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Abstract

The (d,α,β ,γ)-branching particle system consists of particles moving in R
d

according to a

symmetric α-stable Lévy process (0 < α ≤ 2), splitting with a critical (1 + β)-branching law

(0< β ≤ 1), and starting from an inhomogeneous Poisson random measure with intensity mea-

sure µγ(d x) = d x/(1+ |x |γ),γ≥ 0. By means of time rescaling T and Poisson intensity measure

HTµγ, occupation time fluctuation limits for the system as T → ∞ have been obtained in two

special cases: Lebesgue measure (γ= 0, the homogeneous case), and finite measures (γ > d). In

some cases HT ≡ 1 and in others HT →∞ as T →∞ (high density systems). The limit processes

are quite different for Lebesgue and for finite measures. Therefore the question arises of what

kinds of limits can be obtained for Poisson intensity measures that are intermediate between

Lebesgue measure and finite measures. In this paper the measures µγ,γ ∈ (0, d], are used for

investigating this question. Occupation time fluctuation limits are obtained which interpolate

in some way between the two previous extreme cases. The limit processes depend on different

arrangements of the parameters d,α,β ,γ. There are two thresholds for the dimension d. The

first one, d = α/β +γ, determines the need for high density or not in order to obtain non-trivial

limits, and its relation with a.s. local extinction of the system is discussed. The second one,

d = [α(2+β)−γ∨α]/β (if γ < d), interpolates between the two extreme cases, and it is a criti-

cal dimension which separates different qualitative behaviors of the limit processes, in particular

long-range dependence in “low” dimensions, and independent increments in “high” dimensions.
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In low dimensions the temporal part of the limit process is a new self-similar stable process

which has two different long-range dependence regimes depending on relationships among the

parameters. Related results for the corresponding (d,α,β ,γ)-superprocess are also given.

Key words: Branching particle system, superprocess, occupation time fluctuation, limit theo-

rem, stable process, long-range dependence.
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1 Introduction

Occupation time fluctuation limits have been proved for the so-called (d,α,β)-branching particle

systems in R
d

with initial Poisson states in two special cases, namely, if the Poisson intensity measure

is either Lebesgue measure, denoted by λ, or a finite measure [BGT1], [BGT2], [BGT3], [BGT4],

[BGT6]. Those cases are quite special, as explained below, and the limit processes are very different.

Therefore the question arises of what happens with Poisson intensity measures that are intermediate

between Lebesgue measure and finite measures. That is the main motivation for the present paper,

and our aim is to obtain limit processes that interpolate in some way between those of the two

special cases. One of our objectives is to find out when the limits have long-range dependence

behavior and to describe it. Another motivation is to derive analogous results for the corresponding

superprocesses.

In a (d,α,β)-branching particle system the particles move independently in R
d

according to a stan-

dard spherically symmetric α-stable Lévy process, 0 < α ≤ 2, the particle lifetime is exponentially

distributed with parameter V , and the branching law is critical with generating function

s+
1

1+ β
(1− s)1+β , 0< s < 1, (1.1)

where 0< β ≤ 1 (called (1+β)-branching law), which is binary branching for β = 1. The parameter

V is not particularly relevant, but it is convenient to use it. The empirical measure process N =

(Nt)t≥0 is defined by

Nt(A) = number of particles in the Borel set A⊂R
d

at time t. (1.2)

A common assumption for the initial distribution N0 is to take a Poisson random measure with locally

finite intensity measure µ. The corresponding (d,α,β)-superprocess Y = (Yt)t≥0 is a measure-

valued process, which is a high-density/short-life/small-particle limit of the particle system, with

Y0 = µ. See [D], [E], [P2] for background on those particle systems and superprocesses. In this

paper we investigate (the limiting behavior of) the corresponding occupation time processes, i.e.,

∫ t

0

Nsds, t ≥ 0, and

∫ t

0

Ysds, t ≥ 0.

We recall that the distributions of these processes are characterized by their Laplace functionals as

follows [GLM], [DP2]:

Eexp

¨
−

∫ t

0

〈Ns,ϕ〉ds

«
= exp{−〈µ, vϕ(t)〉}, ϕ ∈ S (R

d
), (1.3)

where vϕ(x , t) is the unique (mild) solution of the non-linear equation

∂

∂ t
vϕ = ∆αvϕ −

V

1+ β
v1+β
ϕ +ϕ(1− vϕ), (1.4)

vϕ(x , 0) = 0,

and

Eexp

¨
−

∫ t

0

〈Ys,ϕ〉ds

«
= exp{−〈µ,uϕ(t)〉}, ϕ ∈ S (R

d
), (1.5)
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where uϕ(x , t) is the unique (mild) solution of the non-linear equation

∂

∂ t
uϕ = ∆αuϕ −

V

1+ β
u1+β
ϕ +ϕ, (1.6)

uϕ(x , 0) = 0,

and ∆α is the infinitesimal generator of the α-stable process. (See the end of the Introduction for

the standard notations 〈 , 〉,S (R
d
).)

For µ = λ, N0 is homogeneous Poisson. This case is special (and technically simpler) because λ

is invariant for the α-stable process (which implies in particular that ENt = λ for all t), and there

is the following persistence/extinction dichotomy [GW], which heuristically explains the need for

high density in some cases in order to obtain non-trivial occupation time fluctuation limits, and

anticipates the situation we will encounter in this paper:

(i) Persistence: If d > α/β , then Nt converges in law to an equilibrium state N∞ as t → ∞, such

that EN∞ = λ.

(ii) Extinction: If d ≤ α/β , then Nt becomes locally extinct in probability as t → ∞, i.e., for any

bounded Borel set A, Nt(A)→ 0 in probability.

An analogous persistence/extinction dichotomy holds for the corresponding superprocess (with Y0 =

λ) [DP1]. For α = 2 (Brownian motion) and d < 2/β a stronger extinction holds: the superprocess

becomes locally extinct in finite time a.s. [I2], and we shall see that so does the particle system.

The case of µ finite is special because the particle system goes to extinction globally in finite time

a.s. for every dimension d, and so does the superprocess [P2].

The time-rescaled occupation time fluctuation process XT = (XT (t))t≥0 of the particle system is

defined by

XT (t) =
1

FT

∫ T t

0

(Ns − ENs)ds, (1.7)

where Ns is given by (1.2) and FT is a norming. The problem is to find FT such that XT converges

in distribution (in some way) as T →∞, and to identify the limit process and study its properties.

This was done for µ= λ in the persistence case, d > α/β , [BGT3], [BGT4]. For the extinction case,

d ≤ α/β , in [BGT6] we introduced high density, meaning that the initial Poisson intensity measure

was taken of the form HTλ, with HT →∞ as T →∞, so as to counteract the local extinction, and

we obtained similarly high-density limits with µ finite. For µ= λ and d > α/β the same results hold

with or without high density (with different normings) [BGT6]. The limit processes are different for

µ = λ and µ finite (some differences are mentioned below), and the results for any finite measure

are essentially the same.

In order to study asymptotics of XT as T →∞ with measures µ that are intermediate between the

two previous cases, we consider Poisson intensity measures of the form

µγ(d x) =
1

1+ |x |γ
d x , γ≥ 0. (1.8)

We call the model so defined a (d,α,β ,γ)- branching particle system, and a (d,α,β ,γ)-superprocess

the corresponding measure-valued process. To obtain non-trivial limits we multiply µγ by HT , which

is suitably chosen in each case. Since µ0 = λ and µγ is finite for γ > d, by varying γ in the interval
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(0, d] we obtain limits that are between those of the two previous cases, which are extreme in this

sense, in a way that interpolates between them. The substantial role of γ was already noted in the

simpler model of particle systems without branching [BGT5].

The above mentioned behaviors of Nt in the cases γ = 0 and γ > d raise the following questions

on what happens for γ ∈ (0, d], and on its effect on asymptotics of XT : When does Nt suffer a.s.

local extinction in the sense that for each bounded Borel set A there is a finite random time τA such

that Nt(A) = 0 for all t ≥ τA a.s.? In this case the total occupation time
∫∞

0
Nt(A)d t is finite a.s.,

and therefore high density is needed in order to obtain non-trivial limits for XT . For γ > 0, Nt(A)

converges to 0 in probability as t →∞ for any bounded Borel set A and every dimension d, so local

extinction in probability occurs, but the total occupation time may or may not be finite. It turns out

that the threshold between the need for high density or not is given by d = α/β + γ, and then a

natural question is whether d = α/β + γ is also the border to a.s. local extinction of the particle

system. We will come back to this question.

The limits for XT in [BGT6] are of three different kinds for both µ= λ and µ finite. In the first case

there is a critical dimension, dc = α(1+ β)/β . For the “low” dimensions, d < dc , the limit has a

simple spatial structure (the measure λ) and a complex temporal structure (with long-range depen-

dence). For the “high” dimensions, d > dc, the limit has a complex spatial structure (distribution-

valued) and a simple temporal structure (with stationary independent increments). For the “criti-

cal” dimension, d = dc , the spatial and the temporal structures are both simple, but the order of

the fluctuations (FT ) is larger, as is typical in phase transitions. The limit processes are always con-

tinuous for d < dc , and for d ≥ dc they are continuous if and only if β = 1 (when the limits are

Gaussian). For µ finite, an analogous trichotomy of results holds, with a new critical dimension,

dc = α(2+ β)/(1+ β), another difference being that the limits for the critical and high dimensions

are constant in time for t > 0.

In this paper we show analogous limits of XT for (d,α,β ,γ)-branching particle system; the critical

dimension changes between the ones above, α(1+ β)/β for γ = 0 (Lebesgue measure case), and

α(2+ β)/(1+ β) for γ > d (finite measure case), and they are linked with a unified formula,

dc(γ) = α
2+ β

β
−
γ∨α

β
, (1.9)

which interpolates between the two cases (see Remark 2.2(a) for a precise statement). There are

several limit processes depending on different arrangements of d,α,β ,γ. Some are analogous to

those for µ = λ, and some are similar to those for µ finite (or even essentially the same). For γ < d

there are six different cases that include the three ones recalled above for γ = 0. For γ > d there

are the three cases obtained in [BGT6] (generally for finite µ). In the case γ < d and d < dc(γ), the

temporal structure of the limit is a new real, stable, self-similar, continuous, long-range dependence

process ξ, defined in (2.1) below, which has two different long-range dependence regimes if α < 2

(Theorem 1(a) and Proposition 2.3). This strange type of long-range dependence behavior already

appears in the homogeneous case, γ = 0 [BGT3], [BGT6]. An analogous phenomenon occurs with

0 < γ < d, the border between the two long-range dependence regimes changes continuously with

γ, and it disappears in the limit γր d (see formula (2.13)). For γ > d there is only one long-range

dependence regime, not depending on γ,β .

In [BGT1], [BGT2], [BGT3], [BGT4], [BGT5], [BGT6]we have given the convergence results for XT

in a strong form (functional convergence when it holds), but in the present article our main objective

is identifying the limits, so we have not attempted to prove the strongest form of convergence in
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each case, nevertheless we expect that convergence in law in a space of continuous functions holds

in all cases where the limit is continuous. We prove functional convergence only in the case of the

above mentioned long-range dependence process ξ because of its special properties. A technical

difficulty for the tightness proof is the lack of moments if β < 1.

The time-rescaled occupation time fluctuation process for the (d,α,β ,γ)-superprocess Y is defined

analogously as (1.7),

XT (t) =
1

FT

∫ T t

0

(Ys − EYs)ds, (1.10)

and the limits are obtained from (the proofs of) the results for the (d,α,β ,γ)-branching particle

systems, as a consequence of the fact that the log-Laplace equation of the occupation time of the

superprocess is simpler than that of the particle system (see (1.3), (1.4), and (1.5), (1.6).)

Our results on the fluctuation limits of superprocesses generalize those of Iscoe [I1], who considered

the homogeneous case (γ= 0) only.

Let us come back to the question of high density and local extinction for the (d,α,β ,γ)-branching

particle system. From Theorems 2.1, 2.5 and 2.6 it follows immediately (see Corollary 2.10) that

in all cases where high density is not necessary (i.e., we may take HT ≡ 1) there is no a.s. local

extinction (in spite of the fact that local extinction in probability occurs if γ > 0). For instance,

condition (2.6) in Theorem 2.1(a) holds automatically if d > α/β + γ (with γ < d), hence high

density is not necessary for a non-trivial limit of XT in this case. On the other hand, high density is

indispensable to obtain a non-trivial limit if either d ≤ α/β + γ or α < γ ≤ d. In the latter case the

total occupation time of any bounded Borel set by the process N is finite a.s. (it has finite mean). We

prove a.s. local extinction for α = 2 and d < 2/β + γ, and we conjecture that a.s. local extinction

holds generally for d < α/β + γ also if α < 2. This conjecture is supported by the fact that for

d = α/β+γ,γ < α, there is an ergodic result (Proposition 2.9). For α= 2 and d < 2/β+γ it follows

from [I2] (Theorem 3β) that the (d, 2,β ,γ)-superprocess suffers a.s. local extinction. The method of

[Z] can also be used to prove this (private communication). The proof of a.s. local extinction of the

particle system consists in showing that a.s. local extinction of the (d, 2,β ,γ)-superprocess implies

a.s. local extinction of the (d, 2,β ,γ)-branching particle system (Theorem 2.8). This implication

is not as simple as it might seem because the well-known Cox relationship between the particle

system and the superprocess (i.e., for each t, Nt is a doubly stochastic Poisson random measure

with random intensity measure given by Yt) is not enough to relate the long time behaviors of the

two processes. But the argument does not work for α < 2. In this case the superprocess Y has

the instantaneous propagation of support property, i.e., with probability 1 for each t > 0 if the

closed support of Yt is not empty, then it is all of R
d
. This follows from the result proved in [P1]

for finite initial measure and finite variance branching (β = 1 in our model), which is extended in

[LZ] for more general superprocesses and branching mechanisms (including β < 1 in our case). It

follows that for the (d,α,β ,γ)-superprocess with α < 2, a.s. local extinction and global extinction

are equivalent, and it is known that if the initial measure has infinite total mass, the probability of

global extinction in finite time is 0. Nevertheless, the total occupation time of a bounded set for

the superprocess with α < 2 may or may not be finite, and this is what is directly relevant for us

(see the proof of Theorem 2.8). Iscoe [I1] showed that for initial Lebesgue measure and α = 2 the

total occupation time of a bounded set is finite if and only if d < 2/β , and he conjectured that an

analogous result holds for α < 2 and d < α/β . So far as we know, this conjecture has not been

proved.
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Summarizing, if γ < d and γ < α, there are two thresholds for the asymptotics of XT , namely,

α/β + γ, and dc(γ) given by (1.9). The first one, which is smaller than the second one, appears

to be the border to a.s. local extinction (we know that it is for α = 2), and it determines the need

for high density. The second one is the critical dimension between changes of behavior of the limit

processes, in particular the change from long-range dependence to independent increments, and

from continuity to discontinuity if β < 1. An interpretation of dc(γ) in terms of the model seems

rather mysterious, even in the case γ = 0 (see [BGT4], Section 4, for several questions on the

meaning of results).

The general methods of proof developed in [BGT3], [BGT4], [BGT6], and the special cases for β =

1, where the limits are Gaussian [BGT1], [BGT2], can be used for the proofs involving µγ. However,

a considerable amount of technical work is unavoidable in order to deal with γ > 0. Moreover, each

case requires different calculations. We will abbreviate the proofs as much as possible.

Related work appears in [BZ], [M1], [M2] for the special case γ = 0, β = 1. [BZ] studies occupa-

tion time fluctuations of a single point for a system of binary branching random walks on the lattice

with state dependent branching rate. [M1], [M2] consider general critical finite variance branching

laws. [BZ], [M1], [M2] and [M3] also study the systems in equilibrium. We have already men-

tioned the paper [I1] on occupation time fluctuation limits of (d,α,β)-superprocesses. Some other

papers regarding extinction, ergodicity and occupation times of branching particle systems and su-

perprocesses are [BZ], [CG], [DGW], [DR], [DF], [EK], [FG], [FVW], [H], [IL], [K], [LR], [MR],

[M3], [Sh], [Ta], [VW], [Zh] (and references therein).

We have given special attention to the long-range dependence stable process ξ and its properties

because long-range dependence is currently a subject of much interest (see e.g. [DOT], [H1], [H2],

[S], [T] for discussions and literature), hence it is worthwhile to study different types of stochastic

models where it appears. Other types of long-range dependence processes have been found recently

(e.g. [CS], [GNR], [HJ], [HV], [KT], [MY], [LT], [PTL]), in particular in models involving heavy-

tailed distributions.

The following notation is used in the paper.

S (R
d
): space of C∞ rapidly decreasing functions on R

d
.

S ′(R
d
): space of tempered distributions (topological dual of S (R

d
)).

〈 , 〉: duality onS ′(R
d
)×S (R

d
), or onS ′(R

d+1
)×S (R

d+1
), in particular, integral of a function

with respect to a tempered measure.

⇒C : weak convergence on the space of continuous functions C([0,τ],S ′(Rd
)) for each τ > 0.

⇒ f : weak convergence of finite-dimensional distributions of S ′(R
d
)-valued processes.

⇒i: integral convergence of S ′(R
d
)-valued processes, i.e., XT ⇒i X if, for any τ > 0, the S ′(R

d+1
)-

valued random variables eXT converge in law to eX as T → ∞, where eX (and, analogously eXT ) is

defined as a space-time random field by

〈eX ,Φ〉 =

∫ τ

0

〈X (t),Φ(·, t)〉d t, Φ ∈ S (R
d+1
). (1.11)

⇒ f ,i:⇒ f and⇒i together.

Recall that in general ⇒ f and ⇒i do not imply each other, and either one of them, together with

tightness of {〈XT ,ϕ〉}T≥1 in C([0,τ],R), τ > 0, ϕ ∈ S (Rd
), implies⇒C [BGR].
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The transition probability density, the semigroup, and the potential operator of the standard sym-

metric α-stable Lévy process on R
d

are denoted respectively by pt(x),Tt (i.e., Ttϕ = pt ∗ ϕ) and

(for d > α)

Gϕ(x) =

∫ ∞

0

Ttϕ(x)d t = Cα,d

∫

R
d

ϕ(y)

|x − y |d−α
d y, (1.12)

where

Cα,d =
Γ( d−α

2
)

2απd/2Γ(α
2
)
. (1.13)

Generic constants are written, C , Ci , with possible dependencies in parenthesis.

Section 2 contains the results, and Section 3 the proofs.

2 Results

Given β ∈ (0,1], let M be an independently scattered (1+ β)-stable measure on R
d+1

with control

measure λd+1 (Lebesgue measure) and skewness intensity 1, i.e., for each Borel set A⊂ R
d+1

such

that 0< λd+1(A)<∞, M(A) is a (1+ β)-stable random variable with characteristic function

exp

§
−λd+1(A)|z|

1+β
�

1− i(sgn z) tan
π

2
(1+ β)

�ª
, z ∈R,

the values of M are independent on disjoint sets, and M is σ-additive a.s. (see [ST], Definition

3.3.1).

For α ∈ (0,2],γ≥ 0, we define the process

ξt =

∫

R
d+1


11[0,t](r)

�∫

R
d

pr(x − y)|y |−γd y

�1/(1+β) ∫ t

r

pu−r(x)du


M(drd x), t ≥ 0, (2.1)

which is well defined provided that

∫

R
d

∫ t

0

∫

R
d

pr(x − y)|y |−γd y

�∫ t

r

pu−r(x)du

�1+β

drd x <∞, (2.2)

(see [ST]). For γ = 0, ξ is the same as the process ξ defined by (2.1) in [BGT6]. We also recall the

following process defined by (2.2) in [BGT6],

ζt =

∫

R
d+1

�
11[0,t](r)p

1/(1+β)
r (x)

∫ t

r

pu−r(x)du

�
M(drd x), t ≥ 0, (2.3)

which is well defined if d < α(2+ β)/(1+ β).

We consider the (d,α,β ,γ)-branching particle system described in the Introduction with XT defined

by (1.7). Recall that the initial Poisson intensity measure is HTµγ. We formulate the results for

low, critical and high dimensions separately, since, as mentioned in the Introduction, the qualitative
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behaviors of the limit processes are different in each one of these cases. In the theorems below K is

a positive number depending on d,α,β ,γ, V , which may vary from case to case and it is possible to

compute it explicitly.

The results for the low dimensions are contained in the following theorem.

Theorem 2.1. (a) Assume γ < d and

d < α
2+ β

β
−
γ∨α

β
. (2.4)

Then the process ξ given by (2.1) is well defined, and for

F
1+β
T = HT T2+β−(dβ+γ)/α (2.5)

with HT ≥ 1 and

lim
T→∞

T1−(d−γ)β/α

H
β
T

= 0, (2.6)

we have XT ⇒C Kλξ.

(b) Let γ≥ d,

d < α
2+ β

1+ β
, (2.7)

and put

k(T ) =

¨
log T if γ= d,

1 if γ > d.

Then for

F
1+β
T = HT T2+β−(1+β)d/αk(T ) (2.8)

with

lim
T→∞

T

H
β
T k(T )β

= 0, (2.9)

we have XT ⇒ f ,i Kλζ, where ζ is defined by (2.3).

Remark 2.2. (a) For γ = 0, Theorem 2.1(a) is the same as Theorem 2.2(a) in [BGT6]. For γ ≤ α

and γ < d, the bound on the dimension remains the same, equal to α(1+ β)/β (see (2.4)), and for

α < γ < d, it changes continuously, tending to the threshold (2.7) as γր d.
(b) For d satisfying (2.4) and additionally d > α/β + γ, condition (2.6) holds with HT = 1, so in

this case high density is not needed, and the limit of XT is the same as for the high-density model.

(c) The case γ > d is included for completeness only, since it is contained in Theorem 2.7 of [BGT6],

where a general finite intensity measure was considered. The same remark applies also to the

theorems for critical and high dimensions (Theorems 2.5 and 2.6 below).

(d) Note that the limit process is the same (up to constant) for the infinite intensity measure

HT d x/(1+ |x |d) (γ= d) as for finite measures.

(e) In Theorem 2.1(b) we consider convergence⇒ f ,i only. We are sure that functional convergence

holds (in fact, for the case γ > d this was proved in [BGT6]), but, as stated in the Introduction,
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we are mainly interested in the identification of limits and we do not attempt to give convergence

results in the strongest forms. The same applies to the theorems that follow.

In the next proposition we gather some basic properties of the process ξ defined by (2.1), in partic-

ular its long-range dependence property. (The process ζ was discussed in [BGT6]). In [BGT3] we

introduced a way of measuring long-range dependence in terms of the dependence exponent, defined

by

κ= inf
z1,z2∈R

inf
0≤u<v<s<t

sup{θ > 0 : DT (z1, z2; u, v, s, t) = o(T−θ ) as T →∞}, (2.10)

where

DT (z1, z2; u, v, s, t)

= | log Eei(z1(ξv−ξu)+z2(ξT+t−ξT+s)− log Eeiz1(ξv−ξu)− log Eeiz2(ξT+t−ξT+s)|. (2.11)

(see also [RZ]).

Proposition 2.3. Assume γ < d and (2.4). Then

(a) ξ is (1+ β)-stable, totally skewed to the right if β < 1.

(b) ξ is self-similar with index (2+ β − (dβ − γ)/α)/(1+ β).

(c) ξ has continuous paths.

(d) ξ has the long-range dependence property with dependence exponent

κ =

(
d

α
if either α= 2, or α < 2 and β >

d−γ

d+α
,

d

α
(1+ β −

d−γ

d+α
) if α < 2 and β ≤

d−γ

d+α
.

Remark 2.4. (a) Here, as in the case γ = 0 (Theorem 2.7 of [BGT3]), the intriguing phenomenon

of two long-range dependence regimes occurs for α < 2. It seems also interesting to note that

putting formally γ≥ d in (2.12) we obtain κ= d/α (with no change of regime), which is indeed the

dependence exponent of the process ζ (Proposition 2.9 of [BGT6]). On the other hand, the process

ζ itself is not obtained from ξ by putting γ≥ d.

(b) If γ = 0 and β = 1, then ξ is the sub-fractional Brownian motion (multiplied by a constant)

considered in [BGT], [BGT1].

We now turn to the critical dimensions, i.e., the cases where the inequalities in (2.4) and (2.7) are

replaced by equalities. It turns out that in spite of different conditions on the normings, the limits

have always the same form as for finite intensity measure, with the only exception of the case given

in Theorem 2.5(a) below.

Theorem 2.5. (a) Assume γ < d,γ < α,

d = α
1+ β

β
(2.12)

and

F
1+β
T = HT T1−γ/α log T, (2.13)
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with HT ≥ 1. Then XT ⇒ f ,i Kλη, where η is a (1+β)-stable process with independent, non-stationary

increments (for γ > 0) whose laws are determined by

Eeiz(ηt−ηs) = exp

§
−(t1−γ/α− s1−γ/α)|z|1+β

�
1− i(sgnz) tan

π

2
(1+ β)

�ª
, z ∈R, t ≥ s ≥ 0,

η0 = 0.

(b) In all the remaining critical cases, i.e.,

(i) γ= α,γ < d with d satisfying (2.12),

F
1+β
T = HT (log T )2, (2.14)

and

lim
T→∞

(log T )1−β

H
β
T

= 0, (2.15)

(ii) α < γ < d with

d = α
2+ β

β
−
γ

β
, (2.16)

F
1+β
T = HT log T, (2.17)

and

lim
T→∞

T (1+β)(γ/α−1)

H
β
T (log T )1+β

= 0, (2.18)

(iii)

γ= d = α
2+ β

1+ β
, (2.19)

with FT satisfying (2.14) and

lim
T→∞

T

H
β
T (log T )1+2β

= 0, (2.20)

(iv) γ > d = α(2+ β)/(1+ β), F
1+β
T = HT log T and limT→∞ T H

−β
T = 0,

we have XT ⇒ f ,i Kλϑ, where ϑ is a real process such that ϑ0 = 0 and for t > 0,ϑt = ϑ1 = (1+β)-stable

random variable totally skewed to the right, i.e.,

Eeizϑ1 = exp

§
−|z|1+β

�
1− i(sgnz) tan

π

2
(1+ β)

�ª
.

It remains to consider the high dimensions.

Theorem 2.6. (a) Assume γ < d,γ < α,

d > α
1+ β

β
, (2.21)

and

F
1+β
T = HT T1−γ/α, (2.22)
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with HT ≥ 1. Then XT ⇒ f ,i X , where X is an S ′(R
d
)-valued (1+ β)-stable process with independent,

non-stationary increments (for γ > 0) determined by

Eei〈X t−Xs ,ϕ〉

= exp
n
− K(t1−γ/α− s1−γ/α)

∫

R
d

�
V |Gϕ(x)|1+β(1− i(sgnGϕ(x)) tan

π

2
(1+ β))

+ 2cβϕ(x)Gϕ(x)
�

d x
o

, ϕ ∈ S (Rd
), t ≥ s ≥ 0,(2.23)

X0 = 0, where

cβ =

¨
0 if 0< β < 1,

1 if β = 1,

and G is defined by (1.12).

(b) Assume γ < d,γ = α, and d satisfying (2.21) with

F
1+β
T = HT log T, (2.24)

and HT ≥ 1. Then XT ⇒ f ,i X , where X is an S ′(R
d
)-valued process such that X0 = 0, and for

t > 0, X t = X1 = (1+ β)-stable random variable determined by

Eei〈X1,ϕ〉 = exp

�
−K

∫

R
d

�
V |Gϕ(x)|1+β(1− i(sgnGϕ(x)) tan

π

2
(1+ β))

+ 2cβϕ(x)Gϕ(x)
�

d x

�
, ϕ ∈ S (Rd

), (2.25)

with cβ given by (2.24).

(c) Assume γ > α,

d > α
2+ β

β
−

γ∧ d

β
, (2.26)

F
1+β
T = HT , (2.27)

and

lim
T→∞

T H
−β
T = 0. (2.28)

Then XT ⇒ f ,i X , where X is an S ′(R
d
)-valued process such that X0 = 0, and for t > 0, X t = X1 =

(1+ β)-stable random variable determined by

Eei〈X1,ϕ〉 = exp

¨
−K

∫

R
d

�
V |Gϕ(x)|1+β(1− i(sgnGϕ(x)) tan

π

2
(1+ β))

+ 2cβϕ(x)Gϕ(x)

�
Gµγ(d x)

�
, ϕ ∈ S (Rd

), (2.29)

with cβ given by (2.24).

Remark 2.7. (a) As in all the cases studied previously [BGT3], [BGT4], [BGT6], we observe the

same phenomenon that in low dimensions the limit processes are continuous with a simple spatial

structure and a complicated temporal structure (with long-range dependence), while in high dimen-

sions they are truly S ′(R
d
)-valued with independent increments, and not necessarily continuous.
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(b) For low dimensions the forms of the limits depend on the relation between d and γ only, whereas

for critical and high dimensions only the relationship between α and γ is relevant. More precisely, in

critical dimensions we have different forms of the limits for γ < α and γ≥ α, and in high dimensions

the forms are different for γ < α,γ = α and γ > α. In the case γ > α even the normings are the

same, depending only on β .

(c) For β = 1 the limits are centered Gaussian. In high dimensions there is no continuous transition

between the cases β < 1 and β = 1; in the latter case an additional term appears. The coefficient cβ
defined in (2.24) was introduced in order to present the results in unified forms.

(d) We have assumed that the initial intensity measure is determined by µγ of the form (1.8). It will

be clear that the same results are obtained for the measure µγ(d x) = |x |−γd x if d > γ. Analogously

as in the non-branching case [BGT5], other generalizations are also possible.

Let us look further into the need for high density (i.e., to assume HT →∞) and the question of a.s.

local extinction. For γ > d the Poisson intensity measure is finite, so there is only a finite number of

particles at time t = 0 and the system becomes globally extinct in finite time a.s. due to the criticality

of the branching. Also, for γ∧ d > α it is not difficult to see that the total occupation time
∫∞

0
Nsds

is finite a.s. on bounded sets (see [BGT5], Proposition 2.1, because ENs is the same for the systems

with and without branching), so high density is also necessary. We have a more delicate situation

in the remaining cases where the threshold is d = α/β + γ. Concerning extinction, the situation is

completely clear for α = 2. In Theorem 2.8 below we state that for α = 2 and d < 2/β + γ there is

a.s. local extinction, hence the total occupation time of any bounded set is finite a.s. We conjecture

that the same is true for d < α/β + γ if α < 2, but we have not been able to prove it.

Theorem 2.8. Assume α= 2. If d < 2/β + γ, then for each bounded Borel set A,

P[there exists τA <∞ such that Nt(A) = 0 for all t ≥ τA] = 1.

The proof of this theorem relies on Iscoe’s a.s. local extinction result for the superprocess [I2], by

showing that in general (i.e., for 0 < α ≤ 2) a.s. local finiteness of the total occupation time of the

(d,α,β ,γ)-superprocess implies a.s. local extinction of the (d,α,β ,γ)-branching particle system.

On the other hand, as explained in the Introduction, for α < 2 the a.s. local extinction for the

superprocess cannot occur, and we do not know how to prove directly the a.s. local finiteness of its

total occupation time.

The next ergodic-type result, which is a direct generalization of [Ta], shows that α/β + γ is indeed

a natural threshold.

Proposition 2.9. Assume

γ < α, d =
α

β
+ γ, FT = T1−γ/α, (2.30)

and denote

ZT (t) =
1

FT

∫ T t

0

Nsds, t ≥ 0. (2.31)

Then ZT ⇒C λξ, where ξ is a real non-negative process with Laplace transform

Eexp{−θ1ξt1
− · · · − θnξtn

}= exp

¨
−

∫

R
d

v(x ,τ)|x |−γd x

«
, (2.32)
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for any τ > 0, where θ1, . . . ,θn ≥ 0,0 ≤ t1 < · · · < tn ≤ τ, and v(x , t) is the unique non-negative

solution of the equation

v(x , t) =

∫ t

0

pt−s(x)ψ(τ− s)ds−
V

1+ β

∫ t

0

Tt−sv
1+β(·, s)(x)ds, (2.33)

with

ψ(s) =

n∑

k=1

θk11[0,tk]
(s). (2.34)

To complete the discussion on a.s. local extinction we formulate a corollary which follows immedi-

ately from our results but which, nevertheless, seems worth stating explicitly.

Corollary 2.10. If γ < α and d ≥ α/β + γ, then the (d,α,β ,γ)-branching particle system does not

have the a.s. local extinction property.

Indeed, for d > α/β + γ, from Theorems 2.1, 2.5 and 2.6 it follows that one may take HT ≡ 1.

By Proposition 2.1 of [BGT5], E
∫ T

0
〈Ns,ϕ〉ds (for

∫
R

d ϕ(x)d x 6= 0) is of larger order than FT as

T → ∞ hence, by (1.7), for any bounded Borel set A,
∫∞

0
Ns(A)ds = ∞ a.s., which excludes a.s.

local extinction. For d = α/β + γ the result follows immediately from Proposition 2.9.

We end with the results for the superprocess.

Theorem 2.11 Let Y be the (d,α,β ,γ)-superprocess and XT its occupation time fluctuation process

defined by (1.10). Then the limit results for XT as T →∞ are the same as those in Theorems 2.1, 2.5

and 2.6, with the same normings, and cβ = 0 in all cases in Theorem 2.6.

3 Proofs

3.1 Scheme of proofs

The proofs of Theorems 2.1, 2.5 and 2.6 follow the general scheme presented in [BGT6]. For

completeness we recall the main steps.

As explained in [BGT3; BGT4; BGT6], in order to prove convergence⇒i it suffices to show

lim
T→∞

Ee−〈
eXT ,Φ〉 = Ee−〈

eX ,Φ〉 (3.1)

for each Φ ∈ S (R
d+1
),Φ ≥ 0, where X is the corresponding limit process and eXT , eX are defined by

(1.11). To prove convergence⇒C according to the space-time approach [BGR] it is enough to show

additionally that the family {〈XT ,ϕ〉}T≥1 is tight in C((0,τ],R),ϕ ∈ S (Rd
),τ > 0. Without loss of

generality we may fix τ = 1 (see (1.11)). To simplify slightly the calculations we consider Φ of the

form

Φ(x , t) = ϕ⊗ψ(x , t) = ϕ(x)ψ(t), ϕ ∈ S (Rd
),ψ ∈ S (R),ϕ,ψ ≥ 0.
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Denote

ϕT =
1

FT

ϕ, χ(t) =

∫ 1

t

ψ(s)ds, χT (t) = χ

�
t

T

�
. (3.2)

We define

vT (x , t) = 1− Eexp

¨
−

∫ t

0

〈N x
r ,ϕT 〉χT (T − t + r)dr

«
, 0≤ t ≤ T, (3.3)

where N x is the empirical process of the branching system started from a single particle at x . The

following equation for vT was derived in [BGT3] (formula (3.8), see also [BGT1]) by means of the

Feynman-Kac formula:

vT (x , t) =

∫ t

0

Tt−u

�
ϕTχT (T − u)(1− vT (·,u))−

V

1+ β
v

1+β
T (·,u)

�
(x)du, 0≤ t ≤ T. (3.4)

This equation (with T = 1) is the space-time version of equation (1.4). It is the log-Laplace equation

for eL (as in (1.11)), where L is the occupation time Lt =
∫ t

0
Nsds. Formulas (3.3) and (3.4) imply

0≤ vT ≤ 1, vT (x , t)≤

∫ t

0

Tt−uϕT (x)χT (T − u)du. (3.5)

For brevity we denote

νT (d x) = HTµγ(d x) =
HT

1+ |x |γ
d x . (3.6)

By the Poisson property and (3.4) we have

Ee−〈
eXT ,ϕ⊗ψ〉 = exp

(
−

∫

R
d

vT (x , T )νT (d x) +

∫

R
d

∫ T

0

TuϕT (x)χT (u)duνT (d x)

)
(3.7)

= exp

�
V

1+ β
I1(T ) + I2(T )−

V

1+ β
I3(T )

�
, (3.8)

where

I1(T ) =

∫

R
d

∫ T

0

TT−s



�∫ s

0

Ts−uϕTχT (T − u)du

�1+β

 (x)dsνT (d x), (3.9)

I2(T ) =

∫

R
d

∫ T

0

TT−s(ϕTχT (T − s)vT (·, s))(x)dsνT (d x), (3.10)

I3(T ) =

∫

R
d

∫ T

0

TT−s



�∫ s

0

Ts−uϕTχT (T − u)du

�1+β

− v
1+β
T (·, s)


 (x)dsνT (d x). (3.11)

In the proofs of Theorems 2.1, 2.5 and in Theorem 2.6 for β < 1 we show

lim
T→∞

exp

�
V

1+ β
I1(T )

�
= Ee−〈

eX ,ϕ⊗ψ〉, (3.12)

and

lim
T→∞

I2(T ) = 0, (3.13)
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where (3.13) is obtained from

I2(T )≤
C

F2
T

∫

R
d

∫ T

0

∫ T

0

Ts(ϕTuϕ)(x)dudsνT (d x) (3.14)

(see (3.5)). In Theorem 2.6 for β = 1 the limit of I2(T ) is non-trivial and corresponds to the

expressions involving cβ (see (2.23), (2.24), (2.25),(2.29)). In all the cases

lim
T→∞

I3(T ) = 0 (3.15)

By the argument in [BGT6], in order to prove (3.15) we show

lim
T→∞

J1(T ) = 0 (3.16)

and

lim
T→∞

J2(T ) = 0, (3.17)

where

J1(T ) =

∫

R
d

∫ T

0

TT−s



�∫ s

0

Ts−u

�
ϕT

∫ u

0

Tu−rϕT dr

�
du

�1+β

 (x)dsνT (d x)

≤
1

F
2+2β
T

∫

R
d

∫ T

0

Ts




 ∫ T

0

Tu

 
ϕ

∫ T

0

Trϕdr

!
du

!1+β

 (x)dsνT (d x), (3.18)

J2(T ) =

∫

R
d

∫ T

0

TT−s




 ∫ s

0

Ts−u

�∫ u

0

Tu−rϕT dr

�1+β

du

!1+β

 (x)dsνT (d x)

≤
1

F
(1+β)(1+β)
T

∫

R
d

∫ T

0

Ts






∫ T

0

Tu

 ∫ T

0

Trϕdr

!1+β

du




1+β

 (x)dsνT (d x).(3.19)

We remark that the proof of (3.15) is the only place where the high density (with specific conditions

on HT ) is required in some cases.

Finally, the ⇒ f convergence is obtained by an analogous argument as explained in the proof of

Theorem 2.1 in [BGT4].

3.2 Auxiliary estimates

Recall that the transition density pt of the standard α-stable process has the self-similarity property

pat(x) = a−d/αpt(a
−1/αx), x ∈R

d
, a > 0, (3.20)

and it satisfies
C1

1+ |x |d+α
≤ p1(x)≤

C2

1+ |x |d+α
, (3.21)

where the lower bound holds for α < 2.

1343



Denote

f (x) =

∫ 1

0

ps(x)ds. (3.22)

The following estimate can be easily deduced from (3.20) and (3.21):

f (x) ≤
C

|x |d+α
, (3.23)

f (x) ≤





C if d < α,

C(1∨ log |x |−1) if d = α,

C/|x |d−α if d > α.

(3.24)

We will also use the following elementary estimates: Let 0< a, b < d. If a+ b > d, then

∫

R
d

1

|x − y |a|x |b
d x ≤

C

|y |a+b−d
. (3.25)

If a+ b = d, then ∫

|x |≤1

1

|x − y |a|x |b
d x ≤ C(1∨ log |y |−1). (3.26)

If a+ b < d, then ∫

|x |≤1

1

|x − y |a|x |b
d x ≤ C . (3.27)

Now, let a > d, 0< b < d, then

∫

R
d

1

1+ |x − y |a
1

|x |b
d x ≤

C

|y |b
. (3.28)

For d > γ, denote

fγ(y) =

∫

R
d

f (y − x)|x |−γd x , (3.29)

where f is defined in (3.22). From the estimates above we obtain

sup
|y|>1

|y |γ fγ(y)<∞, (3.30)

and

fγ(y)≤





C if γ < α,

C(1∨ log |y |−1) if γ= α,

C/|y |γ−α if γ > α.

(3.31)
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3.3 Proof of Theorem 2.1(a)

According to the scheme sketched above, in order to prove ⇒ f ,i convergence we show (3.1). By

(3.7)-(3.11)and (2.1) it is enough to prove (3.12), which amounts to

lim
T→∞

I1(T ) =

∫

R
d

∫ 1

0

∫

R
d

ps(x − y)

 ∫ 1

s

pu−s(y)χ(u)du

!1+β

d yds
d x

|x |γ

�∫

R
d

ϕ(z)dz

�1+β

, (3.32)

(see (3.9)) and, additionally, (3.13) and (3.15). To simplify the notation we will carry out the proof

for µγ of the form µγ(d x) = |x |−γd x instead of (1.8). It will be clear that in the present case (d < γ)

this will not affect the result.

By (3.9), (3.2), (3.6), the definition of Tt , substituting s′ = 1− s/T,u′ = 1− u/T , we have

I1(T )

=
T2+βHT

F
1+β
T

∫

R
d

∫ 1

0

∫

R
d

pTs(x − y)

 ∫ 1

s

∫

R
d

pT (u−s)(y − z)ϕ(z)χ(u)dzdu

!1+β

|x |−γd ydsd x .

(3.33)

Denote

eϕT (x) = T d/αϕ(T1/αx) (3.34)

and

gs(x) =

∫ 1

s

pu−s(x)χ(u)du, 0≤ s ≤ 1. (3.35)

Observe that

gs ≤ C f , (3.36)

where f is defined by (3.22). By (3.20) and (2.5), making obvious spatial substitutions in (3.33),

we obtain

I1(T ) =

∫

R
d

∫ 1

0

∫

R
d

ps(x − y)(gs ∗ eϕT (y))
1+β |x |−γd xdsd y. (3.37)

Note that if we consider the measure µγ of the form (1.8), then in (3.37) instead of |x |−γ we

have (T−γ/α + |x |γ)−1. Since gs ∈ L1(R
d
), by (3.34) it is clear that gs ∗ eϕT (y) converges to

gs(y)
∫

R
d ϕ(z)dz almost everywhere in y . Hence, to prove (3.32) it remains to justify the passage

to the limit under the integrals in (3.37). Denote

hT (y) =

∫ 1

0

∫

R
d

ps(x − y)(gs ∗ eϕT (y))
1+β |x |−γd xds. (3.38)

First we prove pointwise convergence of hT , which amounts to showing that the integrand is ma-

jorized by an integrable function independent of T . Fix y 6= 0. We use (3.36) and observe that

f ∗ eϕT (y) =

∫

|z|≤|y|/2

f (y − z) eϕT (z)dz+

∫

|z|>|y|/2

f (y − x)
(T1/α|x |)dϕ(T d/αx)

|x |d
d x

≤ f

�
y

2

�∫

|z|≤|y|/2

eϕT (z)dz+
C

|y |d

∫

|z|>|y|/2

f (y − x)dz

≤ f

�
y

2

�∫

R
d

ϕ(z)dz+
C

|y |d
, (3.39)
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by the unimodal property of the α-stable density and since ϕ ∈ S (Rd
). We conclude by noting that

∫

R
d

∫ 1

0

ps(x − y)|x |−γdsd x <∞ for y 6= 0,

by (3.31).

Since (see (3.29))

hT (y)≤ C fγ(y)(( f ∗ eϕT )(y))
1+β , (3.40)

to prove convergence of I1(T ) it suffices to show that the right-hand side of (3.40) (denoted by h∗T )

converges in L1(R
d
) as T →∞.

If γ < α, then fγ is bounded by (3.31), and the assumption (2.4) implies that

f ∈ L1+β (R
d
), (3.41)

so ( f ∗ eϕT )
1+β converges in L1(R

d
).

Next assume γ ≥ α. It is easily seen that h∗T 11{|y|≥1} converges in L1(R
d
), by (3.41) and (3.30). To

prove that h∗T (y)11{|y|<1} converges in L1(R
d
) too, it suffices to find p,q > 1,1/p + 1/q = 1, such

that

fγ(y)11{|y|<1} ∈ Lp(R
d
) (3.42)

and

f 1+β ∈ Lq(R
d
). (3.43)

If γ = α, then (3.31) implies that (3.42) holds for any p > 1, and by (2.4) it is clear that (3.43) is

satisfied for q sufficiently close to 1.

If γ > α, condition (2.4) is equivalent to

γ−α

d
+
(1+ β)(d −α)

d
< 1,

so we can take p and q such that 1/p+ 1/q = 1,

1

p
>
γ−α

d
and

1

q
>
(1+ β)(d −α)

d
.

For such p and q we have (3.42) and (3.43) by (3.31), (3.23) and (3.24).

This completes the proof of (3.32).

We proceed to the proof of (3.13). By (3.14), applying the same substitutions as for I1(T ) and using

the notation (3.34) we have

I2(T )≤ C
HT T2−d/α−γ/α

F2
T

∫

R
d

fγ(y) eϕT (y)( f ∗ eϕT )(y)d y. (3.44)

Assume γ < α. By (3.31),

I2(T ) ≤ C1

HT T2−d/α−γ/α

F2
T

|| eϕT ( f ∗ eϕT )||1

≤ C1

HT T2−d/α−γ/α

F2
T

||ϕ||1|| f ||1+β || eϕT || 1+β
β

→ 0
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by (2.4), and since

|| eϕT ||p = ||ϕ||pT (d/α)(p−1)/p for p ≥ 1. (3.45)

Next, let γ≥ α. By (3.44) and (3.30) we have

I2(T )≤ C2(I
′
2(T ) + I

′′

2 (T )), (3.46)

where

I ′2(T ) =
HT T2−d/α−γ/α

F2
T

|| eϕT ( f ∗ eϕT )||1, (3.47)

and

I
′′

2 (T ) =
HT T2−d/α−γ/α

F2
T

∫

|y|≤1

fγ(y) eϕT (y)( f ∗ eϕT )(y)d y. (3.48)

By the Hölder and Young inequalities,

I ′2(T )≤
HT T2−d/α−γ/α

F2
T

|| eϕT ||p|| f ||q||ϕ||1 (3.49)

for any p,q ≥ 1,1/p+1/q = 1. If 1/q > (d−α)/d, then || f ||q <∞, and if 1/q is sufficiently close to

(d −α)/d, then by (3.45), (2.5) and (2.4) the right-hand side of (3.49) converges to 0 as T →∞.

We estimate I
′′

2 (T ) using the generalized Hölder inequality

I
′′

2 (T )≤
HT T2−d/α−γ/α

F2
T

|| fγ11{|·|≤1}||r || eϕT ||p|| f ||q||ϕ||1

for r, p,q ≥ 1,1/p+ 1/r + 1/q = 1. We take r,q such that 1/r > (γ−α)/d (then the r-norm will be

finite by (3.31)) and 1/q > (d − α)/d. By (2.4), it is easily seen that one can choose r,q as above

and p = α/(2α−γ)+ǫ for ǫ > 0 sufficiently small (note that by (2.4), 2α > γ). Then by (3.45) and

(2.5) we obtain that I
′′

2 (T )→ 0 as T →∞. Thus, we have proved (3.13).

According to the general scheme, in order to obtain (3.15) it suffices to show (3.16) and (3.17).

The proofs are quite similar to the argument presented above, therefore we omit the proof of (3.16)

and we give an outline of the proof of (3.17), since this is the only place where the condition (2.6)

is needed.

By (3.19), (2.5) and the usual substitutions we have

J2(T )≤ C
T1−(d/α)β+(γ/α)β

H
β
T

R(T ), (3.50)

where

R(T ) =

∫

R
d

fγ(y)( f ∗ ( f ∗ eϕT )
1+β)1+β(y)d y. (3.51)

By (2.6), to prove (3.17) it remains to show that

sup
T

R(T )<∞. (3.52)
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If γ < α then, by (3.31),

R(T )≤ C1|| f ∗ ( f ∗ eϕT )
1+β ||

1+β

1+β
≤ C1|| f ||

1+β

1+β
|| f ||

(1+β)(1+β)

1+β
||ϕ||

(1+β)(1+β)
1 <∞, (3.53)

by (3.41).

If γ≥ α, then we write

R(T ) =

∫

|y|>1

. . .+

∫

|y|≤1

. . . .

By (3.30) the first integral can be estimated as in (3.53), and the second one is bounded by

|| fγ11{|·|≤1}||p|| f ||
1+β

q(1+β)
|| f ||

(1+β)(1+β)

1+β
||ϕ||

(1+β)(1+β)
1 ,

where 1/p + 1/q = 1. We already know that there exist such p and q that this expression is finite

(see (3.42) and (3.43)).

