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Abstract

Let G = (G1, G2) be a Gaussian vector in R2 with E(G1G2) 6= 0. Let c1, c2 ∈ R1. A necessary and

sufficient condition for the vector ((G1+c1α)
2, (G2+c2α)

2) to be infinitely divisible for all α ∈ R1

is that

Γi,i ≥
ci

c j

Γi, j > 0 ∀1≤ i 6= j ≤ 2. (0.1)

In this paper we show that when (0.1) does not hold there exists an 0 < α0 < ∞ such that

((G1 + c1α)
2, (G2 + c2α)

2) is infinitely divisible for all |α| ≤ α0 but not for any |α|> α0.
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1 Introduction

Let η= (η1, . . . ,ηn) be an Rn valued Gaussian random variable. η is said to have infinitely divisible

squares if η2 := (η2
1, . . . ,η2

n) is infinitely divisible, i.e. for any r we can find an Rn valued random

vector Zr such that

η2 law
= Zr,1+ · · ·+ Zr,r ,

where {Zr, j}, j = 1, . . . , r are independent identically distributed copies of Zr . We express this by

saying that η2 is infinitely divisible.

Paul Lévy proposed the problem of characterizing which Gaussian vectors have infinitely divisible

squares. It is easy to see that a single Gaussian random variable has infinitely divisible squares.

However, even for vectors in R2 this is a difficult problem. It seems that Lévy incorrectly conjectured

that not all Gaussian vectors in R2 have infinitely divisible squares. If he had said R3 his conjecture

would have been correct.

Lévy’s problem was solved by Griffiths and Bapapt [1; 7], (see also [9, Theorem 13.2.1]).

Theorem 1.1. Let G = (G1, . . . , Gn) be a mean zero Gaussian random variable with strictly positive

definite covariance matrix Γ = {Γi, j} = {E(GiG j)}. Then G2 is infinitely divisible if and only if there

exists a signature matrix N such that

N Γ−1N is an M matrix. (1.1)

We need to define the different types of matrices that appear in this theorem. Let A = {ai, j}1≤i, j≤n

be an n× n matrix. We call A a positive matrix and write A≥ 0 if ai, j ≥ 0 for all i, j. We say that A

has positive row sums if
∑n

j=1 ai, j ≥ 0 for all 1≤ i ≤ n.

The matrix A is said to be an M matrix if

(1) ai, j ≤ 0 for all i 6= j.

(2) A is nonsingular and A−1 ≥ 0.

A matrix is called a signature matrix if its off–diagonal entries are all zero and its diagonal entries are

either one or minus one. The role of the signature matrix is easy to understand. It simply accounts

for the fact that if G has an infinitely divisible square, then so does (ε1G1, . . . ,εnGn) for any choice

of εi =±1, i = 1, . . . , n. Therefore, if (1.1) holds for N with diagonal elements n1, . . . , nn

�
N Γ−1N

�−1
=N ΓN ≥ 0

since the inverse of an M matrix is positive. Thus (n1G1, . . . , nnGn) has a positive covariance matrix

and its inverse is an M matrix. (For this reason, in studying mean zero Gaussian vectors with

infinitely divisible squares one can restrict ones attention to vectors with positive covariance.)

The natural next step was to characterize Gaussian processes with infinitely divisible squares which

do not have mean zero. We set ηi = Gi + ci , EGi = 0, i = 1, , . . . , n. Let Γ be the covariance matrix

of (G1, . . . , Gn) and set

c := (c1, . . . , cn).
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Set

G + c := (G1+ c1, . . . , Gn+ cn) (1.2)

and

(G + c)2 := ((G1+ c1)
2, . . . , (Gn+ cn)

2).

Results about the infinite divisibility of (G + c)2 when c1 = · · · = cn, are given in the work of N.

Eisenbaum [2; 3] and then in joint work by Eisenbaum and H. Kaspi [4], as a by product of their

characterization of Gaussian processes with a covariance that is the 0-potential density of a sym-

metric Markov process. We point out later in this Introduction how Gaussian vectors with infinitely

divisible squares are related to the local times of the Markov chain that is determined by the covari-

ance of the Gaussian vector. It is this connection between Gaussian vectors with infinitely divisible

squares and the local times of Markov chains, and more generally, between Gaussian processes with

infinitely divisible squares and the local times of Markov processes, that enhances our interest in the

question of characterizing Gaussian vectors with infinitely divisible squares.

Some of the results in [2; 3; 4] are presented and expanded in [9, Chapter 13]. The following

theorem is taken from [9, Theorem 13.1.1 and Theorem 13.3.1].

Theorem 1.2. Let G = (G1, . . . , Gn) be a mean zero Gaussian random variable with strictly positive

definite covariance matrix Γ = {Γi, j} = {E(GiG j)}. Let 1 = (1, . . . , 1) ∈ Rn. Then the following are

equivalent:

(1) (G+ 1α) has infinitely divisible squares for all α ∈ R1;

(2) For ξ = N(0, b2) independent of G, (G1 + ξ, . . . , Gn + ξ,ξ) has infinitely divisible squares for

some b 6= 0. Furthermore, if this holds for some b 6= 0, it holds for all b ∈ R1, with N(0,0) = 0.

(3) Γ−1 is an M matrix with positive row sums.

In [8], Theorem 1.2 is generalized so that the mean of the components of G+ c in (1.2) need not be

the same. In this generalization certain trivial cases spoil the simplicity of the final result. We avoid

them by requiring that the covariance matrix of the Gaussian process is irreducible.

Theorem 1.3. Let G = (G1, . . . , Gn) be a mean zero Gaussian random variable with irreducible strictly

positive definite covariance matrix Γ = {Γi, j} = {E(GiG j)}. Let c = (c1, . . . , cn) ∈ Rn, c 6= 0 and let C

be a diagonal matrix with ci = Ci,i , 1≤ i ≤ n . Then the following are equivalent:

(1) G + cα has infinitely divisible squares for all α ∈ R1;

(2) For ξ= N(0, b2) independent of G, (G1+ c1ξ, . . . , Gn+ cnξ,ξ) has infinitely divisible squares for

some b 6= 0. Furthermore, if this holds for some b 6= 0, it holds for all b ∈ R1;

(3) C Γ−1 C is an M matrix with positive row sums.

By definition, when (G+c)2 is infinitely divisible, it can be written as in (1) as a sum of r independent

identically distributed random variables, for all r ≥ 1. Based on the work of Eisenbaum and Kaspi

mentioned above and the joint paper [5] we can actually describe the decomposition. We give a

rough description here. For details see [2; 3; 4] and [9, Chapter 13].
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Assume that (1), (2) and (3) of Theorem 1.3 hold. Let

G

c
=

�
G1

c1

, . . . ,
Gn

cn

�
.

Let Γc denote the covariance matrix of G/c. Theorem 1.2 holds for G/c and Γc , so Γ−1
c is an M

matrix with positive row sums. To be specific let G/c ∈ Rn. Set S = {1, . . . , n}. By [9, Theorem

13.1.2], Γc is the 0-potential density of a strongly symmetric transient Borel right process, say X ,

on S. We show in the proof of [9, Theorem 13.3.1] that we can find a strongly symmetric recurrent

Borel right process Y on S ∪ {0} with P x(T0 < ∞) > 0 for all x ∈ S such that X is the process

obtained by killing Y the first time it hits 0. Let Lx
t = {Lx

t ; t ∈ R+, x ∈ S ∪ {0}} denote the local

time of Y . It follows from the generalized second Ray-Knight Theorem in [5], see also [9, Theorem

8.2.2] that under P0× PG ,

�
Lx
τ(t)
+

1

2

�
Gx

cx

�2

; x ∈ S

�
law
=

�
1

2

�
Gx

cx

+
p

2t

�2

; x ∈ S

�

for all t ∈ R+, where τ(t) = inf{s > 0|L0
s > t}, the inverse local time at zero, and Y and G are

independent. Consequently

n
c2

x Lx
τ(α2/2)

+
1

2
G2

x ; x ∈ S
o

law
=
n1

2

�
Gx + cxα

�2
; x ∈ S

o
(1.3)

for all α ∈ R1. (We can extend α from R+ to R1 because G is symmetric.) {c2
x Lx
τ(α2/2)

; x ∈ S} and

{1
2
G2

x ; x ∈ S} are independent. G2 is infinitely divisible and for all integers r ≥ 1

c2
· L
·
τ(α2/2)

law
= c2
· L
·
τ(α2/(2r)),1

+ · · ·+ c2
· L
·
τ(α2/(2r)),r

where {L·
τ(α2/(2r)), j

}, j = 1, . . . , r are independent.

Note that in (1.3) we identify the components of the decomposition of {
�
Gx + cxα

�2
; x ∈ S} that

mark it as infinitely divisible.

In Theorem 1.3 we have necessary and sufficient conditions for ((G1 + c1α)
2, (G2 + c2α)

2) to be

infinitely divisible for all α ∈ R1. There remains the question, can ((G1 + c1α)
2, (G2 + c2α)

2) have

infinitely divisible squares for some α > 0 but not for all α ∈ R1? When we began to investigate

this question we hoped that such points α do not exist. This would have finished off the problem

of characterizing Gaussian random variables with infinitely divisible squares and, more significantly,

by (1.3), would show that when a Gaussian random variable with non–zero mean has infinitely

divisible squares, it decomposes into the sum of two independent random variables; one of which is

the square of the Gaussian random variable itself minus its mean, and the other the local time of a

related Markov process. This would be a very neat result indeed, but it is not true.

For all Gaussian random variables (G1, G2) in R2 and all c1, c2 ∈ R1 define

G 2(c1, c2,α) := ((G1+ c1α)
2, (G2+ c2α)

2).

When (G1, G2) satisfies the hypotheses of Theorem 1.3, G 2(c1, c2,α) has infinitely divisible squares

for all α ∈ R1 if and only if

Γ1,1 ≥
c1

c2

Γ1,2 > 0 and Γ2,2 ≥
c2

c1

Γ1,2 > 0. (1.4)
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(For details see [8, Corollary 1.3, 4.].) If (1.4) does not hold, we call 0 < α0 <∞ a critical point

for the infinite divisibility of G 2(c1, c2,α) if G 2(c1, c2,α) is infinitely divisible for all |α| ≤ α0, and is

not infinitely divisible for any |α|> α0. In this paper we prove the following theorem:

Theorem 1.4. For all Gaussian random variables (G1, G2) in R2 and all (c1, c2) ∈ R2 for which (1.4)

does not hold, G 2(c1, c2,α) has a critical point.

