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Abstract

A functional approach for the study of the random walks in random sceneries (RWRS) is pro-
posed. Under fairly general assumptions on the random walk and on the random scenery, func-
tional limit theorems are proved. The method allows to study separately the convergence of the
walk and of the scenery: on the one hand, a general criterion for the convergence of the local
time of the walk is provided, on the other hand, the convergence of the random measures asso-
ciated with the scenery is studied. This functional approach is robust enough to recover many of
the known results on RWRS as well as new ones, including the case of many walkers evolving in
the same scenery.
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1 Introduction

Let S = (Sn)n∈N be a random walk in Z
d starting from zero. The term "random walk" has to be

understood in the broad sense of a discrete process, not necessarily with independent and identically
distributed (i.i.d.) increments. Let ξ = {ξx , x ∈ Z

d
} be a collection of random variables called the

random scenery. The random walk in random scenery (RWRS) is the cumulative process

Zn =

n
∑

k=0

ξSk
.

Motivated by the construction of a new class of self-similar stationary increments processes, Kesten
and Spitzer [17] and Borodin [3; 4] introduced RWRS in dimension one and proved functional limit
theorems. More precisely, they considered the case when the random walk has i.i.d. increments
belonging to the domain of attraction of a stable distribution with index α ∈ (1,2], the random
scenery is i.i.d. and belongs to the domain of attraction of a stable distribution with index β ∈ (0,2];
the scenery and the walk are independent. Under these assumptions, the renormalised process
(n−δZ[nt])t≥0 is shown to converge to a δ-self-similar stationary increments process where δ =
1−α−1+ (αβ)−1.

Since then, many authors considered RWRS models and related functional limit theorems.
Bolthausen [2] studied the case of a recurrent Z

2-random walk. Maejima [21] considered the
case of a random walk in dimension one and of a multivariate random scenery in link with operator
self-similar random processes. All these results require independence properties on the increments
of the walk and on the scenery. This constraint can be relaxed by assuming some reasonable de-
pendence structure: in Wang [26], the increments of the random walk are assumed to be strongly
correlated, Gaussian and in the domain of attraction of a fractional Brownian motion; it evolves in
a i.i.d. square integrable random scenery. In Lang & Xahn [18] a functional limit theorem is proved
for an i.i.d. increments Z-random walk in a strongly correlated scenery satisfying a non central limit
theorem of Dobrushin & Major [10]. Weakly dependent sceneries have also recently been studied
by Guillotin-Plantard & Prieur [15; 16] under a θ -mixing condition. Let us also mention the work
of Le Borgne [19] in which the random scenery verifies some strong decorrelation condition.

One dimensional RWRS arise in the study of random walks evolving on oriented versions of Z
2

(Guillotin-Plantard & Le Ny [13; 14]; Pène [24]) and in the context of charged polymers (Chen
& Khoshnevisan [6]). Motivated by models for traffic in a network, Cohen & Samorodnitsky [9]
introduced a random reward schema consisting of sums of independent copies of RWRS and studied
its convergence. Extensions of this work have been considered in Guillotin-Plantard & Dombry [12]
and Cohen & Dombry [8].

In this paper, a functional approach for RWRS is developed and the convergence of the finite-
dimensional distributions of RWRS under very general assumptions that cover many of the above
results are proved. A functional approach using stochastic integration was suggested by Borodin [4]
and Cadre [5] in the case when the random scenery is a martingale. Our approach is rather based
on the convergence of random measures to random noises (see [11]) and is more adapted when the
scenery is not a martingale (including weakly and strongly correlated RS). Under the assumption of
independence of the RW and of the RS (assumed in all the above cited works), it allows to study
separately the convergence of the local time associated with the random walk on the one hand, and
the convergence of the random measures associated with the random scenery on the other hand.

1496



The technique is also robust enough to deal with a variant of RWRS: the case when many walkers
evolve in a single scenery, which might appear as a more realistic model of the random reward
scheme considered in [9] since all the users share the same network. To our knowledge, these are
the first results in that direction.

Our paper is organized as follows. In Section 2, after introducing a general criterion for the Lp-
convergence of the local time of the random walk, we verify that it applies in the classical cases
above-mentioned. In Section 3 a sequence of random measures is associated with the random
scenery and conditions to ensure its convergence to a stable, Gaussian or fractional Gaussian random
noise are given. In Section 4 we explain how these results allow to recover limit theorems for RWRS
and also consider the case of many walkers evolving in one single random scenery.

2 Convergence in Lp of the local times of the random walk

2.1 A general criterion

Let S = (Sn)n∈N be a Z-valued random sequence. We define the discrete local time at time n ∈ N

and point x ∈ Z by
N(n, x) = card{k ∈ [|0, n|]; Sk = x}.

