded operator on .7-"5 K (Z2)
07

with norm || Ba, o, k0| < 27/(1+7).

Theorem 1.2, with v close to 1, follows from Corollary 5.2 just as before. Since it is clear that
one can extend the previous argument to d > 2, the proof of Theorem 1.2 is complete. The
proof of Theorem 1.3 follows in a similar manner.
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