Note that in Theorem 1.4 we consider all (c1, c2) ∈ R2. It follows from (1.4) that when E(G1G2)> 0,

then G 2(c1, c2,α) has infinitely divisible squares for all α ∈ R1 only if c1c2 > 0. Nevertheless, by

Theorem 1.4, even when c1c2 ≤ 0, (G1+ c1α, G2+ c2α) does have infinitely divisible squares for |α|
sufficiently small.

To conclude this Introduction we explain how we approach the problem of showing that (G + cα)2

is infinitely divisible for all α ∈ R1 or only for some α ∈ R1. Since we can only prove Theorem 1.4

for Gaussian random variables in R2 we stick to this case, although a similar analysis applies to Rn

valued Gaussian random variables.

Let Γ be the covariance matrix of G and

eΓ := (I +ΓΛ)−1Γ = (Γ−1+Λ)−1,

where

Λ =

�
λ1 0

0 λ2

�
.

Consider the Laplace transform of ((G1+ c1α)
2, (G2+ c2α)

2),

E
�

e−(λ1(G1+c1α)
2+λ2(G2+c2α)

2)/2
�

(1.5)

=
1

(det (I +ΓΛ))1/2
exp


−

α2

2


c2

1λ1+ c2
2λ2−

2∑

i, j=1

cic jλiλ j
eΓi, j





 .

(See [9, Lemma 5.2.1].) Set λ1 = t(1− s1) and λ2 = t(1− s2), 0≤ s1, s2 ≤ 1 and write (1.5) as

exp
�

U
�
s1, s2, t,Γ

�
+α2V

�
s1, s2, t, c1, c2, eΓ

��
(1.6)

where U := U(s1, s2, t,Γ) =−1/2 log(det (I +ΓΛ)). Note that

exp
�
U
�
s1, s2, t,Γ

��
is the Laplace transform of (G2

1 , G2
2), with the change of variables λ1 = t(1− s1)

and λ2 = t(1− s2). It is easy to see from Theorem 1.1 that all two dimensional Gaussian random

variables are infinitely divisible. Therefore, for all t sufficiently large, all the coefficients of the

power series expansion of U in s1 and s2 are positive, except for the constant term. This is a

necessary and sufficient condition for a function to be the Laplace transform of an infinitely divisible

random variable. See e.g. [9, Lemma 13.2.2].

Now, suppose that for all t sufficiently large, V
�

s1, s2, t, c1, c2, eΓ
�

has all the coefficients of its power

series expansion in s1 and s2 positive, except for the constant term. Then the right–hand side of (1.5)

is the Laplace transform of two independent infinitely divisible random variables. It is completely

obvious that this holds for all α ∈ R1.
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On the other hand suppose that for all t sufficiently large, the power series expansion of

V
�

s1, s2, t, c1, c2, eΓ
�

in s1 and s2 has even one negative coefficient, besides the coefficient of the

constant term. Then for all α sufficiently large, (1.6) is not the Laplace transform of an infinitely

divisible random variable. In other words ((G1+ c1α)
2, (G2+ c2α)

2) is not infinitely divisible for all

α ∈ R1. But it may be infinitely divisible if α is small, since the positive coefficients of U may be

greater than or equal to α2 times the corresponding negative coefficients of V . Clearly, if this is true

for some |α|= α0 > 0, then it is true for all |α| ≤ α0.

The preceding paragraph explains how we prove Theorem 1.4. We consider vectors ((G1 +

c1α)
2, (G2+ c2α)

2) that are not infinitely divisible for all α ∈ R1, (this is easy to do using (1.4)), and

show that for |α| sufficiently small the coefficients in the power series expansion of

U
�
s1, s2, t,Γ

�
+α2V

�
s1, s2, t, c1, c2, eΓ

�

in s1 and s2 are positive, except for the constant term. Our proof only uses elementary mathematics,

although it is quite long and complicated. In the course of the proof we show that the coefficients

of the power series expansion of U in s1 and s2 are positive, except for the constant term. This

provides a direct elementary proof of the fact that the Gaussian random variable (G1, G2) always

has infinitely divisible squares.

As we have just stated, and as the reader will see, the proof of Theorem 1.4 is long and complicated.

So far we have not been able to extend it to apply to Gaussian random variables in R3. One hopes for

a more sophisticated and much shorter proof of Theorem 1.4 that doesn’t depend on the dimension

of the Gaussian random variable.

We thank a referee of this paper for a very careful reading.

2 Gaussian squares in R2 and their Laplace transforms

Let G = (G1, G2) be a mean zero Gaussian process with covariance matrix

Γ =

�
a 1

1 b

�
(2.1)

where ab = d + 1> 1, and let G + c := (G1+ c1, G2+ c2), c1, c2 ∈ R1. Note that

detΓ = d, (2.2)

and

Γ−1 =
1

d

�
b −1

−1 a

�
.

Let

Λ =

�
λ1 0

0 λ2

�
.

Then

Γ−1+Λ =
1

d

�
b+ dλ1 −1

−1 a+ dλ2

�
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and

eΓ := (I +ΓΛ)−1Γ = (Γ−1+Λ)−1

= d

�
b+ dλ1 −1

−1 a+ dλ2

�−1

=
1

H(a, b,λ1,λ2)

�
λ2d + a 1

1 λ1d + b

�

where

H(a, b,λ1,λ2) = 1+ aλ1+ bλ2+ dλ1λ2 = d det
�
Γ−1+Λ

�
.

(We use repeatedly the fact that ab = d + 1.) Note that by (2.2) we have that

det (I +ΓΛ) = det
�
Γ
�
Γ−1+Λ

��
= d det

�
Γ−1+Λ

�
= H(a, b,λ1,λ2).

Lemma 2.1.

E
�

e−(λ1(G1+c1)
2+λ2(G2+c2)

2)/2
�

(2.3)

=
1

(H(a, b,λ1,λ2))
1/2

exp

 
−

c2
1λ1+ c2

2λ2+
�

c2
1 b+ c2

2 a− 2c1c2

�
λ1λ2

2H(a, b,λ1,λ2)

!
.

Proof By [9, Lemma 5.2.1]

E
�

e−(λ1(G1+c1)
2+λ2(G2+c2)

2)/2
�

=
1

(H(a, b,λ1,λ2))
1/2

exp

�
−

1

2

�
c2
1λ1+ c2

2λ2

−
c2
1λ

2
1(λ2d + a) + 2c1c2λ1λ2+ c2

2λ
2
2(λ1d + b)

H(a, b,λ1,λ2)

��

:=
1

(H(a, b,λ1,λ2))
1/2

J(a, b, c1, c2, d,λ1,λ2).

A simple computation shows that

�
c2
1λ1+ c2

2λ2

�
H(a, b,λ1,λ2)

−
�

c2
1λ

2
1(λ2d + a) + 2c1c2λ1λ2+ c2

2λ
2
2(λ1d + b)

�

= c2
1λ1+ c2

2λ2+
�

c2
1 b+ c2

2 a− 2c1c2

�
λ1λ2,

from which we get (2.3).

The term 1/(H(a, b,λ1,λ2))
1/2 is the Laplace transform of (G2

1 , G2
2)/2 and by [8, Corollary 1.1,

2.] it is the Laplace transform of an infinitely divisible random variable. The exponential term,

J(a, b, c1, c2, d,λ1,λ2), may or may not be a Laplace transform. In fact, by (1.4), we know that

J(a, b,αc1,αc2, d,
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λ1,λ2) is the Laplace transform of an infinitely divisible random variable, for all α ∈ R1, if and only

if

a ≥
c1

c2

> 0 and b ≥
c2

c1

> 0. (2.4)

To prove Theorem 1.4 we must show that when (2.4) does not hold, there exists an 0 < α0 < ∞
such that (2.3) is the Laplace transform of an infinitely divisible random variable when c1 and c2 are

replaced by c1α and c2α for any |α| ≤ α0. Actually, as we see in Section 8, the general result follows

from the consideration of three cases,

1. (c1, c2) = (c, c);

2. (c1, c2) = (c,−c);

3. (c1, c2) = (c, 0).

This is because if c1 6= c2 and neither of them is zero, we can replace (G1, G2) by (G1/|c1|, G2/|c2|).
Clearly, in this case, if Theorem 1.4 holds for (G1/|c1|, G2/|c2|) it holds for (G1, G2). (The reason we

divide by the absolute value is because, to simplify the calculations, we take E(G1G2)> 0.)

In these three cases the numerator of the fraction in the exponential term on the right–hand side of

(2.3) is

1. c2
�
(a+ b− 2)λ1λ2+λ1+λ2

�
;

2. c2
�
(a+ b+ 2)λ1λ2+λ1+λ2

�
;

3. c2
�

bλ1λ2+λ1

�
.

Set

γ= a+ b− 2 and ρ = a+ b+ 2.

Note that ab > 1 unless detΓ = 0. Since Theorem 1.4 obviously holds when detΓ = 0, we can

exclude this case from further consideration. Thus we always have γ > 0.

3 Power series expansion of the logarithm of the Laplace transform of

((G1+ c)2, (G2+ c)2) when E(G1G2) = 1

Bapat’s proof of Theorem 1.1 involves the analysis of a certain power series expansion of the log-

arithm of the Laplace transform. We need a similar, but more delicate, analysis. (See Lemma 4.1

below).

Using (2.3) and the remarks following Lemma 2.1 we can write

E
�

e−(λ1(G1+c)2+λ2(G2+c)2)/2
�

(3.1)

= exp

�
−

1

2
log H(a, b,λ1,λ2)

�
exp

�
−

c2
�
γλ1λ2+λ1+λ2

�

2H(a, b,λ1,λ2)

�

:= exp

�
1

2

�
P(a, b,λ1,λ2) + c2Q(a, b,λ1,λ2)

��
.
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Since ab = d + 1, (recall that d > 0), we have

a+ b− (d + 2) = a+
(d + 1)

a
− (d + 2)

=
1

a

�
a2− (d + 2)a+ (d + 1)

�

=
1

a
(a− (d + 1)) (a− 1) .

Thus a+ b− (d + 2) ≤ 0 if and only if 1 ≤ a ≤ d + 1, which in view of ab = d + 1 is equivalent to

1≤ b ≤ d + 1. Consequently (2.4) holds if and only if a+ b− (d + 2)≤ 0.