We have thus established the convergence

XT ⇒ f ,i Kλξ.

In order to obtain ⇒C convergence it suffices to show that the family {〈XT ,ϕ〉}T≥1 is tight in

C([0,1],R) for any ϕ ∈ S (Rd
) ([Mi]). One may additionally assume that ϕ ≥ 0. We apply

the method presented in [BGT3] and [BGT6]. We start with the inequality

P(|〈eXT ,ϕ⊗ψ〉| ≥ δ)≤ Cδ

∫ 1/δ

0

(1−Re(E exp{−iθ 〈eXT ,ϕ⊗ψ〉}))dθ , (3.54)

valid for any ψ ∈ S (R),δ > 0. Fix 0 ≤ t1 < t2 ≤ 1 and take ψ approximating δt2
− δt1

such that

χ(t) =
∫ 1

t
ψ(s)ds satisfies

0≤ χ ≤ 11[t1,t2]
. (3.55)

Then the left hand side of (3.54) approximates

P(|〈XT (t2),ϕ〉 − 〈XT (t1),ϕ〉| ≥ δ).

So, in order to show tightness one should prove that the right hand side of (3.54) is estimated by

C(th
2 − th

1)
1+σ for some h,σ > 0.

By the argument in [BGT6] this reduces to showing that

A(T )≤ C(th
2 − th

1)
1+σ (3.56)

and

I1(T )≤ C(th
2 − th

1)
1+σ, (3.57)

where I1 is defined by (3.9), and

A(T ) =
HT

F2
T

∫

R
d

∫ T

0

∫ s

0

TT−s(ϕTs−uϕ)(x)χ

�
1−

s

T

�
χ

�
1−

u

T

�
|x |−γdudsd x . (3.58)
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The proofs of (3.56) and (3.57) are quite involved and lengthy, therefore, as an example we present

only the argument for the case γ < α, which, together with (2.4) implies

d < α
1+ β

β
. (3.59)

We start with (3.57). By self-similarity of ps we have

∫

R
d

ps(x − y)|x |−γd x ≤ Cs−γ/α, y ∈R
d
. (3.60)

Using this, (3.37), (3.35) and (3.55) we obtain

I1(T )≤ C(W1(T ) +W2(T )), (3.61)

where

W1(T ) =

∫

R
d

∫ t1

0

s−γ/α

 ∫ t2

t1

∫

R
d

pu−s(y − z) eϕT (z)dzdu

!1+β

dsd y, (3.62)

W2(T ) =

∫

R
d

∫ t2

t1

s−γ/α

�∫ t2

s

∫

R
d

pu−s(y − z) eϕT (z)dzdu

�1+β

dsd y. (3.63)

Fix any ρ such that

max

�
d

α
−

1

β
, 0

�
< ρ < 1 (3.64)

(see (3.59). For any fixed s ∈ [0, t1] we apply the Jensen inequality to the measure

(u− s)−ρ

∫ t2

t1
(r − s)−ρdr

11[t1,t2]
(u)du,

obtaining

W1(T )≤

∫

R
d

∫ t1

0

s−γ/α

 ∫ t2

t1

(r − s)−ρdr

!β ∫ t2

t1

(u− s)−ρ((u− s)ρpu−s ∗ eϕT (y))
1+βdudsd y.

We have

||pu−s ∗ eϕT ||1+β ≤ ||pu−s||1+β ||ϕ||1 = (u− s)−(d/α)β/(1+β)||p1||1+β ||ϕ||1, (3.65)

hence

W1(T )≤ C(t2− t1)
(1−ρ)β

∫ t2

t1

∫ t1

0

s−γ/α(u− s)ρβ−(d/α)βdsdu,

which, after the substitution s′ = s/u, by (3.64) and γ < α, yields

W1(T )≤ C1(t2− t1)
(1−ρ)β(th

2 − th
1)≤ C2(t

h∧1
2 − th∧1

1 )1+(1−ρ)β , (3.66)

where h= 2− γ/α+ρβ − (d/α)β > 0 by assumptions.
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Next, by (3.63) we have

W2(T )≤

∫

R
d

∫ t2

t1

s−γ/α

  ∫ t2−t1

0

pudu

!
∗ eϕT (y)

!1+β

dsd y.

The Young inequality, substitution u′ = u/(t2− t1), and self-similarity imply

W2(T ) ≤ C(t
1−γ/α
2 − t1−γ/α)(t2− t1)

1+β−(d/α)β || f ||
1+β

1+β
||ϕ||

1+β
1

≤ C1(t
1−γ/α
2 − t

1−γ/α
1 )2+β−(d/α)β , (3.67)

by (3.41).

Combining (3.66), (3.67), (3.61) and using (3.59), we obtain (3.57).

It remains to prove (3.56).

Applying the usual substitutions to A(T ) given by (3.58) we obtain

A(T )

=
HT T2−d/α−γ/α

F2
T

∫ 1

0

∫ 1

s

∫

R
3d

|x |−γps(x − y) eϕT (y)pu−s(y − z) eϕT (z)χ(s)χ(u)d xdzd yduds,

hence, by (3.60), (3.55) and the Hölder inequality,

A(T )≤ C
HT T2−d/α−γ/α

F2
T

∫ t2

t1

∫ t2

s

s−γ/α|| eϕT || 1+β
β

||pu−s ∗ eϕT ||1+βduds.

We use (3.65), (3.45) and (2.5), obtaining

A(T )≤ C1(t
1−γ/α
2 − t

1−1/α
1 )(t2− t1)

1−(d/α)β/(1+β),

which implies (3.56) by (3.59). This completes the proof of tightness. �

3.4 Proof of Theorem 2.1(b)

We prove the theorem for

γ= d <
2+ β

1+ β
α (3.68)

(see Remark 2.2(c)). Recall that in this case k(T ) occurring in (2.8) and (2.9) is log T .

According to the discussion in Section 3.1 it suffices to prove (3.12), (3.13) and (3.15). By the form

of the limit process (see (2.3)), (3.12) is equivalent to

lim
T→∞

I1(T ) =
σ(Sd−1)

α

∫

R
d

∫ 1

0

ps(y)

�∫ 1

s

pu−s(y)χ(u)du

�1+β

dsd y

�∫

R
d

ϕ(z)dz

�1+β

, (3.69)

where σ(Sd−1) is the measure of the unit sphere in R
d
(= 2 if d = 1).

1350



By (3.9), (3.2), (3.6), using similar substitutions as in the previous section, we obtain

I1(T )

=
1

log T

∫

R
d

∫ 1

0

∫

R
d

ps(x T−1/α− y)

�∫ 1

s

∫

R
d

pu−s(y − z)χ(u) eϕT (z)dzdu

�1+β 1

1+ |x |d
d ydsd x ,

(3.70)

where eϕT is given by (3.34). We write

I1(T ) = I ′1(T ) + I
′′

1 (T ) + I
′′′

1 (T ), (3.71)

where

I ′1(T ) =
1

log T

∫

1<|x |<T1/α

∫ 1

0

∫

R
d

... (3.72)

I
′′

1 (T ) =
1

log T

∫

|x |≥T1/α

∫ 1

0

∫

R
d

... (3.73)

I
′′′

1 (T ) =
1

log T

∫

|x |≤1

∫ 1

0

∫

R
d

.... (3.74)

Passing to polar coordinates in the integral with respect to x we have

I ′1(T ) =
1

log T

∫ T1/α

1

∫

Sd−1

∫ 1

0

∫

R
d

ps(wrT−1/α − y)(gs ∗ eϕT (y))
1+β

rd−1

1+ rd
d ydsσ(dw)dr,

where g is defined by (3.35). The crucial step is the substitution

r ′ =
log r

log T
, (3.75)

which gives

I ′1(T ) =

∫ 1/α

0

∫

Sd−1

∫ 1

0

∫

R
d

ps(wT r−1/α− y)(gs ∗ eϕT (y))
1+β

T rd

1+ T rd
d ydsσ(dw)dr.

It is now clear that if one could pass to the limit under the integrals as T →∞, then I ′1(T ) would

converge to the right hand side of (3.69). This procedure is indeed justified by the fact that for f

defined by (3.22) we have

f ∈ L2+β (R
d
), (3.76)

which follows from (3.68), (3.23) and (3.24). We omit the details, which are similar to the argument

in [BGT6] (see (3.51) therein).

Next we show that I
′′

1 (T ) and I
′′′

1 (T ) tend to zero. In I
′′

1 (T ) (see (3.73)) we substitute x ′ = x T−1/α

and we use (3.36), obtaining

I
′′

1 (T ) ≤
C

log T

∫

|x |>1

∫ 1

0

∫

R
d

ps(x − y)( f ∗ eϕT (y))
1+β

T d/α

1+ |x |d T d/α
d ydsd x

≤
C1

log T
|| f ∗ eϕT ||

1+β

1+β
≤

C1

log T
|| f ||

1+β

1+β
||ϕ||

1+β
1 → 0.
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I
′′′

1 (T ) (see (3.74)) is estimated as follows:

I
′′′

1 (T ) ≤
C

log T

∫

|x |≤1

f ∗ ( f ∗ eϕT )
1+β(x T−1/α)d x

≤
C2

log T
|| f ∗ ( f ∗ eϕT )

1+β ||∞

≤
C2

log T
|| f ||2+β ||( f ∗ eϕT )

1+β ||(2+β)/(1+β)

≤
C2

log T
|| f ||

2+β

2+β
||ϕ||

1+β
1 → 0,

by (3.76). This and (3.71) prove (3.69).

To prove (3.13) we use (3.14) and easily obtain

I2(T )≤
CHT T2−2d/α

F2
T

∫

R
2

f ∗ ( eϕT ( f ∗ eϕT ))(x T−1/α)
1

1+ |x |d
d x .

We write the right-hand side as the sum of integrals over {|x | ≤ T1/α} and {|x |> T1/α}. To estimate

the integral over {|x | ≤ T1/α} we use

sup
T>2

1

log T

∫

|x |≤T1/α

1

1+ |x |d
d x <∞, (3.77)

and in the second integral we apply 1/(1 + |x |d) ≤ T−d/α. For each of the integrals we use ap-

propriately the Hölder inequality, properties of the convolution and (3.45), obtaining the estimates

C1T2((d/α)1/(2+β)−1/(1+β)) and C2T (d/α)1/(2+β)−2/(1+β), respectively (the factors involving negative

powers of HT and log T have been estimated by constants). These bounds tend to zero as T →∞

by (3.68). We omit details. This proves (3.13).

To prove (3.16) and (3.17) we use (3.18) and (3.19). Again, we consider separately the integrals

over {|x | ≤ T1/α} and {|x |> T1/α}, and apply the same tricks as for I2(T ).

For J1(T ) we obtain the estimate

J1(T )≤ C T (d/α)(1+β)/(2+β)−1→ 0

(log T and HT appear with negative powers only), whereas

J2(T )≤ C1

T

H
β
T (log T )β

+ C2

T

H
β
T (log T )1+β

→ 0

by assumption (2.9). The proof of Theorem 2.1 is complete �

3.5 Proof of Proposition 2.3

Properties (a)-(c) are clear, following from (2.1) and Theorem 2.1(a). Recall that the index of self-

similarity is defined as a ∈R such that the process (ξc t)t∈R+ has the same distribution as (caξt)t∈R+
for any c > 0.
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To calculate the dependence exponent of ξ (see (2.10), (2.11)) first note that by (2.1) and Proposi-

tion 3.4.2 of [ST] the finite-dimensional distributions of ξ are given by

Eexp{i(z1ξt1
+ · · ·+ zkξtk

)}

= exp

¨
−

∫

R
d+1



����

k∑

j=1

z j

�∫

R
d

pr(x − y)|y |−γd y

�1/(1+β)

11[0,t j]
(r)

∫ t j

r

pu−r(x)du

����
1+β

×

�
1− i sgn

�
k∑

j=1

z j

�∫

R
d

pr(x − y)|y |−γd y

�1/(1+β)

× 11[0,t j]
(r)

∫ t j

r

pu−r(x)du

�
tan
π

2
(1+ β)

��
drd x

«
. (3.78)

The argument goes along the lines of the proof of Theorem 2.7 of [BGT3]. For fixed z > 0 and

0 ≤ u < v < s < t we define D+T = DT (1, z; u, v, s, t) and D−T = DT (1,−z; u, v, s, t) (the formulas for

D+, D− are obtained from (2.11) and (3.78)), and we prove

D±T ≤

¨
C T−d/α if either α= 2 or β > (d − γ)/(d +α),

C T−(d/α)δ for any β < δ < 1+ β + (d − γ)/(d +α) if α < 2,β ≤ (d − γ)/(d +α),

and for T sufficiently large,

D+T ≥ C T−d/α,

D+T ≥ C T−(d/α)δ for any δ > 1+ β − (d − γ)/(d +α) if α < 2,β ≤ (d − γ)/(d +α). (3.79)

The upper estimates are obtained similarly as (4.3), (4.4) in [BGT3] and (3.108) in [BGT6]. The

only difference is that in formulas (4.9) and (4.10) in [BGT3] a new factor,
∫

R
d pr(x − y)|y |−γd y ,

appears (which corresponds to pr(x) in (3.101) in [BGT6]). This factor is responsible for the new

long-range dependence threshold and the form of the dependence exponent (2.12). In the estimates

we use (3.30).

The first of the lower estimates is obtained exactly as (4.18) in [BGT3]. The new expression,

∫ (u+v)/2

u

∫

|x |≤1

∫

R
d

pr(x − y)|y |−γd yd xdr,

that appears at the right-hand side is finite by (3.31).

To derive (3.79) we argue as in (4.22), (4.24) of [BGT3] and we apply estimates (4.21) (which

holds for |x | ≤ T1/α) and (4.23) therein, obtaining

D+T ≥ C T−(d/α)(1+β)+ǫβ(d+α)
∫ (u+v)/2

u+(v−u)/4

∫

1≤|x |≤T d/(d+α)α−ǫ

∫

R
d

pr(x − y)|y |−γd yd xdr, (3.80)

where ǫ > 0 is sufficiently small.
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For 1≤ |x | ≤ T d/(d+α)α−ǫ we have

∫

R
d

pr(x − y)|y |−γd y ≥ C |x |−γ
∫

|x−y|≤1/2

pr(x − y)d y

≥ C1|x |
−γ inf

v−u

4
+u<r< u+v

2

inf
|z|≤ 1

2

pr(z)≥ C2T−dγ/d(d+α)α+ǫγ.

Putting this into (3.80) we obtain (3.79). �

3.6 Proof of Theorem 2.5

Each of the cases requires a different proof, and none of them is straightforward. We will present a

detailed proof of the part (a) only. In the remaining cases we will confine ourselves to explaining

why the limit processes have the forms given in the theorem (recall that part (b)(iv) has been proved

in [BGT6]). It seems instructive to compare the proofs for this theorem to the argument given in

the proof of Theorem 2.1(b) for γ = d. Although the critical cases are of different kinds, some of

the technical tricks repeat in all cases, nevertheless they are applied in a slightly different way and

are far from being identical.

Proof of case (a) To simplify calculations we again consider the measure µγ of the form µγ(d x) =

|x |−γd x instead of (1.8).

In (3.9) we substitute u′ = s− u and then s′ = (T − s)/T , obtaining

I1(T ) =
HT T

F
1+β
T

∫

R
d

∫ 1

0

∫

R
d

psT (x−y)

 ∫ T (1−s)

0

∫

R
d

pu(y − z)ϕ(z)χ

�
s+

u

T

�
dzdu

!1+β

|x |−γd ydsd x .

Using (2.13), (3.20) and substitution x ′ = x(sT )−1/α we have

I1(T ) =
1

log T

∫

R
d

∫ 1

0

∫

R
d

p1(x − y(sT )−1/α)

×

 ∫ T (1−s)

0

∫

R
d

pu(y − z)ϕ(z)χ

�
s+

u

T

�
dzdu

!1+β

s−γ/α|x |−γd ydsd x

= I ′1(T ) + I
′′

1 (T ) + I
′′′

1 (T ), (3.81)

where

I ′1(T ) =
1

log T

∫

R
d

∫ 1

0

∫

1≤|y|≤T1/α

. . . (3.82)

I ′′1 (T ) =
1

log T

∫

R
d

∫ 1

0

∫

|y|>T1/α

. . . (3.83)

I ′′′1 (T ) =
1

log T

∫

R
d

∫ 1

0

∫

|y|<1

. . . (3.84)
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Passing to polar coordinates in the integral with respect to y and making substitution (3.75) we

obtain

I ′1(T )

=

∫

R
d

∫ 1

0

∫ 1/α

0

∫

Sd−1

p1(x −wT r−1/αs−1/α)

×

 ∫ T (1−s)

0

∫

R
d

pu(wT r − z)ϕ(z)χ

�
u

T
+ s

�
dzdu

!1+β

s−γ/α|x |−γT rdσ(dw)drdsd x .

We substitute z′ = T−rz,u′ = uT−rα, use (3.20) and (2.12), arriving at

I ′1(T ) =

∫

R
d

∫ 1

0

∫ 1/α

0

∫

Sd−1

p1(x −ws−1/αT r−1/α)
�
hT (r, s, w)

�1+β
s−γ/α|x |−γσ(dw)drdsd x , (3.85)

where

hT (r, s, w) =

∫ T1−rα(1−s)

0

∫

R
d

pu(w − z)T rdϕ(zT r)χ(s+ uT rα−1)dzdu. (3.86)

It is clear that on the set of integration one should have

lim
T→∞

hT (r, s, w) =

∫

R
d

ϕ(z)dz

∫ ∞

0

pu(w)duχ(s)

= Cd,α

∫

R
d

ϕ(z)dzχ(s), (3.87)

where Cd,α is given by (1.13), which should yield

lim
T→∞

I ′1(T ) = C
1+β

d,α

1

α
σ(Sd−1)

∫

R
d

p1(x)|x |
−γd x

∫ 1

0

s−γ/αχ1+β(s)ds

�∫

R
d

ϕ(z)dz

�1+β

. (3.88)

However, (3.87) and (3.88) need a justification. It is easy to see that the first integral in (3.86) can

be replaced by
∫∞

0
du. Since

lim
T→∞

∫

R
d

pu(w − z)T rdϕ(zT r)dz = pu(w)

∫

R
d

ϕ(z)dz,

it is clear that in order to prove (3.87) it suffices to show that

sup
T>2

sup
w∈Sd−1

∫

R
d

pu(w− z)T rdϕ(zT r)dz

is integrable in u. This is clear for u ≥ 1 since d > α, and for u < 1 we argue similarly as in (3.39)

obtaining an integrable bound C1pu(w/2) + C2. In the same way one shows that hT (r, s, w) ≤ C .

This together with (3.87) easily implies (3.88).

Next, it is easy to see that for I ′′′1 defined by (3.84) we have

I ′′′1 (T )≤
C

log T
→ 0. (3.89)
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A little more work is needed to prove that also

lim
T→∞

I ′′1 (T ) = 0. (3.90)

By (3.83),

I ′′1 (T ) ≤
C

log T

∫

|y|>T1/α

 ∫ T

0

∫

R
d

pu(y − z)ϕ(z)dzdu

!1+β

d y

≤ C1(R1(T ) + R2(T )),

where

R1(T ) =
1

log T

∫

|y|>T1/α



∫ T

0

∫

|z|≤ T1/α

2

pu(y − z)ϕ(z)dzdu




1+β

d y,

R2(T ) =
1

log T

∫

|y|>T1/α



∫ T

0

∫

|z|> T1/α

2

pu(y − z)ϕ(z)dzdu




1+β

d y.

We have

R1(T ) ≤
1

log T

∫

|y|>T1/α

 ∫ T

0

pu

�
y

2

�
du

!1+β

d y

�∫

R
d

ϕ(z)dz

�1+β

=
C

log T

∫

|y|>1

 ∫ 1

0

pu

�
y

2

�
du

!1+β

d y,

after obvious substitutions and using (2.12). Hence lim
T→∞

R1(T ) = 0 by (3.23). Furthermore,

R2(T ) ≤
C

log T

∫

|y|>T1/α



∫ T

0

∫

|z|> T1/α

2

pu(y − z)
|z|2ϕ(z)

T2/α
dzdu




1+β

d y

≤
C1

T (2/α)(1+β)
,

since, under (2.12),

sup
T

1

log T

∫

R
d

 ∫ T

0

∫

R
d

pu(y − z)ϕ1(z)dzdu

!1+β

d y <∞,

for any ϕ1 ∈ S (R
d
) by (3.33) in [BGT4] (in our case ϕ1(z) = |z|

2ϕ(z)). This proves (3.90), and by

(3.81)-(3.84), (3.88) and (3.89) we have established (3.12).

To prove (3.13) we use (3.14), which, after standard substitutions, gives

I2(T )

≤ CH
−1/(1+β)
T T−2/(1+β)+2γ/α(1+β)+2−d/α−γ/α(log T )−2/(1+β)

∫

R
d

fγ(y) eϕT (y)( f ∗ eϕT )(y)d y
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(see (2.13), (3.22), (3.29), (3.34)). By (3.31) we have

I2(T )≤ C1T−2/(1+β)+2γ/α(1+β)+2−d/α−γ/α sup
y

f ∗ eϕT (y). (3.91)

The assumptions (2.12) and γ < α imply that

2

1+ β
−

2γ

α(1+ β)
− 2+

d

α
+
γ

α
=

1

β
θ

for some θ > 1. Observe that

f ∈ Lq(R
d
), 1≤ q < 1+ β , (3.92)

by (3.23), (3.24) and (2.12). Fix q > 1 such that (1+ β)/θ < q < 1+ β and p = q/(q− 1). By the

Hölder inequality and (3.45) we obtain

I2(T )≤ C1T−θ/β+((1+β)/β)(1/q)||ϕ||p→ 0

as T →∞, by assumption on q.

To prove (3.16) we use (3.18) which, by an analogous argument as for I2, gives

J1(T )≤ C T−1+γ/α−(1+β)/β || f ∗ ( eϕT ( f ∗ eϕT ))||
1+β

1+β
. (3.93)

Taking q < 1+β sufficiently close to 1+β and using (3.92), the Young and Hölder inequalities can

be applied to conclude that, by (3.45),

|| f ∗ ( eϕT ( f ∗ eϕT ))||
1+β

1+β
≤ O(T r),

where 0< r < 1− γ/α+ (1+ β)/β ; we omit details. This and (3.93) yield (3.16).

To prove (3.17) we write an estimate similar to (3.50), namely,

J2(T )≤ C Tβ(γ/α−1)R(T ), (3.94)

where R(T ) is defined by (3.51). In the present case (3.52) does not hold, but similarly as before,

using the Young inequality, (3.92) and (3.45) it can be shown that R(T ) = O(T ǫ) for any ǫ > 0. This

and (3.43) imply (3.17) since γ < α. The proof of part (a) of the theorem is complete.

Sketch of the proof of case (b)

(i) We repeat the argument as in (3.81) -(3.86) with FT given by (2.14). Again, it can be shown that

the only significant term is I ′1(T ), i.e., limT→∞ I1(T ) = limT→∞ I ′1(T ). In order to derive this limit,

in (3.85) we substitute s′ = sT1−rα, obtaining

I ′1(T ) =
1

log T

∫

R
d

∫ 1/α

0

∫ T1−rα

0

∫

Sd−1

p1(x −ws−1/α)(hT (r, sT−1+rα, w))1+β s−1|x |−ασ(dw)dsdrd x .

It is easy to see that the limit remains the same if the integral
∫ T1−rα

0
. . . ds is replaced by

∫ T1−rα

1
. . . ds.

Let eI ′1(T ) denote I ′1(T ) after this change. Next, we substitute s′ = log s/ log T and we have

eI ′1(T ) =
∫ 1/α

0

∫

Sd−1

∫ 1−rα

0

∫

R
d

p1(x −wT−s/α)|x |−α(hT (r, T s−1+rα, w))1+βd xdsσ(dw)dr.
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By (3.86), it is clear that on the set of integration

lim
T→∞

hT (r, T s−1+rα, w) = Cd,α

∫

R
d

ϕ(z)drχ(0).

This shows that we should have

lim
T→∞

I1(T ) = lim
T→∞

eI ′1(T )

= C
1+β

d,α
σ(Sd−1)

∫

R
d

p1(x)|x |
−d d x

∫ 1/α

0

(1− rα)dr

�∫

R
d

ϕ(z)dz

�1+β

χ1+β(0), (3.95)

and this passage to the limit can be indeed justified. The right-hand side of (3.95) is equal to

log Eexp{−C〈eX ,ϕ⊗ψ〉}, where X (= Kλϑ) is the limit process defined in the theorem. We skip the

remaining parts of the proof.

(ii) In (3.9) we substitute u′ = s− u and then s′ = T − s, obtaining

I1(T ) = I ′1(T ) + I ′′1 (T ),

where

I ′1(T ) =
1

log T

∫ T

1

∫

R
d

∫

R
d

p1((x − y)s−1/α)s−d/α|x |−γ

×

 ∫ T−s

0

∫

R
d

pu(y − z)ϕ(z)χ

�
u+ s

T

�
dzdu

!1+β

d yd xds

and

I ′′1 (T ) =
1

log T

∫ 1

0

∫

R
d

∫

R
d

. . . d yd xds.

It can be shown that

lim
T→∞

I ′′1 (T ) = 0.

In I ′1(T ) we substitute x ′ = xs−1/α, y ′ = ys−1/α,u′ = u/s, and use (3.20), which gives

I ′1(T ) =
1

log T

∫ T

1

∫

R
d

∫

R
d

p1(x − y)|x |−γs−(d/α)β−γ/α+(1+β)

×

�∫ T/s−1

0

∫

R
d

pu(y − zs−1/α)ϕ(z)χ

�
s(u+ 1)

T

�
dzdu

�1+β

d yd xds.

By (2.16), s−(d/α)β−γ/α+1+β = s−1, so, the substitution s′ = log s/ log T yields

I ′1(T ) =

∫ 1

0

∫

R
d

∫

R
d

p1(x − y)|x |−γ

×



∫ T1−s−1

0

∫

R
d

pu(y − zT−s/α)ϕ(z)χ
�
((u+ 1)T s−1

�
dzdu




1+β

d yd xds.

(3.96)
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It is now seen that one should have

lim
T→∞

I1(T ) = lim
T→∞

I ′1(T )

= C
1+β

α,d

∫

R
d

∫

R
d

p1(x − y)|x |−γ|y |−(d−α)(1+β)d xd y

�∫

R
d

ϕ(z)dz

�1+β

χ1+β(0) (3.97)

Note that the integrals are finite by (3.21), (3.28) and (2.16). The justification of (3.97) requires

some work, but we omit it for brevity.

(iii) As d = γ, we must keep the measure µγ in its original form (1.8).

Arguing as in the proof of (ii) and taking into account (2.14), instead of (3.96) we obtain

I ′1(T ) =
1

log T

∫ 1

0

∫

R
d

∫

R
d

p1(x − y)
T sd/α

1+ |x T s/α|d

×



∫ T1−s−1

0

∫

R
d

pu(y − zT−s/α)ϕ(z)χ((u+ 1)T s−1)dzdu




1+β

d yd xds.

Since

lim
T→∞

1

log T

∫

R
d

p1(x − y)
T sd/α

1+ |x T s/α|d
d x = s

1

α
σ(Sd−1)p1(y),

it can be shown, with some effort, that

lim
T→∞

I1(T ) = lim
T→∞

I ′1(T )

= C
1+β

α,d

1

2α
σ(sd−1)

∫

R
d

p1(y)|y |
−(d−α)(1+β)d y

�∫

R
d

ϕ(z)dz

�1+β

χ1+β(0).

Again, we omit the remaining parts of the proof.

3.7 Proof of Theorem 2.6

We only give an outline of the proof. The following lemma is constantly used.

Lemma Let ϕ ∈ S (Rd
),ϕ ≥ 0.

(a) If d > α(2+ β)/(1+ β), then the functions Gϕ, G(Gϕ)1+β and G(Gϕ)2 are bounded.

(b) If d > α(1+ β)/β , then additionally (Gϕ)1+β and (G(Gϕ)1+β)1+β are integrable (and bounded).

(c) If α < γ≤ d and d > α(2+ β)/β − γ/β , then additionally to the properties in (a),

∫

R
d

G(Gϕ)1+β(x)
1

1+ |x |γ
d x <∞.
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This Lemma follows easily from (1.12) and (3.25)-(3.28).

Proof of part (a) of the theorem. As before we consider µγ(d x) = |x |−γd x . In (3.9) we substitute

u′ = s− u, then s′ = (T − s)/T and, finally, x ′ = x T1/αs−1/α, obtaining

I1(T )

=

∫

R
d

∫ 1

0

∫

R
d

p1(x − ys−1/αT−1/α)

 ∫ T (1−s)

0

Tuϕ(y)χ

�
s+

u

T

�
du

!1+β

s−γ/α|x |−γd ydsd x

(see (2.22)). It is easily seen that by part (b) of the Lemma we have

lim
T→∞

I1(T ) =

∫

R
d

p1(x)|x |
−γd x

∫ 1

0

s−γ/αχ1+β(s)ds

∫

R
d

(Gϕ(y))1+βd y. (3.98)

For β < 1 this is exactly log Eexp{−C〈eX ,ϕ ⊗ψ〉}, where X is the limit process described in the

theorem. Moreover, in this case (3.14) and boundedness of Gϕ easily imply

I2(T )≤ C T (1−γ/α)(1−2/(1+β))→ 0.

For β = 1 we use (3.10) and (3.4), obtaining

I2(T ) = I ′2(T )− I ′′2 (T )−
V

2
I ′′′2 (T ),

where

I ′2(T ) =
HT

F2
T

∫ T

0

∫

R
d

∫

R
d

ps(x − y)|x |−γd xϕ(y)χ(s)

∫ T

s

Tu−sϕ(y)χ

�
u

T

�
dud yds,

I ′′2 (T ) =
HT

F2
T

∫

R
d

∫ T

0

∫

R
d

pT−s(x − y)ϕ(y)χT (T − s)

×

∫ s

0

Ts−u(ϕχ(T − u)vT (·,u))(y)|x |
−γdud ydsd x

I ′′′2 (T ) =
HT

F2
T

∫

R
d

∫ T

0

∫

R
d

pT−s(x − y)ϕ(y)χT (T − s)

∫ s

0

Ts−u(v
2
T (·,u))(y)|x |

−γdud ydsd x .

Substituting u′ = u− s, s′ = s/T , and then x ′ = x T1/αs1/α and using part (a) of the Lemma and

(2.22) we have

lim
T→∞

I ′2(T ) =

∫

R
d

p1(x)|x |
−γd x

∫ 1

0

s−γ/αχ2(s)ds

∫

R
d

ϕ(y)Gϕ(y)d y. (3.99)

Applying (3.5), (2.22) and the Lemma above we get

I ′′2 (T ) ≤
CHT

F3
T

∫

R
d

∫ T

0

∫

R
d

ps(x − y)|x |−γϕ(y)G(ϕGϕ)(y)d ydsd x

≤ C1T−(1/2)(1−γ/α)→ 0,
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and, analogously,

I ′′′2 (T ) ≤
CHT

F3
T

∫

R
d

∫ T

0

∫

R
d

ps(x − y)|x |−γϕ(y)G((Gϕ)2)(y)d ydsd x

≤ C2T−(1/2)(1−γ/α)→ 0.

This and (3.98), (3.99) imply that for β = 1 the limit of (V/2)I1(T ) + I2(T ) is exactly

log Eexp{−C〈eX ,ϕ ⊗ψ)}. Similar estimations, together with the Lemma, yield (3.16) and (3.17).

This completes the proof of part (a) of the theorem.

Proof of part (b) of the theorem. Following the general scheme one can show

lim
T→∞

I1(T ) =

∫

R
d

p1(x)|x |
−αd xχ1+β(0)

∫

R
d

(Gϕ)1+β(y)d y,

lim
T→∞

I2(T ) = cβ

∫

R
d

p1(x)|x |
−αd xχ2(0)

∫

R
d

ϕ(y)Gϕ(y)d y,

and (3.16) and (3.17) (recall that cβ is defined by (2.24)). This is accomplished by an argument

similar to the one used in part (a). Due to the criticality (γ = α), the integrals
∫ T

0
. . . ds in (3.9)-

(3.11) require a different treatment. They are split into
∫ 1

0
. . . ds +

∫ T

1
. . . ds; the first summand

converges to zero, and in the second one we use the substitution s′ = log s/ log T . Here, again, we

use repeatedly the Lemma above together with the easily checked fact that

sup
T>2

1

log T

∫

R
d

∫ T

0

Tsh(x)|x |
−αdsd x <∞

for any integrable and bounded function h (recall that d > α). We omit details.

Proof of part (c) of the theorem. Recall that the case γ > d has been proved in [BGT6]. For

α < γ≤ d we use the Lemma (part (c) is particularly important). We show

lim
T→∞

I1(T ) =

∫

R
d

G(Gϕ)1+β(x)µγ(d x)χ1+β(0),

lim
T→∞

I2(T ) = cβ

∫

R
d

G(ϕGϕ)(x)µγ(d x)χ2(0),

(3.16) and (3.17). Here µγ is either given by (1.8) or, for γ < d one can take µγ(d x) = |x |−γd x .

Again, the details are omitted.

3.8 Proof of Theorem 2.8

The proof is based on two general lemmas which, hopefully, are of interest by themselves.

Lemma A. Let Y be an (d,α,β)-superprocess with Y0 = µ and N be the empirical process of the

corresponding branching particle system. If for any bounded Borel set A⊂R
d
,

P

�∫ ∞

0

Yt(A)d t <∞

�
= 1, (3.100)
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then also

P

�∫ ∞

0

Nt(A)d t <∞

�
= 1. (3.101)

Proof of Lemma A. Let ζ denote the standard α-stable Lévy process in R
d
, and let ξ be a Markov

process with semigroup

Stϕ(x) = Ex

�
exp

¨
−

∫ t

0

ψ(ζs)ds

«
ϕ(ζt)

�
,

where ψ is a fixed element of C∞K (R
d
) (bounded support), ψ ≥ 0. The process ξ takes values in

R
d
∪ {†}, where † is a cemetery point where it remains after killing by exp{−

∫ t

0
ψ(ζs)ds}. The

infinitesimal generator of ξ is

Aϕ(x) = (∆α−ψ(x))ϕ(x).

Let Yψ be a superprocess in R
d

constructed from ξ and (1 + β)-branching, with Y
ψ

0 = µ. The

Laplace functional of its occupation time is given by

Eexp

¨
−

∫ t

0

〈Yψs ,ϕ〉ds

«
= exp{−〈µ,uψϕ (t)〉}, ϕ ∈ C∞K (R

d
), ϕ ≥ 0, (3.102)

where u
ψ
ϕ (x , t) is the unique (mild) solution of

∂

∂ t
uψϕ (x , t) = (∆α−ψ(x))u

ψ
ϕ (x , t)−

V

1+ β
(uψϕ (x , t))1+β +ϕ(x), (3.103)

uψϕ (x , 0) = 0

(cf. (1.6)). The Laplace functional of the occupation time of the process N is given by

Eexp

¨
−

∫ t

0

〈Ns,ϕ〉ds

«
= exp{−〈µ, vϕ(t)〉}, ϕ ∈ C∞K (R

d
), ϕ ≥ 0, (3.104)

where vϕ(x , t) is the unique solution of

∂

∂ t
vϕ(x , t) = ∆αvϕ(x , t)−

V

1+ β
(vϕ(x , t))1+β +ϕ(x)(1− vϕ(x , t))

= (∆α−ϕ(x))vϕ(x , t)−
V

1+ β
(vϕ(x , t))1+β +ϕ(x), (3.105)

vϕ(x , 0) = 0

(cf. (1.4)). Equations (3.103) and (3.105) coincide for ϕ =ψ, hence, from (3.102), (3.104),

Eexp

¨
−

∫ t

0

〈Yψs ,ψ〉ds

«
= Eexp

¨
−

∫ t

0

〈Ns,ψ〉ds

«
= exp{−〈µ,u

ψ

ψ
(t)〉}. (3.106)
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The superprocesses Y ≡ Y 0 and Yψ are obtained as (high-density/short-life/small-particle) limits of

the same process N , removing first the killed particles in the case of Yψ. Hence

Eexp

¨
−

∫ t

0

〈Yψs ,ϕ〉ds

«
≥ Eexp

¨
−

∫ t

0

〈Y 0
s ,ϕ〉ds

«
for all t, (3.107)

for any ϕ ≥ 0, in particular for ϕ =ψ, hence, from (3.106), (3.107), and (3.102) with ψ= 0,

exp{−〈µ,u
ψ

ψ
(t)〉} ≥ exp{−〈µ,u0

ψ(t)〉} for all t. (3.108)

Taking µ= δx in (3.102) we see that

u
ψ

ψ
(x , t)ր u

ψ

ψ
(x) and u0

ψ(x , t)ր u0
ψ(x) as t ր∞,

hence, from (3.108),

〈µ,u
ψ

ψ
〉 ≤ 〈µ,u0

ψ〉. (3.109)

From (3.100), (3.106), (3.109),

1 = P

�∫ ∞

0

〈Yt ,ψ〉d t <∞

�
= lim
θց0

exp{−〈µ,u0
θψ〉}

≤ lim
θց0

exp{−〈µ,u
θψ

θψ
〉}= P

�∫ ∞

0

〈Nt ,ψ〉d t <∞

�
,

so (3.101) is satisfied for any bounded set A⊂R
d

and the lemma is proved. �

Lemma B. Let N be the empirical process of the (d,α,β)-branching particle system with locally finite

initial intensity measure µ. If (3.101) is satisfied for any bounded set A⊂R
d
, then

P[sup{t : Nt(A)> 0} <∞] = 1 (3.110)

for any bounded set A.