Proposition 2.1. Suppose that the following assumption (RW) is satisfied:

• (RW1) There is some sequence an verifiying an→∞ and n−1an→ 0 such that the renormalized

process
�

a−1
n S[nt]

�

t≥0
converges in D([0,∞)) to some process (Yt)t≥0 admitting a local time

(L(t, x))t≥0,x∈R.

• (RW2) There is some p ≥ 1 such that for all M > 0:

lim
δ→0

lim sup
n→∞

∫

[−M ,M]

E|Ln(t, x)− Ln(t, [x]δ)|
pd x = 0

where Ln(t, x) is the rescaled discrete local time

Ln(t, x) = n−1anN([nt], [an x]) (1)

and [x]δ = δ[δ
−1 x].

Then, for every m≥ 1, for every θ1 ∈R, . . . ,θm ∈R, for every (t1, . . . , tm) such that 0< t1 < . . .< tm,

the following convergence holds in Lp, p ≥ 1:

m
∑

i=1

θi Ln(t i , .)
L
=⇒

m
∑

i=1

θi L(t i , .) as n→∞.

Remark: A direct application of Lebesgue’s dominated convergence Theorem shows that Assump-
tion (RW2) is a consequence of the following two conditions:
(RW2.a) There is some A> 0 such that for all n≥ 1,

sup
x∈R

E|Ln(t, x)|p ≤ A,
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(RW2.b) For every t > 0, for almost every x ∈R,

lim
y→0

lim sup
n→∞

E|Ln(t, x)− Ln(t, x + y)|p = 0.

We notice that if these conditions are verified for some p > 1 then they hold for any p′ ∈ [1, p].

Proof:

We prove the theorem for m = 1 and t1 = t > 0. Generalizations to any m ≥ 1 can be easily
obtained.
We denote by q the conjugate of p.
According to Theorem 2.4 of De Acosta (1970) we need to check two things:
- first that there is a w⋆-dense set D ∈ Lq(R) such that for each f ∈ D,

∫

R

f (x)Ln(t, x)d x →

∫

R

f (x)L(t, x)d x ,

- second that the sequence
�

Ln(t, .)
�

n≥1 is flatly concentrated, that is, for every ǫ > 0, there is a
finite dimensional subspace F of Lp(R) such that

lim inf
n→∞

P
�

Ln(t, .) ∈ Fǫ
�

≥ 1− ǫ

where Fǫ is the ǫ-neighborhood of F .

The first assertion follows from the invariance principle (RW1) for a−1
n S[n.]. We take D as the

set of continuous functions with bounded support and observe that the definition of the discrete
occupation time Ln and the uniform continuity of f imply

∫

R

f (x)Ln(t, x)d x = n−1

∫

R

f (a−1
n x)N([nt], [x])d x

= n−1

∫

R

f (a−1
n [x])N([nt], [x])d x + o(1)

= n−1
[nt]
∑

k=1

f (a−1
n Sk) + o(1)

=

∫ t

0

f (a−1
n S[nu])du+ o(1)

From the continuity of the application

D([0, t])→R,φ 7→

∫ t

0

f ◦φ,

from the invariance principle (RW1) and the existence of the local time L for Y , we deduce

∫

R

f (x)Ln(t, x)d x →

∫ t

0

f (Yu)du=

∫

R

f (x)L(t, x)d x .
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We turn to the second assertion and consider the partition x j = jδ, j ∈ Z for a given δ > 0. Define
the finite dimensional space F of Lp(R) as the space of functions that are constant on any interval
(x j , x j+1), j ∈ Z and that vanish outside [−M , M] (for some M > 0 to be specified later). Define L̃n

by L̃n(x) = Ln(t, x j) if x j ≤ x < x j+1, i.e. L̃n(x) = Ln(t, [x]δ). Notice that L̃n ∈ F on the event

�

Ln(t, .)≡ 0 on R \ [−M , M]
	

=

�

max
0≤k≤[nt]

|a−1
n Sk| ≤ M

�

.

Therefore,

P
�

Ln(t, .) /∈ Fǫ
�

≤ P

�

max
0≤k≤[nt]

|a−1
n Sk|> M

�

+P

�

max
0≤k≤[nt]

|a−1
n Sk| ≤ M and ||Ln(t, .)− L̃n||Lp ≥ ǫ

�

By the invariance principle (RW1),

lim
n→∞

P

�

max
0≤k≤[nt]

|a−1
n Sk|> M

�

= P

�

max
0≤s≤t
|Ys|> M

�

is small for large M . Hence it remains only to show that

lim
δ→0

lim sup
n→∞

P

�

max
0≤k≤[nt]

|a−1
n Sk| ≤ M and ||Ln(t, .)− L̃n||Lp ≥ ǫ

�

= 0.

Using Markov’s inequality, we get

P

�

max
0≤k≤[nt]

|a−1
n Sk| ≤ M and ||Ln(t, .)− L̃n||Lp ≥ ǫ

�

≤ ǫ−p
E





∫

[−M ,M]

|Ln(t, x)− L̃n(t, [x]δ)|
pd x





and the result follows from Assumption (RW2). �

2.2 Local time of a random walk in the domain of attraction of a stable Lévy motion

Let S = (Sn)n∈N be a Z-random walk such that






S0 = 0,

Sn =

n
∑

k=1

Xk , n≥ 1,

where the X i are i.i.d. integer-valued random variables belonging to the normal domain of attraction
of a strictly stable distribution Sα(σ,ν , 0) with parameters

α ∈ (1,2],σ > 0 and ν ∈ [−1,1].

This means that the following weak convergence holds:

n−
1
α Sn

L
=⇒
n→∞

Zα, (2)
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where the characteristic function of the random variable Zα is given by

∀u ∈R, Eexp(iuZα) = exp
�

−σα|u|α(1− iν tan(
πα

2
) sgn(u))

�

. (3)

Assumption (RW1) holds with an = n1/α and (Y (t))t≥0 an α-stable Lévy process such that Y (0) = 0
and Y (1) is distributed according to Zα.
The local time (N(n, x))n∈N;x∈Z of the random walk S is defined as in the previous section. Its
rescaled local time (Ln(t, x))t≥0,x∈R is defined as

Ln(t, x) = n−(1−1/α)N([nt], [n1/αx]).

We denote by (L(t, x))t≥0,x∈R the jointly continuous version of the local time of the process Y . We
are interested in the convergence in Lp, p ≥ 1 of the rescaled local time Ln to L. By applying the
general criterion of Section 2.1, we get the following result.

Proposition 2.2. For every m ≥ 1, for every θ1 ∈ R, . . . ,θm ∈ R, for every (t1, . . . , tm) such that

0< t1 < . . .< tm, the following convergence holds in Lp, p ∈ [1,2]:

m
∑

i=1

θi Ln(t i , .)
L
=⇒

m
∑

i=1

θi L(t i , .) as n→∞.

Proof:

From the remark following Proposition 2.1, it is enough to prove that conditions (RW2.a− b) are
satisfied in our setting with p = 2.
Condition (RW2.a): Kesten and Spitzer proved in [17] ((2.10) in Lemma 1) that if τx denotes the
hitting time of the point x by the random walk S, then the following inequality holds for any x ∈ Z,
r ≥ 0 and n≥ 1,

P(N(n, x)≥ r)≤ P(N(n+ 1,0)≥ r)P(τx ≤ n+ 1).

It implies that the moment of order 2 of the random variable N(n, x) is uniformly bounded by the
moment of order 2 of N(n+ 1,0) which is equivalent to Cn2(1−1/α) for some C > 0 (see (2.12) in
Lemma 1 of [17]).
Condition (RW2.b): We know (see Lemma 2 and 3 in [17]) that there exists some constant C > 0
independent of x , y ∈ Z and n≥ 1 s.t.

E(|N(n, [n1/αx])− N(n, [n1/α(x + y)])|2)≤ C

�

�

�[n1/αx]− [n1/α(x + y)]

�

�

�

α−1
n1−1/α.

Then, we have

lim
y→0

lim sup
n→∞

E(|Ln(t, x)− Ln(t, x + y)|2)

≤ C lim
y→0

lim sup
n→∞

�

�

�

�

�

[n1/αx]

n1/α
−
[n1/α(x + y)]

n1/α

�

�

�

�

�

α−1

= C lim
y→0
|y |α−1 = 0 (α > 1 by hypothesis). �
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2.3 Local time of a strongly correlated walk in the domain of attraction of a frac-

tional Brownian motion

Let S = (Sn)n∈N be a Z-random walk such that






S0 = 0,

Sn =





n
∑

k=1

Xk



 , n≥ 1,

where (Xk)k≥1 is a stationary Gaussian sequence with mean 0 and correlations r(i − j) = E(X iX j)

satisfying as n→∞,
n
∑

i=1

n
∑

j=1

r(i − j)∼ n2H l(n)

with 0 < H < 1 and l is a slowly varying function at ∞. Assumption (RW1) is satisfied with
an = nH l(n)1/2 and Y the standard fractional Brownian motion (BH(t))t≥0 of index 0 < H < 1, i.e.
the centered Gaussian process such that BH(0) = 0 and E(|BH(t2)− BH(t1)|

2) = |t2 − t1|
2H . The

local time NH(n, x) with n ∈N and x ∈ Z is defined as the number of visits of (Sn)n∈N at point x up
to time n. Its rescaled local time (Ln,H(t, x))t≥0,x∈R is defined as

Ln,H(t, x) = n−(1−H)l(n)1/2N([nt], [nH l(n)1/2 x]).

We denote by (LH(t, x))t≥0,x∈R the jointly continuous version of the local time of the process BH .
We are interested in the convergence in Lp, p ≥ 1 of the rescaled local time Ln,H to LH . By applying
the general criterion of Section 2.1, we get the following result.

Proposition 2.3. For every m ≥ 1, for every θ1 ∈ R, . . . ,θm ∈ R, for every (t1, . . . , tm) such that

0< t1 < . . .< tm, the following convergence holds in Lp, p ∈ [1,2]:

m
∑

i=1

θi Ln,H(t i , .)
L
=⇒

m
∑

i=1

θi LH(t i, .) as n→∞.

Proof:

Conditions (RW2.a− b) directly follow from Lemma 4.4 and Lemma 4.6 of Wang [26]. �

2.4 The local time of many independent random walks

We consider independent and identically distributed Z−random walks

S(i) = (S(i)n )n∈N, i ≥ 1,

verifying assumption (RW). The local time of the i-th random walk is denoted by (N (i)(n, x))n∈N;x∈Z

and the rescaled one by (L(i)n (t, x))t≥0;x∈R. The independent limit processes of the correctly renor-
malized random walks S(i) have local time denoted by (L(i)(t, x))t≥0;x∈R. We prove that
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Proposition 2.4. Let cn → ∞ as n → ∞. Suppose that the random walks S(i), i ≥ 1 are i.i.d. and

satisfy assumption (RW) for some p ≥ 1. Suppose furthermore that for any fixed t ≥ 0,

E





�∫

R

L(1)(t, x)pd x

�1/p


 <∞. (4)

Then, for every m≥ 1, for every θ1 ∈R, . . . ,θm ∈R, for every (t1, . . . , tm) such that 0< t1 < . . .< tm,

the following convergence holds in Lp:

1

cn

m
∑

j=1

θ j

cn
∑

i=1

L(i)n (t j , .)
L
=⇒

m
∑

j=1

θ jE(L
(1)(t j , .)) as n→∞. (5)

Proof:

From Proposition 2.1 and Skorohod’s representation theorem, there exists a probability space on
which are defined independent copies of the processes L(i)n and L(i) denoted by L̃(i)n and L̃(i) such
that for every i ≥ 1, the sequence

∑m

j=1 θ j L̃
(i)
n (t j , .) converges almost surely in Lp to

∑m

j=1 θ j L̃
(i)(t j , .)

as n tends to infinity. So it is enough to prove the result for these later sequences.
Step 1:

First, from triangular inequality, we have
�

�

�

�

�

�

�

�

�

�

�

�

1

cn

m
∑

j=1

θ j

cn
∑

i=1

�

L̃(i)n (t j , .)− L̃(i)(t j , .)
�

�

�

�

�

�

�

�

�

�

�

�

�

Lp(R)

≤
1

cn

cn
∑

i=1

||

m
∑

j=1

θ j

�

L̃(i)n (t j , .)− L̃(i)(t j , .)
�

||Lp(R).

and we prove that this quantity converges to zero as n→∞. To see this, let

X (i)n = ||

m
∑

j=1

θ j

�

L̃(i)n (t j , .)− L̃(i)(t j , .)
�

||Lp(R).

The triangular array of random variables {X (i)n , n≥ 1, i ∈ {1, . . . , cn}} is such that:
- on each row (fixed n), the random variables X (i)n , i ∈ {1, . . . , cn} are i.i.d..
- on each column (fixed i), (X (i)n )n≥1 weakly converges to zero as n→∞.
Under these general assumptions, the following weak law of large numbers holds

1

cn

cn
∑

i=1

X (i)n

L
=⇒ 0, (6)

implying the required result for the local time.
We finally give some indications for the proof of the weak law of large numbers. Denote by An the
random variable in the left hand side of (6). Using the independence of the X (i)n ’s, its characteristic
function is given by

E
�

exp(iuAn)
�

=
�

E
�

exp(iuc−1
n X (1)n )

��cn
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and hence
�

�E
�

exp(iuAn)
�

− 1
�

�≤ E
�

min
�

cn|exp(iuc−1
n X (1)n )− 1|, 2

��

≤ E
�

min
�

|u|X (1)n , 2
��

.

The function x → min (|u|x , 2) is continuous and bounded on R
+. Then, since the sequence

(X (1)n )n≥1 weakly converges to 0, we deduce that (E
�

exp(iuAn)
�

)n≥1 converges to 1 as n → ∞

and this proves the weak law of large numbers.
Step 2:

From Assumption (4) and the strong law of large numbers in the Banach space Lp(R) (see [20] for
instance), the sequence

1

cn

m
∑

j=1

θ j

cn
∑

i=1

L̃(i)(t j , .)

converges almost surely in Lp to the function

m
∑

j=1

θ jE( L̃
(1)(t j , .)).