Therefore, to show that ((G1 + c)2, (G2 + c)2) is infinitely divisible, for some, but not for all, c > 0,

we must consider a, b > 0 such that

ζ := a+ b− (d + 2)> 0. (3.2)

In the rest of this paper we assume that (3.2) holds.

Let λ1 = t(1− s1) and λ2 = t(1− s2), 0 ≤ s1, s2 ≤ 1. We consider P and Q as functions of s1, s2, t,

and write

P(s1, s2, t) := P(a, b,λ1,λ2), Q(s1, s2, t) :=Q(a, b,λ1,λ2).

We expand these in a power series in s1, s2:

P(s1, s2, t) =

∞∑

j,k=0

Pj,k(t)s
j

1sk
2, Q(s1, s2, t) =

∞∑

j,k=0

Q j,k(t)s
j

1sk
2, (3.3)

and set

R(s1, s2, t, c) = P(s1, s2, t) + c2Q(s1, s2, t).

Consequently

R(s1, s2, t, c) =

∞∑

j,k=0

R j,k(t, c)s
j

1sk
2

with

R j,k(t, c) = Pj,k(t) + c2Q j,k(t). (3.4)

In this section we obtain explicit expressions for Pj,k(t),Q j,k(t). We write

H(a, b,λ1,λ2) = 1+ aλ1+ bλ2+ dλ1λ2

= 1+ at + bt + d t2− (at + d t2)s1− (bt + d t2)s2+ d t2s1s2

= (1+ at + bt + d t2)(1−αs1− βs2+ θαβs1s2)

where

α=
at + d t2

1+ at + bt + d t2
, β =

bt + d t2

1+ at + bt + d t2
(3.5)

and

θ =
1+ at + bt + d t2

1+ d−1+ at + bt + d t2
.
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Note that

1− θ =
d−1

1+ d−1+ at + bt + d t2
≤

1

d2 t2
. (3.6)

For later use we also define

et = (1− θ )−1/2 =
p

d(1+ d−1+ at + bt + d t2) (3.7)

and

t̄ =

r
θ

d
et =

p
1+ at + bt + d t2

and observe that for all t sufficiently large

d t ≤ et ≤ d t +
p

d (a+ b) and
p

d t ≤ t̄ ≤
p

d t +
(a+ b)
p

d
. (3.8)

Using these definitions we have

P(a, b,λ1,λ2) = − log H(a, b,λ1,λ2)

= − log(1+ at + bt + d t2)− log(1−αs1− βs2+ θαβs1s2)

and

Q(a, b,λ1,λ2) (3.9)

=−
γλ1λ2+λ1+λ2

H(a, b,λ1,λ2)

=−
1

(1+ at + bt + d t2)

γt2(1− s1)(1− s2) + t(2− s1− s2)

1−αs1− βs2+ θαβs1s2

.

We make some preliminary observations that enable us to compute the coefficients of the power

series expansions of P(s1, s2, t) and Q(s1, s2, t). Let (u1,u2) ∈ [0,1)2, and θ ∈ [0,1), and assume

that

u1+ u2− θu1u2 < 1. (3.10)

(It is clearly greater than zero.) Let

1

1− u1− u2+ θu1u2

:=

∞∑

j,k=0

D j,ku
j

1uk
2 (3.11)

and

− log(1− u1− u2+ θu1u2) :=

∞∑

j,k=0

C j,ku
j

1uk
2. (3.12)

Lemma 3.1. For 0≤ j ≤ k

D j,k =

j∑

p=0

(1− θ )p
�

j

p

��
k

p

�
. (3.13)

Also, C0,0 = 0, C j,0 = 1/ j, C0,k = 1/k, j, k 6= 0, and for 1≤ j ≤ k

C j,k =

j−1∑

p=0

(1− θ )p
�

j

p

��
k

p

�
(1− θ )
p+ 1

( j − p)(k− p)

jk
. (3.14)
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Proof Writing (3.10) in the form u1 + u2 − u1u2 + (1− θ )u1u2 < 1 we see that it is equivalent to

the statement that
(1− θ )u1u2

(1− u1)(1− u2)
< 1.

We write

1

1− u1− u2+ θu1u2

=

�
(1− u1)(1− u2)

�
1−

(1− θ )u1u2

(1− u1)(1− u2)

��−1

=
1

(1− u1)(1− u2)

∞∑

p=0

�
(1− θ )u1u2

(1− u1)(1− u2)

�p

=

∞∑

p=0

(1− θ )pu
p

1u
p

2

(1− u1)
p+1(1− u2)

p+1
.

For u ∈ [0,1), differentiating 1/(1− u) =
∑∞

j=0 u j , p times, shows that

1

(1− u)p+1
=

∞∑

n=0

�
p+ n

n

�
un.

Consequently

1

1− u1− u2+ θu1u2

=

∞∑

p=0

(1− θ )pu
p

1u
p

2

∞∑

m=0

�
p+m

m

�
um

1

∞∑

n=0

�
p+ n

n

�
un

2

=
∑

p,m,n≥0

(1− θ )p
�

p+m

p

��
p+ n

p

�
u

p+m

1 u
p+n

2

=
∑

j,k≥0

j∧k∑

p=0

(1− θ )p
�

j

p

��
k

p

�
u

j

1uk
2.

This gives (3.13).

To obtain (3.14) we write

− log(1− u1− u2+ θu1u2)

=− log((1− u1)(1− u2)− (1− θ )u1u2)

=− log(1− u1)− log(1− u2)− log

�
1−

(1− θ )u1u2

(1− u1)(1− u2)

�

=

∞∑

n=1

un
1

n
+

∞∑

n=1

un
2

n
+

∞∑

p=1

1

p

�
(1− θ )u1u2

(1− u1)(1− u2)

�p

.
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This gives us C j,0 and C0,k and, similar to the computation of D j,k, we can use the last series above

to see that

C j,k =

j∑

p=1

(1− θ )p

p

�
j − 1

p− 1

��
k− 1

p− 1

�

=

j−1∑

p=0

(1− θ )p+1

p+ 1

�
j − 1

p

��
k− 1

p

�

=

j−1∑

p=0

(1− θ )p
�

j

p

��
k

p

�
(1− θ )
p+ 1

( j − p)(k− p)

jk
.

Note that for the last equality we use

�
j − 1

p

�
=

j − p

j

�
j

p

�
and

�
k− 1

p

�
=

k− p

k

�
k

p

�
. (3.15)

This gives (3.14).

Lemma 3.2. For all t sufficiently large, Pj,0(t) = α
j/ j, P0,k(t) = β

k/k, and for all 1≤ j ≤ k,

Pj,k(t) =
α jβ k

et2

j−1∑

p=0

et−2p

�
j

p

��
k

p

�
1

p+ 1

( j − p)(k− p)

jk
. (3.16)

(See (3.3).)

Proof Note that since 0< α,β ,θ < 1, and 0≤ s1, s2 ≤ 1,

αs1+ βs2− θαβs1s2 ≤ α+ β − θαβ ;

since the left-hand side is increasing in both s1 and s2. Consequently,

αs1+ βs2− θαβs1s2 ≤ α+ β −αβ + (1− θ )αβ

= 1− (1−α)(1− β) +
αβ

d2 t2
+O(1/t3)

= 1−
ab

d2 t2
+

1

d2 t2
+O(1/t3)

= 1−
1

d t2
+O(1/t3).

Consequently, for all t sufficiently large

0≤ αs1+ βs2− θαβs1s2 < 1. (3.17)

Therefore, by (3.12)

− log(1−αu1− βu2+αβθu1u2) =

∞∑

j,k=0

α jβ kC j,ku
j

1uk
2. (3.18)

The lemma now follows from Lemma 3.1 and (3.7).
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Lemma 3.3. For all t sufficiently large, and j, k ≥ 1

Q j,0(t) =−
(γt2(α− 1) + t(2α− 1))

t̄2
α j−1 (3.19)

and

Q0,k(t) =−
(γt2(β − 1) + t(2β − 1))

t̄2
β k−1.

Furthermore, for all t sufficiently large and for all 1≤ j ≤ k

Q j,k(t) (3.20)

=
α j−1β k−1

t̄2

j∑

p=0

et−2p

�
j

p

��
k

p

�

�
−γt2

�
(1−α)(1− β)−

(1− β)p
j
−
(1−α)p

k
+ et−2

j − p

j

k− p

k

�

+t

�
α

�
1− β −

p

k

�
+ β

�
1−α−

p

j

���
.

Proof It follows from (3.17) that for 0≤ s1, s2 ≤ 1

1

1−αs1− βs2+ θαβs1s2

=

∞∑

n=0

(αs1+ βs2− θαβs1s2)
n.

Using this along with (3.9) we see that

Q(s1, s2, t) = −
(γt2(1− s1)(1− s2) + t(2− s1− s2))

t̄2(1−αs1− βs2+ θαβs1s2)
(3.21)

= −
(γt2+ 2t − (γt2+ t)s1− (γt2+ t)s2+ γt2s1s2)

t̄2(1−αs1− βs2+ θαβs1s2)

= −
(γt2+ 2t − (γt2+ t)s1− (γt2+ t)s2+ γt2s1s2)

t̄2

·
∞∑

n=0

(αs1+ βs2− θαβs1s2)
n.

Consequently

Q j,0(t) =−
((γt2+ 2t)α− (γt2+ t))

t̄2
α j−1,

from which we get (3.19), and

Q0,k(t) = −
((γt2+ 2t)β − (γt2+ t))

t̄2
β k−1,

from which we get (3.20).
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To obtain (3.20) we use the second equality in (3.21), and the terms of D j,k defined in (3.11), to

see that

Q j,k :=
t̄2 Q j,k

α j−1β k−1
(3.22)

=−γt2
�

D j,kαβ − D j,k−1α− D j−1,kβ + D j−1,k−1

�

−t
�

2D j,kαβ − D j,k−1α− D j−1,kβ
�

.

Using (3.22), (3.13) and (3.15) we see that for all t sufficiently large, for all 1≤ j ≤ k

Q j,k =

j∑

p=0

et−2p

�
j

p

��
k

p

�

�
−γt2

�
αβ −α

k− p

k
− β

j − p

j
+

j − p

j

k− p

k

�

−t

�
2αβ −α

k− p

k
− β

j − p

j

��
.

Consequently, for all t sufficiently large, for all 1≤ j ≤ k

Q j,k(t) =
α j−1β k−1

t̄2

j∑

p=0

et−2p

�
j

p

��
k

p

�
(3.23)

�
−γt2

�
αβ −α

k− p

k
− β

j − p

j
+

j − p

j

k− p

k

�

−t

�
2αβ −α

k− p

k
− β

j − p

j

��
.

Consider (3.23). We write

αβ −α
k− p

k
− β

j − p

j
+

j − p

j

k− p

k

= (1−α)(1− β)−
(1− β)p

j
−
(1−α)p

k
+

p2

jk
,

2αβ −α
k− p

k
− β

j − p

j
= −α

�
1− β −

p

k

�
− β

�
1−α−

p

j

�
,

to obtain

Q j,k(t) (3.24)

=
α j−1β k−1

t̄2

j∑

p=0

et−2p

�
j

p

��
k

p

�

�
−γt2

�
(1−α)(1− β)−

(1− β)p
j
−
(1−α)p

k
+

p2

jk

�

+t

�
α

�
1− β −

p

k

�
+ β

�
1−α−

p

j

���
.
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Note that for 1≤ q ≤ j

et−2q

�
j

q

��
k

q

��
q2

jk

�

= et−2(q−1)

�
j

q− 1

��
k

q− 1

�
j − (q− 1)

j

k− (q− 1)

k
et−2.

Therefore, for each 1 ≤ p ≤ j we incorporate the term in p2/ jk in (3.24) into the preceding term

in the series in (3.24) to get (3.20). (Note that we can not add anything to the p = j term. The

expression in (3.20) reflects this fact since
j−p

j

k−p

k
= 0 when p = j.)

4 A sufficient condition for a random vector in R2 to be infinitely

divisible

We present a sufficient condition for a random vector in R2 to be to be infinitely divisible, and show

how it simplifies the task of showing that ((G1+ c)2, (G2+ c)2) is infinitely divisible.

Lemma 4.1. Let ψ : (R+)
2 → (R+)2 be a continuous function with ψ(0,0) = 1. Let s ∈ [0,1]2 and

suppose that for all t > 0 sufficiently large, logψ(t(1− s1), t(1− s2)) has a power series expansion at

s= 0 given by

φ(t; s1, s2) =

∞∑

j,k=0

b j,k(t)s
j

1sk
2. (4.1)

Suppose also that there exist an increasing sequence of finite subsetsNi ⊆ N2, i ≥ 1, with
⋃∞

i=1Ni = N2,

and a sequence t i →∞, i ≥ 1, such that b j,k(t i)≥ 0 for all ( j, k) ∈ Ni\{(0,0)} and

lim
i→∞

∞∑

( j,k)/∈Ni∪{(0,0)}
|b j,k(t i)|= 0. (4.2)

Then ψ(λ1,λ2) is the Laplace transform of an infinitely divisible random variable on (R+)
2.

Proof It is clear from (4.2) that for all t i sufficiently large the power series in (4.1) converges

absolutely for all s ∈ [0,1]2.

Let

φi(t i; s1, s2) = b0,0(t i) +
∑

( j,k)∈Ni\{(0,0)}
b j,k(t i)s

j

1sk
2.

Set

Ψi

�
t i; e−λ1/t i , e−λ2/t i

�
= exp

�
φi

�
t i; e−λ1/t i , e−λ2/t i

��
.

We show that for each (λ1,λ2) ∈ (R+)2

lim
i→∞
Ψi

�
t i; e−λ1/t i , e−λ2/t i

�
=ψ(λ1,λ2). (4.3)

As we point out in [9, page 565], Ψi

�
t i; e−λ1/t i , e−λ2/t i

�
is the Laplace transform of a discrete

measure. It then follows from the continuity theorem and the fact that ψ(0,0) = 1 that ψ(λ1,λ2) is
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the Laplace transform of a random variable. Furthermore repeating this argument with φi(t i; s1, s2)

replaced by φi(t i; s1, s2)/n shows that ψ1/n(λ1,λ2) is the Laplace transform of a random variable.

This shows that ψ(λ1,λ2) is the Laplace transform of an infinitely divisible random variable on

(R+)
2.

To prove (4.3) let

δi :=

���ψ(t i(1− e−λ1/t i ), t i(1− e−λ2/t i ))−ψ(λ1,λ2)

���. (4.4)

Clearly limi→∞ δi = 0. By (4.2)

���ψ(t i(1− e−λ1/t i ), t i(1− e−λ2/t i ))− exp
�
φi(t i; e−λ1/t i , e−λ2/t i )

� ���

=

���exp


b0,0(t i) +

∑

( j,k) 6=(0,0)

b j,k(t i)e
− jλ1/t i e−kλ2/t i




−exp


b0,0(t i) +

∑

( j,k)∈Ni\{(0,0)}
b j,k(t i)e

− jλ1/t i e−kλ2/t i



���

=ψ(t i(1− e−λ1/t i ), t i(1− e−λ2/t i ))
���1− exp

�
−

∞∑

( j,k)/∈Ni∪{(0,0)}
b j,k(t i)e

− jλ1/t i e−kλ2/t i

����

= εiψ(t i(1− e−λ1/t i ), t i(1− e−λ2/t i )),

where

εi :=

���
�

1− exp
�
−

∞∑

( j,k)/∈Ni∪{(0,0)}
b j,k(t i)e

− jλ1/t i e−kλ2/t i

�����.

Note that by (4.2)

lim
i→∞

εi = 0. (4.5)

Therefore, by the triangle inequality, (4.4) and (4.5)

���exp
�
φi(t i; e−λ1/t i , e−λ2/t i )

�
−ψ(λ1,λ2)

���

≤ εiψ(t i(1− e−λ1/t i ), t i(1− e−λ2/t i )) +δi .

Using (4.4) we see that this is

≤ εi

�
ψ(λ1,λ2) +δi

�
+δi .

Thus we justify (4.3) and the paragraph following it.

Remark 4.1. In [9, Lemma 13.2.2] we present the well known result that the conclusion of Lemma

4.1 holds when logψ(t(1− s1), t(1− s2)) has a power series expansion at s= 0 with all its coeffi-

cients, except for the coefficient of the constant term, are positive. Lemma 4.1 is useful because it

allows us to only verify this condition for a subset of these coefficients, (depending on t).
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The following lemma enables us to apply Lemma 4.1.

Lemma 4.2. For any c3 > 0 there exists a constant B = B(a, b, c3) for which

Nt = {( j, k) |
p

jk ≤ Bt log t}

has the property that

lim
t→∞

∑

( j,k)/∈Nt

|R j,k(t, c)|= 0,

uniformly in |c| ≤ c3.

Remark 4.2. It follows from Lemmas 4.1 and 4.2 that in order to prove Theorem 1.4 we need only

show that we can find a c0 > 0, such that

R j,k(t, c0)≥ 0 for all
p

jk ≤ Bt log t,

for any constant B, for all t sufficiently large, (except for R0,0(t)).

Before proving Lemma 4.2 we establish the following bounds:

Lemma 4.3. �
j

p

�
≤
�

e j

p

�p

(4.6)

and

1

τ2p

�
j

p

��
k

p

�
≤

 e
p

jk

pτ




2p

≤ exp


2
p

jk

τ


 . (4.7)

Proof It is clear that �
j

p

�
≤

jp

p!
.

Therefore to prove (4.6) we need only show that

p!

�
e

p

�p

≥ 1. (4.8)

In [6, page 42 ], Feller shows that p!
�
e/p
�p

is increasing in p. Since it is equal to e when p = 1,

(and 1 when p = 0), we get (4.8).

The first inequality in (4.7) follows from (4.6) the next one is obtained by maximizing the middle

term with respect to p.

Proof of Lemma 4.2 By (3.4) and Lemmas 3.2 and 3.3 we see that for all t sufficiently large, for all

1≤ j ≤ k,

|R j,k(t, c)| ≤ Cα jβ k

j∑

p=0

et−2p

�
j

p

��
k

p

�

where C depends on a, b and d but not on j, k, t or et. Furthermore, C is bounded for all |c| ≤ T ,

for any finite number T . (We also use the fact that limt→∞αβ = 1.)
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For any 0< δ < 1, for t sufficiently large,

α=
at + d t2

1+ at + bt + d t2
= 1−

1+ bt

1+ at + bt + d t2
≤ 1−

(1− δ)b
d t

≤ e−(1−δ)b/(d t)

and

β =
bt + d t2

1+ at + bt + d t2
= 1−

1+ at

1+ at + bt + d t2
≤ 1−

(1− δ)a
d t

≤ e−(1−δ)a/(d t).

Using these estimates along with (3.8) we see that for all t sufficiently large, for all 1≤ j ≤ k,

|R j,k(t, c)| ≤ Ce−k(1−δ)a/(d t)e− j(1−δ)b/(d t)

j∑

p=0

1

(d t)2p

�
j

p

��
k

p

�

uniformly in |c| ≤ c3.

Suppose that
p

jk/(d t) = n. Then

e−k(1−δ)a/(d t)e− j(1−δ)b/(d t)

= exp
�
−(1−δ)

�
a
p

k/ j + b
p

j/k
�

n
�

≤ exp

�
−2(1−δ)

p
abn

�

= exp
�
−2(1−δ)

p
d + 1n

�
,

where, for the inequality we take the minimum of aθ+ b/θ and for the equality we use the fact that

ab = d + 1. Combined with (4.7) this shows that when
p

jk/(d t) = n

|R j,k(t, c)| ≤ C j exp
�
−2((1−δ)

p
d + 1− 1)n

�
. (4.9)

Let An = {( j, k)|n≤
p

jk/(d t)< n+ 1}. Then for any M and 0< δ < 1− 1p
d+1

∑
p

jk/(d t)≥M

|R j,k(t, c)|=
∞∑

n=M

∑

( j,k)∈An

|R j,k(t, c)|. (4.10)

We note that the cardinality of An is less than

3nd2 t2 log((n+ 1)d t). (4.11)

This is because ( j, k) ∈ An implies that

n2d2 t2

j
≤ k ≤

(n+ 1)2d2 t2

j
and j ≤ (n+ 1)d t (4.12)

and summing on j we get (4.11).
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It follows from (4.9)–(4.12) that for d t >> 1

∑
p

jk/(d t)≥M

|R j,k(t, c)|

≤ C(d t)4
∞∑

n=M

n4 exp
�
−2((1−δ)

p
d + 1− 1)n

�

≤ C ′
(d t)4

(1−δ)
p

d + 1− 1
M4 exp

�
−2((1−δ)

p
d + 1− 1)M

�
.

Clearly, if we choose δ < 1− 1p
d+1

, there exists a constant B, such that when M = Bu log t, this last

term is o(1) as t →∞.

5 Proof of Theorem 1.4 when (c1,c2) = (c,c) and E(G1G2)> 0

In this section we prove Theorem 1.4 in case 1. with the additional condition that E(G1G2) > 0. In

fact, we initially take

E(G1G2) = 1. (5.1)

We remove this restriction in the continuation of the proof of Theorem 1.4 on page 1450.

To proceed we need several estimates of parameters we are dealing with as t → ∞. They follow

from the definitions in (3.5)–(3.6). (In all that follows, up to page 1450, we assume that (5.1)

holds.)

Lemma 5.1. As t →∞

1−α =
b

d t
−

1+ b2

(d t)2
+O(t−3) (5.2)

1− β =
a

d t
−

1+ a2

(d t)2
+O(t−3)

(1−α)(1− β) =
d + 1

(d t)2
−

a(1+ b2) + b(1+ a2)

(d t)3
+O(t−4)

et−2 = 1− θ =
1

(d t)2
−

a+ b

(d t)3
+O(t−4)

α j = e−b j/(d t)+O( j2/t2)

β k = e−ak/(d t)+O(k2/t2).

Also

− (d + 2)γ+ d(a+ b) = 2((d + 2)− (a+ b)) =−2ζ (5.3)

aγ− d = (a− 1)2

bγ− d = (b− 1)2.
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Proof

1−α =
1+ bt

1+ at + bt + d t2

=
1+ bt

d t2

1

1+ a(d t)−1+ b(d t)−1+ d−1 t−2

=
1+ bt

d t2
(1− a(d t)−1− b(d t)−1+O(t−2))

=
b

d t
+

d − b(a+ b)

d2 t2
+O(t−3)

=
b

d t
−

1+ b2

d2 t2
+O(t−3).

The rest of the lemma follows similarly.

Proof of Theorem 1.4 when c1 = c2 = c and E(G1G2) = 1. We prove this theorem by establishing

the positivity conditions on the coefficients R j,k(t, c), as discussed in Remark 4.2. To begin let us

note that it is easy to see from Lemma 3.2, that Pj,k(t)≥ 0 for all 0≤ j, k <∞, with the exception of

P0,0(t). This must be the case because exp(P(a, b,λ1,λ2)) is the Laplace transform of an infinitely

divisible random variable, as we remark following the proof of Lemma 2.1.

By (3.19) and Lemma 5.1

Q j,0(t) = −
(γt2(α− 1) + t(2α− 1))

t̄2
α j−1 (5.4)

=
1

t̄2

�
(γb− d)t

d
+O(1)

�
α j−1

=

�
(b− 1)2

d2 t
+O(1/t2)

�
α j−1.

Similarly

Q0,k(t) =

�
(a− 1)2

d2 t
+O(1/t2)

�
β k−1. (5.5)

Thus we see that there exists a t1 sufficiently large such that for all t ≥ t1, R j,0(t, c) and R0,k(t, c)

are both positive for all j, k ≥ 1.

We now examine R j,k(t, c) for 1≤ j ≤ k. We write

R j,k(t, c) =

j∑

p=0

R j,k,p(t, c). (5.6)
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Using (3.20) and (3.16) we see that

R j,k,p(t, c)

α j−1β k−1
(5.7)

=
αβet−2p

et2

�
j

p

��
k

p

�
1

p+ 1

( j − p)(k− p)

jk
+

c2et−2p

t̄2

�
j

p

��
k

p

�

�
−γt2

�
(1−α)(1− β)−

(1− β)p
j
−
(1−α)p

k
+ et−2

j − p

j

k− p

k

�

+t

�
α

�
1− β −

p

k

�
+ β

�
1−α−

p

j

���
.

When p = 0 we get

R j,k,0(t, c)

α j−1β k−1
=
αβ

et2
+

c2

t̄2

�
−γt2

�
(1−α)(1− β) + et−2

�
+ t
�
α(1− β) + β(1−α)

��

which is independent of j, k. Using Lemma 5.1 we see that

−γt2
�
(1−α)(1− β) + et−2

�
+ t
�
α(1− β) + β(1−α)

�

=−
(d + 2)

d2
γ+

a+ b

d
+O

�
1

t

�

=
−(d + 2)γ+ d(a+ b)

d2
+O

�
1

t

�

=
−2ζ

d2
+O

�
1

t

�
.

Using this and Lemma 5.1 again we get

R j,k,0(t, c)

α j−1β k−1
=

1− 2c2(ζ/d) +O (1/t)

d2 t2
(5.8)

where the O (1/t) term is independent of j and k.

We now simplify the expression of the other coefficients R j,k,p(t, c), 1≤ p ≤ j. Set

R j,k,p(t, c)

α j−1β k−1
= et−2p

�
j

p

��
k

p

��
1

et2
F j,k,p(t) +

c2

t̄2
A j,k,p(t)

�
(5.9)

where

F j,k,p(t) = αβ
1

p+ 1

( j − p)(k− p)

jk
(5.10)

and

A j,k,p(t)

=−γt2

�
(1−α)(1− β)−

(1− β)p
j
−
(1−α)p

k
+ et−2

j − p

j

k− p

k

�

+t

�
α

�
1− β −

p

k

�
+ β

�
1−α−

p

j

��
.
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Using Lemma 5.1 we have

−γt2

�
(1−α)(1− β)−

(1− β)p
j
−
(1−α)p

k
+ et−2

j − p

j

k− p

k

�

=−
γ

d2

�
d + 1−

(bd t − (1+ b2))p

k
−
(ad t − (1+ a2))p

j
+

j − p

j

k− p

k

�

+O

�
1

t

�

=
γ

d2

�
−(d + 2) +

(bd t − b2)p

k
+
(ad t − a2)p

j
−

p2

jk

�
+O

�
1

t

�
(5.11)

=
γ

d2

�
−(d + 2) +

b(d t − b)p

k
+

a(d t − a)p

j
−

p2

jk

�
+O

�
1

t

�

and

t

�
α

�
1− β −

p

k

�
+ β

�
1−α−

p

j

��
(5.12)

=
a

d

�
1+

p

j

�
+

b

d

�
1+

p

k

�
−

pt

j
−

pt

k
+O

�
1

t

�

=
1

d

�
a+ b−

p(d t − a)

j
−

p(d t − b)

k

�
+O

�
1

t

�
.

In (5.11) and (5.12) the expressions O (1/t) are not necessarily the same from line to line. Never-

theless, it is important to note that they are independent of p, j and k. That is there exists an M > 0

such that all terms given as O (1/t) in (5.11) and (5.12) satisfy

−
M

t
< O

�
1

t

�
<

M

t
.

This is easy to see since the O (1/t) terms, in addition to depending on t, depend on a, b, p/ j and

p/ j ≤ p/k ≤ 1.

Using (5.11), (5.12) we have

A j,k,p(t) =
γ

d2

�
−(d + 2) +

b(d t − b)p

k
+

a(d t − a)p

j
−

p2

jk

�
(5.13)

+
1

d

�
a+ b−

p(d t − a)

j
−

p(d t − b)

k

�
+O

�
1

t

�

=
−(d + 2)γ+ d(a+ b)

d2

+
(γa− d)p(d t − a)

jd2
+
(γb− d)p(d t − b)

kd2
−
γp2

jkd2
+O

�
1

t

�

=
−2ζ

d2
+
(a− 1)2p(d t − a)

jd2
+
(b− 1)2p(d t − b)

kd2
−
γp2

jkd2
+O

�
1

t

�
.

where, for the final equality we use (5.3).
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Note that

B j,k,p(t) :=
(a− 1)2p(d t − a)

j
+
(b− 1)2p(d t − b)

k

≥ 2p|(a− 1)(b− 1)|
p
(d t − a)(d t − b)

p
jk

= 2p|d + 2− (a+ b)|
p
(d t − a)(d t − b)

p
jk

.

(For the inequality use α2+ β2 ≥ 2αβ .) Therefore since ζ = a+ b− (d + 2)> 0,

A j,k,p(t) ≥
2

d2


p

p
(d t − a)(d t − b)

p
jk

− 1


ζ−

γp2

d2 jk
+O

�
1

t

�

=
2

d2


 p(d t +O(1))

p
jk

− 1


ζ−

γp2

d2 jk
+O

�
1

t

�
(5.14)

=
2

d2


 pd t
p

jk


1+O

�
1

t

�
−

γp

ζ
p

jkd t


− 1


ζ+O

�
1

t

�
.

Thus we see that there exists a function εt , depending only on a and b such that

A j,k,p(t)≥
2

d2


 pd t
p

jk
(1− εt)− 1


ζ+O

�
1

t

�
, (5.15)

where

lim
t→∞

εt = 0, (5.16)

and, as we point out above the O (1/t) is independent of p, j and k.

Remark 5.1. We interrupt this proof to make some comments which may be helpful in understand-

ing what is going on. Note that if

p
jk

d t
≤ 1− eε for some eε > 0 (5.17)

then

R j,k(t, c)≥ R j,k,0(t, c)≥ (1−δ)
1− 2c2(ζ/d)

d2 t2
α j−1β k−1 as t →∞ (5.18)

for all δ > 0. This follows from (5.8) and (5.15) since when (5.17) holds

A j,k,p(t)≥
2

d2

�
1− εt

(1− eε) − 1

�
ζ+O

�
1

t

�
> 0,

for all p ≥ 1, for all t is sufficiently large. Consequently when (5.17) holds R j,k(t, c) > 0 for all t is

sufficiently large when

c2 <
d

2ζ
.
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(Here we also use (5.16).)

(When ζ ≤ 0, (5.18) shows that R j,k(t, c) > 0 for all c ∈ R1. This is what we expect. (See the

paragraph containing (2.4).)

We use the next two lemmas to complete the proof of Theorem 1.4, in case 1.

Lemma 5.2. For any N0 ∈ R+, we can find c0 > 0 and tc0
<∞ such that for all t ≥ tc0

R j,k,p(t, c)> 0 (5.19)

for all |c| ≤ c0 and all p, j and k for which
p

jk ≤ N0 t.

Proof This follows from (5.8) when p = 0. Therefore, we can take p ≥ 1.

We first show that for any N ∈ R+, R j,k,p(t, c) > 0 when
p

jk = Ndt, for all t sufficiently large. By

Remark 5.1 we can assume that N ≥ 1− eε. It follows from (5.15) that

A j,k,p(t)≥
2

d2

�
p

N
(1− εt)− 1

�
ζ+O

�
1

t

�
,

where εt satisfies (5.16). Therefore when p ≥ ΛN for any Λ > 1, A j,k,p(t) > 0, and hence

R j,k,p(t, c)> 0, for all t sufficiently large.

Now suppose that

p < ΛN . (5.20)

Since
p

jk = Ndt we see that

γp2

d2 jk
≤
γΛ2

d4 t2
= O(1/t2), (5.21)

where the O(1/t2) term is independent of p, j and k.

Note that by (5.1) and (5.10)

1

et2
F j,k,p(t) =

( j − p)(k− p)

d2 t2(p+ 1) jk
+O

�
1

t3

�

Therefore, if in addition to (5.20) we also have ΛN ≤ j/2, so that p < j/2, we see by (5.9), (5.13)

and (5.21) that

1

et2
F j,k,p(t) +

c2

t̄2
A j,k,p(t)

≥
1

d2 t2

�
( j − p)(k− p)

(p+ 1) jk
−

c22ζ

d

�
+O

�
1

t3

�

≥
1

d2 t2

�
1

4(p+ 1)
−

c22ζ

d

�
+O

�
1

t3

�

≥
1

d2 t2

�
1

8ΛN
−

c22ζ

d

�
+O

�
1

t3

�
.
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Therefore we can obtain R j,k,p(t, c)≥ 0 by taking

c2 ≤
d

16Λ′Nζ
(5.22)

for some Λ′ > Λ.

Now suppose that ΛN > j/2. In this case we use (5.13) to see that

A j,k,p(t)≥−
2ζ

d2
+
(a− 1)2p t

2d j
+O(1/t). (5.23)

It is easy to see that the right-hand side of (5.23) is greater than zero for all t sufficiently large since

(a− 1)2p t

2d j
≥

1

4dNΛ
(a− 1)2p t.

Thus we see that for any fixed N , R j,k,p(t, c)> 0 for all t sufficiently large.

Since the O(1/t) terms are independent of p, j and k this analysis works for all j and k satisfying

(5.19), and all 1≤ p ≤ j as long as (5.22) holds with N replaced by N0.

Lemma 5.3. For all N0 and B ∈ R+ we can find a c′0 > 0 and tc′0
<∞ such that for all t ≥ tc′0

R j,k,p(t, c)> 0 (5.24)

for all |c| ≤ c′0 and all 0≤ p ≤ j ≤ k for which

N0 t ≤
p

jk ≤ Bt log t. (5.25)

(The value of N0 in Lemmas 5.2 and 5.3 can be taken as we wish. It will be assigned in the proof of

this lemma.)

Proof As in the proof of Lemma 5.2 we note that by (5.8), we can assume that p ≥ 1.

By adjusting N0 and B we can replace (5.25) by the condition

N0et ≤
p

jk ≤ Bet loget.

Using (5.13), we see that if j ≤ ρet

A j,k,p(t) =
−2ζ

d2
+
(a− 1)2p(d t − a)

jd2
+
(b− 1)2p(d t − b)

kd2

−
γp2

jkd2
+O

�
1

t

�

≥
−2ζ

d2
+
(a− 1)2p(d t − a)

jd2
−
γ

d2
+O

�
1

t

�

≥
−2ζ

d2
+
(a− 1)2

2ρd
−
γ

d2
+O

�
1

t

�
.
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Clearly, there exists a ρ > 0, independent of j and k such that this term is positive. Thus we can

assume that

j ≥ ρet. (5.26)

Furthermore, when
p

jk/et = N , it follows from (3.8) that we can write (5.14) as

A j,k,p(t)≥
2

d2

�
p

N

�
1+O

�
1

t

�
−

γ

ζ(d t)2

�
− 1

�
ζ+O

�
1

t

�
. (5.27)

Let δN = (10 log N/N)1/2. Clearly, if p > (1+ δN )N , the right-hand side of (5.27) is positive for all

t sufficiently large. Therefore, when
p

jk/et = N , we may assume that

p ≤ (1+ δN )N . (5.28)

(The value chosen for δN simplifies calculations made later in this proof.)

In addition we can also assume that

p ≥ p0

for any finite p0, since if p < p0

F j,k,p(t)≥ F j,k,p0
(t)≥ c2A j,k,p(t).

for all c > 0 sufficiently small.

We use the next lemma in the proof of Lemma 5.3. It is proved following the proof of Lemma 5.3.

Lemma 5.4. For j ≤ k, with p and j large and p/ j small

�
j

p

��
k

p

�
=

1

2πp

�
e2 jk

p2

�p

(5.29)

exp

�
−

p

2 j
(p− 1)−

p

2k
(p− 1) +O(p3/ j2)

��
1+O(p−1)

�
.

When et ∈ R+ is large and
p

jk/et = N, under assumptions (5.26) and (5.28)

1

et2p

�
j

p

��
k

p

�
=

1

2πp

�
eN

p

�2p �
1+O(p−1)

�
. (5.30)

Proof of Lemma 5.3 continued We show that under the assumptions (5.26) and (5.28), whenp
jk/et = N , for

N0 ≤ N ≤ B loget, (5.31)

for any 0< B <∞, and t is sufficiently large,

et2

α j−1β k−1

(1+δN )N∑

p=p0

Pj,k,p(t)≥ Ce2N
1

N3/2
(5.32)
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for some C > 0, independent of N , and

t̄2

α j−1β k−1

(1+δN )N∑

p=p0

Q j,k,p(t)≥−De2N
1

N3/2
(5.33)

for some D <∞, independent of N . If (5.32) and (5.33) hold, we can find a c0 > 0 such that for all

c2 ≤ c2
0

(1+δN )N∑

p=p0

R j,k,p(t, c)≥ 0

for all t sufficiently large. Since we have already established that A j,k,p(t) > 0, when p < p0 and

p > (1+δN )N , this completes the proof of Lemma 5.3.

Thus it only remains to prove (5.32) and (5.33). We do (5.32) first. It is considerably easier than

(5.33). By Lemma 3.2 and (5.30)

et2

α j−1β k−1

(1+δN )N∑

p=p0

Pj,k,p(t) (5.34)

=

(1+δN )N∑

p=p0

1

et2p

�
j

p

��
k

p

�
( j − p)(k− p)

(p+ 1) jk

≥ C

(1+δN )N∑

p=p0

1

et2p

�
j

p

��
k

p

�
1

p

≥ C

(1+δN )N∑

p=p0

1

p2

�
eN

p

�2p

.

Here we are using (5.26) and (5.31) which imply that for all t sufficiently large, j >> p.

In order to calculate this last sum we consider the function

fm(y) =
1

ym

�
eN

y

�2y

=
1

ym
e2y(1+log N−log y)

for m≥ 0 and y ≥. We have

f ′m(y) =

�−m

y
+ 2(1+ log N − log y)− 2

�
fm(y) (5.35)

=

�−m

y
+ 2(log N − log y)

�
fm(y).

This has a unique root ym where

log ym+
m

2ym

= log N .

(Clearly, y0 = N and ym ≤ N .) Let ym = N(1+ εm). Then

log(1+ εm) +
m

2N(1+ εm)
= 0.
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Consequently

εm = −
m

2N
+O(N−2),

which implies that

ym = N −
m

2
+O(1/N). (5.36)

Making use of the fact that ym is a root of f ′m(y) we differentiate (5.35) to see that

f ′′m (ym) =

�
m

y2
m

−
2

ym

�
f (ym).

Therefore, by (5.36) when N > 2m, f ′′m (ym)< 0. Consequently, in this case, fm(y) is unimodal, and

sup
y≥2

fm(y) = fm(ym)≤
1

(N −m)m
e2N . (5.37)

Now consider the last line of (5.34). The function being summed is f2(p). Considered as a function

of a real number p, the above discussion shows that f2(p) would be unimodal. Thus, considered as a

function of integer p, f2(p) has a maximum at, at most, two points, at which it is less than 2e2N/N2.

Consequently, to obtain (5.32) we can replace the sum in the last line of (5.34) by an integral and

show that

I1 :=

∫ (1+δN )N

p0

1

r2

�
eN

r

�2r

dr ≥ Ce2N
1

N3/2
. (5.38)

Making the change of variables r = xN we have

I1 =
1

N

∫ 1+δN

p0/N

1

x2

�
e

x

�2xN

d x .

Recall that N0 ≤ N ≤ 2 loget, and that we can take N0 as large as we want, (but fixed and indepen-

dent of t), and that δN = (10 log N/N)1/2. Therefore

I1 ≥
1

N

∫ 1+(10 log N/N)1/2

1−(10 log N/N)1/2

1

x2

�
e

x

�2xN

d x (5.39)

≥
1

2N

∫ 1+(10 log N/N)1/2

1−(10 log N/N)1/2

�
e

x

�2xN

d x .

We write �
e

x

�2xN

= exp
�
2xN(1− log x)

�
.

Set x = 1+ y and note that for |y | small

x(1− log x) = (1+ y)(1− log(1+ y)) = 1−
y2

2
+

y3

6
+O(y4) (5.40)
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as y → 0. Therefore when |y | ≤ (10 log N/N)1/2, so that |y |3N << 1, this shows that

�
e

x

�2xN

= e2N e−y2N+O(y3N) (5.41)

= e2N e−y2N
�

1+O(|y |3N)
�

.

It follows from this that when we make the change of variables x = 1+ y in (5.39) we get

I1 ≥
e2N

4N

∫ (10 log N/N)1/2

−(10 log N/N)1/2
e−y2N d y

≥
e2N

4
p

2N3/2

∫ (20 log N)1/2

−(20 log N)1/2
e−y2/2 d y.

Since ∫ ∞

(20 log N)1/2
e−u2/2 du≤ N−10,

we see that (5.38) follows. Thus we have established (5.32).

Before proceeding to the proof of (5.33) we note that

(1+δN )N∑

p=p0

1

et2p

�
j

p

��
k

p

�
≤

e2N

2N1/2
.

To prove this we use (5.30) and the same argument that enables us to move from a sum to an

integral that is given in (5.34)–(5.38), except that we use (5.37) with m= 1. We continue and then

use (5.41) to get

(1+δN )N∑

p=p0

1

et2p

�
j

p

��
k

p

�
(5.42)

≤
∫ (1+δN )N

p0

1

u

�
eN

u

�2u

du+O

�
e2N

N

�

≤ e2N

∫ δN

0

e−y2N d y +O

�
e2N

N

�
≤

e2N

2N1/2
.

(The term O
�

e2N/N
�

comes from (5.37) and compensates for the fact that the integral approxima-

tion may not properly weight the maximal terms of the sum.)

We now obtain (5.33). When
p

jk = etN , by (5.9) and (5.27),

t̄2

α j−1β k−1
Q j,k,p(t)

=
1

et2p

�
j

p

��
k

p

�
A j,k,p(t)

≥
2

d2et2p

�
j

p

��
k

p

���
p

N
− 1

�
ζ+O

�
1

t

��
.
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By (5.42) we see that
(1+δN )N∑

p=p0

1

et2p

�
j

p

��
k

p

�
O

�
1

t

�
= O

�
e2N

t

�

Therefore, to obtain (5.33), it suffices to show that for some D <∞
(1+δN )N∑

p=p0

1

et2p

�
j

p

��
k

p

��
p

N
− 1

�
≥−De2N

1

N3/2
. (5.43)

Here we use the fact that N ≤ B loget for some 0< B <∞.

Remark 5.2. Since the proof of (5.43) is rather delicate we make some heuristic comments to

explain how we proceed. When
p

jk = etN the term et−2p
� j

p

��k

p

�
, as a function of p, is exp(2N)

times values that are sort of normally distributed with mean p = N , and, roughly speaking,

(1+δN )N∑

p=p0

1

et2p

�
j

p

��
k

p

�
∼ Ce2N

1

N1/2
,

for all t sufficiently large. (In fact the upper bound is given in (5.42).) This is too large to enable us

to get (5.43) so we must make use of the factors
�

p

N
− 1
�

, which is an odd function with respect to

p = N , to get the cancellations that allow us to obtain (5.43). However, because we are canceling

terms, we must take account of the error in Stirling’s approximation; (see (5.52)). To do this we

need to show that the estimate in (5.43) remains the same even when we eliminate the terms in the

summand that are not close to N .

Proof of Lemma 5.3 continued Note that by (5.30)

N(1−N−1/4)∑

p=p0

1

et2p

�
j

p

��
k

p

�
≤ C

N(1−N−1/4)∑

p=p0

f1(p).

The fact that fm(y) is unimodal on y > m/2 implies that f1(p) is increasing on the interval

[p0, N(1− N−1/4)]. Therefore

N(1−N−1/4)∑

p=p0

1

p

�
eN

p

�2p

≤ CN f1(N(1− N−1/4))

≤ C

�
e

1− N−1/4

�2N(1−N−1/4)

.

= Ce2N(1−N−1/4)(1−log(1−N−1/4)).

≤ Ce2N(1−N−1/4)(1+N−1/4+N−1/2/2+o(N−1/2))

≤ Ce2N−N1/2/2.

Let δ′N = N−1/4. The argument immediately above shows that to prove (5.43), it suffices to show

that

J1 :=

(1+δN )N∑

p=(1−δ′N )N

1

et2p

�
j

p

��
k

p

��
p

N
− 1

�
≥−De2N

1

N3/2
. (5.44)
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By (5.30)

J1 =
1

2π

(1+δN )N∑

p=(1−δ′N )N

�
eN

p

�2p� 1

N
−

1

p

��
1+O

�
1

p

��
.

Using (5.42) together with the fact that since p ≥ (1− δ′N )N , 1/p ≤ 2/N , we see that

(1+δN )N∑

p=(1−δ′N )N

�
eN

p

�2p� 1

N
−

1

p

�
O

�
1

p

�
≥ −

(1+δN )N∑

p=(1−δ′N )N

�
eN

p

�2p 1

p
O

�
1

p

�

≥ −Ce2N
1

N3/2
.

Therefore, to obtain (5.44) that it suffices to show that

(1+δN )N∑

p=(1−δ′N )N

�
eN

p

�2p� 1

N
−

1

p

�
≥ −De2N

1

N3/2
. (5.45)

In a minor modification of the analysis of fm(y), we write

h(y) :=

�
eN

y

�2y � 1

N
−

1

y

�
= exp

�
2y
�
1+ log N − log y

��� 1

N
−

1

y

�
.

Therefore

h′(y) =

��
2
�
1+ log N − log y

�
− 2
�� 1

N
−

1

y

�
+

1

y2

��
eN

y

�2y

.

Let y = (1+ω)N . Then h′(y) = 0 when

−2ω log(1+ω) +
1

N(1+ω)
= 0.

This equation is satisfied when

ω =±
1
p

2N
+O

�
1

N

�
.

Note that when y = (1+ω)N

�
eN

y

�y

=

�
e

1+ω

�(1+ω)N
≤ eN ,

because (e/x)x is maximized when x = 1. Therefore

�
eN

y

�2y � 1

N
−

1

y

�
≤

e2N

N

ω

1+ω

from which we get

sup
1≤y≤(1+δN )N

|h(y)| ≤ C

�
e2N

N3/2

�
. (5.46)
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It is easy to see that h(y) is negative for 1 ≤ y ≤ N and that it decreases to its minimum value at

N(1−ω) and then increases to zero at y = N . It then increases to its maximum value at N(1+ω)

and then decreases for N(1+ω)≤ y ≤ (1+ δN )N . Consequently the difference between

(1+δN )N∑

p=(1−δ′N )N
h(p) and

∫ (1+δN )N

(1−δ′N )N
h(p) dp

differs by at most 4 max1≤p≤(1+δN )N
|h(p)|. Since this is O(e2N/N3/2) by (5.46), and we are only

trying to obtain (5.45), we can neglect this discrepancy. Therefore to obtain (5.45) we need only

show that ∫ (1+δN )N

(1−δ′N )N

1

p

�
eN

p

�2p� p

N
− 1

�
dp ≥−D′

e2N

N3/2
. (5.47)

Under the change of variables p = xN the integral in (5.47) is equal to

∫ 1+δN

1−δ′N

1

x

�
e

x

�2xN

(x − 1) d x . (5.48)

As in (5.40), with x = 1+ y and y4N << 1, we have

�
e

x

�2xN

= e2N e−y2N+y3N/3+O(y4)N (5.49)

= e2N e−y2N

�
1+

y3N

3
+O(y4)N

�
.

Therefore, with the change of variables x = 1+ y we write the integral in (5.48) as

e2N

∫ δN

−δ′N

y

1+ y
e−y2N

�
1+

y3N

3
+O(y4)N

�
d y. (5.50)

We use (1+ y)−1 = (1− y + y2− y3+O(y4)) to write

y

1+ y

�
1+

y3N

3
+O(y4)N

�

= y − y2+ y3+
y4N

3
− y4+O(y5)N .

Using this we see that (5.50)

= e2N

∫ δN

−δ′N
e−y2N

�
y − y2+ y3+

y4N

3
− y4+O(y5)N

�
d y. (5.51)

Recall that δN = (10 log N/N)1/2 and δ′N = N−1/4 . Since

e2N

∫ ∞

(10 log N/N)1/2
e−y2N d y ≤

e2N

N10
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and

e2N

∫ −N−1/4

−∞
e−y2N d y ≤ e2N−N1/2

,

errors we can ignore in obtaining (5.33), we can simplify matters by replacing the integral in (5.51)

by

e2N

∫ ∞

−∞
e−y2N

�
y − y2+ y3+

y4N

3
− y4+O(y5)N

�
d y

=−e2N

∫ ∞

−∞
e−y2N

�
y2−

y4N

3
+ y4+O(y5)N

�
d y

=−e2N

∫ ∞

−∞
e−y2

�
y2

N3/2
−

y4

3N3/2
+

y4

N5/2
+O(y5)N−2

�
d y

=−
e2N

N3/2

∫ ∞

−∞
e−y2

�
y2−

y4

3

�
d y +O

�
e2N

N2

�
.

Since

1
p
π

∫ ∞

−∞
e−y2

�
y2−

y4

3

�
d y

=
1
p

2π

∫ ∞

−∞
e−y2/2

�
y2

2
−

y4

12

�
d y

=
1

2
−

1

4
=

1

4
,

we obtain (5.47). This completes the proof of Lemma 5.3.

Proof of Lemma 5.4 By Stirlings’s formula for integers q,

q!=
p

2πqq+1/2e−q
�

1+O(q−1)
�

. (5.52)

Therefore, since j is large and p/ j is small, terms of the form

�
1+O( j−1)

�
�
1+O(p−1)

��
1+O(( j− p)−1)

� =
�

1+O(p−1)
�

.
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Using this we see that

�
j

p

�
=

j!

( j − p)!p!

=
1
p

2π

j j+1/2

( j − p)( j−p+1/2) pp+1/2

�
1+O(p−1)

�

=
1

p
2π p

�
j

p

�p j j−p+1/2

( j − p)( j−p+1/2)

�
1+O(p−1)

�

=
1

p
2π p

�
j

p

�p 1
�

1− p

j

�( j−p+1/2)

�
1+O(p−1)

�

=
1

p
2π p

�
j

p

�p

e−( j−p+1/2) log(1−p/ j)
�

1+O(p−1)
�

=
1

p
2π p

�
j

p

�p

e( j−p+1/2)(p/ j+p2/(2 j2)+O(p3/ j3))
�

1+O(p−1)
�

=
1

p
2π p

�
e j

p

�p

e(−p2/(2 j)+p/(2 j)+O(p3/ j2))
�

1+O(p−1)
�

=
1

p
2π p

�
e j

p

�p

e(−p(p−1)/(2 j)+O(p3/ j2))
�

1+O(p−1)
�

.

Since this also holds with j replaced by k we get (5.29).

To get (5.30) we multiply each side of (5.29) by et−2p and substitute for
p

jk/et = dN and use the

fact that under the assumptions (5.26) and (5.28),

p3

j2
≤

p2

j
≤
(1+δN )

2N2

dρ t
.

Consequently, for all t sufficiently large

exp

�
−

p

2 j
(p− 1)−

p

2k
(p− 1) +O(p3/ j2)

�
= 1+O

�
N2/t

�
.

Proof of Theorem 1.4 when c1 = c2 = c and E(G1G2) > 0 concluded Consider the Gaussian

random variable (G1/γ, G2/γ) where γ = (E(G1G2))
1/2. This random variable has covariance Γ in

(2.1). By Lemma 5.3 there exists a c′0 > 0 such that (G1/γ + c, G2/γ + c) has infinitely divisible

squares for all |c| ≤ c′0. Let ec be the supremum of the c′0 for which this holds. Since, by hypothesis,

(1.4) does not hold, ec is finite. Therefore, (G1/γ+ c, G2/γ+ c) has infinitely divisible squares for all

|c|< ec and not for any c or which |c|> ec. Translating this into the notation used in Theorem 1.4 we

have (G1/γ+ cα, G2/γ+ cα) has infinitely divisible squares for all |α| < ec/c and not for any |α| for

which |α|> ec/c.

Therefore, to complete the proof of Theorem 1.4 when c1 = c2 = c and E(G1G2) > 0 we need

only show that (G1/γ+ c, G2/γ+ c) has infinitely divisible squares for |c| = ec. Consider the Laplace
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transform of (G1/γ+c, G2/γ+c) in (3.1). Since it only depends on c2 we can simplify the notation by

taking c > 0. Let cm ↑ ec. Abbreviate the third line of (3.1) by exp
�

P + c2Q
�

. Thus exp
�

P + c2
mQ
�

is

the Laplace transform of an infinitely divisible random variable. Therefore, for each t > 0 the power

series expansion of P+ c2
mQ in s1 and s2 has positive coefficients, except for the constant term. Thus

if we write

P =
∑

j,k

a j,ks
j

1sk
2, Q =

∑

j,k

b j,ks
j

1sk
2

we see that a j,k+c2
m b j,k ≥ 0 for each ( j, k) 6= (0,0). Letting cm ↑ ec we therefore have a j,k+ec2 b j,k ≥ 0

for each ( j, k) 6= (0,0). This shows that exp
��

P +ec2Q
��

is the Laplace transform of an infinitely

divisible random variable.

Remark 5.3. In the remainder of this paper we continue to prove Theorem 1.4 for all c1, c2 and

arbitrary covariance E(G1G2). In each case, as immediately above, because (1.4) does not hold,

there exists a c′ <∞ such that (G1 + cc1, G2 + cc2) does not have infinitely divisible squares for all

c such that |c|> c′. Therefore, if we can show that there exists some c 6= 0 for which both

(G1+ cc1, G2+ cc2) and (G1− cc1, G2− cc2) (5.53)

have infinitely divisible squares, we can use the arguments in the preceding three paragraphs to

show that there exists a critical point ec such that (G1+ cc1, G2 + cc2) has infinitely divisible squares

for all |c| ≤ ec and not for |c|> ec. Consequently, in the remainder of this paper, in which we consider

different cases of c1, c2 and arbitrary covariance E(G1G2) we will only show that (5.53) holds for

some c 6= 0.

6 Proof of Theorem 1.4 when (c1,c2) = (c,±c)

We first assume that E(G1G2)> 0 and that (c1, c2) = (c,−c). In this case we have

E
�

e−(λ1(G1+c)2+λ2(G2−c)2)/2
�

(6.1)

=
1

(H(a, b,λ1,λ2))
1/2

exp

�
−c2

�
ρλ1λ2+λ1+λ2

2H(a, b,λ1,λ2)

��
,

where ρ = a+ b+ 2. This is exactly the same as (3.1) except that γ is replaced by ρ. We now trace

the proof in Sections 3–5 and see what changes. Obviously much remains the same. In particular

the power series P is unchanged. The basic expression for Q in (3.9) is essentially the same except

that γ is replaced by ρ. Thus Lemma 3.3 is also essentially the same except that γ is replaced by ρ.

The analysis in Section 4 only uses the fact that γ <∞, and since ρ <∞, Lemma 4.1 also holds in

this case.

In going through Section 5 we see the coefficients of Q change, but they still lead to essentially the

same inequalities that allow us to complete the proof. In place of (5.3) we have

− (d + 2)ρ+ d(a+ b) = −2(d + 2+ (a+ b)) := −2eζ (6.2)

aρ− d = (a+ 1)2

bρ− d = (b+ 1)2.
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Using this in (5.4) and (5.5), with γ replaced by ρ, we get

Q j,0(t) =

�
(b+ 1)2

d2 t
+O(1/t2)

�
α j−1,

and

Q0,k(t) =

�
(a+ 1)2

d2 t
+O(1/t2)

�
β k−1.

We also see that we get (5.7) with γ replaced by ρ and consequently, in place of (5.8), we get

R j,k,0(t, c)

α j−1β k−1
=

1− 2c2(eζ/d) +O
�

t−1
�

d2 t2
.

Of course the key term in the proof is the analogue of A j,k,p(t). We get the third line of (5.13) with γ

replaced by ρ, which by (6.2) leads to (5.14) with ζ replaced by eζ and γ replaced by ρ. Therefore,

all the subsequent lower bounds for A j,k,p(t) that are in Section 5 hold when ζ is replaced by eζ. In

the proof of (5.33) in Section 5 the only property of ζ that is used is that is is positive. Since eζ is

also positive the same argument completes the proof of Lemma 5.3 and consequently, by Remark

5.3, of Theorem 1.4, when E(G1G2)> 0 and (c1, c2) = (c,−c).

When E(G1G2)< 0 and (c1, c2) = (c,−c) we note that

((G1+ c)2, (G2− c)2) = ((G1+ c)2, (−G2+ c)2).

Now E(G1(−G2)) > 0 and we are in the case proved on page 1450. Therefore, by Remark 5.3,

Theorem 1.4 holds in this case.

Finally when E(G1G2)< 0 and (c1, c2) = (c, c) we note that

((G1+ c)2, (G2+ c)2) = ((G1+ c)2, (−G2− c)2).

Now E(G1(−G2))> 0 and we are in the case proved in the beginning of this section.

7 Proof of Theorem 1.4 when (c1,c2) = (c,0)

We first assume that E(G1G2)> 0. In this case we have

E
�

e−(λ1(G1+c)2+λ2G2
2)/2
�

=
1

(H(a, b,λ1,λ2))
1/2

exp

�
−c2

�
bλ1λ2+λ1

2H(a, b,λ1,λ2)

��
.

The term in the numerator of the exponential lacks the λ2 that is present in (3.1) and (6.1). There-

fore, the formulas for the coefficients of the power series for the analogue of Q, which we denote by
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eQ, are different. It is easy to see that in place of (3.21) we get

eQ(s1, s2, t) = −
(bt2(1− s1)(1− s2) + t(1− s1))

t̄2

·
∞∑

n=0

(αs1+ βs2− θαβs1s2)
n

= −
(bt2+ t − (bt2+ t)s1− bt2s2+ bt2s1s2)

t̄2

·
∞∑

n=0

(αs1+ βs2− θαβs1s2)
n.

Using this, in place of Lemma 3.3, we get

Lemma 7.1. For all t sufficiently large, and j, k ≥ 1

eQ j,0(t) =
(bt2+ t)(1−α)

t̄2
α j−1 (7.1)

and

eQ0,k(t) =
bt2(1− β)− β t

t̄2
β k−1.

Furthermore, for all t sufficiently large and for all 1≤ j ≤ k

eQ j,k(t)

=
α j−1β k−1

t̄2

j∑

p=0

et−2p

�
j

p

��
k

p

�

�
−bt2

�
(1−α)(1− β)−

(1− β)p
j
−
(1−α)p

k
+ et−2

j − p

j

k− p

k

�

+tβ

�
1−α−

p

j

��
.

The analysis in Section 4 only uses the fact that γ <∞. Since b <∞, Lemma 4.1 also holds in this

case.

In going through Section 5 we see the coefficients of eQ change, but they still lead to similar inequal-

ities that allow us to complete the proof. Using (7.1), (7.2) and (5.2) we get

eQ j,0(t) =

�
b2

d2 t
+O(1/t2)

�
α j−1

and

eQ0,k(t) =

�
d + 1

d2 t
+O(1/t2)

�
β k−1,

since ab = d + 1.
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We next consider the analogue of (5.6) which we denote by eR j,k(t). We see that in computing this

the first two lines of the analogue of (5.7) remain unchanged. The last two lines of (5.7) are now

�
−bt2

�
(1−α)(1− β)−

(1− β)p
j
−
(1−α)p

k
+ et−2

j − p

j

k− p

k

�

+tβ

�
1−α−

p

j

��
. (7.2)

Therefore, in place of (5.8), we get

eR j,k,0(t)

α j−1β k−1
=

1− 2c2(b/d) +O
�

t−1
�

d2 t2
.

Using (5.11), with γ replaced by b and Lemma 5.1, we see that (7.2)

=−
b

d2

�
(ab+ 1)−

bp(d t − b)

k
−

ap(d t − a)

j
+

p2

jk

�

+

�
b

d
−

p(d t − a)

d j

�
+O

�
1

t

�
.

=−
2b

d2
+

p(d t − a)

d2 j
+

b2p(d t − b)

d2k
−

bp2

d2 jk
+O

�
1

t

�

≥
2

d2


p

p
(d t − a)(d t − b)

p
jk

− 1


 b−

bp2

d2 jk
+O

�
1

t

�
.

Comparing this inequality to the first line of (5.14) we see that we have exactly what we need

to complete the proof in this case. The rest of the argument in Section 5 only uses the fact that

ζ > 0. It is now replaced by b > 0. Thus we get Lemma 5.3 and, by Remark 5.3, Theorem 1.4,

when (c1, c2) = (c, 0) and E(G1G2) > 0. However this proof holds for c positive or negative, so if

E(G1G2)< 0, we simply note that

(G2
1 , (G2+ c)2)

law
= (G2

1 , (−G2− c)2).

Since E(G1(−G2)) > 0 we are in the case just proved so, by Remark 5.3, Theorem 1.4 holds in this

case also.

8 Proof of Theorem 1.4 for (c1,c2) ∈ R1×R1

It is simple to complete the proof from the results already obtained. Suppose neither c1 nor c2 are

equal to zero. Then, clearly,

((G1+ cc1)
2, (G2+ cc2)

2)

is infinitely divisible, if and only if

((G1/c1+ c)2, (G2/c2+ c)2)
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is infinitely divisible. We have already shown that there exists a critical point ec > 0 such that

((G1/c1+ c)2, (G2/c2+ c)2)

is infinitely divisible for all |c| ≤ ec and not for |c| > ec. Consequently ec is also a critical point for the

infinite divisibility of

((G1+ c1c)2, (G2+ c2c)2).

If c1 = 0 we repeat this argument for

(G2
1 , (G2+ cc2)

2).
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