Proof of Lemma B. Let BR be a closed ball in R
d

with radius R centered at the origin. Let

(t i, x i ,τi), i = 1,2, . . . , be a sequence of random vectors defined as follows for any realization of

the branching particle system. First we exclude all the particles which start inside BR at time 0 and

their progenies. Let t1 be the first time any of the remaining particles enters BR, x1 is the entry

point, and τ1 is the occupation time of the closed ball B1(x1) of radius 1 centered at x1 by the

tree generated by the entered particle. We exclude this tree from further consideration. Let t2 be

the first time after t1 that any of the remaining particles enters BR, with x2 and τ2 defined analo-

gously as above; and so on. Let η denote the total number of first entries (t i , x i ,τi), i = 1, . . . ,η.

We will show that η < ∞ a.s.. Suppose to the contrary that P[η = ∞] > 0. By construction,∑η
i=1τi ≤

∫∞
0

Nt(BR+1)d t, hence
∑η

i=1τi <∞ a.s. by (3.101). By the strong Markov property and

homogeneity of the motion, conditioned on {η =∞} the random variables τi are i.i.d.. Hence

P
h∑η

i=1
τi =∞|η =∞

i
= 1,
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and this is a contradiction since, as observed above, P[
∑∞

i=1τi =∞] = 0.

Going back to the particles that start inside BR, there are only finitely many of them since µ(BR)<∞.

In conclusion, with probability 1 only finitely many initial particles generate trees that contribute to

the occupation time of any given bounded set, and all those trees become extinct a.s. in finite time

by criticality of the branching. So (3.110) is proved. �

Now, to prove Theorem 2.8 it suffices to observe that under its assumptions the corresponding

superprocess Y suffers local extinction by Theorem 3β of [I2], hence (3.100) is clearly satisfied and

the theorem follows immediately from the lemmas.

3.9 Proof of Proposition 2.9

First observe that it suffices to prove convergence of finite-dimensional distributions. Indeed, in the

proof of Theorem 2.1(a) we have shown tightness of XT = ZT − EZT , and the presence of high

density was not relevant in that proof. On the other hand, from Proposition 2.1 of [BGT5] it follows

easily that the family of deterministic processes (E〈ZT ,ϕ〉)T≥1 is tight in C([0,τ],R),τ > 0. Hence

tightness of ZT follows.

Without loss of generality we assume that τ= 1. Fix 0≤ t1 < t2 < . . .< tn ≤ 1,ϕ1, . . . ,ϕn ∈ S (R
d
),

and we may additionally assume that ϕ1, . . . ,ϕn ≥ 0. In order to show ⇒ f convergence we prove

that

lim
T→∞

Eexp

(
−

n∑

k=1

〈ZT (tk),ϕk〉

)
= exp

¨
−

∫

R
d

v(x , 1)|x |−γd x

«
, (3.111)

where v satisfies (2.36) with ψ given by (2.37) for θk =
∫

R
d ϕk(y)d y (as explained in [Ta], the

solution of (2.36) is unique.)

For simplicity we consider µγ(d x) = |x |−γd x (it will be clear that for µγ given by (1.8) the limit is

the same). Also, to simplify the notation we take ϕ1 = . . .= ϕn = ϕ. Essentially the same argument

can be carried out in the general case.

As in [Ta] and [BGT4] (the possibility to pass from space-time random variable to the present

situation) we have

Eexp

(
−

n∑

k=1

〈ZT (tk),ϕ〉

)
= exp

¨
−

∫

R
d

vT (x , T )|x |−γd x

«
, (3.112)

where v satisfies (3.4) with χ(t) =
∑n

k=1 11[0,tk]
(t),χT (t) = χ(t/T ). Formula (3.112) is an analogue

of (3.7), and its form is simpler since now we do not subtract the mean.

The right-hand side of (3.112) can be written as

exp

¨
−

∫

R
d

hT (x , 1)|x |−γd x

«
,

where

hT (x , t) = T d/α−γ/αvT (x T1/α, T t), 0≤ t ≤ 1. (3.113)
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To prove (3.111) it suffices to show that hT (·, 1) converges to v(·, 1) in L1(R
d
, |x |−γd x); in fact, we

will prove that

hT → v in C([0,1], L1(R
d
, |x |−γd x)). (3.114)

By (3.113), (3.4), (2.30) and (3.20) we have

hT (x , t) =

∫ t

0

Tt−sT
d/αϕ(T1/α·)(x)χ(1− s)ds

− Tγ/α
∫ t

0

Tt−s(ϕ(T
1/α·)hT (·, s))(x)χ(1− s)ds

−
V

1+ β

∫ t

0

Tt−s(hT (·, s))
1+β(x)ds. (3.115)

In particular, this implies that

hT (x , t)≤ C T d/α

∫ t

0

Tsϕ(T
1/α·)ds. (3.116)

Let

RT (x)

= sup
t≤1

�����

∫ t

0

Tt−s(T
d/αϕ(T1/α·))(x)χ(1− s)ds −

∫ t

0

pt−s(x)χ(1− s)ds

∫

R
d

ϕ(y)d y

����� . (3.117)

(compare with the first formula on page 851 of [Ta]). We will show that

lim
T→∞

∫

R
d

RT (x)|x |
−γd x = 0. (3.118)

Applying the usual substitutions and the fact that pu(x) is a decreasing function of |x | we obtain

∫

R
d

RT (x)|x |
−γd x ≤ C

∫

R
d

∫

R
d

ϕ(y)

�����

∫ 1

0

(pu(x − T−1/α)− pu(x))du

����� |x |
−γd yd x

≤ C

∫

R
d

ϕ(y)

∫

R
d

| f (x − T−1/α y)− f (x)|d xd y

+ C

 ∫

|x |≤1

∫

R
d

ϕ(y)|x |−γpd yd x

!1/p ∫

|x |≤1

∫

R
d

ϕ(y)| f (x − T−1/α y)− f (x)|qd yd x

!1/q

,

where f is defined by (3.22), and p,q > 1 are such that γp < d, (d −α)q < d,

1/p+ 1/q = 1 (such p and q exist since γ < α < d). Hence (3.118) easily follows from (3.23) and

(3.24).

Next, we will show that

lim
T→∞

∫

R
d

sup
t≤1

�����T
γ/α

∫ t

0

Tt−s(ϕ(T
1/α·)χ(1− s)hT (·, s)(x)

����� |x |
−γd x = 0. (3.119)
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(3.116) and (3.31) imply that the expression under the lim can be estimated by

Tγ/α
∫

R
d

fγ(y)ϕ(T
1/α y)( f ∗ eϕT )(y)d y ≤ Tγ/α||ϕ(T1/α·)|| 1+β

β

|| f ||1+β ||ϕ||1

≤ C Tγ/α−(d/α)β/(1+β)→ 0

(we have used (2.30) and f ∈ L1+β by (3.23) and (3.24)).

To prove (3.114) we check the Cauchy condition, i.e.,

J(T1, T2) :=

∫

R
d

sup
t≤1

|hT1
(x , t)− hT2

(x , t)||x |−γd x → 0 as T1, T2→∞. (3.120)

Using (3.115), (3.118) and (3.119) we have

J(T1, T2)≤ J1(T1, T2) +
V

1+ β
J2(T1, T2), (3.121)

where lim
T1,T2→∞

J1(T1, T2) = 0 and

J2(T1, T2) =

∫

R
d

sup
t≤1

∫ t

0

Tt−s|h
1+β
T1
(·, s)− h

1+β
T2
(·, s)|(x)ds|x |−γd x .

By (3.31), the inequality |a1+β− b1+β | ≤ (1+β)|a− b|(aβ+ bβ ), a, b ≥ 0, and the Hölder inequality,

J2(T1, T2)≤ C

∫

R
d

sup
t≤1

|h
1+β
T1
(y, t)− h

1+β
T2
(y, t)|d y

≤ C1

����

����sup
t≤1

|hT1
(·, t)− hT2

(·, t)|

����

����
1+β

 ����

����sup
t≤1

|hT1
(·, t)|

����

����
β

1+β

+

����

����sup
t≤1

|hT2
(·, t)|

����

����
β

1+β

!

Using (3.116) and the fact that f ∈ L1+β it is easily seen that

sup
T≥1

����

����sup
t≤1

hT (·, t)

����

����
1+β

<∞.

To show (3.120) it suffices to prove that

lim
T1,T2→∞

����

����sup
t≤1

|hT1
(·, t)− hT2

(·, t)|

����

����
1+β

= 0. (3.122)

This can be derived in a similar way as in [Ta] (see (2.19) and subsequent estimates therein). The

only difference is that the term corresponding to I2(T ) in [Ta] requires a slightly more delicate

treatment; in our case it has the form

T (γ/α)(1+β)
∫

R
d

sup
s≤1

�����

∫ s

0

Ts−u(ϕ(T
1/α·)hT1

(·,u))(x)du

�����

1+β

d x .
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Using (3.116) and the Hölder inequality this is estimated by

T (d/α)(1+β)|| f ∗ (ϕ(T1/α·)( f ∗ eϕT ))||
1+β

1+β
≤ T (γ/α)(1+β)|| f ||

1+β

1+β
||ϕ(T1/α·)||1+βp || f ||

1+β
q ||ϕ||

1+β
1 ,

where q = d/(d −α+ ǫ), p = d/(α− ǫ), and ǫ > 0 is such that γ < α− ǫ. Then the right-hand side

is not bigger than C T ((1+β)/α)(γ+ǫ−α), which tends to zero as T →∞.

Combining (3.120), (3.118), (3.119) and (3.122), it is seen that one can pass to the limit in (3.115)

letting T →∞, thus obtaining that the limit of hT satisfies (2.33). This proves (3.114) and completes

the proof of the Proposition. �

Proof of Theorem 2.11

The proof is similar to those for the particle system, starting from an equation analogous to (3.7)-

(3.8), where eXT is now defined for the occupation time fluctuation process (1.10) corresponding to

the (d,α,β ,γ) superprocess Y , and equation (3.4) is replaced by

vT (x , t) =

∫ t

0

Tt−u

�
ϕTχT (T − u)−

V

1+ β
v

1+β
T (·,u)

�
(x)du, (3.123)

where the term I2(T ) in equation (3.8), given by (3.10), does not appear. This reflects the fact that

comparing the log-Laplace equations (1.4) for the particle system and (1.6) for the superprocess, the

term −ϕvϕ is missing in (1.6). (Equation (3.123) can be obtained from (3.4) by the same limiting

procedure that yields the superprocess from the branching particle system. An equation analogous

to (3.7) for the superprocess can be derived from continuous dependence of the occupation time

process with respect to the superprocess, and continuity of the mapping C([0,τ],S ′(Rd
) ∋ x 7→

ex ∈ S ′(Rd+1
) in (1.11) [BGR].) It follows that the results for the superprocess are the same as

those for the particle system, except in the cases where I2(T ) has a non-zero limit, and to obtain the

results in those cases it suffices to delete those non-zero limits. Therefore the limits in Theorems 2.1

and 2.5 are the same for the superprocess, and for those in Theorem 2.6, cβ = 0 in all cases. �
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