Conclusion:

Combining steps 1 and 2 gives (5). �

Examples: The above proposition directly applies in the case of random walks with i.i.d. increments
in the domain of attraction of a stable Lévy motion (see Section 2.2) or of a strongly correlated
Gaussian random walk in the domain of attraction of a fractional Brownian motion (see Section
2.3). In both cases, equation (4) is satisfied for every p ∈ [1,2]: Lemma 2.1 of [12] states that the
local time of a stable Lévy motion is Lp−integrable and Theorem 3.1 of [9] gives a similar result for
the fractional Brownian motion.

3 Convergence of the random measures associated with the random

scenery

Let ξ = {ξx , x ∈ Z} be a family of real random variables. In the sequel, we consider µh = µh(ξ) the
random signed measure on R absolutely continuous with respect to Lebesgue measure with random
density

dµh

d x
(x) = γhh−1

∑

k∈Z

ξk1[hk,h(k+1))(x), (7)

where γh > 0 is a normalisation constant.
For a locally integrable function f ∈ L1

loc
, we want to define

µh[ f ] = γh

∑

k∈Z

ξkh−1

∫ h(k+1)

hk

f (x)d x . (8)

Denote by Fµh
the set of functions f ∈ L1

loc
such that this series is convergent in a sense that

will be precised later according to the considered cases: either almost-sure semi-convergence or
convergence in L2(Ω). Clearly, any integrable function with bounded support belongs to the set
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Fµh
.

The following scaling relation is worth noting:

µh[ f (c.)] =
γh

cγch

µch[ f (.)], (9)

whenever these quantities are well-defined.

We introduce the cumulative scenery (wx)x∈Z

wx =







∑x−1
i=0 ξi if x > 0

∑−1
i=x ξk if x < 0

0 if x = 0
, x ∈ Z,

and we extend it to a continuous process by the linear interpolation

wx = w[x]+ (x − [x])(w[x]+1−w[x]).

Note that

µh[1[x1,x2]
] = γh(wh−1 x2

− wh−1 x1
) =Wh(x2)−Wh(x1), x1, x2 ∈R, x1 ≤ x2. (10)

with Wh the rescaled cumulative scenery Wh(x) = γhwh−1 x .

3.1 Independent and identically distributed scenery

Let 1< β ≤ 2. We consider the case when the ξx , x ∈ Z satisfy the following assumption:
(RS1) the ξx ’s are i.i.d. random variables in the normal domain of attraction of the stable law
Sβ(σ,ν , 0) with characteristic function given in (3).

In this case, with the scaling γh = σ
−1h

1
β , the rescaled cumulative scenery Wh converges to a bi-

lateral β -stable Lévy process W such that W (1) is distributed according to the stable distribution
Sβ(1,ν , 0). In [11], the convergence of the random measures µh to a stable white noise was proved.
Here a function f ∈ L1

loc
belongs to Fµh

if the random series (8) defining µh[ f ] converges almost
surely.

Proposition 3.1. Suppose that ξ satisfies assumption (RS1) for some 1< β ≤ 2.

Then for any h> 0, Lβ (R)⊂Fµh
and if fn→ f in Lβ and hn→ 0 as n→∞,

µhn
[ fn]

L
=⇒

∫

R

f (x)W (d x)

where W denotes the independently scattered β -stable random noise on R with Lebesgue intensity and

constant skewness ν .

3.2 A general criterion when the scenery is square integrable

We consider the case of a centered scenery with finite variance in the domain of attraction of some
square integrable random process W . Our assumption (RS2) is:
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• (RS2.a) The scenery ξ is centered and square integrable.

• (RS2.b) The finite dimensional distributions of the rescaled cumulative scenery Wh converge
as h→ 0:

(Wh(x))x∈R
L
=⇒ (W (x))x∈R

where W is a non-degenerate centered square integrable process.

• (RS2.c) There is some C1 > 0 such that for any h> 0, K ≥ 1, x1 ≤ · · · ≤ xK+1, θ1, · · · ,θK ∈R,

||

K
∑

i=1

θi(Wh(x i+1)−Wh(x i))||L2(Ω) ≤ C1||

K
∑

i=1

θi(W (x i+1)−W (x i))||L2(Ω).

Note that W (0) = 0 and that W non degenerate means that for any pairwise distinct nonzero
x1, · · · , xp ∈R, the random variables W (x1), · · · ,W (xp) are linearly independent in L2(Ω).

We now define integration of deterministic functions with respect to W . This construction is classical
in the case when W is a Gaussian process (e.g. Brownian or fractional Brownian motion), and the
reader can refer to [22], but we simply assume here that W is centered square integrable and non
degenerate.
Let E be the class of step functions on R, i.e. f ∈ E if and only if f =

∑K

i=1 θi1]x i ,x i+1]
for some

θ1, · · · ,θK and x1 < · · ·< xK+1. For f ∈ E , we define the random variable W[ f ] ∈ L2(Ω) by

W[ f ] =

K
∑

i=1

θi(W (x i+1)−W (x i))

and use the notation W[ f ] =
∫

R
f (x)W (d x) to emphasize the analogy with integration (even if the

path W need not to have bounded variations on compact sets).
Define the scalar product < ., .>W on E by

< f1, f2 >W= Cov(W[ f1],W[ f2]) , f1, f2 ∈ E .

This is indeed a scalar product since the process W is non degenerate. With these notations,
W : E → L2(Ω), f 7→ W[ f ] is a linear isometry. Define the Hilbert space L2

W as the closure of E
with respect to the scalar product < ., . >W . Since L2(Ω) is complete and E is dense in L2

W (by
construction), we can extend the isometry into W : L2

W → L2(Ω).

Examples: If W is the Brownian motion, the scalar product is given by

< f1, f2 >W=

∫

R

f1(u) f2(u)du, f1, f2 ∈ E

and then L2
W = L2(R). Then W[ f ] is the Wiener integral of f with respect to Gaussian white noise.

If W is the fractional Brownian motion of index H ∈ (1/2,1), then

< f1, f2 >W= H(2H − 1)

∫

R×R

|u− v|2H−2 f1(u) f2(v)dudv, f1, f2 ∈ E
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and elements of L2
W may not be functions but rather distributions of negative order (see [23] or

[25]). To our purpose, we will not have to consider this distributions space, but it will be enough
to remark that L1 ∩ L2 ⊂ L2

W and that || f ||L2
W
≤ C2|| f ||L1∩L2 for some constant C2, where L1 ∩ L2 is

equipped with the norm || f ||L1∩L2 =max(|| f ||L1 , || f ||L2).

In order to compare integration with respect to µh and to W , we have to suppose that L2
W contains

some suitable subspace of locally integrable functions sinceFµh
⊆ L1

loc
is the set of functions f ∈ L1

loc

such that the random series (8) defining µh[ f ] converges in L2(Ω). In view of the above examples,
we make the following further assumption:

• (RS2.d) L1 ∩ L2 ⊆ L2
W with continuous injection, i.e. there is some C2 > 0 such that for any

f ∈ L1 ∩ L2,
|| f ||L2

W
≤ C2|| f ||L1∩L2 .

We then prove the convergence of the random measures µh defined by (7) to the random noise W

on the space L1 ∩ L2 ⊆ L2
W .

Proposition 3.2. Suppose that ξ satisfies assumptions (RS2).

Then for any h> 0, L1 ∩ L2 ⊂Fµh
and if fn→ f in L1 ∩ L2 and hn→ 0 as n→∞,

µhn
[ fn]

L
=⇒W[ f ] =

∫

R

f (x)W (d x).

Remark: It is worth noting that in the important case when W is a Brownian motion, assumption
(RS2.d) is trivial. Proposition 3.2 applies under assumptions (RS2.b− c) and the conclusion can be
strengthened: the convergence holds on the whole space L2 = L2

W = Fµh
rather than only on the

subspace L1 ∩ L2.

Proof:

For the sake of clarity, we divide the proof into four steps.
Step 1: First note that in the simple case when fn ≡ f ∈ E , Proposition 3.2 directly follows from
assumption (RS2.b). Let f =

∑K

i=1 θi1]x i ,x i+1]
. Using equation (10) ,

µhn
[ f ] =

K
∑

i=1

θi(Whn
(x i+1)−Whn

(x i)).

Then, assumption (RS2.b) states that as n→ +∞,

µhn
[ f ]

L
=⇒

K
∑

i=1

θi(W (x i+1)−W (x i)) =W[ f ].

Step 2: We now prove that for every fixed integer n, L1 ∩ L2 ⊂ Fµhn
and that µhn

induces a linear

functional L1 ∩ L2→ L2(Ω) with norm operator bounded by C1C2.
The linearity of µhn

on E is straightforward. Using equation (10), assumption (RS2.c) can be rewrit-
ten as

∀ f ∈ E , ||µhn
[ f ]||L2(Ω) ≤ C1||W[ f ]||L2(Ω) = C1|| f ||L2

W
,
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and then, in view of assumption (RS2.d), for every f ∈ E ,

||µhn
[ f ]||L2(Ω) ≤ C1C2|| f ||L1∩L2 .

Since E is dense in L1 ∩ L2 and L2(Ω) is complete, the linear functional µhn
can be extended to

L1 ∩ L2 and its norm operator is bounded by C1C2.

Step 3: We consider now the case when fn ≡ f belongs to L1 ∩ L2.
We approximate f by a sequence of simple functions fm such that fm→ f in L1 ∩ L2 as m→∞. Let
Yn = µhn

[ f ], Xm,n = µhn
[ fm], Xm = W[ fm], X = W[ f ]. We apply Theorem 4.2 in [1] by checking

that :
- for fixed m, Xm,n weakly converges to Xm (use step 1 with the simple function fm),
- Xm weakly converges to X because using assumption (RS2.d),

||Xm− X ||L2(Ω) = || fm− f ||L2
W
≤ || fm− f ||L1∩L2 → 0,

- limm∞ lim supn∞P
�

|Xm,n− Yn| ≥ ǫ
�

= 0 for any ǫ > 0.
The last condition is satisfied since

P
�

|Xm,n− Yn| ≥ ǫ
�

= P
�

|µhn
[ fm− f ]| ≥ ǫ

�

≤ ǫ−2||µhn
[ fm− f ]||2

L2(Ω)
≤ (C1C2)

2ǫ−2|| fm− f ||2
L1∩L2 .

Using Theorem 4.2 in [1], we deduce that Yn weakly converges to X as n tends to infinity.

Step 4: We consider the general case fn→ f in L1 ∩ L2, and we write

µhn
[ fn] = µhn

[ f ] +µhn
[ fn− f ].

From step 3, µhn
[ f ] weakly converges to W[ f ]. From step 2,

||µhn
[ fn− f ]||L2(Ω) ≤ C1C2|| fn− f ||L1∩L2

and hence µhn
[ fn − f ] converges to 0 in L2(Ω). As a consequence, µhn

[ fn] weakly converges to
W[ f ]. �

Note that the above proposition can be applied in the following cases.

Example: Weakly dependent sceneries.

Under the assumption of a L2 stationary scenery satisfying some θ -mixing condition, a central limit
theorem for triangular arrays implying assumption (RS2.b) was proved in [15] (Theorem 3.1) as
well as a suitable control of the covariance implying assumption (RS2.c) (see Lemma 7.1 in [15]).
By applying the techniques developed in [19], a Kesten-Spitzer result for a simple Z-random walk
in a random scenery coming from a partially hyperbolic dynamical system can be established. It
holds when the scenery satisfies some strong decorrelation properties given in Theorem 1 of [24].
We just mention that conditions (RS2.a− b) should hold under these last assumptions.

Example: Moving averages sceneries.

Stationary sceneries obtained from moving averages of i.i.d. square integrable random variables are
considered in [11], i.e.

ξk =
∑

i∈Z

ck−iηi
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where (ηi)i∈Z is an i.i.d. square integrable sequence. In the case when c is summable, then the
convergence of the rescaled cumulative random scenery to a Brownian motion is shown and as-
sumptions (RS2.b− c) hold.
In the case when c slowly decays, strong correlations persist in the limit. More precisely, if

lim
k→+∞

|k|−γck = p1 and lim
k→−∞

|k|−γck = p2

with γ = (1/2,1) and p1p2 6= 0, then convergence of the rescaled scenery to a fractional Brownian
motion of index H = 3/2− γ ∈ (1/2,1) is shown and assumptions (RS2.b− c) are satisfied. Note
that in [11], the dimension d of the scenery needs not to be equal to one (spatial sceneries) and
the innovations ηi are more generally assumed to belong to the domain of attraction of a β -stable
distribution with 1 < β ≤ 2. In this framework, the convergence of the random measures µh to a
fractional β -stable random noise on the space Lβ is shown. The method of convergence of random
measures to a random noise is thus very robust. We will show how this can be used to obtain new
results on RWRS.

4 Limit theorems for RWRS

The above results can be applied to prove the convergence of RWRS and to obtain limit theorems
under fairly general assumptions. The main idea is that the RWRS can be rewritten as a function of
the rescaled local time Ln(., .) of the random walk S and of the random measures µh associated with
the random scenery ξ. Using the scaling property (9) and introducing the suitable scalings for the
local time (equation (1)) and for the random measures (equation (7)), we get

Z[nt] =

[nt]
∑

k=0

ξSk

=
∑

x∈Z

N([nt], x)ξx

= γ−1
1

∫

R

N([nt], [x])µ1(d x)

=
n

γa−1
n

µa−1
n
[Ln(t, .)]

Or equivalently,
n−1γa−1

n
Z[nt] = µa−1

n
[Ln(t, .)] (11)

with a−1
n → 0. We then use the convergence of the local time and of the random measure to prove

the convergence of the RWRS. Two cases are considered and stated in the same following theorem.

Theorem 4.1. Suppose that the random walk S and the random scenery ξ are independent and verify

either:

1. (First case) ξ satisfies (RS1) for some β ∈ (1,2] and S satisfies (RW) with p = β .

2. (Second case) ξ satisfies (RS2) and S satisfies (RW) with p = 2.
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Then, the RWRS satisfy the following convergence in the sense of the finite dimensional distributions:

(n−1γa−1
n

Z[nt])t≥0
L
=⇒

�∫

R

L(t, x)W (d x)

�

t≥0

where (W (x))x∈R and (L(t, x))t≥0;x∈R are defined in (RS) and (RW) respectively and independent of

each other.

Proof:

We only prove the theorem in the first case. Thanks to Proposition 2.2 and Skorohod’s representation
theorem, there exists one probability space on which are defined copies of the processes Ln and L

denoted by L̃n and L̃ such that the sequence ( L̃n)n converges almost surely in Lp to L̃ as n tends to
infinity. Then, by combining equality (11) and Proposition 3.1, we get that conditionally on these
local times, for every m≥ 1, for every θ1 ∈R, . . . ,θm ∈R, for every 0≤ t1 < . . .< tm,

n−1γa−1
n

m
∑

i=1

θi Z[nt i]
=

m
∑

i=1

θiµa−1
n
[ L̃n(t i , .)] (12)

converges in distribution to
m
∑

i=1

θi

∫

R

L̃(t i, x)W (d x).

The result then easily follows using dominated convergence theorem. �

We finally state a result for many walkers in random scenery. We consider cn independent and
identically distributed random walks S(i), i = 1, . . . , cn defined either as in Section 2.2 or as in Section
2.3. They are assumed to evolve in the same random scenery ξ. The i-th random walk induces
a RWRS denoted by Z (i), but the processes Z (1), · · · , Z (cn) are not independent since all random
walkers evolve in the same scenery (see [9; 8; 12]). The total random reward at time n is then
given by

Zn,cn
=

cn
∑

i=1

Z (i)n .

Using equation (11), we get

c−1
n n−1γa−1

n
Z[nt],cn

= µa−1
n
[c−1

n

cn
∑

i=1

L(i)n (t, .)]. (13)

For a finite number cn ≡ c of independent walkers in a random scenery the functional approach
easily gives us the following convergence

(n−1γa−1
n

c
∑

i=1

Z
(i)

[nt]
)t≥0

L
=⇒

 
∫

R

(

c
∑

i=1

L(i)(t, x))W (d x)

!

t≥0

.

When cn → ∞ as n → ∞, thanks to Propositions 2.4 and 3.1, we get the following result, whose
proof is very similar to the proof of Theorem 4.1 and is omitted.

Theorem 4.2. Suppose that the random walk S(i) and the random scenery ξ are independent and

verify either:
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1. (First case) ξ satisfies (RS1) for some β ∈ (1,2] and the S(i) verify (RW) as well as the integra-

bility condition (4) with p = β .

2. (Second case) ξ satisfies (RS2) and the S(i) verify (RW) as well as the integrability condition (4)

with p = 2.

Then, the total random reward satisfies the following convergence in the sense of the finite dimensional

distributions:

(c−1
n n−1γa−1

n
Z[nt],cn

)t≥0
L
=⇒

�∫

R

E(L(t, x))W (d x)

�

t≥0

.

where (W (x))x∈R and (L(t, x))t≥0;x∈R are defined in (RS) and (RW) respectively.

5 Conclusion and further comments

In this paper a functional approach for the analysis of RWRS was proposed. The method is quite
powerful and allows to recover many of the previous results about RWRS as well as new ones.
However, our results are limited to the convergence of the finite-dimensional distributions and the
question of the functional convergence (for example in the Skohorod topology) naturally arises. The
classical techniques used for proving tightness such as Kolmogorov’s criterion can be adapted. The
reader should refer to [8], [12], [17] or [26] where tightness results were proved. In a few words,
in the case of a random scenery satisfying (RS2), the second order moment of the increments of the
RWRS is given for any 0≤ t1 < t2 by

E

h

|n−1γa−1
n

Z[nt2]
− n−1γa−1

n
Z[nt1]
|2
i

= E

h

|µa−1
n
[Ln(t2, .)− Ln(t1, .)]|2

i

≤ (C1C2)
2
E

�∫

R

|Ln(t2, x)− Ln(t1, x)|2d x

�

.

The proof of the tightness then relies on the analysis of the self-intersection local time of the random
walk (see [17] for RW with i.i.d. increments or [26] for strongly correlated Gaussian RW).
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