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Abstract

We study a model of multi-excited random walk on a regular tree which generalizes the models
of the once excited random walk and the digging random walk introduced by Volkov (2003). We
show the existence of a phase transition and provide a criterion for the recurrence/transience
property of the walk. In particular, we prove that the asymptotic behaviour of the walk depends
on the order of the excitations, which contrasts with the one dimensional setting studied by
Zerner (2005). We also consider the limiting speed of the walk in the transient regime and
conjecture that it is not a monotonic function of the environment.

Key words: Multi-excited random walk, self-interacting random walk, branching Markov chain.

AMS 2000 Subject Classification: Primary 60F20, 60K35, 60J80.

Submitted to EJP on December 10, 2008, final version accepted June 15, 2009.

∗Institut de Mathématiques de Toulouse, France,anne-laure.basdevant@math.univ-toulouse.fr
†Institut für Mathematik, Universität Zürich, Schweiz, arvind.singh@math.unizh.ch
‡Research supported by the Swiss Science Foundation, grant PDAM2-114536/1.

1628

http://www.math.washington.edu/~ejpecp/


1 Introduction

The model of the excited random walk on Z
d was introduced by Benjamini and Wilson in [6] and

studied in details in, for instance, [1; 7; 11; 12; 21; 22]. Roughly speaking, it describes a walk
which receives a push in some specific direction each time it reaches a new vertex of Zd . Such a
walk is recurrent for d = 1 and transient with linear speed for d ≥ 2. In [25; 26], Zerner introduced
a generalization of this model called multi-excited random walk (or cookie random walk) where the
walk receives a push, not only on its first visit to a site, but also on some subsequent visits. This
model has received particular attention in the one-dimensional setting (c.f. [2; 4; 5; 13; 17] and the
references therein) and is relatively well understood. In particular, a one-dimensional multi-excited
random walk can be recurrent or transient depending on the strength of the excitations and may
exhibit sub-linear growth in the transient regime.

Concerning multi-excited random walks in higher dimensions, not much is known when one allows
the excitations provided to the walk to point in different directions. For instance, as remarked
in [13], for d ≥ 2, when the excitations of a 2-cookies random walk push the walk in opposite
directions, then there is, so far, no known criterion for the direction of transience. In this paper,
we consider a similar model where the state space of the walk is a regular tree and we allow the
excitations to point in opposite directions. Even in this setting simpler than Z

d , the walk exhibits a
complicated phase transition concerning its recurrence/transience behaviour.

Let us be a bit more precise about the model. We consider a rooted b-ary tree T. At each vertex
of the tree, we initially put a pile of M ≥ 1 "cookies" with strengths p1, . . . , pM ∈ [0,1). Let us also
choose some other parameter q ∈ (0,1) representing the bias of the walk after excitation. Then, a
cookie random walk on T is a nearest neighbor random walk X = (Xn)n≥0, starting from the root of
the tree and moving according to the following rules:

• If Xn = x and there remain the cookies with strengths p j , p j+1, . . . , pM at this vertex, then X

eats the cookie with attached strength p j and then jumps at time n+ 1 to the father of x with
probability 1− p j and to each son of x with probability p j/b.

• If Xn = x and there is no remaining cookie at site x , then X jumps at time n+ 1 to the father
of x with probability 1− q and to each son of x with probability q/b.

In particular, the bias provided to the height process |X | upon consuming a cookie of strength p is
2p − 1. Therefore, a cookie pushes the walk toward the root when p < 1/2 and towards infinity
when p > 1/2. The main question we address in this paper is to investigate, whether X is recurrent
or transient i.e. does it return infinitely often to the origin or does it wander to infinity.

For the one dimensional cookie random walk, a remarkably simple criterion for the recurrence of
the walk was obtained by Zerner [25] and generalized in [13]. This characterization shows that
the behavior of the walks depends only on the sum of the strengths of the cookies, but not on
their respective positions in the pile. However, in the tree setting considered here, as in the multi-
dimensional setting, the order of the cookies does matter, meaning that inverting the position of two
cookies in the pile may affect the asymptotic behaviour of the walk. We give here a criterion for
recurrence from which we derive explicit formulas for particular types of cookie environments.
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1.1 The model

Let us now give a rigorous definition of the transition probabilities of the walk and set some nota-
tions. In the remainder of this paper, T will always denote a rooted b-ary tree with b ≥ 2. The root

of the tree is denoted by o. Given x ∈ T, let
←
x stand for the father of x and

→
x

1
,
→
x

2
, . . . ,

→
x

b

stand for
the sons of x . We also use the notation |x | to denote the height of a vertex x ∈ T. For convenience,
we also add an additional edge from the root to itself and adopt the convention that the father of

the root is the root itself (
←
o= o).

We call cookie environment a vector C = (p1, p2, . . . , pM ; q) ∈ [0,1)M × (0,1), where M ≥ 1 is the
number of cookies. We put a semicolon before the last component of the vector to emphasize the
particular role played by q. A C multi-excited (or cookie) random walk is a stochastic process X =

(Xn)n≥0 defined on some probability space (Ω,F ,P), taking values in T with transition probabilities
given by

P
�

X0 = o
	
= 1,

P
�

Xn+1 =
→
X

i

n | X0, . . . , Xn

	
=

¨ p j

b
if j ≤ M ,

q

b
if j > M ,

P
�

Xn+1 =
←
Xn | X0, . . . , Xn

	
=

¨

1− p j if j ≤ M ,
1− q if j > M ,

where i ∈ {1, . . . , b} and j
def
= ♯{0≤ k ≤ n, Xk = Xn} is the number of previous visits of the walk to its

present position.

Remark 1.1. 1. We do not allow q = 0 in the definition of a cookie environment. This assump-
tion is made to insure that a 0− 1 law holds for the walk. Yet, the method developed in this
paper also enables to treat the case q = 0, c.f. Remark 8.1.

2. When p1 = p2 = . . . = pM = q, then X is a classical random walk on T and its height process
is a drifted random walk on Z. Therefore, the walk is recurrent for q ≤ 1

2
and transient for

q > 1
2
. More generally, an easy coupling argument shows that, when all the pi ’s and q are

smaller than 1
2

(resp. larger than 1
2
), the walk is recurrent (resp. transient). The interesting

cases occur when at least one of the cookies pushes the walk in a direction opposite to the
bias q of the walk after excitation.

3. This model was previously considered by Volkov [24] for the particular cookie environments:

(a) (p1 ; b

b+1
) "once-excited random walk".

(b) (0,0 ; b

b+1
) "two-digging random walk".

In both cases, Volkov proved that the walk is transient with linear speed and conjectured that,
more generally, any cookie random walk which moves, after excitation, like a simple random
walk on the tree (i.e. q = b/(b+1)) is transient. Theorem 1.2 below shows that such is indeed
the case.

Theorem 1.2 (Recurrence/Transience criterion).

Let C = (p1, p2, . . . , pM ; q) be a cookie environment and let P(C ) denote its associated cookie environ-

ment matrix as in Definition 3.1. This matrix has only a finite number of irreducible classes. Let λ(C )
denote the largest spectral radius of theses irreducible sub-matrices (in the sense of Definition 5.1).
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(a) If q < b

b+1
and λ(C ) ≤ 1

b
, then the walk in the cookie environment C is recurrent i.e. it hits

any vertex of T infinitely often with probability 1. Furthermore, if λ(C ) < 1
b
, then the walk is

positive recurrent i.e. all the return times to the root have finite expectation.

(b) If q ≥ b

b+1
or λ(C )> 1

b
, then the walk is transient i.e. limn→∞ |Xn|= +∞.

Moreover, if C̃ = (p̃1, p̃2, . . . , p̃M ; q̃) denotes another cookie environment such that C ≤ C̃ for the

canonical partial order, then the C̃ cookie random walk is transient whenever the C cookie random

walk is transient.

The matrix P(C ) of the theorem is explicit. Its coefficients can be expressed as a rational function
of the pi ’s and q and its irreducible classes are described in Section 4.1. However, we do not know,
except in particular cases, a simple formula for the spectral radius λ(C ).

Let us stress that the condition λ(C ) ≤ 1
b

does not, by itself, insure the recurrence of the walk.
Indeed, when X a biased random walk on the tree (p1 = . . . = pM = q), then P(C ) is the transi-
tion matrix of a Galton-Watson process with geometric reproduction law with parameter q

q+b(1−q)
.

According to [20], we have

λ(C ) =
( q

b(1−q)
for q ≤ b

b+1
,

b(1−q)

q
for q > b

b+1
.

Therefore, for q sufficiently close to 1, the walk is transient yet λ(C )< 1/b.

Let us also remark that the monotonicity property of the walk with respect to the initial cookie
environment stated in Theorem 1.2, although being quite natural, is not straightforward since there
is no simple way to couple two walks with different cookie environments (in fact, we suspect that
such a coupling does not exist in general, see the conjecture concerning the monotonicity of the
speed below).

Theorem 1.3 (Speed and CLT when pi > 0).

Let C = (p1, p2, . . . , pM ; q) be a cookie environment such that pi > 0 for all i. If the C -cookie random

walk is transient, then it has a positive speed and a central limit theorem holds: there exist deterministic

v = v(C )> 0 and σ = σ(C )> 0 such that

|Xn|
n

a.s.−→
n→∞

v and
|Xn| − nv
p

n

law−→
n→∞

N (0,σ2).

The assumption that all cookies have positive strength cannot be removed. When some cookies have
zero strength, it is possible to construct a transient walk with sub-linear growth, c.f. Proposition 1.9.

A natural question to address is the monotonicity of the speed. It is known that the speed of a
one-dimensional cookie random walk is non decreasing with respect to the cookie environment.
However, numerical simulations suggest that such is not the case for the model considered here (c.f.
Figure 1). We believe this behaviour to be somewhat similar to that observed for a biased random
walk on a Galton-Watson tree: the slowdown of the walk is due to the creation of "traps" where
the walk spends a long time. When p2 = 0, this is easily understood by the following heuristic
argument: the walk returns to each visited site at least once (except on the boundary of its trace)
and the length of an excursion of the walk away from the set of vertices it has already visited is a
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Figure 1: Speed of a (p1, 0.01 ; 0.95) cookie random walk on a binary tree obtained by Monte Carlo
simulation.

geometric random variable with parameter p1 (the first time the walk moves a step towards the root,
it moves back all the way until it reaches a vertex visited at least twice). Therefore, as p1 increases
to 1, the expectation of the length of theses excursions goes to infinity so we can expect the speed
of the walk to go to 0. What we find more surprising is that this slowdown also seems to hold true,
to some extend, when p2 is not zero, contrarily to the conjecture that the speed of a biased random
walk on a Galton-Watson tree with no leaf is monotonic, c.f. Question 2.1 of [15].

1.2 Special cookie environments

The value of the critical parameter λ(C ) can be explicitly computed in some cases of interest.

Theorem 1.4. Let C = (p1, . . . , pM ; q) denote a cookie environment such that

pi = 0 for all i ≤ ⌊M/2⌋ (1)

where ⌊x⌋ denotes the integer part of x. Define

λsym(C )
def
=

q

b(1− q)

M∏

i=1

�

(1− pi)

�
q

b(1− q)

�

+
(b− 1)pi

b
+

pi

b

�
q

b(1− q)

�−1
�

.

For q < b

b+1
, it holds that

λ(C ) = λsym(C ).

Remark 1.5. For any cookie environment, we have λ(C ) ≤ 1 (it is the maximal spectral radius
of sub-stochastic matrices). Moreover, when ⌊M/2⌋ cookies have strength 0, the function q 7→
λsym(p1, . . . , pM ; q) is strictly increasing and λsym(p1, . . . , pM ; b

b+1
) = 1. Thus, λ(C ) ≤ 1 < λsym(C )

for all q > b

b+1
.
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Figure 2: Phase transition of a (p ; q) cookie random walk on a binary tree.

Let us also note that, under Assumption (1), in order to reach some vertex x , the walk has to visit

every vertex on the path [o,
←
x ) at least M times. Therefore, for such a walk, except on the boundary

of its trace, every vertex of the tree is visited either 0 or more than M times. This justifies λ(C )
being, in this case, a symmetric function of the pi ’s.

The combination of Theorem 1.2, Theorem 1.4 and Remark 1.5 directly yields particularly simple
criterions for the model of the once excited and the digging random walk.

Corollary 1.6 (Once excited random walk).

Let X denote a (p ; q) cookie random walk (i.e. M = 1) and define

λ1
def
= (1− p)

�
q

b(1− q)

�2

+
(b− 1)p

b

�
q

b(1− q)

�

+
p

b
.

Then X is recurrent if and only if λ1 ≤ 1/b.

In particular, the phase transition of the once excited random walk is non trivial in both cases
p < 1

2
< q and q < 1

2
< p (c.f. Figure 2).

Corollary 1.7 (M-digging random walk).

Let X denote a C = (0, . . . , 0
︸ ︷︷ ︸

M times

; q) cookie random walk and define

λdig

def
=

�
q

b(1− q)

�M+1

.

Then X is recurrent if and only if λdig ≤ 1/b.

Recall that, according to Theorem 1.2, the condition q ≥ b/(b+ 1) is sufficient to insure the tran-
sience of the walk. Corollary 1.7 shows that this condition is also necessary to insure transience
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independently of p1, . . . , pM : for any q < b/(b+ 1), the M digging random walk is recurrent when
M is chosen large enough.

We now consider another class of cookie environment to show that, contrarily to the one dimensional
case, the order of the cookies in the pile does matter in general.

Proposition 1.8. Let X be a C = (p1, p2, 0, . . . , 0
︸ ︷︷ ︸

K times

; q) cookie random walk with K ≥ 2. Define ν(p1, p2)

to be the largest positive eigenvalue of the matrix

 
p1

b
+

p1p2

b
− 2p1p2

b2
p1p2

b2
p1+p2

b
− 2p1p2

b2
p1p2

b2

!

,

namely

ν(p1, p2) =
1

2b2

�

(b−1)p1p2+ bp1+
Æ

(b2−6b+1)p2
1 p2

2 + 2b(b−1)p2
1 p2+ b2p2

1 + 4bp1p2
2

�

.

Recall the definition of λsym(C ) given in Theorem 1.4 and set

λ̃ = max
�

λsym(C ),ν(p1, p2)
�

.

The walk X is recurrent if and only if λ̃ ≤ 1
b
.

Since ν is not symmetric in (p1, p2), Proposition 1.8 confirms that it is possible to construct a recur-
rent cookie random walk such that the inversion of the first two cookies yields a transient random
walk. For b = 2, one can choose, for example, p1 =

1
2
, p2 =

4
5

and q ≤ 1
2
.

Proposition 1.8 also enables to construct a transient cookie random walk with sub-linear growth.

Proposition 1.9. Let X be a C = (p1, p2, 0, 0 ; q) cookie random walk with q ≥ b/(b + 1) and

ν(p1, p2) = 1/b. Then X is transient yet

lim inf
n→∞

|Xn|
n
= 0.

We do not know whether the liminf above is, in fact, a limit.

The remainder of this paper is organized as follows. In the next section, we prove a 0− 1 law for
the cookie random walk. In section 3, we introduce a branching Markov chain L (or equivalently a
multi-type branching process with infinitely many types) associated with the local time of the walk.
We show that the walk is recurrent if and only if this process dies out almost surely. We also prove
some monotonicity properties of the process L which imply the monotonicity property of the cookie
random walk stated in Theorem 1.2. In section 4, we study the decomposition of the transition
matrix P of L and provide some results concerning the evolution of a tagged particle. Section 5 is
devoted to completing the proof of Theorem 1.2. In section 6, we prove the law of large numbers
and C.L.T. of Theorem 1.3 and Proposition 1.9. In section 7, we compute the value of the critical
parameter λ(C ) for the special cookie environments mentioned above and prove Theorem 1.4 and
Proposition 1.8. Finally, in the last section, we discuss some possible extensions of the model.
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2 The 0 - 1 law

In the remainder of the paper, X will always denote a C = (p1, . . . , pM ; q) cookie random walk on a
b-ary tree T. We denote by T

x the sub-tree of T rooted at x . For n ∈ N, we also use the notation
Tn (resp. T≤n, T<n) to denote the set of vertices which are at height n (resp. at height ≤ n and
< n) from the root . We introduce the sequence (τk

o)k≥0 of return times to the root.






τ0
o

def
= 0,

τk+1
o

def
= min{i > τk

o, X i = o},

with the convention min; =∞. The following result shows that, although a cookie random walk is
not a Markov process, a 0− 1 law holds (recall that we assume q 6= 0 in the definition of a cookie
environment).

Lemma 2.1 (0− 1 law). Let X be a C cookie random walk.

1. If there exists k ≥ 1 such that P{τk
o =∞}> 0, then limn→∞ |Xn|=∞ P-a.s.

2. Otherwise, the walk visits any vertex infinitely often P-a.s.

Proof. Let us first assume that P{τk
o <∞} = 1 for all k i.e. the walk returns infinitely often to the

origin almost surely. Since there are no cookies left after the M th visit of the root, the walk will visit
every vertex of height 1 infinitely often with probability 1. By induction, we conclude that the walk
visits every vertex of T infinitely often almost surely.

We now prove the transience part of the proposition. We assume that P{τk0
o < ∞} < 1 for some

k0 ∈N. Let Ω1 denote the event

Ω1
def
=
n

lim
i→∞
|X i |=∞

oc

.

Given N ∈N, let X̃ N denote a multi-excited random walk on T reflected at height N (i.e. a process
with the same transition rule as X but which always goes back to its father when it reaches a vertex
of height N). This process takes values in the finite state space T≤N and thus visits any site of T≤N

infinitely often almost surely. For x ∈ T<N , let τ̃k0
x be the time of the kth

0 return of X̃ N to the vertex

x . For n< N , let also τ̃k0
n = supx∈Tn

τ̃
k0
x be the first time when all the vertices of height n have been

visited at least k0 times. We consider the family of events (An,N )n<N defined by:

An,N
def
= {X̃ N does not reach height N before τ̃k0

n }.

Let us note that, on An,N , the processes X and X̃ N are equal up to time τ̃k0
n . Moreover, given n ∈ N

and ω ∈ Ω1, we can always find N > n such that ω ∈ An,N . Hence,

Ω1 ⊂
⋂

n≥1

⋃

N>n

An,N .

In particular, for any fixed n≥ 1, we get

P{Ω1} ≤ sup
N>n

P{An,N}. (2)
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It remains to bound P{An,N}. For x ∈ Tn, we consider the subsets of indices:

Ix
def
= {0≤ i ≤ τ̃k0

n , X̃ N
i ∈ T

x}.
I ′x

def
= {0≤ i ≤ τ̃k0

x , X̃ N
i ∈ T

x} ⊂ Ix .

With these notations, we have

P{An,N} = P{∀x ∈ Tn, (X̃ N
i , i ∈ Ix) does not reach height N}

≤ P{∀x ∈ Tn, (X̃ N
i , i ∈ I ′x) does not reach height N}.

Since the multi-excited random walk evolves independently in distinct subtrees, up to a translation,
the stochastic processes (X̃ N

i , i ∈ I ′x)x∈Tn
are i.i.d. and have the law of the multi-excited random

walk X starting from the root o, reflected at height N − n and killed at its kth
0 return to the root.

Thus,

P{An,N} ≤ P
n

(X̃ N−n
i , i ≤ τ̃k0

o ) does not reach height N − n
obn

≤ P{τk0
o <∞}

bn

. (3)

Putting (2) and (3) together, we conclude that

P{Ω1} ≤ P{τk0
o <∞}

bn

and we complete the proof of the lemma by letting n tend to infinity.

3 The branching Markov chain L

3.1 Construction of L

In this section, we construct a branching Markov chain which coincides with the local time process
of the walk in the recurrent setting and show that the survival of this process characterizes the
transience of the walk.

Recall that X̃ N denotes the cookie random walk X reflected at height N . Fix k0 > 0. Let σk0
denote

the time of the kth
0 crossing of the edge joining the root of the tree to itself:

σk0

def
= inf

n

i > 0,
i∑

j=1

1{X̃ N
j
=X̃ N

j−1=o} = k0

o

.

Since the reflected walk X̃ N returns to the root infinitely often, we have σk0
<∞ almost surely. Let

now ℓN (x) denote the number of jumps of X̃ N from
←
x to x before time σk0

i.e.

ℓN (x)
def
= ♯{0≤ i < σk0

, X̃ N
i =

←
x and X̃ N

i+1 = x} for all x ∈ T≤N .

We consider the (N + 1)-step process LN = (LN
0 , LN

1 , . . . , LN
N ) where

LN
n

def
= (ℓN (x), x ∈ Tn) ∈N

Tn .

Since the quantities LN , ℓN depend on k0, we should rigourously write LN ,k0 , ℓN ,k0 . Similarly, we
should write σN

k0
instead of σk0

. Yet, in the whole paper, for the sake of clarity, as we try to keep the
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notations as simple as possible, we only add a subscript to emphasize the dependency upon some
parameter when we feel that it is really necessary. In particular, the dependency upon the cookie
environment C is usually implicit.

The process LN is Markovian, in order to compute its transition probabilities we need to introduce
some notations which we will extensively use in the rest of the paper.

Definition 3.1.

• Given a cookie environment C = (p1, . . . , pM ; q), we denote by (ξi)i≥1 a sequence of independent

random variables taking values in {0,1, . . . , b}, with distribution:

P{ξi = 0} =
¨

1− pi if i ≤ M,

1− q if i > M,

P{ξi = 1}= . . .= P{ξi = b} =
¨

pi

b
if i ≤ M,

q

b
if i > M.

We say that ξi is a "failure" when ξi = 0.

• We call "cookie environment matrix" the non-negative matrix P = (p(i, j))i, j≥0 whose coefficients

are given by p(0, j) = 1{ j=0} and, for i ≥ 1,

p(i, j)
def
= P
n γi∑

k=1

1{ξk=1} = j
o

where γi
def
= inf

n

n,
n∑

k=1

1{ξk=0} = i
o

.

Thus, p(i, j) is the probability that there are exactly j random variables taking value 1 before the

ith failure in the sequence (ξ1,ξ2, . . .).

The following lemma characterizes the law of LN .

Lemma 3.2. The process LN = (LN
0 , LN

1 , . . . , LN
N ) is a Markov process on

⋃N

n=0 N
Tn . Its transition

probabilities can be described as follows:

(a) L0 = (k0) i.e. ℓ(o) = k0.

(b) For 1 ≤ n ≤ N and x1, . . . , xk ∈ Tn with distinct fathers, conditionally on LN
n−1, the random

variables ℓN (x1), . . . ,ℓN (xk) are independent.

(c) For x ∈ Tn with children
→
x

1
, . . . ,

→
x

b

, the law of
�
ℓN (

→
x

1
), . . . ,ℓN (

→
x

b

)
�
, conditionally on LN

n ,

depends only on ℓN (x) and is given by:

P
n

ℓN (
→
x

1
) = 0, . . . ,ℓN (

→
x

b

) = 0
�
�
� ℓN (x) = 0

o

= 1

P
n

ℓN (
→
x

1
) = j1, . . . ,ℓN (

→
x

b

) = jb

�
�
� ℓN (x) = j0 > 0

o

= P
n

∀k ∈ [0, b], ♯{1≤ i ≤ j0+ . . .+ jb, ξi = k}= jk and ξ j0+...+ jb
= 0
o

.

In particular, conditionally on ℓN (x) = j0, the random variable ℓN (
→
x

k

) is distributed as the

number of ξi ’s taking value k before the jth

0 failure. By symmetry, this distribution does not

depend on k and, with the notation of Definition 3.1, we have

P
n

ℓN (
→
x

k

) = j

�
�
� ℓN (x) = j0

o

= p( j0, j).
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Proof. (a) is a direct consequence of the definition of σk0
. Let x ∈ T≤N . Since the walk X̃ N is at

the root of the tree at times 0 and σk0
, the number of jumps ℓN (x) from

←
x to x is equal to the

number of jumps from x to
←
x . Moreover, the walk can only enter and leave the subtree T

x ∩T≤N

by crossing the edge (x ,
←
x ). Therefore, conditionally on ℓN (x), the families of random variables

(ℓN (y), y ∈ T
x ∩T≤N ) and (ℓN (y), y ∈ T≤N\Tx) are independent. This fact implies (b) and the

Markov property of L. Finally, (c) follows readily from the definition of the transition probabilities
of a cookie random walk and the construction of the sequence (ξi)i≥1 in terms of the same cookie
environment.

In view of the previous lemma, it is clear that for all x ∈ T≤N , the distribution of the random
variables ℓN (x) does not, in fact, depend on N . More precisely, for all N ′ > N , the (N + 1) first
steps (LN ′

0 , . . . , LN ′
N ) of the process LN ′ have the same distribution as (LN

0 , . . . , LN
N ). Therefore, we can

consider a Markov process L on the state space
⋃∞

n=0 N
Tn:

L = (Ln, n≥ 0) with Ln = (ℓ(x), x ∈ Tn) ∈N
Tn

where, for each N , the family (ℓ(x), x ∈ T≤N ) is distributed as (ℓN (x), x ∈ T≤N ). We can interpret
L as a branching Markov chain (or equivalently a multi-type branching process with infinitely many
types) where the particles alive at time n are indexed by the vertices of Tn:

• The process starts at time 0 with one particle o located at ℓ(o) = k0.

• At time n, there are bn particles in the system indexed by Tn. The position (in N) of a particle
x is ℓ(x).

• At time n+ 1, each particle x ∈ Tn evolves independently: it splits into b particles
→
x

1
, . . . ,

→
x

b

.

The positions ℓ(
→
x

1
), . . . ,ℓ(

→
x

b

) of these new particles, conditionally on ℓ(x), are given by the
transition kernel described in (c) of the previous lemma.

Remark 3.3.

(1) Changing the value of k0 only affects the position ℓ(o) of the initial particle but does not
change the transition probabilities of the Markov process L. Thus, we shall denote by Pk the
probability where the process L starts from one particle located at ℓ(o) = k. The notation Ek

will be used for the expectation under Pk.

(2) The state 0 is absorbing for the branching Markov chain L: if a particle is at 0, then all its

descendants remain at 0 (if the walk never crosses an edge (
←
x , x), then, a fortiori, it never

crosses any edge of the subtree T
x).

(3) Let us stress that, given ℓ(x), the positions of the b children ℓ(
→
x

1
), . . . ,ℓ(

→
x

b

) are not indepen-
dent. However, for two distinct particles, the evolution of their progeny is independent c.f. (b)
of Lemma 3.2.

(4) When the cookie random walk X is recurrent, the process L coincides with the local time
process of the walk and one can directly construct L from X without reflecting the walk at
height N and taking the limit. However, when the walk is transient, one cannot directly
construct L with N = ∞. In this case, the local time process of the walk, stopped at its kth

0
jump from the root to itself (possibly∞), is not a Markov process.
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Since 0 is an absorbing state for the Markov process L, we say that L dies out when there exists a
time such that all the particles are at 0. The following proposition characterizes the transience of
the cookie random walk in terms of the survival of L.

Proposition 3.4. The cookie random walk is recurrent if and only if, for any choice of k, the process L,

under Pk (i.e. starting from one particle located at ℓ(o) = k), dies out almost surely.

Proof. Let us assume that, for any k, the process L starting from k dies out almost surely. Then,
k being fixed, we can find N large enough such that L dies out before time N with probability c

arbitrarily close to 1. Looking at the definition of L, this means that the walk X crosses at least k

times the edge (o,
←
o) before reaching level N with probability c. Letting c tend to 1, we conclude

that X returns to the root at least k times almost surely. Thus, the walk is recurrent.

Conversely, if, for some k, the process L starting from k has probability c > 0 never to die out, then

the walk X crosses the edge (o,
←
o) less than k times with probability c. This implies that X returns

to the root only a finite number of times with strictly positive probability. According to Lemma 2.1,
the walk is transient.

Recall that, in the definition of a cookie environment, we do not allow the strengths of the cookies pi

to be equal to 1. This assumption insures that, for a particle x located at ℓ(x)> M , the distribution

(ℓ(
→
x

1
), . . . ,ℓ(

→
x

b

)) of the position of its b children has a positive density everywhere on N
b. Indeed,

for any j1, . . . , jn ∈N, the probability

P
n

ℓ(
→
x

1
) = j1, . . . ,ℓ(

→
x

b

) = jb | ℓ(x) = i > M
o

(4)

is larger that the probability of the i + j1+ . . .+ jb first terms of the sequence (ξk)k≥1 being

0, . . . , 0
︸ ︷︷ ︸

i−1 times

, 1, . . . , 1
︸ ︷︷ ︸

j1 times

, . . . , b, . . . , b
︸ ︷︷ ︸

jb times

, 0

which is non zero. Therefore, we get the simpler criterion:

Corollary 3.5. The cookie random walk is recurrent if and only if L under PM+1 dies out almost surely.

3.2 Monotonicity property of L

The particular structure of the transition probabilities of L in terms of successes and failures in the
sequence (ξk) yields useful monotonicity properties for this process.

Given two branching Markov chains L and L̃, we say that L is stochastically dominated by L̃ if we
can construct both processes on the same probability space in such way that

ℓ(x)≤ ℓ̃(x) for all x ∈ T, almost surely.

Proposition 3.6 (monotonicity w.r.t. the initial position). For any 0 ≤ i ≤ j, the process L under

Pi is stochastically dominated by L under P j .
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Proof. Since each particle in L reproduces independently, we just need to prove that L1 = (ℓ(
→
o

1

), . . . ,ℓ(
→
o

b

)) under Pi is stochastically dominated by L1 under P j and the result will follows by

induction. Recalling that, under Pi (resp. P j), ℓ(
→
o

k

) is given by the number of random variables ξ
taking value k before the ith failure (resp. jth failure) in the sequence (ξn), we conclude that, when
i ≤ j, we can indeed create such a coupling by using the same sequence (ξn) for both processes.

Proposition 3.7 (monotonicity w.r.t. the cookie environment).
Let C = (p1, . . . , pM ; q) and C̃ = (p̃1, . . . , p̃M ; q̃) denote two cookies environments such that C ≤ C̃
for the canonical partial order. Let L (resp. L̃) denote the branching Markov chain associated with the

cookie environment C (resp. C̃ ). Then, for any i ≥ 0, under Pi , the process L̃ stochastically dominates

L.

Proof. Keeping in mind Proposition 3.6 and using again an induction argument, we just need to
prove the result for the first step of the process i.e. prove that we can construct L1 and L̃1 such that,
under Pi ,

ℓ(
→
o

k

)≤ ℓ̃(→o
k

) for all k ∈ {1, . . . , b}. (5)

Let (ξn) denote a sequence of random variables as in Definition 3.1 associated with the cookie
environment C . Similarly, let (ξ̃n) denote a sequence associated with C̃ . When C ≤ C̃ , we have
P{ξn = 0} ≥ P{ξ̃n = 0} and P{ξn = k} ≤ P{ξ̃n = k} for all k ∈ {1, . . . , b}. Moreover, the random
variables (ξn)n≥1 (resp. (ξ̃n)n≥1) are independent. Thus, we can construct the two sequences (ξn)

and (ξ̃n) on the same probability space in such way that for all n≥ 1 and all k ∈ {1, . . . , b},

ξ̃n = 0 implies ξn = 0,

ξn = k implies ξ̃n = k.

Defining now, for each k, the random variable ℓ(
→
o

k

) (resp. ℓ̃(
→
o

k

)) to be the number of random
variables taking value k in the sequence (ξn) (resp. (ξ̃n)) before the ith failure, it is clear that (5)
holds.

The monotonicity of the recurrence/transience behaviour of the cookie walk with respect to the
initial cookie environment stated in Theorem 1.2 now follows directly from the combination of
Corollary 3.5 and Proposition 3.7:

Corollary 3.8. Let C = (p1, p2, . . . , pM ; q) and C̃ = (p̃1, p̃2, . . . , p̃M ; q̃) denote two cookie environ-

ments such that C ≤ C̃ . The C̃ cookie random walk is transient whenever the C cookie random walk

is transient.

4 The Matrix P and the process Z

4.1 Irreducible classes of P

The matrix P plays a key role in the study of L. Since we allow the strength of a cookie to be zero,
the transition matrix P need not be irreducible (a matrix is said to be irreducible if, for any i, j, there
exists n such that p(n)(i, j)> 0, where p(n)(i, j) denotes the (i, j) coefficient of Pn).

For i, j ∈N, we use the classical notations
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• i→ j if p(n)(i, j)> 0 for some n≥ 1.

• i↔ j if i→ j and j→ i.

Lemma 4.1. For any i, j ∈N, we have

(a) If p(i, j) > 0 then p(i, k)> 0 for all k ≤ j and p(k, j)> 0 for all k ≥ i.

(b) If i→ j then i→ k for all k ≤ j and k→ j for all k ≥ i.

Proof. Recall the specific form of the coefficients of P: p(i, j) is the probability of having j times
1 in the sequence (ξn)n≥1 before the ith failure. Let us also note that we can always transform a
realization of (ξn)n≥1 contributing to p(i, j) into a realization contributing to p(i, k) for k ≤ j (resp.
for p(k, j) for k ≥ i) by inserting additional failures in the sequence. Since no cookie has strength
1, for any n ≥ 1, P{ξn = 0} > 0. Therefore, adding a finite number of failures still yields, when
p(i, j)> 0, a positive probability for these new realizations of the sequence (ξn). This entails (a).

We have i → j if and only if there exists a path i = n0, n1, . . . , nm−1, nm = j such that p(nt−1, nt) >

0. Using (a), we also have, for k ≤ j, p(nm−1, k) > 0 (resp. for k ≥ i, p(k, n1) > 0). Hence
i, n1, . . . , nm−1, k (resp. k, n1, . . . , nm−1, j) is a path from i to k (resp. from k to j). This proves
(b).

Lemma 4.2. Let a ≤ b such that a↔ b. The finite sub-matrix (p(i, j))a≤i, j≤b is irreducible.

Proof. Let i, j ∈ [a, b]. In view of (b) of Lemma 4.1, a → b implies i → b and a → j. Therefore
i→ b→ a→ j so that i→ j. Thus, there exists a path in N:

i = n0, n1, . . . , nm = j (6)

such that p(nt−1, nt) > 0 for all t. It remains to show that this path may be chosen in [a, b]. We
separate the two cases i ≤ j and i > j.

Case i≤ j. In this case, the path (6) from i to j may be chosen non decreasing (i.e. nt−1 ≤
nt). Indeed, if there exists 0 < t < m such that nt−1 > nt , then, according to (a) of Lemma
4.1, p(nt , nt+1) > 0 implies that p(nt−1, nt+1) > 0. Therefore, nt can be removed from the path.
Concerning the last index, note that, if nm−1 > nm, then we can remove nm−1 from the path since
p(nm−2, nm)> 0.

Case i> j. According to the previous case, there exists a non decreasing path from i to i. This
implies p(i, i) > 0 and therefore p(i, j) > 0 whenever j < i. Thus, there exists a path (of length 1)
from i to j contained in [a, b].

We now define
I

def
= {i ≥ 0, p(i, i)> 0}= {i ≥ 0, i↔ i}.

On I , the relation ↔ is an equivalence relation. In view of the previous lemma, we see that the
equivalence classes for this relation must be intervals of N. Note that {0} is always an equivalence
class since 0 is absorbent. Moreover, we have already noticed that, for i, j ≥ M + 1, p(i, j) > 0
c.f. (4). Therefore, there is exactly one infinite class of the form [a,∞) for some a ≤ M + 1. In
particular, there are only a finite number of equivalence classes. We summarize these results in the
following definition.
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Definition 4.3. Let K +1 be the number of equivalence classes of↔ on I. We denote by (li)1≤i≤K and

(ri)1≤i≤K the left (resp. right) endpoints of the equivalence classes:

• The equivalence classes of↔ on I are {0}, [l1, r1], . . . , [lK−1, rK−1], [lK , rK).

• 0< l1 ≤ r1 < l2 ≤ r2 < . . .≤ rK−1 < lK < rK =∞.

• We have lK ≤ M + 1.

We denote by (Pk, 1 ≤ k ≤ K) the sub-matrices of P defined by Pk
def
= (p(i, j))lk≤i, j≤rk

. By construction,

the (Pk) are irreducible sub-stochastic matrices and P has the form

P =





















































1 0 . . . . . . . . . . . . . . . 0

∗
0 . . . 0

.

.

.

.
.
.

.

.

.∗ . . . 0

.
.
.

.

.

.

.

.

.

.
.
. P1

.
.
. 0 .

.

.

.

.

.

.
.
.

0 . . . 0

.

.

.

.
.
.

.

.

.∗ . . . 0

.
.
.

.

.

.

.

.

. ∗ .
.
. P2

.
.
.

.

.

.

.

.

.

.
.
.

0 . . . 0

.

.

.

.
.
.

.

.

.∗ . . . 0

0

∗ . . . . . . . . . . . . . . . ∗ PK

(infinite class)





















































.

Remark 4.4. The sequences (li)1≤i≤K and (ri)1≤i≤K−1 can be explicitly expressed in terms of the
positions of the zeros in the vector (p1, . . . , pM ). By construction, we have

{li , 1≤ i ≤ K} = {n≥ 1, p(n, n)> 0 and p(n− 1, n) = 0}
{ri , 1≤ i ≤ K − 1} = {n≥ 1, p(n, n)> 0 and p(n, n+ 1) = 0},

which we may rewrite in terms of the cookie vector:

{li , 1≤ i ≤ K} = {n≥ 1, ♯{1≤ j ≤ 2n− 1, p j = 0}= n− 1 and p2n−1 6= 0}
{ri , 1≤ i ≤ K − 1} = {n≥ 1, ♯{1≤ j ≤ 2n− 1, p j = 0}= n− 1 and p2n = 0}.

For example, if there is no cookie with strength 0, then K = 1 and l1 = 1. Conversely, if all the pi ’s
have strength 0 (the digging random walk case), then K = 1 and l1 = M + 1.

4.2 The process Z

In order to study the branching Markov chain L introduced in the previous section, it is convenient to
keep track of the typical evolution of a particle of L: fix a deterministic sequence ( ji)i≥0 ∈ {1, . . . , b}N
and set (

x0
def
= o,

x i+1
def
=
→
x i

ji for i ≥ 0.
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Define the process Z = (Zn)n≥0 by

Zn
def
= ℓ(xn).

According to (c) of Lemma 3.2, given a particle x located at ℓ(x), the positions of its b children
have the same law. Therefore, the law of Z does not depend on the choice of the sequence ( ji)i≥0.
Moreover, Lemma 3.2 yields:

Lemma 4.5. Under Pi , the process Z is a Markov chain starting from i, with transition matrix P given

in Definition 3.1.

Let us note that, if Zn is in some irreducible class [lk, rk], it follows from Lemma 4.1 that Zm ≤ rk for
all m ≥ n. Thus, Z can only move from an irreducible class [lk, rk] to another class [lk′ , rk′] where
k′ < k. Recall also that {0} is always an irreducible class (it is the unique absorbing state for Z). We
introduce the absorption time

T0
def
= inf{k ≥ 0, Zk = 0}. (7)

Lemma 4.6. Assume that the cookie environment is such that q < b/(b+ 1). Let i0 ∈N, we have

(a) T0 <∞ Pi0
-a.s.

(b) For any α > 0, supn Ei0
[Zαn ]<∞.

Proof. The proof of the lemma is based on a coupling argument. Recall Definition 3.1 and notice
that the sequence (ξk)k≥M+1 is i.i.d. Thus, for any stopping time τ such that τ ≥ M + 1 a.s., the
number of random variables in the sub-sequence (ξk)k>τ taking value 1 before the first failure in
this sub-sequence has a geometric distribution with parameter

s
def
= P{ξM+1 = 1 | ξM+1 ∈ {0,1}} =

q

q+ b(1− q)
.

It follows that, for any i, the number of random variables in the sequence (ξk)k≥1 taking value
1 before the ith failure is stochastically dominated by M + G1 + . . .+ Gi where (Gk)k≥1 denotes a
sequence of i.i.d. random variables with geometric distribution i.e.

P{Gk = n}= (1− s)sn for n≥ 0.

This exactly means that, conditionally on Zn = i, the distribution of Zn+1 is stochastically dominated
by G1+ . . .+Gi +M . Let us therefore introduce a new Markov chain Z̃ with transition probabilities

P{Z̃n+1 = j | Z̃n = i} = P{G1+ . . .+Gi +M = j},

It follows from the stochastic domination stated above that we can construct both processes Z and
Z̃ on the same space in such way that, under Pi0

, almost surely,

Z0 = Z̃0 = i0 and Zn ≤ Z̃n for all n≥ 1. (8)

The process Z̃ is a branching process with geometric reproduction and with M immigrants at each
generation. Setting

c
def
=

q

b(1− q)
= E[G1],
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we get
E[Z̃n+1 | Z̃n] = cZ̃n+M . (9)

When q < b/(b+ 1), we have c < 1 so that Z̃n ≥ M/(1− c) implies E[Z̃n+1 | Z̃n] ≤ Z̃n. Therefore,
the process Z̃ stopped at its first hitting time of [0, M/(1− c)] is a positive super-martingale which
converges almost surely. Since no state in (M/(1− c),∞) is absorbent for Z̃ , we deduce that Z̃ hits
the set [0, M/(1− c)] in finite time. Using the Markov property of Z̃ , it follows that Z̃ returns below
M/(1−c) infinitely often, almost surely. Since Z ≤ Z̃ , the same result also holds for Z . Furthermore,
the process Z has a strictly positive probability of reaching 0 from any i ≤ M/(1− c) in one step
(because no cookie has strength 1). Thus Z reaches 0 in finite time. This entails (a).

Concerning assertion (b), it suffices to prove the result for the process Z̃ when α is an integer. We
prove the result by induction on α. For α= 1, equation (9) implies E[Z̃n+1] = cEi0

[Z̃n] +M so that

sup
n

Ei0
[Z̃n]≤max(i0, M/(1− c)).

Let us now assume that, for any β ≤ α, Ei0
[Z̃
β
n ] is uniformly bounded in n. We have

Ei0
[Zα+1

n+1 ] = Ei0
[E[(G1+ . . .+GZn

+M)α+1|Zn]]

= cα+1Ei0
[Zα+1

n ] + Ei0
[Q(Zn)] (10)

where Q is a polynomial of degree at most α. Therefore the induction hypothesis yields
supn |Ei0

[Q(Zn)]|<∞. In view of (10), we conclude that supn Ei0
[Zα+1

n ]<∞.

The following lemma roughly states that Z does not reach 0 with a "big jump".

Lemma 4.7. Assume that the cookie environment is such that q < b/(b + 1). Recall that [lK ,∞)
denotes the unique infinite irreducible class of Z. We have

inf
j≥lK

P j{∃n≥ 0, Zn = lK}> 0.

Proof. We introduce the stopping time

σ
def
= inf{n> 0, Zn ≤ M + 1}.

We are going to prove that
inf

j>M+1
P j{Zσ = M + 1}> 0. (11)

This will entail the lemma since PM+1{Z1 = lK} > 0 (recall that lK ≤ M + 1). According to (a) of
Lemma 4.6, σ is almost surely finite from any starting point j so we can write, for j > M + 1,

1 =

M+1∑

k=0

∞∑

i=M+2

P j{Zσ−1 = i and Zσ = k}

=

M+1∑

k=0

∞∑

i=M+2

P j{Zσ−1 = i}
p(i, k)

∑M+1
m=0 p(i, m)

. (12)
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Let us for the time being admit that, for i > M + 1 and k ∈ {0, . . . , M + 1},

p(i, k)≤
�

b

q

�M+1

p(i, M + 1). (13)

Then, combining (12) and (13), we get

1 ≤
�

b

q

�M+1

(M + 2)
∞∑

i=M+2

P j{Zσ−1 = i}
p(i, M + 1)
∑M+1

m=0 p(i, m)

=

�
b

q

�M+1

(M + 2)P j{Zσ = M + 1},

which yields (11). It remains to prove (13). Recalling Definition 3.1, we have

p(i, k) =

∞∑

n=M

∑

e1,...,en s.t.
♯{ j≤n,e j=1}=k

♯{ j≤n,e j=0}=i−1

P{ξ1 = e1, . . . ,ξn = en}P{ξn+1 = 0}.

Keeping in mind that (ξ j) j≥M+1 are i.i.d. with P(ξ j = 1) = q/b, we get, for n≥ M ,

P{ξn+1 = 0}=
�

b

q

�M+1−k

P{ξn+1 = 1, . . . ,ξn+M+1−k = 1}P{ξn+M+2−k = 0}.

Thus,

p(i, k) ≤
�

b

q

�M+1−k ∞∑

ñ=M

∑

e1,...,eñ s.t.
♯{ j≤ñ,e j=1}=M+1
♯{ j≤ñ,e j=0}=i−1

P{ξ1 = e1, . . . ,ξñ = eñ}P{ξñ+1 = 0}

≤
�

b

q

�M+1

p(i, M + 1).

5 Proof of Theorem 1.2

The monotonicity result of Theorem 1.2 was proved in Corollary 3.8. It remains to prove the recur-
rence/transience criterion. The proof is split into four propositions: Proposition 5.2, 5.4, 5.5 and
5.6.

Definition 5.1. Given an irreducible non negative matrix Q, its spectral radius is defined as:

λ = lim
n→∞

�

q(n)(i, j)
� 1

n ,

where q(n)(i, j) denotes the (i, j) coefficient of the matrix Qn. According to Vere-Jones [23], this quantity

is well defined and is independent of i and j.
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When Q is a finite matrix, it follows from the classical Perron-Frobenius theory that λ is the largest
positive eigenvalue of Q. In particular, there exist left and right λ-eigenvectors with positive coef-
ficients. However, when Q is infinite, the situation is more complicated. In this case, one cannot
ensure, without additional assumptions, the existence of left and right eigenvectors associated with
the value λ. Yet, we have the following characterization of λ in terms of right sub-invariant vectors
(c.f. [23], p372):

• λ is the smallest value for which there exists a vector Y with strictly positive coefficients such
that QY ≤ λY .

By symmetry, we have a similar characterization with left sub-invariant vectors. Let us stress that,
contrarily to the finite dimensional case, this characterization does not apply to super-invariant
vectors: there may exist a strictly positive vector Y such that QY ≥ λ′Y for some λ′ > λ. For more
details, one can refer to [19; 23].

Recall that, according to Definition 4.3, P1, . . . , PK denote the irreducible sub-matrices of P. Let
λ1, . . . ,λK stand for their associated spectral radii. We denote by λ the largest spectral radius of
these sub-matrices:

λ
def
=max(λ1, . . . ,λK). (14)

5.1 Proof of recurrence

Proposition 5.2. Assume that the cookie environment C = (p1, . . . , pM ; q) is such that

q <
b

b+ 1
and λ ≤

1

b
.

Then, the cookie random walk is recurrent.

The proposition is based on the following lemma.

Lemma 5.3. Let k ∈ {1, . . . , K} and assume that λk ≤ 1/b. Then, for any starting point ℓ(o) = i ∈
[lk, rk] and for any j ∈ [lk, rk], we have

♯{x ∈ T, ℓ(x) = j}<∞ Pi-a.s.

Proof of Proposition 5.2. We assume that λ ≤ 1/b and q < b/(b + 1). For k < K , the irreducible
class [lk, rk] is finite. Thus, Lemma 5.3 insures that, for any i ∈ [lk, rk],

♯{x ∈ T, ℓ(x) ∈ [lk, rk]} <∞ Pi-a.s. (15)

We now show that this result also holds for the infinite class [lK ,∞) by using a contradiction argu-
ment. Let us suppose that, for some starting point ℓ(o) = i,

Pi{♯{x ∈ T, ℓ(x)≥ lK}=∞}= c > 0.

Then, for any n,
Pi{∃x ∈ T, |x | ≥ n and ℓ(x)≥ lK} ≥ c. (16)
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According to Lemma 4.7, given a particle x located at ℓ(x) = j ≥ lK , the probability that one of its
descendants reaches level lK is bounded away from 0 uniformly in j. In view of (16), we deduce
that, for some constant c′ > 0, uniformly in n,

Pi{∃x ∈ T, |x | ≥ n and ℓ(x) = lK} ≥ c′.

This contradicts Lemma 5.3 stating that

♯{x ∈ T, ℓ(x) = lK}<∞ Pi-a.s.

Thus (15) holds also for the infinite class.

We can now complete the proof of the proposition. According to Corollary 3.5, we just need to prove
that the branching Markov chain L starting from ℓ(o) = M+1 dies out almost surely. In view of (15),
the stopping time N = inf{n, ∀x ∈ Tn ℓ(x)< lK} where all the particle are located strictly below lK
is finite almost surely. Moreover, if a particle x is located at ℓ(x) = i ∈ (rK−1, lK) (i.e. its position

does not belong to an irreducible class), then, the positions of all its children ℓ(
→
x

1
), . . . ,ℓ(

→
x

b

) are
strictly below i. Thus, at time N ′ = N + (lK − rK−1 − 1), all the particles in the system are located
in [0, rK−1]. We can now repeat the same procedure with the irreducible class [lK−1, rK−1]. Since
there are only a finite number of irreducible classes, we conclude, by induction, that all the particles
of L are at zero in finite time with probability 1.

Proof of Lemma 5.3. Fix k ≤ K and j0 ∈ [lk, rk]. By irreducibility, if suffices to prove that

♯{x ∈ T, ℓ(x) = j0} <∞ P j0
-a.s. (17)

Let us note that, when k 6= K , the class [lk, rk] is finite. Thus, the process L restricted to [lk, rk] (i.e.

the process where all the particles leaving this class vanish) is a multi-type branching process with
only a finite number of types. Using Theorem 7.1, Chapter II of [10], it follows that this process is
subcritical (it has parameter ρ = λk b ≤ 1 with the notation of [10] and is clearly positive regular
and non-singular) and thus it dies out almost surely, which implies (17). However, this argument
does not apply when k = K . We now provide an argument working for any k.

As already mentioned, Criterion I of Corollary 4.1 of [23] states that λk is the smallest value for
which there exists a vector Yk = (ylk

, ylk+1, . . .), with strictly positive coefficients such that

PkYk ≤ λkYk.

For k 6= K , the inequality above is, in fact, an equality. Since λk ≤ 1/b, we get

PkYk ≤
1

b
Yk. (18)

Define the function f : N 7→N by

f (i)
def
=

¨

yi for lk ≤ i ≤ rk

0 otherwise.

Recall the definition of the Markov chain Z , with transition matrix P, introduced in the previous
section. It follows from (18) that, for any i ∈ [0, rk],

E[ f (Z1) |Z0 = i]≤
1

b
f (i). (19)

We now consider a process L̃ = ( L̃n, n≥ 0) obtained by a slight modification of the process L:
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• L̃0 = L0 i.e. ℓ̃(o) = ℓ(o) = j0.

• L̃1 = L1.

• For n≥ 1, L̃n is a branching Markov chain with the same transition probabilities as L except at
point j0 which becomes an absorbing state without branching i.e when a particle x is located

at ℓ̃(x) = j0, then ℓ̃(
→
x

1
) = j0 and ℓ̃(

→
x

2
) = . . .= ℓ̃(

→
x

b

) = 0.

Following [16], we consider the process

M̃n =
∑

x∈Tn

f (ℓ̃(x))

together with the filtration Fn = σ(ℓ̃(x), x ∈ T≤n). Using (19), we have

E j0
[M̃n+1|Fn] =

∑

x∈Tn, ℓ̃(x) 6= j0

E[ f (ℓ̃(
→
x

1
)) + . . .+ f (ℓ̃(

→
x

b

)) | ℓ̃(x)] +
∑

x∈Tn, ℓ̃(x)= j0

f (ℓ̃(x))

= b
∑

x∈Tn, ℓ̃(x)=k 6= j0

E[ f (Z1) |Z0 = k] +
∑

x∈Tn, ℓ̃(x)= j0

f (ℓ̃(x))

≤
∑

x∈Tn, ℓ̃(x) 6= j0

f (ℓ̃(x)) +
∑

x∈Tn, ℓ̃(x)= j0

f (ℓ̃(x))

= M̃n.

Thus, M̃n is a non-negative super-martingale which converges almost surely towards some random
variable M̃∞ with

E j0
[M̃∞]≤ E j0

[M̃0] = f ( j0).

Let Ñ(n) denote the number of particles of L̃ located at site j0 at time n. Since j0 is an absorbing state
for the branching Markov chain L̃, the sequence Ñ(n) is non-decreasing and thus converges almost
surely to some random variable Ñ(∞). Moreover, we have Ñ(n) f ( j0) ≤ M̃n so that Ñ(∞) f ( j0) ≤
M̃∞. This shows that Ñ∞ is almost surely finite and

E j0
[Ñ(∞)]≤ 1.

We can now complete the proof of the lemma. The random variable Ñ(∞) represents the total
number of particles reaching level j0 for the branching Markov chain L̃ (where the particles returning
at j0 are frozen). Thus, the total number of particles reaching j0 for the original branching Markov
chain L, starting from one particle located at ℓ(o) = j0, has the same law as the total progeny
of a Galton-Watson process W = (Wn)n≥0 with W0 = 1 and with reproduction law Ñ(∞) (this
corresponds to running the process L̃, then unfreezing all the particles at j0 and then repeating this
procedure). Thus, we get the following equality in law for the total number of particles located at
j0 for the original process L starting from one particle located at j0:

♯{x ∈ T,ℓ(x) = j0}
law
=

∞∑

n=0

Wn.

Since E j0
[Ñ(∞)] ≤ 1 and P j0

{Ñ(∞) = 1} < 1, the Galton-Watson process W dies out almost surely.
This proves

♯{x ∈ T,ℓ(x) = j0} <∞ P j0
-a.s.
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5.2 Proof of positive recurrence

Proposition 5.4. Assume that the cookie environment C = (p1, . . . , pM ; q) is such that

q <
b

b+ 1
and λ <

1

b
.

Then, all the return times of the walk to the root of the tree have finite expectation.

Proof. Let σi denote the time of the ith crossing of the edge joining the root of the tree to itself for
the cookie random walk:

σi
def
= inf

n

n> 0,
n∑

j=1

1{X j=X j−1=o} = i
o

.

We prove that E[σi] <∞ for all i. Recalling the construction of the branching Markov chain L in
section 3.1 and the definition of Z , we have

E[σi] = i + 2Ei

h ∑

x∈T\{o}
ℓ(x)

i

= i + 2
∞∑

n=1

bnEi[Zn].

Let us for the time being admit that

lim sup
n→∞

Pi{Zn > 0}1/n ≤ λ for any i. (20)

Then, using Hölder’s inequality and (b) of Lemma 4.6, choosing α,β , λ̃ such that λ̃ > λ, bλ̃1/α < 1
and 1

α
+ 1
β
= 1, we get

∞∑

n=1

bnEi[Zn]≤
∞∑

n=1

bnPi{Zn > 0}1/αEi[Z
β
n ]

1/β ≤ Cβ

∞∑

n=1

(bλ̃1/α)n <∞.

It remains to prove (20). Recall that {0}, [l1, r1], . . . , [lk,∞) denote the irreducible classes of P and
that Z can only move from a class [lk, rk] to another class [lk′ , rk′] with k′ < k. Thus, for i ∈ [lk, rk],
we have

Pi{Zn ≥ lk}= Pi{Zn ∈ [lk, rk]}=
rk∑

j=lk

Pi{Zn = j}=
rk∑

j=lk

p(n)(i, j).

For k < K , the sum above is taken over a finite set. Recalling the definition of λk, we get

lim
n→∞

Pi{Zn ≥ lk}1/n = λk for all i ∈ [lk, rk].

Using the Markov property of Z , we conclude by induction that, for any i < lK ,

lim sup
n→∞

Pi{Zn > 0}1/n ≤max(λ1, . . . ,λK−1)≤ λ. (21)

It remains to prove the result for i ≥ lK . In view of (21) and using the Markov property of Z , it is
sufficient to show that, for i ≥ lK ,

lim sup
n→∞

Pi{Zn ≥ lK}1/n ≤ λK . (22)
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Let us fix i ≥ lK . We write

Pi{Zn ≥ lK} = Pi{∃m≥ n, Zm = lK}+
∞∑

j=lK

Pi{Zn = j}P j{∄m≥ 0, Zm = lK}.

According to lemma 4.7, there exists c > 0 such that, for all j ≥ lK , P j{∄m ≥ 0, Zm = lK} ≤ 1− c.
Therefore, we deduce that

Pi{Zn ≥ lK} ≤
1

c
Pi{∃m≥ n, Zm = lK} ≤

1

c

∞∑

m=n

p(m)(i, lK). (23)

Moreover, we have limm→∞(p
(m)(i, lK))

1/m = λK < 1 hence

lim
n→∞

� ∞∑

m=n

p(m)(i, lK)

�1/n

= λK . (24)

The combination of (23) and (24) yields (22) which completes the proof of the proposition.

5.3 Proof of transience when λ > 1/b

Proposition 5.5. Assume that the cookie environment C = (p1, . . . , pM ; q) is such that

λ >
1

b
.

Then, the cookie random walk is transient.

Proof. The proof uses the idea of "seed" as explained in [18]: we can find a restriction L̃ of L to a
finite interval [l, r] which already has a non zero probability of survival.

To this end, let us first note that we can always find a finite irreducible sub-matrix Q = (p(i, j))l≤i, j≤r

of P with spectral radius λ̃ strictly larger than 1/b. Indeed, by definition of λ, either

• There exists k ≤ K − 1 such that λk > 1/b in which case we set l
def
= lk and r

def
= rk.

• Otherwise λK > 1/b. In this case, we choose l = lK and r > l. Lemma 4.2 insures that the

sub-matrix Q
def
= (p(i, j))l≤i, j≤r is irreducible. Moreover, as r goes to infinity, the spectral radius

of Q tends to λK (c.f. Theorem 6.8 of [19]). Thus, we can choose r large enough such that
the spectral radius λ̃ of Q is strictly larger than 1/b.

We now consider the process L̃ obtained from L by removing all the particles x whose position ℓ(x)
is not in [l, r] (we also remove from the process all the descendants of such a particle). The process
L̃ obtained in this way is a multi-type branching process with only finite number of types indexed
by [l, r]. It follows from the irreducibility of Q that, with the terminology of [10], this process is
positive regular. It is also clearly non singular. Moreover, the matrix M defined in Definition 4.1,
Chapter II of [10], is, in our setting, equal to bQ so that the critical parameter ρ of Theorem 7.1,
Chapter II of [10] is given by ρ = bλ̃ > 1. Thus, Theorem 7.1 states that there exists i ∈ [l, r] such
that the process L̃ starting from one particle located at position (i.e. with type) i has a non zero
probability of survival. A fortiori, this implies that L also has a positive probability of survival. Thus
the cookie random walk in transient.
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5.4 Proof of transience when q≥ b/(b+ 1)

Proposition 5.6. Assume that the cookie environment C = (p1, . . . , pM ; q) is such that

q ≥
b

b+ 1
.

Then, the cookie random walk is transient.

Remark 5.7. Under the stronger assumption q > b/(b+1), one can prove, using a similar coupling
argument as in the proof of Lemma 4.6, that the absorbtion time T0 of Z defined in (7) is infinite with
strictly positive probability. This fact implies the transience of the cookie random walk. However,
when q = b/(b+1), the absorbtion time T0 may, or may not, depending on the cookie environment,
be finite almost surely. Yet, Proposition 5.6 states that the walk is still transient in both cases.

Proof of Proposition 5.6. In view of the monotonicity property of the walk w.r.t. the cookie environ-
ment stated in Corollary 3.8, we just need to prove that, for any M , we can find q̃ < b/(b+ 1) such
that the walk in the cookie environment

C̃ = (0, . . . , 0
︸ ︷︷ ︸

M times

; q̃) (25)

is transient. It easily checked that the irreducible classes of the matrix P̃ associated to a cookie
environment of the form (25) are {0} and [M+1,∞[ (see, for instance, Remark 4.4). Moreover, for
such a cookie environment, the coefficients of P̃ have a particularly simple form. Indeed, recalling
Definition 3.1, a few line of elementary calculus yields, for i, j ≥ M + 1,

p̃(i, j) =

�
j + i −M − 1

j

�

s j(1− s)i−M where s
def
=

q̃

q̃+ (1− q̃)b
(26)

(see Lemma 7.3 for a proof of (26) in a more general setting). Therefore, the polynomial vector
U

def
= (i(i−1) . . . (i−M))i≥M+1 is a right eigenvector of the irreducible sub-matrix P̃1

def
= (p̃(i, j))i, j≥M+1

associated with the eigenvalue

λ̃
def
=

�
s

1− s

�M+1
.

i.e. P̃1U = λ̃U . Similarly, setting V
def
=
�

(s/(1− s))i−1
�

i≥M+1
, it also follows from (26) that V is a

left eigenvector of P̃1 associated with the same eigenvalue λ̃ i.e. t V P̃1 = λ̃
t V . Moreover, the inner

product t V U is finite. Thus, according to Criterion III p375 of [23], the spectral radius of P̃1 is equal
to λ̃. Since λ̃ tends to 1 as q̃ increases to b/(b+ 1), we can find q̃ < b/(b+ 1) such that λ̃ > 1/b.
Proposition 5.5 insures that, for this choice of q̃, the cookie random walk is transient.

6 Rate of growth of the walk.

6.1 Law of large numbers and central limit theorem

We now prove Theorem 1.3. Thus, in rest of this section, we assume that X is a transient cookie
random walk in an environment C = (p1, . . . , pM ; q) such that

pi > 0 for all i ∈ {1, . . . , M}. (27)
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The proof is based on the classical decomposition of the walk using the regeneration structure
provided by the existence of cut times for the walk. Recall that Tx denotes the sub-tree of T rooted
at site x . We say that (random) time C > 0 is a cut time for the cookie random walk X if it is such
that: ¨

X i /∈ T
XC for all i < C ,

X i ∈ T
XC for all i ≥ C .

i.e. C is a time where the walk first enters a new subtree of T and never exits it. Let now (Cn)n≥1
denote the increasing enumeration of these cut times:

(

C1
def
= inf{k > 0, k is a cut time},

Cn+1
def
= inf{k > Cn, k is a cut time},

with the convention that inf{;}=∞ and Cn+1 =∞ when Cn =∞.

Proposition 6.1. Suppose that the sequence of cut times (Cn)n≥1 is well defined (i.e. finite a.s.).

Suppose further that E[C2
1 ]<∞. Then, there exist deterministic v,σ > 0 such that

|Xn|
n

a.s.−→
n→∞

v and
|Xn| − nv
p

n

law−→
n→∞

N (0,σ2).

Proof. Let us first note that the event A
def
= {X never crosses the edge from o to o} has non zero prob-

ability since the walk is transient and no cookies have strength 0 (in this case, the irreducible
classes for the matrix P are {0} and [1,∞)). Recalling that the walk evolves independently on
distinct subtrees, it is easily seen that the sequence (Cn+1 − Cn, |XCn+1

| − |XCn
|)n≥1 is i.i.d. and dis-

tributed as (C1, |XC1
|) under the conditional measure P{·|A} (c.f. for instance [7; 13] for details).

Since P{A} > 0 and the walk X is nearest neighbor, we get E[(Cn+1 − Cn)
2] = E[C2

1 |A] < ∞ and
E[(|XCn+1

| − |XCn
|)2] = E[|XC1

|2 |A]<∞. Thus, we have

Cn

n

a.s.−→
n→∞

E[C1|A],
|XCn
|

n

a.s.−→
n→∞

E[|XC1
||A],

|XCn
|−E[|XC1

||A]n
p

n

law−→
n→∞
N (0,E[|XC1

|2|A]),

and the proposition follows from a change of time, c.f. [7; 13] for details.

Theorem 1.3 will now follow from Proposition 6.1 once we have shown that the cut times of the
walk are well defined and have a finite second moment. We shall, in fact, prove the stronger result:

Proposition 6.2. The cut times of the walk are well defined and, for all β > 0, E[C
β
1 ]<∞.

The proof of this result relies on the following two lemmas whose proofs are provided after the proof
of the proposition.

Lemma 6.3. Recall the definition of the branching Markov chain L. Let U denote the total number of

particles not located at 0 for the entire lifetime of the process i.e.

U
def
= ♯{x ∈ T, ℓ(x)> 0}.

There exists c1 > 0 such that, for all n,

P1{U > n | L dies out} ≤ c1e−n1/3
.
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Lemma 6.4. Let (γn)n≥0 denote the increasing sequence of times where the walk visits a new site:

(

γ0
def
= 0

γn+1
def
= inf{k > γn, Xk 6= X i for all i < k}.

There exist ν , c2 > 0 such that, for all n,

P{γn > nν} ≤ c2e−n.

Proof of Proposition 6.2. We need to introduce some notation. We define two interlaced sequences
(Si)i≥0 and (Di)i≥0 by

(

S0 = γ1,

D0 = inf{n> S0, Xn =
←

XS0
= o},

and by induction, for k ≥ 1,
¨

Sk = inf{γn, γn > Dk−1},
Dk = inf{n> Sk, Xn =

←
XSk
}.

with the convention that, if Dk =∞, then D j ,S j =∞ for all j ≥ k. Let us set

χ
def
= inf{k ≥ 0, Dk =∞}.

Since the walk visits infinitely many distinct vertices, we have Sk <∞ whenever Dk−1 <∞ so that
these two interlaced sequences have the form

S0 < D0 < S1 < D1 < . . .< Sχ < Dχ =∞.

The interval [Sk, Dk) represents the times where the walk performs an excursion away from the set
of vertices it has already visited before time Sk. With these notations, the first cut time is given by

C1 = Sχ .

For n, m such that Xm ∈ T
Xn , we use the slight abuse of notation Xm − Xn to denote the position of

Xm shifted by Xn i.e. the position of Xm with respect to the subtree T
Xn . Using the Markov property

for the stopping times Sk, Dk and noticing that the walk evolves on distinct subtrees on the time
intervals [Sk, Dk), it follows that (compare with Lemma 3 of [7] for details):

(a) Conditionally on Dk < ∞ (i.e. χ > k), the sequences ((XS j+i − XS j
)0≤i<D j−S j

, j ≤ k) are
i.i.d. and distributed as (X i)i<D under the conditional measure P{·|D <∞} with D = inf{k ≥
1, Xk−1 = Xk = o}.

(b) Conditionally on Dk < ∞, the random variable Dk+1 − Sk+1 has the same distribution as
D0 − S0. In particular, P{Dk+1 < ∞ | Dk < ∞} = P{D0 < ∞}. Thus, χ has a geometric

distribution with parameter r
def
= P{D0 <∞}= P1{L dies out}> 0:

P{χ = k} = (1− r)rk for k ≥ 0.
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Fact (b) implies, in particular, that the first cut time C1 = Sχ (and thus all cut times) is finite almost
surely. It remains to bound the moments of C1. We write

P{Sχ > nν} = P{Sχ > nν and χ ≥ α ln n}+ P{Sχ > nν and χ < α ln n}
≤ rα ln n+ P{Sχ > nν and χ < α ln n}

where α > 0 and where ν is the constant of Lemma 6.4. Let β > 0 be fixed, we can choose α large
enough so that

P{Sχ > nν} ≤
1

n(β+1)ν
+ P{Sχ > nν and χ < α ln n}. (28)

It remains to find an upper bound for the second term. Let us first note that

P{Sχ > nν and χ < α ln n} ≤
α ln n∑

k=0

P{Sk > nν and χ ≥ k}. (29)

We introduce the sequence (Vk)k≥0 defined by

Vk
def
= number of distinct vertices visited by the walk during the excursion [Sk, Dk),

with the convention that Vk =∞ when Dk =∞. By definition of Sk, Dk, the total number of distinct
vertices other than the root visited by the walk up to time Sk is exactly the sum of the number of
vertices visited in each excursion [Si , Di) (i < k) which is V0+ . . .+Vk−1. Thus, Sk is the time where
the walk visits its (V0+ . . .+ Vk−1+ 2)th new vertex. This yields the identity

Sk = γV0+...+Vk−1+2

which holds for all k with the convention γ∞ =∞. Thus, we can rewrite the r.h.s. of (29) as

α ln n∑

k=0

P{Sk > nν and χ ≥ k} =
α ln n∑

k=0

P{γV0+...+Vk−1+2 > nν and V1+ . . .+ Vk−1 <∞}. (30)

Each term on the r.h.s. of (30) is bounded by

P{γV0+...+Vk−1+2 > nν and V1+ . . .+ Vk−1 <∞}
= P{γV0+...+Vk−1+2 > nν and n< V0+ . . .+ Vk−1+ 2<∞}
+ P{γV0+...+Vk−1+2 > nν and V0+ . . .+ Vk−1+ 2≤ n}

≤ P{n− 2< V0+ . . .+ Vk−1 <∞}+ P{γn > nν}
≤ P{n− 2< V0+ . . .+ Vk−1 <∞}+ c2e−n

(31)

where we used Lemma 6.4 for the last inequality. Let us note that, according to Fact (a), condition-
ally on {V0 + . . .+ Vk−1 <∞} = {χ ≥ k}, the random variables (V0, V1, . . . , Vk−1) are i.i.d. and have
the same law as the number of vertices visited by the walk before the time D of its first jump from
the root to the root under the conditional measure P{· | D <∞}. Recalling the construction of the
branching Markov chain L described in Section 3, we see that this distribution is exactly that of the
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random variable U of Lemma 6.3 under the measure P̃
def
= P1{· | L dies out}. Let now (Ui)i≥0 denote

a sequence of i.i.d. random variables with the same distribution as U under P̃. For k ≤ α ln n, we get

P{n− 2< V0+ . . .+ Vk−1 <∞} ≤ P{V0+ . . .+ Vk−1 > n− 2 | V0+ . . .+ Vk−1 <∞}
= P̃{U0+ . . .+ Uk−1 > n− 2}

≤ (α ln n)P̃

�

U >
n− 2

α ln n

�

≤ c1(α ln n)exp

 

−
�

n− 2

α ln n

� 1
3

!

(32)

where we used Lemma 6.3 for the last inequality. Combining (28)-(32), we conclude that

P{Sχ > nν} ≤
1

n(β+1)ν
+ c2(α ln n)e−n+ c1(α ln n)2 exp

 

−
�

n− 2

α ln n

� 1
3

!

≤
2

n(β+1)ν

for all n large enough. This yields E[S
β
χ ]<∞.

We now provide the proof of the lemmas.

Proof of Lemma 6.3. Let ♯Ln denote the number of particles not located at 0 at time n:

♯Ln
def
= ♯{x ∈ Tn, ℓ(x)> 0}.

Let also Θ stand for the lifetime of L:

Θ
def
= inf{n, ♯Ln = 0}

with the convention Θ=∞ when L does not die out. Since no cookie has strength 0, the irreducible
classes of P are {0} and [1,∞). Thus, the transience of the walk implies P1{Θ <∞} ∈ (0,1). Let H

denote the maximal number of particles alive at the same time for the process L:

H
def
= sup

n
♯Ln.

It follows from the inequality U ≤ HΘ that

P1{U ≥ n,Θ <∞} ≤ P1{H ≥
p

n,Θ <∞}+ P1{H <
p

n,Θ ≥
p

n}. (33)

The first term on the r.h.s of (33) is easy to bound. Recalling the monotonicity property of Proposi-
tion 3.6, we have P j{Θ <∞} ≤ P1{Θ <∞} for any j ≥ 1. Therefore, using the Markov property of

L with the stopping time ζ
def
= inf{k, ♯{x ∈ Tk, ℓ(x)> 0} ≥ pn}, we get, with obvious notation,

P1{H ≥
p

n,Θ <∞} = E1[1{ζ<∞}PLζ
{Θ <∞}]

≤ P⌊pn⌋ particles loc. at 1{Θ <∞}
= P1{Θ <∞}⌊

p
n⌋

≤ e−n1/3
(34)
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where the last inequality holds for n large enough. We now compute an upper bound for the second
term on the r.h.s. of (33). Given k <

p
n, it follows again from Proposition 3.6 that,

P1{H <
p

n,Θ ≥
p

n} ≤ P1{♯Lk <
p

n}⌊n/(k+1)⌋. (35)

(this bound is obtained by considering the process where all the particles at time (k+1), 2(k+1), . . .
are replaced by a single particle located at 1). Let us for the time being admit that there exist ρ > 1
and α > 0 such that,

a
def
= lim inf

i→∞
P1{♯Li ≥ αρi}> 0. (36)

Then, choosing k = ⌊ln n/ lnρ⌋, the combination of (35) and (36) yields, for all n large enough,

P1{H <
p

n,Θ ≥
p

n} ≤ P1{♯Lk < αρ
k}⌊n/(k+1)⌋ ≤ (1− a)⌊n/(k+1)⌋ ≤ e−n1/3

. (37)

Putting (33),(34) and (37) together, we conclude that,

P1{U ≥ n | L dies out}=
P1{U ≥ n,Θ <∞}

P1{Θ <∞}
≤ c1e−n1/3

which is the claim of the Lemma. It remains to prove (36). Recall that q represents the bias of the
walk when all the cookie have been eaten. We consider separately the two cases q < b/(b+ 1) and
q ≥ b/(b+ 1).

(a) q< b/(b+ 1). Since the walk is transient, the spectral radius of the irreducible class [1,∞) of
the matrix P is necessarily strictly larger than 1/b (otherwise the walk would be recurrent according
to Proposition 5.2). Using exactly the same arguments as in the proof of Proposition 5.5, we can
find r large enough such that the finite sub-matrix (pi, j)1≤i, j≤r is irreducible with spectral radius
λ̃ strictly larger than 1/b. We consider again the process L̃ obtained from L by removing all the
particles x (along with their progeny) whose position ℓ(x) is not in [1, r]. As already noticed in
the proof of Proposition 5.5, the process L̃ is a positive regular, non singular, multi-type branching
process with a finite number of types and with parameter ρ = bλ̃ > 1. Therefore, Theorem 1 p192
of [3] implies that, for α > 0 small enough,

lim
i→∞

P1{♯ L̃i ≥ αρi}> 0

which, in turn, implies (36).

(b) q≥ b/(b+ 1). The spectral radius λ of the irreducible class [1,∞) may, in this case, be strictly
smaller that 1/b (see the remark below the statement of Theorem 1.2). However, as shown during
the proof of Proposition 5.6, we can always find q̂ < b/(b + 1) < q such that the walk in the
cookie environment (0, . . . , 0 ; q̂) is transient. Therefore, the walk in the cookie environment Ĉ =
(p1, . . . , pM ; q̂)≤ C is also transient. Denoting by L̂ the branching Markov chain associated with Ĉ ,
it follows from the previous case (a) combined with Proposition 3.7 that, for some ρ > 1, α > 0,

lim inf
i→∞

P1{♯Li ≥ αρi} ≥ lim inf
i→∞

P1{♯ L̂i ≥ αρi}> 0.
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Proof of Lemma 6.4. Recall that, given x ∈ T and i ∈ {0, . . . , b}, we denote by
→
x

i

the ith child of

x (with the convention
→
x

0
=
←
x ). We call (un-rooted) path of length k an element [v1, . . . , vk] ∈

{0, . . . , b}k. Such a path is said to be increasing if vi 6= 0 for all 1≤ i ≤ k. The sub-paths of v are the
paths of the form [vi , . . . , v j] with 0 ≤ i ≤ j ≤ k. Given x ∈ T, we use the notation x[v1, . . . , vk] to
denote the endpoint of the path rooted at site x i.e.

x[;] def
= x and x[v1, . . . , vk]

def
=
−−−−−−−−−→
x[v1, . . . , vk−1]

vk

.

The proof of the lemma is based on the following observation: given two increasing paths v, w with
same length k such that [v1, . . . , vk] 6= [w1, . . . , wk], we have

x[v1, . . . , vk] 6= y[w1, . . . , wk] for any x , y ∈ T.

Let (uk)k≥1 denote the sequence of random variables taking values in {0, . . . , b} defined by

Xn =
→
X

un

n−1. With the previous notation, we have, for any m≤ n,

Xn = Xm[um+1, . . . ,un].

It follows from the previous remark that, for any fixed k ≤ n, the number of distinct vertices visited
by the walk X up to time n is larger than the number of distinct increasing sub-paths of length k

in the random path [u1, . . . ,un]. We get a lower bound for the number of such sub-paths using a
coupling argument. Recall that no cookie has strength 0 and set η = min{ p1

b
, . . . , pM

b
, q

b
} > 0. It is

clear from the definition of the transition probabilities of the cookie random walk X that
¨

P{un = i | u1, . . . ,un} ≥ η for i ∈ {1, . . . , b},
P{un = 0 | u1, . . . ,un} ≤ 1− bη.

Therefore, we can construct on the same probability space a sequence of i.i.d random variables
(ũn)n≥1 with distribution:

¨

P{ũn = i}= η for i ∈ {1, . . . , b}
P{ũn = 0}= 1− bη,

in such way that
ũn = i 6= 0 implies un = i.

With this construction, any increasing sub-path of [ũ1, . . . , ũn] is also an increasing sub-path of
[u1, . . . ,un]. Moreover, since the sequence (ũn)n≥1 is i.i.d., we have, for any fixed increasing path
[v1, . . . , vk],

P
�
[ũ1, . . . , ũn] does not contain the sub-path [v1, . . . , vk]

	

≤
⌊n/k⌋∏

j=1

P
¦

[ũ( j−1)k+1, . . . , ũ jk] 6= [v1, . . . , vk]
©

= (1−ηk)⌊n/k⌋. (38)
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We now choose k
def
= ⌊c ln n⌋ + 1 with c

def
= 1

3 ln(1/η)
and set δ

def
= c ln b. Since there are bk > nδ

increasing paths of length k, we get, for n large enough,

P
¦

[ũ1, . . . , ũn] contains less than nδ distinct increasing sub-paths of same length
©

≤ P
�
[ũ1, . . . , ũn] does not contain all increasing sub-paths of length k}

	

≤ bk(1−ηk)⌊n/k⌋

≤ e−
p

n.

Thus, if Vn denotes the number of distinct vertices visited by the cookie random walk X up to time
n, we have proved the lower bound:

P{Vn ≤ nδ} ≤ e−
p

n.

Choosing ν >max(1/δ, 2), we conclude that, for all n large enough,

P{γn ≥ nν}= P{V⌊nν ⌋ ≤ n} ≤ P{V⌊nν ⌋ ≤ ⌊nν⌋δ} ≤ e−
p
⌊nν ⌋ ≤ e−n.

6.2 Example of a transient walk with sub-linear growth

In this section, we prove Proposition 1.9 whose statement is repeated below.

Proposition 6.5. Let X be a C = (p1, p2, 0, 0 ; q) cookie random walk with q ≥ b/(b+1) and p1, p2 >

0 such that the largest positive eigenvalue of the matrix

P1
def
=

 
p1

b
+

p1p2

b
− 2p1p2

b2
p1p2

b2
p1+p2

b
− 2p1p2

b2
p1p2

b2

!

is equal to 1/b (such a choice of p1, p2 exists for any b ≥ 2). Then, X is transient (since q ≥ b/(b+1))
yet

lim inf
n→∞

|Xn|
n
= 0.

Proof. For this particular cookie environment, it is easily seen that the cookie environment matrix P

has three irreducible classes {0}, [1,2], [3,∞) and takes the form

P =















1

P1 0

∗ *
(infinite class)















.

where P1 is the matric given in the proposition. By hypothesis, the spectral radius of the irreducible
class [1,2] is 1/b, therefore, the branching Markov chain L starting from ℓ(o) ∈ [1,2] dies out
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almost surely (the restriction of L to [1,2] is simply a critical 2-type branching process where each
particle gives birth to, at most, 2 children). In particular, the quantity

Λ
def
=
∑

x∈T
ℓ(x)

is Pi almost surely finite for i ∈ {1,2}. Moreover, one can exactly compute the generating functions
Ei[s

Λ] for i ∈ {1,2} using the recursion relation given by the branching structure of L. After a
few lines of elementary (but tedious) calculus and using a classical Tauberian theorem, we get the
following estimate on the tail distribution of Λ:

P1{Λ > x} ∼
C
p

x
,

for some constant C > 0 depending on p1, p2 (alternatively, one can invoke Theorem 1 of [9] for the
total progeny of a general critical multi-type branching process combined with the characterization
of the domain of attraction to a stable law).

As in the previous section, let (γn)n≥0 denote the increasing sequence of times where the walk visits
a new site (as defined in Lemma 6.4) and define two interlaced sequences (Si)i≥0 and (Di)i≥0 in a
similar way as in the proof of Proposition 6.2 (only the initialization changes):

¨

S0 = 0
D0 = inf{n> 0, Xn = Xn−1 = o},

and by induction, for k ≥ 1,
¨

Sk = inf{γn, γn > Dk−1},
Dk = inf{n> Sk, Xn =

←
XSk
}.

Since, L starting from ℓ(0) = 1 dies out almost surely, the walk crosses the edge from the root to
the root at least once almost surely. Therefore, D0 is almost surely finite. Using the independence of
the cookie random walk on distinct subtrees, it follows that the random variables sequences (Si)i≥0,
(Di)i≥0 are all finite almost surely. Moreover, recalling the construction of L, it also follows that

the sequence of excursion lengths (Ri)i≥0
def
= (Di − Si)i≥0 is a sequence of i.i.d. random variables,

distributed as the random variable 2Λ− 1 under P1. We also have the trivial facts:

• For all k > 0, |XDk
|= |XSk

| − 1.

• The walk only visits new vertices of the tree during the time intervals ([Sk, Dk])k≥0. Thus, the

number of vertices visited by the walk at time Sk is smaller than 1+
∑k−1

i=0 Ri. In particular, we

have |XSk
| ≤ 1+

∑k−1
i=0 Ri .

• For all k ≥ 0, Dk ≥
∑k

i=0 Ri.

Combining these three points, we deduce that, for k ≥ 1,

|XDk
|

Dk

≤
∑k−1

i=0 Ri
∑k

i=0 Ri

= 1−
Rk

∑k

i=0 Ri

.
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Since (Ri)i≥0 is a sequence of i.i.d random variables in the domain of normal attraction of a positive
stable distribution of index 1/2, it is well known that

lim sup
k→∞

Rk
∑k

i=0 Ri

= 1 a.s.

(this result follows, for instance, from Exercise 6, p.99 of [8] by considering a subordinator without
drift and with Lévy measure Λ). We conclude that

lim inf
n→∞

|Xn|
n
≤ lim inf

k→∞

|XDk
|

Dk

= 0 a.s.

7 Computation of the spectral radius

In this section, we prove Theorem 1.4 and Proposition 1.8 by computing the maximal spec-
tral radius λ of the cookie environment matrix P. Recall that the irreducible classes of P are
{0}, [l1, r1], . . . , [rK ,∞) and that Pk denotes the restriction of P to [lk, rk] ([lk,∞) for k = K).
Denoting by λk the spectral radius of Pk, we have, by definition:

λ =max(λ1, . . . ,λK).

Since the non negative matrices P1, . . . , PK−1 are finite, their spectral radii are equal to their largest
eigenvalue. Finding the spectral radius of the infinite matrix PK is more complicated. We shall make
use on the following result.

Proposition 7.1. Let Q = (q(i, j))i, j≥1 be an infinite irreducible non negative matrix. Suppose that

there exists a non-negative left eigenvector Y = (yi)i≥1 of Q associated with some eigenvalue ν > 0 i.e.

t YQ = ν t Y. (39)

Assume further that, for all ǫ > 0, there exists N ≥ 1 such that the finite sub-matrix QN =

(q(i, j))1≤i, j≤N is irreducible and the sub-vector YN = (yi)1≤i≤N is ν − ǫ super-invariant i.e

t YNQN ≥ (ν − ǫ) t YN . (40)

Then, the spectral radius of Q is equal to ν .

Remark 7.2. By symmetry, the proposition above remains unchanged if one considers a right eigen-
vector in place of a left eigenvector. Let us also note that Proposition 7.1 does not cover all possible
cases. Indeed, contrarily to the finite case, there exist infinite non negative irreducible matrices for
which there is no eigenvector Y satisfying Proposition 7.1.

Proof. On the one hand, according to Criterion I of Corollary 4.1 of [23], the spectral radius λQ of
Q is the smallest value for which there exists a non negative vector Y 6= 0 such that

t YQ ≤ λQ
t Y.
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Therefore, we deduce from (39) that
ν ≥ λQ.

On the other hand, the matrix QN is finite so that, according to the Perron-Frobenius Theorem, its
spectral radius is equal to its largest eigenvalue λQN

and is given by the formula

λQN
= sup
(x1,...,xN )

min
j

∑N

i=1 x iq(i, j)

x j

where the supremum is taken over all N -dimensional vectors with strictly positive coefficients (c.f.
(1.1) p.4 of [19]). In view of (40), we deduce that λQN

≥ ν − ǫ.
Furthermore, when QN is irreducible, Theorem 6.8 of [19] states that λQN

≤ λQ. We conclude that

λQ ≤ ν ≤ λQ + ǫ.

7.1 Preliminaries

Recall the construction of the random variables (ξi)i≥1 given in Definition 3.1 and set

Em,n
def
=

�
in the finite sequence (ξ1,ξ2, . . . ,ξM ), there are at least m terms equal to 0

and exactly n terms are equal to 1 before the mth 0
	

E ′m,n
def
=

�
in the finite sequence (ξ1,ξ2, . . . ,ξM ), there are exactly m terms equal to 0

and exactly n terms equal to 1
	
.

Let us note that, for n+m> M ,
P{Em,n}= P{E ′m,n} = 0. (41)

In the rest of this section, we use the notation

s
def
=

q

q+ (1− q)b
= P{ξM+1 = 1 | ξM+1 ∈ {0,1}}.

Lemma 7.3. For i, j ≥ 1, the coefficient p(i, j) of the matrix P associated with the cookie environment

C = (p1, . . . , pM ; q) is given by

p(i, j) = P{Ei, j} +
∑

0≤n≤ j
0≤m≤i−1

P{E ′m,n}
�

j + i −m− n− 1

j − n

�

s j−n(1− s)i−m.

Proof. Recall that p(i, j) is equal to the probability of having j times 1 in the sequence (ξl)l≥1
before the ith 0. We decompose this event according to the number of 0’s and 1’s in the subsequence
(ξl)l≤M . Let Fm,n be the event

Fm,n
def
= {in the sub-sequence (ξi)i>M , n terms equal to 1 before the mth failure}.
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Thus we have
p(i, j) = P{Ei, j}+

∑

0≤n≤ j
0≤m≤i−1

P{E ′m,n}P{Fi−m, j−n} (42)

(the first term of the r.h.s. of the equation comes from the case m = i which cannot be included in
the sum). Since the sequence (ξi)i>M is a sequence of i.i.d. random variables, it is easy to compute
P{Fm,n}. Indeed, noticing that,

P{Fm,n}= P{Fm,n | ξl ∈ {0,1} for all l ∈ [M , M + n+m]},

we get

P{Fm,n}=
�

n+m− 1

n

�

sn(1− s)m. (43)

The combination of (42) and (43) completes the proof of the lemma.

We can now compute the image t Y P of the exponential vector Y = ((s/(1− s))i−1)i≥1. Let us first
recall the notation

λsym

def
=

q

b(1− q)

M∏

i=1

�

(1− pi)

�
q

b(1− q)

�

+
(b− 1)pi

b
+

pi

b

�
q

b(1− q)

�−1
�

.

We use the convention that
∑v

u = 0 when u> v.

Lemma 7.4. We have

∞∑

i=1

p(i, j)

�
s

1− s

�i−1
= λsym

�
s

1− s

� j−1
+ A( j),

with

A( j)
def
=

M− j∑

i=1

P{Ei, j}
�

s

1− s

�i−1
−

M∑

n= j+1

M−n∑

m=0

P{E ′m,n}
�

s

1− s

� j+m−n

.

In particular, A( j) = 0 for j ≥ M.

Proof. With the help of Lemma 7.3, and in view of (41), we have

∞∑

i=1

p(i, j)

�
s

1− s

�i−1

=

∞∑

i=1

P{Ei, j}
�

s

1−s

�i−1
+

∞∑

i=1

∑

0≤n≤ j
0≤m≤i−1

P{E ′m,n}
�

j+i−m−n−1

j − n

�

s j+i−n−1(1−s)1−m

=

M− j∑

i=1

P{Ei, j}
�

s

1−s

�i−1
+

∑

0≤n≤ j∧M
0≤m≤M−n

P{E ′m,n}
∞∑

i=0

�
j + i − n

i

�

s j+i+m−n(1−s)1−m.

Using the relation
∞∑

i=0

�
j + i − n

i

�

s j+i+m−n(1− s)1−m =

�
s

1− s

� j+m−n

,
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we deduce that

∞∑

i=1

p(i, j)

�
s

1−s

�i−1
=

M− j∑

i=1

P{Ei, j}
�

s

1−s

�i−1
+

j∧M∑

n=0

M−n∑

m=0

P{E ′m,n}
�

s

1−s

� j+m−n

.

=

M∑

n=0

M−n∑

m=0

P{E ′m,n}
�

s

1−s

� j+m−n

+ A( j).

It simply remains to show that

λsym =

M∑

n=0

M−n∑

m=0

P{E ′m,n}
�

s

1− s

�m−n+1
. (44)

Let us note that,

λsym =
s

1− s

M∏

l=1

�
s

1− s
P{ξl = 0}+ P{ξl ≥ 2}+ P{ξl = 1}

1− s

s

�

.

Expanding the r.h.s. of this equation and using the definition of E ′m,n, we get (44) which concludes
the proof of the lemma.

We have already noticed that A( j) = 0 whenever j ≥ M . In fact, if some cookies have strength 0,
the lower bound on j can be improved. Let M0 denote the number of cookies with strength 0:

M0
def
= ♯{1≤ i ≤ M , pi = 0}.

Lemma 7.5. Let C = (p1, . . . , pM ; q) be a cookie environment with pM 6= 0. We have,

A( j) = 0 for all j ≥ M −M0.

Proof. Since M0 cookies have strength 0, there are at most M −M0 terms equal to 1 in the sequence
(ξ1, . . . ,ξM ). Keeping in mind the definitions of Em,n and E ′m,n, we see that

P{Em,n}= P{E ′m,n}= 0 for n> M −M0.

Moreover, recall that pM 6= 0. Thus, if exactly M −M0 terms are equal to 1, the last one, ξM , must
also be equal to 1. Therefore, we have

P{Em,M−M0
}= 0.

Let us now fix j ≥ M −M0, and look at the expression of A( j).

A( j)
def
=

M− j∑

i=1

P{Ei, j}
�

s

1− s

�i−1
−

M∑

n= j+1

M−n∑

m=0

P{E ′m,n}
�

s

1− s

� j+m−n

.

The terms in the first sum
∑M− j

i=1 are all zero since j ≥ M − M0. Similarly, all the terms in the sum
∑M−n

m=0 are also zero since n≥ j + 1> M −M0.
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Proposition 7.6. Let C = (p1, . . . , pM ; q) be a cookie environment such that

q <
b

b+ 1
and M0 ≥

�
M

2

�

.

If M is an odd integer, assume further that pM 6= 0. Then, the spectral radius λK of the infinite

irreducible sub-matrix PK = (p(i, j))i, j≥lK
is equal to λsym.

Proof. Let us note that, when M is an even integer and pM = 0, we can consider C as the M + 1
cookie environment (p1, . . . , pM ,q ; q) and this M + 1 cookie environment still possesses, at least,
half of its cookies with zero strength because ⌊(M + 1)/2⌋ = ⌊M/2⌋. Thus, we can assume, without
loss of generality that the cookie environment is such that pM 6= 0. In order to prove the proposition,
we shall prove that

Y
def
=

��
s

1− s

�i−1�

i≥lK

is a left eigenvector of PK for the eigenvalue λsym fulfilling the assumptions of Proposition 7.1. Since
the cookie environment has M0 ≥ ⌊M/2⌋ cookies with strength 0, there are, in the 2⌊M/2⌋ first
cookies, at most ⌊M/2⌋ random variables taking value 1 in the sequence (ξi)i≥1 before the ⌊M/2⌋th
failure i.e.

p(i, j) = 0 for i ≤ ⌊M/2⌋< j. (45)

This implies, in particular, that lK ≥ ⌊M/2⌋+ 1≥ M −M0. Using Lemma 7.5, we deduce that

A( j) = 0 for all j ≥ lk. (46)

Combining (46) and Lemma 7.4, we conclude that Y is indeed a left eigenvector:

t Y PK = λsym
t Y.

Let ǫ > 0. We consider the sub-vector

YN
def
=

��
s

1− s

�i−1�

lK≤i<lK+N

.

It remains to show that, for N large enough, t YN PK ,N ≥ (λK − ǫ) t YN i.e.

lK+N−1∑

i=lK

p(i, j)

�
s

1− s

�i−1
≥ (λK − ǫ)

�
s

1− s

� j−1
for all j ∈ {lK , . . . , lK + N − 1}. (47)

Keeping in mind that, for j ≥ lK

∞∑

i=lK

p(i, j)

�
s

1− s

�i−1
= λK

�
s

1− s

� j−1
,

we see that (47) is equivalent to proving that,

∞∑

i=lK+N

p(i, j)

�
s

1− s

�i−1
≤ ǫ
�

s

1− s

� j−1
for j ∈ {lK , . . . , lK + N − 1}. (48)
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Choosing N such that lK + N ≥ M + 1, and using the expression of p(i, j) stated in Lemma 7.3, we
get, for any j ∈ {lK , . . . , lK + N − 1},

∞∑

i=lK+N

p(i, j)

�
s

1−s

�i−1
=

∑

0≤n≤ j
0≤m≤M

P{E ′m,n}
∞∑

i=lK+N

�
j+i−m−n−1

j−n

�

s j+i−1−n(1− s)1−m

where we used that P{E ′m,n} = P{Em,n} = 0 when either n or m is strictly larger than M . We now
write
�

j + i −m− n− 1

j − n

�

s j+i−1−n(1− s)1−m

=

�
s

1− s

� j+m−n
�

j + i −m− n− 1

i −m− 1

�

si−m−1(1− s) j−n+1

and we interpret the term
�

j + i −m− n− 1

i −m− 1

�

si−m−1(1− s) j−n+1

as the probability of having (i − m− 1) successes before having ( j − n+ 1) failures in a sequence
(Br)r≥1 of i.i.d. Bernoulli random variables with distribution P{Br = 1} = 1 − P{Br = 0} = s.
Therefore, we deduce that

∞∑

i=lK+N

�
j + i −m− n− 1

i −m− 1

�

si−m−1(1− s) j−n+1

= P
�
there are at least lK+N−m−1 successes before the ( j−n+1)th failure in (Br)r≥1

	

≤ P
�
there are at least lK+N−M−1 successes before the (lK+N+1)th failure in (Br)r≥1

	
.

Noticing that s < 1/2 since q < b/(b+1), the law of large numbers for the biased Bernoulli sequence
(Br)r≥1 implies that the above probability converges to 0 as N tends to infinity. Thus, for all ǫ > 0,
we can find N ≥ 1 such that (48) holds.

7.2 Proofs of Theorem 1.4 and Proposition 1.8

Proof of Theorem 1.4. Consider a cookie environment C = (p1, . . . , pM ; q) such that:

q <
b

b+ 1
and pi = 0 for all i ≤ ⌊M/2⌋.

Recall that M0
def
= ♯{1≤ i ≤ M , pi = 0} stands for the number of cookies with strength 0. We simply

need to check that the irreducible classes of P are {0} and [M0+ 1,∞) i.e P takes the form:

P =















1 0
0 . . . 0
...

. . .
...

∗ . . . 0

∗ P1














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and it will follows from Proposition 7.6 that λ = λ1 = λsym. Thus, we just need to check that:

(1) for all 1≤ i ≤ M0, p(i, i) = 0 (the index i does not belong to any irreducible class).

(2) for all j ∈N, p(M0+ 1, j)> 0 (M0+ 1 belongs to the infinite irreducible class).

The second assertion is straightforward since there are only M0 cookies with strength 0. In order to
see why (1) holds, we consider the two cases:

• 1≤ i ≤ ⌊M/2⌋. Then, clearly p(i, j) = 1{ j=0}. In particular p(i, i) = 0.

• ⌊M/2⌋ + 1 ≤ i ≤ M0. In this case, there are M0 ≥ i cookies with strength 0 in the first
2i − 1 ≥ M cookies. