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Abstract

Let G = (G4, G,) be a Gaussian vector in R? with E(G,G,) # 0. Let ¢;,c, € R'. A necessary and
sufficient condition for the vector ((G; +c;a)?, (G, +c,a)?) to be infinitely divisible for all a € R!
is that .
ri,izc—lri,po Vi<i#j=<2. (0.1)
j

In this paper we show that when (0.1) does not hold there exists an 0 < a, < oo such that
((Gy + c;a)%, (G, + c,a)?) is infinitely divisible for all |a| < a, but not for any |a| > a,.
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1 Introduction

Letn=(",...,M,) be an R" valued Gaussian random variable. 1) is said to have infinitely divisible
squares if n? := (nf, . 'r)rzl) is infinitely divisible, i.e. for any r we can find an R" valued random
vector Z, such that
law

772 = r,1+"'+Zr,r:
where {Z,;}, j = 1,...,r are independent identically distributed copies of Z.. We express this by
saying that n? is infinitely divisible.
Paul Lévy proposed the problem of characterizing which Gaussian vectors have infinitely divisible
squares. It is easy to see that a single Gaussian random variable has infinitely divisible squares.
However, even for vectors in R? this is a difficult problem. It seems that Lévy incorrectly conjectured
that not all Gaussian vectors in R? have infinitely divisible squares. If he had said R® his conjecture
would have been correct.

Lévy’s problem was solved by Griffiths and Bapapt [1; 7], (see also [9, Theorem 13.2.1]).

Theorem 1.1. Let G = (G, ...,G,) be a mean zero Gaussian random variable with strictly positive
definite covariance matrix I' = {T'; ;} = {E(G;G;)}. Then G? is infinitely divisible if and only if there
exists a signature matrix A such that

NTE N is an M matrix. 1.1

We need to define the different types of matrices that appear in this theorem. Let A = {q; ;}1<; j<n
be an n x n matrix. We call A a positive matrix and write A> 0 if g; ; > 0 for all i, j. We say that A
has positive row sums if Z;Zl a;;j=0forall1<i<n.

The matrix A is said to be an M matrix if

(1) a;;<0 forall i #j.

(2) Ais nonsingular and Al>o0.

A matrix is called a signature matrix if its off-diagonal entries are all zero and its diagonal entries are
either one or minus one. The role of the signature matrix is easy to understand. It simply accounts
for the fact that if G has an infinitely divisible square, then so does (¢,G,...,€,G,) for any choice
of ¢, =+1,i=1,...,n. Therefore, if (1.1) holds for .4 with diagonal elements n,...,n,

(NT7'H) " = AT 2 0

since the inverse of an M matrix is positive. Thus (n,Gy,...,n,G,) has a positive covariance matrix
and its inverse is an M matrix. (For this reason, in studying mean zero Gaussian vectors with
infinitely divisible squares one can restrict ones attention to vectors with positive covariance.)

The natural next step was to characterize Gaussian processes with infinitely divisible squares which
do not have mean zero. We set n; = G; +¢;, EG; =0,i=1,,...,n. Let I" be the covariance matrix
of (Gy4,...,G,) and set

c:=(c1,.--5Cpn)-
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Set

G+c:=(Gy+cy,...,G+cp) (1.2)
and
(G+c)?:=((Gy+¢1)%...,(Gy+c)?).
Results about the infinite divisibility of (G + ¢)? when ¢; = --- = ¢, are given in the work of N.

Eisenbaum [2; 3] and then in joint work by Eisenbaum and H. Kaspi [4], as a by product of their
characterization of Gaussian processes with a covariance that is the O-potential density of a sym-
metric Markov process. We point out later in this Introduction how Gaussian vectors with infinitely
divisible squares are related to the local times of the Markov chain that is determined by the covari-
ance of the Gaussian vector. It is this connection between Gaussian vectors with infinitely divisible
squares and the local times of Markov chains, and more generally, between Gaussian processes with
infinitely divisible squares and the local times of Markov processes, that enhances our interest in the
question of characterizing Gaussian vectors with infinitely divisible squares.

Some of the results in [2; |3; 4] are presented and expanded in [9, Chapter 13]. The following
theorem is taken from [9, Theorem 13.1.1 and Theorem 13.3.1].

Theorem 1.2. Let G = (Gy,...,G,) be a mean zero Gaussian random variable with strictly positive
definite covariance matrix I' = {I'; ;} = {E(G;G;)}. Let 1 =(1,...,1) € R". Then the following are
equivalent:

(1) (G + 1a) has infinitely divisible squares for all a € R';

(2) For & = N(0,b?) independent of G, (G, +&,...,G, + &,&) has infinitely divisible squares for
some b # 0. Furthermore, if this holds for some b # 0, it holds for all b € R, with N(0,0) = 0.

(3) T'!is an M matrix with positive row sums.
In [8], Theorem 1.2]is generalized so that the mean of the components of G + ¢ in (1.2) need not be

the same. In this generalization certain trivial cases spoil the simplicity of the final result. We avoid
them by requiring that the covariance matrix of the Gaussian process is irreducible.

Theorem 1.3. Let G = (Gq,...,G,) be a mean zero Gaussian random variable with irreducible strictly
positive definite covariance matrix I' = {T'; ;} = {E(G;G;)}. Let ¢ = (cq,...,¢,) ER", c #0 and let C
be a diagonal matrix with ¢; = C;;, 1 <i < n. Then the following are equivalent:

(1) G+ ca has infinitely divisible squares for all a € R';

(2) For & =N(0, b?) independent of G, (G; +¢4&,...,G, +c,&, &) has infinitely divisible squares for
some b # 0. Furthermore, if this holds for some b # 0, it holds for all b € R';

(3) CT~1C is an M matrix with positive row sums.
By definition, when (G+c)? is infinitely divisible, it can be written as in (1) as a sum of r independent
identically distributed random variables, for all r > 1. Based on the work of Eisenbaum and Kaspi

mentioned above and the joint paper [5] we can actually describe the decomposition. We give a
rough description here. For details see [2;/3;/4] and [9, Chapter 13].
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Assume that (1), (2) and (3) of Theorem 1.3 hold. Let

G (G G,
=)

Let T'. denote the covariance matrix of G/c. Theorem holds for G/c and T',, so Fc_l isan M
matrix with positive row sums. To be specific let G/c € R". Set S = {1,...,n}. By [9, Theorem
13.1.2], T, is the O-potential density of a strongly symmetric transient Borel right process, say X,
on S. We show in the proof of [9, Theorem 13.3.1] that we can find a strongly symmetric recurrent
Borel right process Y on S U {0} with P*(T, < oo) > O for all x € S such that X is the process
obtained by killing Y the first time it hits 0. Let L} = {LY;t € Ry,x € S U {0}} denote the local
time of Y. It follows from the generalized second Ray-Knight Theorem in [5], see also [9, Theorem
8.2.2] that under P° x P,

1/G\? 1(G 2
X 4+ =] ;xes v )2 2x 4 ae X ES
02\ ¢, 2\ c,

for all t € R, where 7(t) = inf{s > OILS > t}, the inverse local time at zero, and Y and G are
independent. Consequently

1 I 1
2 2. aw 2,
{218 oy + 565 x €S} {5 (Gt era)’s x e s} (1.3)
for all & € R!. (We can extend a from R, to R! because G is symmetric.) {C)%L:(o@/z); x € S} and

{%Gi ; x € S} are independent. G? is infinitely divisible and for all integers r > 1

law o ..
= L2/

where {L'T(az/(m)’j}, j=1,...,r are independent.

Note that in (1.3) we identify the components of the decomposition of {(G, + cxoc)2 ; X € S} that
mark it as infinitely divisible.

ook 2L

2.
c’L T(a2/(2r),r

T(a2/2)

In Theorem [1.3 we have necessary and sufficient conditions for ((G; + c;a)?,(G, + c,a)?) to be
infinitely divisible for all @ € R'. There remains the question, can ((G; + c;a)?, (G, + c,a)?) have
infinitely divisible squares for some a > 0 but not for all @ € R'? When we began to investigate
this question we hoped that such points a do not exist. This would have finished off the problem
of characterizing Gaussian random variables with infinitely divisible squares and, more significantly,
by (1.3), would show that when a Gaussian random variable with non-zero mean has infinitely
divisible squares, it decomposes into the sum of two independent random variables; one of which is
the square of the Gaussian random variable itself minus its mean, and the other the local time of a
related Markov process. This would be a very neat result indeed, but it is not true.

For all Gaussian random variables (G;,G,) in R? and all ¢, ¢, € R! define
%?(c1,¢2,@) = ((G1 + 1), (Gy + c20)).

When (G, G,) satisfies the hypotheses of Theorem (1.3} ¥?(c;, ¢y, @) has infinitely divisible squares
for all @ € R! if and only if

c C
F112—1F12>0 and F222—2F12>0. (14)
s cy 5 c
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(For details see [8, Corollary 1.3, 4.].) If (1.4) does not hold, we call 0 < ay < oo a critical point
for the infinite divisibility of 92(cq, ¢y, @) if 92(cq, ¢y, @) is infinitely divisible for all |a| < a,, and is
not infinitely divisible for any |a| > a,. In this paper we prove the following theorem:

Theorem 1.4. For all Gaussian random variables (G,,G,) in R? and all (¢q,c¢,) € R? for which (1.4)
does not hold, 9?(cy, ¢y, a) has a critical point.

Note that in Theorem [1.4/we consider all (c;, c,) € R?. It follows from (1.4) that when E(G,G,) > 0,
then ¥2(cq,c,, @) has infinitely divisible squares for all « € R! only if ¢;c, > 0. Nevertheless, by
Theorem 1.4, even when c;c, <0, (G + ¢, G, + c,) does have infinitely divisible squares for |a|
sufficiently small.

To conclude this Introduction we explain how we approach the problem of showing that (G + ca)?
is infinitely divisible for all @ € R! or only for some a € R!. Since we can only prove Theorem
for Gaussian random variables in R? we stick to this case, although a similar analysis applies to R"
valued Gaussian random variables.

Let I" be the covariance matrix of G and

T:=I+TA)'T=T"+A)7"

(A 0
A‘(o Az)'

Consider the Laplace transform of ((G; + ¢;a)?, (G, + cya)?),

where

E (e—(kl(cﬁcla)2+kz(cz+c2a)2)/2) (1.5)
1 a? 2 =~
2 2
= exp | — CiAL oAy — E CiCiA AT
(det(I +TA))Y/2 2 LT ij=1 ey

(See [9, Lemma 5.2.1].) Set A; =t(1 —s;) and A, = t(1 —s,), 0 < 57,59 < 1 and write (1.5) as
exp (U (51,82, t,T) + a*V (sl,sz, t,cq,Co, 1:)) (1.6)

where U := U(sy,$9,t,I") = —1/2log(det (I + I'A)). Note that

exp (U (51,52, t,T")) is the Laplace transform of (G2, G3), with the change of variables A; = t(1—s;)
and A, = t(1 —s,). It is easy to see from Theorem that all two dimensional Gaussian random
variables are infinitely divisible. Therefore, for all t sufficiently large, all the coefficients of the
power series expansion of U in s; and s, are positive, except for the constant term. This is a
necessary and sufficient condition for a function to be the Laplace transform of an infinitely divisible
random variable. See e.g. [9, Lemma 13.2.2].

Now, suppose that for all ¢ sufficiently large, V (sl,sz, t,cq,Co, 1:) has all the coefficients of its power
series expansion in s; and s, positive, except for the constant term. Then the right-hand side of (1.5)
is the Laplace transform of two independent infinitely divisible random variables. It is completely
obvious that this holds for all a € R.

1421



On the other hand suppose that for all t sufficiently large, the power series expansion of
1% (31,32, t,cl,cz,f) in s; and s, has even one negative coefficient, besides the coefficient of the
constant term. Then for all a sufficiently large, (1.6) is not the Laplace transform of an infinitely
divisible random variable. In other words ((G; + c;a)?, (G, + c,a)?) is not infinitely divisible for all
a € R'. But it may be infinitely divisible if a is small, since the positive coefficients of U may be
greater than or equal to a? times the corresponding negative coefficients of V. Clearly, if this is true
for some |a| = ay > 0, then it is true for all |a| < a,.

The preceding paragraph explains how we prove Theorem (1.4, We consider vectors ((G; +
c1a)?,(G, +cya)?) that are not infinitely divisible for all a € R!, (this is easy to do using (1.4)), and
show that for |a| sufficiently small the coefficients in the power series expansion of

) (51782> t: r) + aZV (51)52) t; C1,Co, F)

in s; and s, are positive, except for the constant term. Our proof only uses elementary mathematics,
although it is quite long and complicated. In the course of the proof we show that the coefficients
of the power series expansion of U in s; and s, are positive, except for the constant term. This
provides a direct elementary proof of the fact that the Gaussian random variable (G, G,) always
has infinitely divisible squares.

As we have just stated, and as the reader will see, the proof of Theorem|1.4lis long and complicated.
So far we have not been able to extend it to apply to Gaussian random variables in R®. One hopes for
a more sophisticated and much shorter proof of Theorem 1.4 that doesn’t depend on the dimension
of the Gaussian random variable.

We thank a referee of this paper for a very careful reading.

2 Gaussian squares in R? and their Laplace transforms

Let G = (G, G,) be a mean zero Gaussian process with covariance matrix

a 1
r:(l b) 2.1

where ab=d +1> 1, and let G + ¢ := (G, + ¢1, G + ¢5), ¢1, ¢ € R'. Note that

detI'=d, (2.2)
and
1 b -1
-1_ -
g 47
Let
[ A O
A‘( 0 AZ)
Then



and

I == (+rA)'r=0"1+A0)™"
_ oy (A 1 -
-1 a+dA,
. 1 Ayd+a 1
~ H(a,b,Aq,Ay) 1 Ad+b

where
H(a,b,Ay,25) = 14ak; +bAy +dA A, =ddet (T +A).
(We use repeatedly the fact that ab = d 4+ 1.) Note that by we have that
det(I+TA)=det (T (T'+A)) =ddet (I +A) = H(a, b, A1, 1,).

Lemma 2.1.

E (e—(xl(Gl+c1)2+xz(cz+cz)2)/2) (2.3)
1 cfkl + c%kz + (cfb + c%a - 2c1c2) A,y
= ex — .
(H(a, b, 20, 22 0 2H(a, b, Ay, 1)

Proof By [9, Lemma 5.2.1]

E (e—(kl(G1+C1)2+12(G2+Cz)2)/2)
1 1 5 5
 (H(a, b, A, A2 (_5 (Cl itk
_c%lf(kzd +a)+2c1c0A1 Ay + c5A5(Ad + b)) )
H(a,b,2q,A5)

1

"~ (H(a,b,Aq, 2 ))1/2“‘" b,c1,¢9,d, A1, Ag).
s Uy /], /A2

A simple computation shows that
(cfA1+c3A,) H(a, b, Aq, 2)
— (23(Aad + @)+ 2¢1052 A0 + c3A5(A1d + D))
= c%kl + cgkz + (cfb + cga - 2c1c2) Ao,
from which we get (2.3). O

The term 1/(H(a, b, A, ;)2 is the Laplace transform of (G?,G2)/2 and by [8, Corollary 1.1,
2.] it is the Laplace transform of an infinitely divisible random variable. The exponential term,
J(a,b,cq,c9,d, A1, A5), may or may not be a Laplace transform. In fact, by (1.4), we know that
J(a,b,acq,acy,d,
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A1, A,) is the Laplace transform of an infinitely divisible random variable, for all a € R!, if and only
if

G Co
a>—>0 and b>-—=>0. 2.9
C2 G

To prove Theorem |1.4/ we must show that when (2.4) does not hold, there exists an 0 < @y < 00
such that (2.3) is the Laplace transform of an infinitely divisible random variable when ¢, and c, are
replaced by ¢;a and c,a for any |a| < a,. Actually, as we see in Section 8, the general result follows
from the consideration of three cases,

L. (c1,c0) =(c,0);
2. (Cl’CZ) = (C, _C):

3. (Cla CZ) = (C’ O)
This is because if ¢; # ¢y and neither of them is zero, we can replace (G;, G,) by (G;/|c1|, Go/|col).

Clearly, in this case, if Theorem|[1.4 holds for (G, /|c;|, Go/|c5|) it holds for (G, G5). (The reason we
divide by the absolute value is because, to simplify the calculations, we take E(G,G,) > 0.)

In these three cases the numerator of the fraction in the exponential term on the right-hand side of
(2.3) is

L ¢ ((a+b =222+ 241 + 245);
2. 2 ((a+b+2)A Ay + A1+ Ay);
3. ¢ (bA A+ Aq).
Set
y=a+b—-2 and p=a+b+2.

Note that ab > 1 unless detI’ = 0. Since Theorem 1.4 obviously holds when detT" = 0, we can
exclude this case from further consideration. Thus we always have y > 0.

3 Power series expansion of the logarithm of the Laplace transform of
((Gy + ©)2,(G, + ¢)?) when E(G,G,) =1

Bapat’s proof of Theorem involves the analysis of a certain power series expansion of the log-
arithm of the Laplace transform. We need a similar, but more delicate, analysis. (See Lemma 4.1
below).

Using (2.3) and the remarks following Lemma 2.1 we can write
E (ef()kl(Gl+c)2+12(G2+c)2)/2) (3.1)

¢ (YA A2+ A1 + Ay) )

1
= exp (—ElogH(a, b,ll,kz)) exp (— 2H(a,b. 7. 2g)

1
= exp (5 (p(a, b, 21, A5) + c2Q(a, b, A1, AZ))) .
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Since ab =d + 1, (recall that d > 0), we have

a+b—(d+2) = a+(daL1)—(d+2)

= 1(az—(d+2)a+(d+1))
a
_ %(a—(d—lrl))(a—l).

Thusa+b—(d+2)<0ifand onlyif 1 <a <d + 1, which in view of ab = d + 1 is equivalent to
1< b <d+1. Consequently (2.4) holds if and only if a + b — (d +2) < 0.

Therefore, to show that ((G; + ¢)?, (G, + ¢)?) is infinitely divisible, for some, but not for all, ¢ > 0,
we must consider a, b > 0 such that

{:=a+b—-(d+2)>0. (3.2)
In the rest of this paper we assume that (3.2) holds.

Let A; = t(1—s;) and A, = t(1 —s,), 0 < 54,5, < 1. We consider P and Q as functions of sq,s,,t,
and write
P(SI)SZ: t) = P(a3 b: A’l; A'2)’ Q(S])SZ) t) = Q(a: b; A']3 7('2)

We expand these in a power series in s;,$5:

o0 o0
P(s1,52,6)= Y Pis(t)sish,  Qlsp,s2,6)= Y. Qjul(t)sish, (3.3)
J,k=0 J.k=0

and set

R(s1,82,t,¢) = P(s1,52,t) + c*Q(sy, 55, £).
Consequently

o0
R(Sl,Sz, t, C) = Z Rj,k(tz C)‘S']]_‘Slz<
j,k=0

with

Rj’k(t,C) :Pj’k(t)+C2Qj’k(f). (3.4)

In this section we obtain explicit expressions for P; (t),Q; x(t). We write

H(a, b, A,]_,Az) = 1 +(1A1 + bkz +dll7L2
1+at+bt+dt*> —(at +dt?)s; — (bt +dt?)sy + dt3s;s,
= (1+at+bt+dt*)(1—as; — Bsy+ Oafs;sy)
where
at +dt? bt +dt?

a= s = 3.5
1+at+ bt +dt> P 1+at+bt+dt2 (3.5)

and
1+at+ bt +dt?

T 1+dltat+bttde?
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Note that

d! 1
1—-9 = < . 3.6
1+d'+at+bt+dt? ~ d?t? (3.6)
For later use we also define
T=(1-0)12=/d(1+d ' +at + bt +dt?) (3.7)
and
_ 0.
b=y 7= V1+at+bt+de2
and observe that for all t sufficiently large
~ _ a+b
dtStSdt+\/E(a+b) and \/EtStS\/Et+(ﬁ). (3.8)
Using these definitions we have
P(a) bzll)AZ) = _logH(a) byllj)('Z)
= —log(1+at+bt+dt?)—1log(l— as; — Bsy+ Oafsyss)
and
Q(a, b; A‘l’ )(’2) (3'9)
'}/A,l)tz'i‘ll +A-2
H(a: ba)(']_az'Z)
_ 1 rt2(1 —51)(1 —55) + (2 =57 —55)
 (14at+bt+de?) 1—as; —fBsy+0afs;sy ’

We make some preliminary observations that enable us to compute the coefficients of the power
series expansions of P(sq,s,,t) and Q(sy,s,,t). Let (uy,u,) € [0,1)?, and 6 € [0,1), and assume
that

uq + Uy — 9u1u2 < 1. (3.10)

(It is clearly greater than zero.) Let

1 = ;
= Dl uk 3.11
1—u; —uy+ Ouquy Z pkT172 (S0
j,k=0
and
© .
—log(1 —u; —uy + Ouquy) := Z Cj,kujlulz‘. (3.12)
j.k=0

Lemma 3.1. For0<j <k

j i\ [k
Djj=>.(1-0) (p) (p). (3.13)

p=0
Also, Co =0, Cjo=1/j,Co =1/k,j,k #0, and for 1 < j <k
j—-1 : .
INN(\A-6)(—p)k—p)
Cip= (1—9)1’( )( ) , ) (3.14)
e ;) p/\p) p+1 jk

1426



Proof Writing (3.10) in the form u; +uy — ujuy + (1 — 0)uyu, < 1 we see that it is equivalent to

the statement that
(1 - 9)111 Uy

(1 —uy)(A —uy)

We write

1
1—u; —uy+Ouqu,y

) (1= 0)uju, -
= ((1 —u)(1—up) (1 C(1-up(- Uz)))

(1-0uuy \?
T a- u1)(1 —Up) &= Z ((1 —up)(1- uz))

_i (1 —G)Pul b
p=0 (1- u1)p+1(1 - uz)pH.

For u € [0, 1), differentiating 1/(1 —u) = Z —o u, p times, shows that

p+n\ ,
1—u)p+1_z( ) '

Consequently

1
1—u; —uy+Ouqu,y

S-S IS )
p=0
2. <1—@>"( e

p,m,n=0

-z S o ()

Jj;k=0p=0

This gives (3.13).
To obtain (3.14) we write

—log(1 —u; —uy, + Ouqu,)
= —log((1 —up)(1 —uy) — (1 — O)uquy)

= —log(1 —u;) —log(1l —u,) —log (1 -

(1—=0)uju, )
(1—up)A—uy)

U el ol (1—-0)ujuy, \?
=3 ()
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This gives us C; o and Cy and, similar to the computation of D; , we can use the last series above

to see that
J (1—9)P j—1\ (k-1
vk o))

_&a-e )P“(j—l)(k—l)
& p+1 p p

1-6)G-p)k— p)
- Q)
0(1 ) (p) (p) p+1 Jjk

Note that for the last equality we use

j—1 j — j k—1 k—p(k
()50 m ()G e
p j\p p ko \p
This gives (3.14). O
Lemma 3.2. For all t sufficiently large, P; o(t) = allj, Py (t) = B*/k, and for all 1 < j <k,

igkl i 1 (i—p)k—
pj,k(t)—aﬁz ()()pﬂ(] pj).(k 2} (3.16)

=]
= o

—.

=
Il

(See (3.3).)
Proof Note thatsinceO0<a,f3,0 <1,and 0 <s;,s, <1,

asy + Psy—0afsisy <a+f —0af;
since the left-hand side is increasing in both s; and s,. Consequently,

asy + Bsy — O0afs;sy

IA

a+pf—-af+(1-0)ap

= 1-1-a)(1-B8)+ dzﬁz +0(1/t%)

ab 1 3
= 1-——=+—=—=+0(1/t°)

d2 2 d2 2
1 3
= 1—ﬁ+0(1/t ).
Consequently, for all ¢ sufficiently large
0<as;+fsy—0afis;sy < 1. (3.17)
Therefore, by (3.12)
o0
—log(1 — au; — fuy + afOujuy) = Z alpkc ku uz. (3.18)
k=0
The lemma now follows from Lemma and (3.7). 0
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Lemma 3.3. For all t sufficiently large, and j,k > 1

(rt?(a— 1)+ t(2a—1)) -1
2 *

Qjo(t)=— (3.19)

and )

(ref(B-D+1t(2-1))
72

Furthermore, for all t sufficiently large and forall 1 < j <k

ﬁk_l

Qox(t)=~—

Q; k(1) (3.20)

a]lﬁkli?zp()()
p=0
5 (1-B)p (Q—-a)p .. ,j—pk—p
(—yr ((1—a)(1—/5)— e k)

)

Proof It follows from (3.17) that for 0 <s,55, <1

1
1—as; —fBsy+0afsisy

o0
= Z(asl + Bsy — OaPsisy)".
n=0

Using this along with (3.9) we see that

_(Yfz(l =51)(1 —s5) + (2 =51 —53))
t2(1 — as; — Bsy + 0aPsisy)
(rt2 +2t — (yt2 + t)s; — (yt2 + t)sy + yt2s15,)
B t2(1 — as; — Bsy + OaPsisy)
(rt2+2t — (yt2 + t)s; — (yt2 + t)sy + yt2s15,)
72

Q(s1,52,t) (3.21)

o0
-Z(asl + Bsy — Bafsysy)".
n=0

Consequently

(y*+20)a—(yt*+1) .,
= o’
t

Qjo(t)=—
from which we get (3.19), and

(Y2 +20)B — (yt*+ 1)) ph-1

Qox(t)=— =

from which we get (3.20).
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To obtain (3.20) we use the second equality in (3.21), and the terms of D; ; defined in (3.11), to
see that

2
2= %ﬁ]kk_l (3.22)
= —yt? (Dj,kaﬁ —Dj)1a—Dj_1 S+ Dj—l,k—l)
—t (2D 4B —Djx—10—Dj_1xB).
Using (3.22), (3.13) and (3.15) we see that for all t sufficiently large, forall 1 < j < k

- 00

p=0

- o ke
(—ytz(a[a’—a P_pgl=p ip p)
k j j k

—t (Zab’—ak_p _ﬁ];p))
k j

Consequently, for all ¢t sufficiently large, forall 1 <j <k

| ; .
, - Y P N/ k
2l a3t (p) (p) 529

Consider (3.23). We write

. . -
P_[D,J P Jopk-p
k j j k
1-fp Q-ap p

k—p _j-
20 - a kp—ﬁ]sz—a@—/o’—%)—ﬁ(1—a—§),

=1-a)1-p)-

to obtain

Qx(0) (3.24)

aj—lﬁk—l j — j k
£2 2 p(p) (p)

p=0
(—Ytz ((1 _q-p-LTPe_ ek, ‘?—2)
j k jk

r(a(1-p-2)+p(1-0-2))).
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Note that for 1 <q <j

~(00©)

q)\q) \ Uk
:»tv_z(q_l)( J )( k )j—(q—l)k—(q—l)?_z
q—1)\g-1 j k '

Therefore, for each 1 < p < j we incorporate the term in p?/jk in (3.24) into the preceding term
in the series in (3.24) to get (3.20). (Note that we can not add anything to the p = j term. The

expression in (3.20) reflects this fact since j%pk%p =0whenp=j.) o

4 A sufficient condition for a random vector in R? to be infinitely
divisible

We present a sufficient condition for a random vector in R? to be to be infinitely divisible, and show
how it simplifies the task of showing that ((G; + ¢)?, (G, + ¢)?) is infinitely divisible.

Lemma 4.1. Let ¢ : (R,)? — (R,)? be a continuous function with 1(0,0) = 1. Let s € [0,1]% and
suppose that for all t > 0 sufficiently large, logy)(t(1 —s;), t(1 —s5)) has a power series expansion at
s = 0 given by

$(t551,55) = D, bisl(t)s]sh. 4.1)

j k=0
Suppose also that there exist an increasing sequence of finite subsets A; € N2, i > 1, with U?il N = N2,

and a sequence t; — 0o, i > 1, such that b; ;(t;) > 0 for all (j, k) € A;\{(0,0)} and

8}

lim > bt =0. (4.2)

% g H0t0,0)
Then (21, A5) is the Laplace transform of an infinitely divisible random variable on (R.)>.

Proof It is clear from (4.2) that for all ¢; sufficiently large the power series in (4.1) converges
absolutely for all s € [0,1]2.

Let
¢i(ti;51,52) = boo(t;) + Z bjk(t;)s)s5.
(J,k)eA\{(0,0)}
\I’i (ti; e—ll/fi’ e—lz/fi) = exp ((]51 (ti; e—xl/fi, e_AZ/ti)) .

We show that for each (11,1,) € (R,)?

Set

lim W, (5740, e772/0) = 4p(2q, 42). (4.3)

i—00

As we point out in [9, page 565], ¥; (ti se M/t o=/ ti) is the Laplace transform of a discrete
measure. It then follows from the continuity theorem and the fact that ¢)(0,0) = 1 that (A1, A,) is
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the Laplace transform of a random variable. Furthermore repeating this argument with ¢;(t;;s1,52)
replaced by ¢;(t;;s1,5,)/n shows that ¢p/"(1;, A,) is the Laplace transform of a random variable.
This shows that vy)(A;,A,) is the Laplace transform of an infinitely divisible random variable on
(R4 )%

To prove let

;= ’w(fi(l —e M/t (1 — e M2N)) —ah(Aq, Ag)). 4.4
Clearly lim;_,,, 6; = 0. By (4.2)
lw(ti(l —e M/t t;(1 — e */t)) —exp (¢i(ti; e M/t 67/12/{")) ‘
= |exp | bgo(t;)+ Z bj,k(fi)e_jll/t"e_kkm"
(j,k)#(0,0)
—exp | boo(t;)+ Z bj,k(fi)e_jll/tie_klﬂti ‘
(J.k)eA\{(0,00}
= p(t;(1— e /%), t;(1 — e72/t))
o
‘1 — exp ( — Z bj,k(ti)e_j’ll/tie_klz/fi) ‘
(J,k)¢AU{(0,0)}
= eiw(ti(l - e_kl/ti)’ tl(l - e_AZ/ti))ﬁ
where
m .
€ = ’(1 —exp ( - Z bj,k(ti)e—lll/tie—klz/ti)) ’
(J.k)¢AU{(0,0)}
Note that by (4.2)
1—00
Therefore, by the triangle inequality, (4.4) and (4.5)
€xp (d)i(ti; e_ll/ti’ e_AZ/ti)) - w(kls )('2)
< ep(t;(1— e M/1), t;(1 — e /1)) + 5.
Using (4.4) we see that this is
<€ (Y(Aq,45) +68;) +6;.
Thus we justify (4.3) and the paragraph following it. O

Remark 4.1. In [9, Lemma 13.2.2] we present the well known result that the conclusion of Lemma
4.1/ holds when log(t(1 —s;), t(1 —s,)) has a power series expansion at s = 0 with all its coeffi-
cients, except for the coefficient of the constant term, are positive. Lemma [4.1 is useful because it
allows us to only verify this condition for a subset of these coefficients, (depending on t).
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The following lemma enables us to apply Lemma 4.1.

Lemma 4.2. For any c3 > 0 there exists a constant B = B(a, b, c3) for which

A =1, 1) [ V/jk < Btlog t}

has the property that
lim > Rj(t,0)l=0,
(k)¢ A

uniformly in |c| < cs.

Remark 4.2. It follows from Lemmas/4.1/and 4.2 that in order to prove Theorem|1.4 we need only
show that we can find a ¢y > 0, such that

R (t,c9) =0 forall +/jk <Btlogt,
for any constant B, for all t sufficiently large, (except for Ry o(t)).

Before proving Lemma 4.2 we establish the following bounds:

(f ) < (_J) 4.6)
P p
2p
1 7\ [k e\/jk 24/jk
=0)0)=(57) == ()
)<k
p p!

Therefore to prove (4.6) we need only show that

e\P
p! (;) 21. (48)

In [6, page 42 ], Feller shows that p! (e/p)? is increasing in p. Since it is equal to e when p = 1,
(and 1 when p = 0), we get (4.8).

The first inequality in (4.7) follows from (4.6) the next one is obtained by maximizing the middle
term with respect to p. O

Lemma 4.3.

and

Proof It is clear that

Proof of Lemma 4.2/By (3.4) and Lemmas|3.2 and 3.3 we see that for all t sufficiently large, for all

1<j<k,
o i [k
IR k(t,c)| < CaJﬁkZ?_ZP( )( )
’ = W\

where C depends on a, b and d but not on j, k, t or t. Furthermore, C is bounded for all |c| < T,
for any finite number T. (We also use the fact that lim,_,, aff = 1.)
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For any 0 < 6 < 1, for t sufficiently large,

2 —
g artd 11— 1+bt o =9b e
1+at+bt+dt? 14+at+bt+dt?— dt —
and )
__ beAder L that L (=8 aosasn
1+at+ bt +dt? 1+at+bt+dt? ™~ dt ~

Using these estimates along with (3.8) we see that for all t sufficiently large, forall 1 < j <k,

J .
. 1 j k
R;  (t,0)| < Ce—k(1=8)a/(dt) ,~j(1-6)b/(dt) Z ( ) ( )

uniformly in |c| < cs.

Suppose that 4/ jk/(dt) = n. Then

p—k(1=8)a/(d1) ,—j(1-8)b/(dt)

= exp (—(1 —-06) (a\/Uj+ b\/]ﬁ) n)
<exp (—2(1 — S)Mn)
— exp (—2(1 —s)/d+ 1n) ,

where, for the inequality we take the minimum of a6 + b/6 and for the equality we use the fact that

ab =d + 1. Combined with (4.7) this shows that when \/j_k/(dt) =n
IR;k(t,c)l < Cjexp (—2((1 —&)W/d+1- 1)n) .

LetA, = {(j,k)In < /jk/(dt) <n+1}. Thenforany M and 0 < 6§ <1 — ———

d+1
D1 RGOI=D0 DT Rkt o)l

Vik/(do)=m n=M (j,k)e€A,
We note that the cardinality of A,, is less than
3nd?t?log((n+ 1)d¢t).
This is because (j, k) € A, implies that

2422 1)242¢2
mdC i de
J J

and j<(n+1)dt

and summing on j we get (4.11).
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It follows from (4.9)—(4.12) that for dt >>1

D R0l

Vik/(dt)=M
<cdo*y ntexp (—2((1 —)Wd+1- 1)n)
n=M
(de)?*
<c’ M*exp (—2((1-6)Y/d+1-1)M).
(1-8)Vd+1-1 p( (¢ ) ) )
Clearly, if we choose 6 <1 — ‘/%H, there exists a constant B, such that when M = Bulog t, this last

term is o(1) as t — oo. O

5 Proof of Theorem when (¢, ¢,) =(c,c) and E(G;G,) >0

In this section we prove Theorem 1.4 in case 1. with the additional condition that E(G;G,) > 0. In
fact, we initially take
E(G,Gy) =1. 5.1

We remove this restriction in the continuation of the proof of Theorem on page|1450.

To proceed we need several estimates of parameters we are dealing with as t — oo. They follow
from the definitions in (3.5)-(3.6). (In all that follows, up to page 1450, we assume that (5.1)
holds.)

Lemma 5.1. Ast — o0

1 b —1 +b* +0(t™3) (5.2)
—a — _— .
dt (dt)?
a 1+ a?
1-B = ————+0(t*
B dt  (dt)? +0(e™)
d+1 a(l1+b>)+b(1+a? _
1-a)(1-p) = A P +0(t™%)
1 a+b
=2 _q_ _ _ —4
t*=1-06 @z (dt)3+o(t )
o = e-bildD+0(?/e?)
ﬁk — e—ak/(dt)+0(k2/t2)'
Also
—(d+2)y+d(a+b) = 2((d+2)—(a+b))=-2¢ (5.3)

ay—d = (a—1)>*
by—d = (b—1)>%
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Proof

1+ bt
l—-a =

1+at+bt+de?

_ 1+bt 1

de2 1+a(do) 4+ b(de) 4+ d 2
1+ bt

= W 1- a(dt)_l - b(dt)_l + O(t_z))
b d—-bla+b) _3

S wt T ee O
b 1+40b2

= ————+0(t2).
dt  d?t? o)

The rest of the lemma follows similarly. O

Proof of Theorem 1.4/when ¢; = ¢, = ¢ and E(G;G,) = 1. We prove this theorem by establishing
the positivity conditions on the coefficients R; (t,c), as discussed in Remark[4.2. To begin let us
note that it is easy to see from Lemma(3.2, that P; ,(t) > 0 for all 0 < j, k < oo, with the exception of
Py o(t). This must be the case because exp(P(a, b, A1, A,)) is the Laplace transform of an infinitely
divisible random variable, as we remark following the proof of Lemma 2.1.

By (3.19) and Lemma /5.1

(yt?(a—1)+t(2a — 1)) -1
— a

Qjo(t) = =2 (5.4)
= :—2 ((de;d)t + 0(1)) a7t
- ((bd_ztl)z +O(1/t2)) o/t
Similarly
Qoi(t) = (“é:y+OUﬁ%)ﬁ“P 5.5

Thus we see that there exists a t; sufficiently large such that for all ¢t > t;, R;,(t,c) and R (t,c)
are both positive for all j, k > 1.

We now examine R; ;(t,c) for 1 < j < k. We write
J

Rix(t,¢) =D Ry ,(t;0). (5.6)

p=0
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Using (3.20) and (3.16) we see that

Ri ,(t,c)
Jskpts
W (5.7)
_apt¥ (J) (k) 1 G-p)k—p) T (1) (k)
2 \p/\p/p+1 jk 2 \p)\p
1- 1— L j—pk-—
e (a-wa-p)- ( .ﬁ)p _A-ap ) pkp
j k jook
+t (a(l—ﬁ—g) +p3 (1—01—2))).
k j
When p = 0 we get
Rj,k,O(t:C) _ C(/3 C2
al~1pk-1 TR e
2 )
(-r?(A-)A =P +T2) +t (a1 -B)+pA—-a)))
which is independent of j, k. Using Lemma|5.1 we see that
—r? (1-a)(1=B)+T2) +t (a1 —B)+B(1 - a))
_ (d+2) +a+b+o 1
I A (
—(d+2)y+d(a+b 1
_ -+ tda+b) (1
d? t
—2C 1
=g tO (;) -
Using this and Lemma|5.1 again we get
Rjko(t,c) 11— 2¢3(¢/d)+0(1/t)
aj—lﬁk—l - d2¢2 (5.8
where the O (1/t) term is independent of j and k.
We now simplify the expression of the other coefficients R; ;. ,(t,c), 1 < p < j. Set
R ,(t,c) N [k 1 c?
Jkp\ ) o ()
ajT/jk—l =t “P (p) (p) (t’TZFj’k’p(t) + E_ZAj’k’P(t)) (5.9)
where 1 G p)k—p)
J—PNK—Pp
jkp(t) ab’p 1 i (5.10)
and

Aj,k,p(t)
G G R e
k Jj k

ri(a(1-p-2)+p(1-0-2)).



Using Lemma|5.1 we have

R (R
k Jj k
- 2 _ 2 S
:_l(dﬂ_(bdt (1+b0p _(adt=(1+a®p  j-pk p)
k J J k

(%)
+0 | -
t
12 _ 42 2
:%(_(d_i_z)_i_(bdt bIp , (adt—a )p_p_)+o(l) (5.11)

k j ik t

d
— _ 2

r (—(d +2)+ bde ~blp , aldt , P _ I,’—) +0 (1)
k j jk t

and

t(a(l—ﬁ—%)#—ﬁ(l—a—?)) (5.12)
_a p b p pt pt 1
—a(1+7)+a(1+z)‘77+0(z)

1 p(dt —a) p(dt—b) 1
_E(a+b— ] - 2 )+O(?)

In (5.11) and (5.12) the expressions O (1/t) are not necessarily the same from line to line. Never-
theless, it is important to note that they are independent of p, j and k. That is there exists an M > 0
such that all terms given as O (1/t) in (5.11) and (5.12) satisfy

M 1 M
“Feo(q)<T

t t t

This is easy to see since the O (1/t) terms, in addition to depending on t, depend on a, b, p/j and
p/j<p/k=<1.
Using (5.11), (5.12) we have

b(dt—b dt — 2
Ajp(t) = % (—(d 1o+ X ; L - P _ lj—k) (5.13)
1 — —
L1 (a+b—p(dt. a) p(de b))+o(1)
d j k t
—(d+2)y+d(a+b)
(ra—d)p(dt —a) (yb—d)p(dt—b) yp? 1
* jd? kd?  jkd? +O (?)
=27 (a—-1)’p(dt—a) (b—1)°p(dt—b) yp? 1
- et id? * kd? jkd? +0 (?)

where, for the final equality we use (5.3).
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Note that

(a—1%p(dt—a) (b—1)p(dt —b)
j - K

J(dt —a)(dt — b)
Vik

V(dt —a)(dt - b)
T :

(For the inequality use a® + 32 > 2af3.) Therefore since { =a+b —(d +2) >0,

_ _ 2
Ajrp(t) = 2 (p\/(dt at b)—l)i—gﬁLO(l)

Bj,k,p(t) =

> 2pl(a—1)(b-1)

= 2p|ld+2—(a+Db)

d? ik d2jk t
2 [ p(dt+0(1)) yp? 1
_ E(T_l)g_dzjkw(;) 510

3o

Thus we see that there exists a function €,, depending only on a and b such that

Az 2 P ey g+o(1) (5.15)
J,k,P - d2 /_Jk et t ) .
where
lim €, =0, (5.16)
t—00

and, as we point out above the O (1/t) is independent of p, j and k.

Remark 5.1. We interrupt this proof to make some comments which may be helpful in understand-
ing what is going on. Note that if

v/ jk
d_]t <1-€ forsomeé&>0 (5.17)
then 2
1=2c(¢/d) i
Rj)k(t,C) ZRj}k,O(t,c)E (1—6)T(X1 1ﬁk 1 ast — oo (5.18)

for all 6 > 0. This follows from (5.8) and (5.15) since when (5.17) holds

A () > 2 (Ll {+0 oo
PP =2\ (1-9) t ’
for all p > 1, for all ¢ is sufficiently large. Consequently when (5.17) holds R; x(t,c) > 0 for all t is
sufficiently large when

d
< —

20
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(Here we also use (5.16).)

(When ¢ < 0, (5.18) shows that R; (t,c) > 0 for all ¢ € R!. This is what we expect. (See the
paragraph containing (2.4).)

We use the next two lemmas to complete the proof of Theorem 1.4 in case 1.
Lemma 5.2. For any Ny € R, we can find ¢, > 0 and t, < oo such that for all t > t,

R; i p(t,¢)>0 (5.19)
for all |c| < ¢y and all p, j and k for which 4/ jk < Nyt.

Proof This follows from (5.8) when p = 0. Therefore, we can take p > 1.

We first show that for any N € RT, R;yp(t,c) > 0 when 4/jk = Ndt, for all t sufficiently large. By
Remark/5.1]we can assume that N > 1 — €. It follows from (5.15) that

2 rp 1
A0 = 5 (1 =e)=1)+0( ],
where €, satisfies (5.16). Therefore when p > AN for any A > 1, A;; ,(t) > 0, and hence
R; s p(t,c) >0, for all ¢ sufficiently large.

Now suppose that

p <AN. (5.20)
Since 4/ jk = Ndt we see that
2 2
TP rA 2
—— < ——= =0(1/t%), 5.21
i S e =00/ (5.21)

where the O(1/t?) term is independent of p, j and k.
Note that by (5.1) and (5.10)

_ (G—=p)k-p) 1
2kt = d2t2(p + 1)jk +0 (73)

Therefore, if in addition to (5.20) we also have AN < j/2, so that p < j/2, we see by (5.9), (5.13)
and (5.21) that

1 c?
trsz,k,p(t) + E_zAj,k,p(t)

1 ((G-p)k—p) 2 1
Zdth( TE )+O(t_3)
J 1 1 c?2¢ o 1
“@e\ap+n 4 )7 (?)

J 1 1 c?2¢ ‘o 1
~ d2t2 \ 8AN d t3 )"
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Therefore we can obtain R; ;. ,(t,c) > 0 by taking

2 < 4 (5.22)
T 16A'N¢ '

for some A’ > A.

Now suppose that AN > j/2. In this case we use (5.13) to see that

2 (a- 1)2p t
Ajrp(t) = v + TR +0(1/t). (5.23)

It is easy to see that the right-hand side of (5.23) is greater than zero for all ¢ sufficiently large since

(a—1)%pt - 1
2dj ~ 4dNA

(a—1)?pt.

Thus we see that for any fixed N, R; ;. ,(¢,c) > 0 for all t sufficiently large.

Since the O(1/t) terms are independent of p, j and k this analysis works for all j and k satisfying
(5.19), and all 1 < p <j as long as (5.22) holds with N replaced by Nj,. O

Lemma 5.3. For all Ny and B € R™ we can find a cj > 0 and te <00 such that for all t > te
R p(t,0)>0 (5.24)

forall |c| < cyand all 0 < p < j < k for which
Not < 4/jk <Btlogt. (5.25)

(The value of N, in Lemmas and can be taken as we wish. It will be assigned in the proof of
this lemma.)

Proof As in the proof of Lemma5.2/we note that by (5.8), we can assume that p > 1.
By adjusting N, and B we can replace (5.25) by the condition

Nyt < 4/jk <Btlogt.
Using (5.13), we see that if j < pt

~2¢ (a-1)%p(dt—a) (b—1)*p(dt —b)
2 " jd? kd?

2
YP 1
— +O —_
jkd? (t)

Aj,k,p(t) =

~2¢ (a-1%p(dt-a) 7y 1
> —+ e —?Jro(?)
_ _ 2
> 2 e +o(1).

d2 20d  d2
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Clearly, there exists a p > 0, independent of j and k such that this term is positive. Thus we can

assume that
j=pt. (5.26)

Furthermore, when 4/ jk/t = N, it follows from (3.8) that we can write (5.14) as

A (t)>3(£(1+o(1)—L)—1)§+0(1) (5.27)
phpA = g2 \ N t ) Z(de)? t) '

Let 5y = (10logN/N)'2. Clearly, if p > (1 4 )N, the right-hand side of (5.27) is positive for all
t sufficiently large. Therefore, when 4/ jk/t = N, we may assume that

p<(1+06y)N. (5.28)

(The value chosen for 6, simplifies calculations made later in this proof.)

In addition we can also assume that
P =Do

for any finite py, since if p < p
Fjop(t) = Fjpp (8) > A ,(0).
for all ¢ > 0 sufficiently small.
We use the next lemma in the proof of Lemma|5.3| It is proved following the proof of Lemmal5.3.

Lemma 5.4. For j <k, with p and j large and p/j small
(0)-(2)
p)\p) 2np\ p? '
pP P . _
exp (—z—j(p -2 +0(p3/12)) (1+00p™).

When t € Rt is large and 1/ jk/t = N, under assumptions (5.26) and (5.28)

1\ (kY _ 1 (eN\? 4
SO0 5G) wown. e

Proof of Lemma [5.3 continued We show that under the assumptions (5.26) and (5.28), when

\/j_k/?zN, for

for any O < B < 00, and t is sufficiently large,

Ny <N <Blogt, (5.31)

7{2 (1+6y5)N

-1gk1 Pjjep(t) = Ce*V %/2 (5.32)
a’ [5 P=Po N
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for some C > 0, independent of N, and

Ez (1+65)N

S — Qir,(t)> _peN (5.33)
a]—lﬁk—l = J,Kp N3/2

for some D < oo, independent of N. If (5.32) and (5.33) hold, we can find a ¢, > 0 such that for all
2 < cg

(1+65)N

Z Rj,k,p(tyc) >0

P=Po
for all t sufficiently large. Since we have already established that A; ,(t) > 0, when p < p, and
p > (1+ 6y5)N, this completes the proof of Lemmal5.3.

Thus it only remains to prove (5.32) and (5.33). We do (5.32) first. It is considerably easier than
(5.33). By Lemma|3.2 and (5.30)

fo (1+6y5)N

— Z P; 1 p(0) (5.34)

aj—lﬁk—l =

_ “*ff’v 1 (]) (k) (= p)(k—p)
= \p)\p) (p+1Djk
(14+55)N

Z 1 () (k)1
T2
=, tT\pJ\p/p

(LSO /oy 2
DI > )
P=Po p

Here we are using (5.26) and (5.31) which imply that for all t sufficiently large, j >> p.

v

In order to calculate this last sum we consider the function

2y
fal) = — (ﬂ) _ L oy (riogn—togy)
ymr\y ym

for m >0 and y >. We have

fly) = (

|

This has a unique root y,, where

—y_m +2(1+1ogN —logy) — 2) f(y) (5.35)
4 2010gN ~10g) ) fa().

m
logy,, + v = logN.

m

(Clearly, yo=N and y,, <N.) Let y,, =N(1+¢€,,). Then

m
log(1+€,) + ———— =0.
gl +em)t SN ey
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Consequently

€n=——— +O(N2)
™ 2N ’

which implies that
m
Ym =N ——+0(1/N). (5.36)

Making use of the fact that y,, is a root of f; (y) we differentiate (5.35) to see that

p m 2
fm(ym) = (_2__)f(ym)
Yy Y

m m

Therefore, by (5.36) when N > 2m, f'(y,,) < 0. Consequently, in this case, f,,(y) is unimodal, and

1
SUP frn(¥) = frn(ym) < ———€*". (5.37)
y=2 (N —m)™

Now consider the last line of (5.34). The function being summed is f,(p). Considered as a function
of a real number p, the above discussion shows that f,(p) would be unimodal. Thus, considered as a
function of integer p, f,(p) has a maximum at, at most, two points, at which it is less than 22N /N2.
Consequently, to obtain (5.32) we can replace the sum in the last line of (5.34) by an integral and

show that
(1+0N)N 1 [eN\2 - 1
I = — | — dr > Ce" —— (5.38)
p

) r2 r N3/2'

Making the change of variables r = xN we have

1 1+6y 1 e\ 2xN
Il = N ) (—) dx.
po/N X X

Recall that Ny < N < 2logt, and that we can take N, as large as we want, (but fixed and indepen-
dent of t), and that §y = (10logN /N)/2. Therefore

1 1+(10log N /N)Y/2 1 /e~2xN
L = = —(—) dx (5.39)
1

N J1_(olognnyz X2 \X
1 [1HQolegN/NYE oy
z (—) dx.
2N )1_(1010gn/nye N X
We write
e 2xN
(;) = exp (2xN(1 —logx)).

Set x =1+ y and note that for |y| small

2 3
x(1—-logx)=0+y)1-log(1+y)=1- y? + % +0(y"h (5.40)

1444



as y — 0. Therefore when |y| < (10logN/N)'/2, so that |y|°N << 1, this shows that

e\ 2N 2N ,—y2N+0(¥3N)
(;) _ 2N —y*N+Oy (5.41)

= M r’N (1 + O(|y|3N)) .
It follows from this that when we make the change of variables x =1+ y in (5.39) we get

2N (10logN/N)Y/2
2
L > — eV Ndy
4N —(10logN /N)1/2

02N (20logN)*/2
> — e 2dy.
44/2N3/2 J—(ZOIOgN)l/Z

Since

o0

2

f e—u /2 du S N—lO,
(20logN)1/2

we see that (5.38) follows. Thus we have established (5.32).
Before proceeding to the proof of (5.33) we note that

SO
P=Po ?2[) p p _ZNl/Z'

To prove this we use (5.30) and the same argument that enables us to move from a sum to an
integral that is given in (5.34)—(5.38), except that we use (5.37) with m = 1. We continue and then
use (5.41) to get

(14+6y)N

3 w0)(0) 42)
=2p :
P=Po (i p p

J(1+6N)N 1 eN 2u eZN
=< —(—) du+0 | —

» u\ u N

0

On ) 2N 2N
< 2N —-Y“N _ <
<e L e dy-i—O(N)_le/Z.

(The term O (eZN /N ) comes from (5.37) and compensates for the fact that the integral approxima-
tion may not properly weight the maximal terms of the sum.)

We now obtain (5.33). When 4/ jk =tN, by (5.9) and (5.27),
EZ
aj—lﬁk—le:k,P(t)

()0
S RO
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By (5.42) we see that
(14+65)N

2 ()G () -(F)

Therefore, to obtain (5.33), it suffices to show that for some D < oo

1 /j k p oy 1

Here we use the fact that N < Blogt for some 0 < B < oo.

(1+65)N

P=Po

Remark 5.2. Since the proof of (5.43) is rather delicate we make some heuristic comments to
explain how we proceed. When +/jk = tN the term 2 (}J) ) (];), as a function of p, is exp(2N)
times values that are sort of normally distributed with mean p = N, and, roughly speaking,

(1+65)N .

N 1 (]) (k) ~ Ce2N 1
Z T2 1/2°
P=Po (i p p N /

for all t sufficiently large. (In fact the upper bound is given in (5.42).) This is too large to enable us
to get (5.43) so we must make use of the factors (% - 1), which is an odd function with respect to
p = N, to get the cancellations that allow us to obtain (5.43). However, because we are canceling
terms, we must take account of the error in Stirling’s approximation; (see (5.52)). To do this we
need to show that the estimate in remains the same even when we eliminate the terms in the
summand that are not close to N.

Proof of Lemma continued Note that by (5.30)

N(l_N71/4) 1 ] k N(l—N71/4)
2. ~7( )( )sc S A
P=Po i p p P=Po

The fact that f,,(y) is unimodal on y > m/2 implies that fi(p) is increasing on the interval
[po,N(1 — N~1/#)]. Therefore

_N-1/
N(1-N 14)1 eN \ 2P o
e < CNfi(N(1-N ))
P=Po p p
e 2N(1-N~1%)

< -
¢ o)
—  Ce2NU-N"YH(1-log(1-N""/*)
< CeZN(l—N_1/4)(1+N_l/4+N_1/2/2+0(N_1/2))
< Ce2N—N1/2/2.

Let 63 =N ~1/4, The argument immediately above shows that to prove (5.43), it suffices to show
that

(1+65)N .
1 (]\N(K\ rp 1
Jy = § ,T( )( ) (— - 1) > —De?N ——. (5.44)
P 3/2
p=(1-6)N EPAPJ AP AN N
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By (5.30)

(146N 9

1 eN\“P (1 1 1

a2 () ) (o))
p=(1-63)N

Using (5.42) together with the fact that since p > (1 — 6y )N, 1/p < 2/N, we see that

GOV reNNZP 11 1 GOV reN\ZP 1 (1
S (Do (2) = - S () Lo 2
p=(1-8})N p p p p=(1-6/,)N b p p
1
2N
> —Ce W

Therefore, to obtain (5.44) that it suffices to show that

RN roNN2P 1 1 o 1
Z e N - = Z —De Nw. (545)
p=(apn P P

In a minor modification of the analysis of f,,(y), we write

h(y) (eN)Zy(l 1) (2y (1+1logN —1 ))(1 1)
= —_— _— = eX (0] — 10 —_ — — .
y " NS p(2y g 2|53

h(y)= ((2 (1+1logN —logy) —2) (]% — %) +i2) (ﬂ)zy.

y y

Therefore

Let y = (1+ w)N. Then h'(y) = 0 when
—2wlog(1 — =0
w log( +w)+N(1+co)

This equation is satisfied when

Note that when y = (1 + w)N

- = ( ) < eN,
y 1+w

because (e/x)* is maximized when x = 1. Therefore
eN\% /1 1 < 2N w
y N y/ N l+4+ow

2N
su h <C . (5.46)
ISyS(l-EEN)Nl )l (Ns/z)

from which we get




It is easy to see that h(y) is negative for 1 < y < N and that it decreases to its minimum value at
N(1 — w) and then increases to zero at y = N. It then increases to its maximum value at N(1 + w)
and then decreases for N(1+ w) < y < (1+ dy5)N. Consequently the difference between

(1+65)N (1+85)N

h(p)  and J h(p)dp

p=(1-8}))N (1-83)N

differs by at most 4max; <,<(14+5,)v [h(p)|. Since this is 0(e?N /N3/2) by (5.46), and we are only
trying to obtain (5.45), we can neglect this discrepancy. Therefore to obtain (5.45) we need only

show that
(1+6y5)N 1 eN 2p p , €2N
— | — (— — 1) dp >-D T/Z (547)
a-s,v P\ P N N
Under the change of variables p = xN the integral in (5.47) is equal to
46N 1 o 20N
f - (—) (x —1)dx. (5.48)
1-§’ X \X
N

As in (5.40), with x =1+ y and y*N << 1, we have

(;) 2N 2N o= ¥*N+y*N/3+0(y )N (5.49)
3
N
= NN (1 + yT + O(y4)N) .

Therefore, with the change of variables x = 1 4 y we write the integral in (5.48) as

5
o [ Y e ¥°N 4
e —e 1+——+O0(y")N | dy. (5.50)
5, 1+y 3

Weuse (1+y) '1=(1-y+y%2—y>+0(y") to write

3
J (1+yN+O(y4)N)

1+y 3
4
y'N
=y =y +y + 5= -y +OGOW.
Using this we see that (5.50)
On 4
N
262NJ e VN (y—y2+y3+y——y4+0(y5)N) dy. (5.51)
-5, 3
Recall that 5y = (10logN/N)Y/2 and 6, = N~'/* . Since
00 , 02N
(

10log N /N)/2
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and

N4
2 _a1/2
eZNJ eyNdySeZNN ,

—0o0

errors we can ignore in obtaining (5.33), we can simplify matters by replacing the integral in (5.51)
by

3
—00

00 ) y4N
= —e2N e VN yz——3 +y*+0(°)N | dy
—00

2N * ey y* y* 5ya7—2
= — -y — -
e f_ e (N3/2 N2 + N5/ +O(y>)N ) dy

2N 0 4 2N
e 2 y e
- _ y 2_ 72 -
=~ e (y 3)dy+O(N2).
—00
1 i 2 y4
—ﬁf “(yz—? dy
—00

2N > 2N 2 3 y4N 5
e eV Ny —y24+y3+2— —y*+O(y°)N | dy

Since

_ 1 1 _ 1
2 4 4
we obtain (5.47). This completes the proof of Lemma/5.3. O
Proof of Lemma 5.4 By Stirlings’s formula for integers q,
q! = V2mqit /271 (1 + O(q_l)) : (5.52)

Therefore, since j is large and p/j is small, terms of the form

(1+0G™) B B
GroG ) aroG-pm) L TOeT):
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Using this we see that

(f) _
p (G —p)'p!

1 jj+l/2 .
= . 1+0(p™")
V2 (j — p)U-pri/2) pp+1/2 ( ph)

1 j\P  jiptl2 i
== ) G (406 ™)

1 _
NG (1+06™)
(1-%)

p
) e U-p1/21080-213) (1 1 0(p™1))

TP 1/D/e* /2100 (1 4. 0(p~D))

eJ\" (p2ieipi@ir0m ) =
;ep JpJpJ(1_|_O(p))

i\ P

-1 (ﬂ) ePE=D/QIH0WYI) (1 4 0(p71))
2np \ P

Since this also holds with j replaced by k we get (5.29).

To get (5.30) we multiply each side of (5.29) by T2 and substitute for 1/ jk/t = dN and use the
fact that under the assumptions (5.26) and (5.28),

| e}

J

[\S)

3 2 2772
P _(+6)PN
=7 T dpt

Consequently, for all t sufficiently large

exp (_Zﬂj(p -1)- Zﬁk(p -1) +O(P3/jz)) =1+0(N*/t).
D

Proof of Theorem [1.4 when ¢; = ¢, = ¢ and E(G;G,) > 0 concluded Consider the Gaussian
random variable (G,/v,Gy/v) where y = (E(G; Gz))l/ 2, This random variable has covariance I in
(2.1). By Lemma 5.3/ there exists a ¢, > 0 such that (G;/y + ¢, G,/y + ¢) has infinitely divisible
squares for all |c| < c;. Let € be the supremum of the ¢/ for which this holds. Since, by hypothesis,
(1.4) does not hold, ¢ is finite. Therefore, (G;/y + ¢, G,/y + ¢) has infinitely divisible squares for all
|c] < ¢ and not for any ¢ or which |c| > €. Translating this into the notation used in Theorem 1.4/ we
have (G,/y + ca, G5 /y + ca) has infinitely divisible squares for all |a| < ¢/c and not for any |a| for
which |a| > ¢/c.

Therefore, to complete the proof of Theorem [1.4 when ¢; = ¢, = ¢ and E(G;G,) > 0 we need
only show that (G;/y + ¢, G,/y + ¢) has infinitely divisible squares for |c| =¢. Consider the Laplace
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transform of (G, /y+c, Go/y+c) in (3.1). Since it only depends on c? we can simplify the notation by
taking ¢ > 0. Let ¢,,, T . Abbreviate the third line of (3.1) by exp (P + cZQ). Thus exp (P + ciQ) is
the Laplace transform of an infinitely divisible random variable. Therefore, for each t > 0 the power
series expansion of P + ciQ in s; and s, has positive coefficients, except for the constant term. Thus

if we write
_ jk _ ik
P=D ajsiss, Q=D bjsish

we see that a; i +cT2n b;x = 0 for each (j, k) # (0, 0). Letting c,, T ¢ we therefore have a; ; +¢2 bjx=0
for each (j, k) # (0,0). This shows that exp ((P +EQQ)) is the Laplace transform of an infinitely
divisible random variable. O

Remark 5.3. In the remainder of this paper we continue to prove Theorem [1.4 for all ¢;,c, and
arbitrary covariance E(G,G,). In each case, as immediately above, because (1.4) does not hold,
there exists a ¢’ < oo such that (G; + cc;, G, + ccy) does not have infinitely divisible squares for all
c such that |c| > ¢’. Therefore, if we can show that there exists some c # 0 for which both

(Gy+ccy,Gy+ccy) and (Gy —ceq, Gy —ccy) (5.53)

have infinitely divisible squares, we can use the arguments in the preceding three paragraphs to
show that there exists a critical point ¢ such that (G; + ccy, G, + cc) has infinitely divisible squares
for all |c| < ¢ and not for |c| > ¢. Consequently, in the remainder of this paper, in which we consider
different cases of ¢;,c, and arbitrary covariance E(G;G,) we will only show that (5.53) holds for
some c # 0.

6 Proof of Theorem when (c¢q,¢,) = (¢, %c)

We first assume that E(G;G,) > 0 and that (cq, cy) = (¢, —¢). In this case we have

E (e—(xl(Gl+c)2+xz<cz—c)2)/2) (6.1)

. 1 ex (_Cz (p)ﬁ,lkz‘i‘ll'i‘lz))
(H(a, b, Ay, A2 P 2H(a, b, 21, 7)) )
where p = a+ b + 2. This is exactly the same as (3.1) except that y is replaced by p. We now trace
the proof in Sections and see what changes. Obviously much remains the same. In particular

the power series P is unchanged. The basic expression for Q in (3.9) is essentially the same except
that y is replaced by p. Thus Lemma (3.3]is also essentially the same except that v is replaced by p.

The analysis in Section 4 only uses the fact that y < 0o, and since p < oo, Lemma|4.1 also holds in
this case.

In going through Section [5/we see the coefficients of Q change, but they still lead to essentially the
same inequalities that allow us to complete the proof. In place of (5.3) we have

—(d+2)p+da+b) = —2(d+2+(a+b)):=-27 (6.2)
ap —d (a+1)?
bp—d = (b+1)>

1451



Using this in (5.4) and (5.5), with y replaced by p, we get

b+1)? )
Qjo(t) = (( ;t) +O(1/t2)) o,

and

2
Qox(t) = ((a+1)

2 k-1
5 +oq/t ))/5 .

We also see that we get (5.7) with y replaced by p and consequently, in place of (5.8), we get

Riko(t;c) 1-2%(f/d)+0 (™)
aj—l/gk—l - d2¢2 .

Of course the key term in the proof is the analogue of A; ; ,(t). We get the third line of (5.13) with y

replaced by p, which by (6.2) leads to (5.14) with { replaced by Zand y replaced by p. Therefore,
all the subsequent lower bounds for A; ;. ,(t) that are in Section|5/hold when ¢ is replaced by ¢. In

the proof of (5.33) in Section |5 the only property of { that is used is that is is positive. Since 7 is
also positive the same argument completes the proof of Lemma|5.3 and consequently, by Remark
of Theorem (1.4, when E(G;G,) > 0 and (¢, ¢,) = (¢, —c).

When E(G,G,) < 0 and (¢, ¢o) = (¢, —c) we note that
((Gy+¢)*,(Gy = ¢)*) = ((Gy + ¢), (=G +¢)?).

Now E(G;(—G,)) > 0 and we are in the case proved on page 1450. Therefore, by Remark [5.3]
Theorem[1.4 holds in this case.

Finally when E(G;G,) < 0 and (c;, ¢y) = (¢, c) we note that
((G1 +¢)*, (G +¢)*) = ((G1 +¢)*, (=G5 — ¢)?).

Now E(G;(—G,)) > 0 and we are in the case proved in the beginning of this section. O

7 Proof of Theorem 1.4 when (c;,c,) =(c,0)

We first assume that E(G;G,) > 0. In this case we have

E (e—(kl(Gl+c)2+A2G§)/2)

B 1 o[ bAAy+ A
~ (Ha b, A, 2072 TP\ T \2H@, b, 40,2 ) )

The term in the numerator of the exponential lacks the A, that is present in (3.1) and (6.1). There-
fore, the formulas for the coefficients of the power series for the analogue of Q, which we denote by
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Q, are different. It is easy to see that in place of (3.21) we get

_(btz(l =51)(1—s3) +t(1—57))
72

6(51,52, t) =

(o)
'Z(asl + Bsy — OafBsysy)"
n=0

(bt? +t — (bt? + t)s; — bt%sy + bt2sys,)
EZ

o0
~Z(a31 + Bsy — OaPsisy)".
n=0

Using this, in place of Lemma|3.3] we get

Lemma 7.1. For all t sufficiently large, and j,k > 1

(b*+t)(1—a) 1

aj,o(t) = o (7.1)
and ) -

~ bt*(1—-B)— Bt _,

QO,k(t) - tz ﬁ
Furthermore, for all t sufficiently large and for all 1 < j <k

Qj k()
1pk-1 _J
-2 0)0)
p=0

(—m201—ax1—ﬁ%—

-Hﬁ(l—a—g)).

The analysis in Section|4|only uses the fact that ¥ < co. Since b < 0o, Lemma (4.1 also holds in this
case.

(1-Bp (QA-a)p . ,j—pk-p
PP LRl k)

In going through Section|5 we see the coefficients of Q change, but they still lead to similar inequal-
ities that allow us to complete the proof. Using (7.1), (7.2) and (5.2) we get

bZ
QJO(t) ( +O(1/f2)) a7t

and

~ _(d+1 5 1
QO,k(t)_( d2t ))[5 5

since ab =d + 1.
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We next consider the analogue of (5.6) which we denote by ﬁj’k(t). We see that in computing this
the first two lines of the analogue of (5.7) remain unchanged. The last two lines of (5.7) are now

(_btz ((1 ORI il ) Cnl)) AP k—p)

Y (1—a—§)). (7.2)

Therefore, in place of (5.8), we get

Rjro(t)  1-2c*(b/d)+0 ()
aj—lﬁk—l - d2¢2 :

Using (5.11), with y replaced by b and Lemma|5.1} we see that (7.2)

b bp(dt —b) ap(dt—a) p>
= —— 1 — — i
3 ((ab +1) 3 PR

b p(dt—a) 1
*(a‘—dj )*O(?)-

2b dt — b2p(dt — b bp? 1
L pldt—a) bip(dt—b) bp O()

TTE T T & T o 2k T\t
2 dt —a)(dt—>b bp? 1
2—2 p\/( )( )—1 b—%-l-O(—).
d [ik d2jk t

Comparing this inequality to the first line of (5.14) we see that we have exactly what we need
to complete the proof in this case. The rest of the argument in Section |5 only uses the fact that
¢ > 0. It is now replaced by b > 0. Thus we get Lemma|5.3 and, by Remark 5.3] Theorem [1.4]
when (cq,¢5) = (¢,0) and E(G,G,) > 0. However this proof holds for ¢ positive or negative, so if
E(G,G,) < 0, we simply note that

law

(G1,(Ga+¢)*) = (G,(=Gy = ¢)?).

Since E(G;(—G,)) > 0 we are in the case just proved so, by Remark 5.3, Theorem 1.4 holds in this
case also. O

8 Proof of Theorem 1.4/ for (¢;,¢c,) € R! x R!

It is simple to complete the proof from the results already obtained. Suppose neither ¢; nor c, are
equal to zero. Then, clearly,
((G1 4 cc1)?,(Gy +ccy)?)

is infinitely divisible, if and only if

((Gy/c1+ )% (Gyfey +¢)P)
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is infinitely divisible. We have already shown that there exists a critical point ¢ > 0 such that

((Gy /ey +¢)%,(Gafea +)?)
is infinitely divisible for all |c| < ¢ and not for |c| > €. Consequently ¢ is also a critical point for the
infinite divisibility of
(G + C1C)2, (Gy+ CZC)Z)-

If ¢c; = 0 we repeat this argument for

(G3,(Gy +ccp)?).
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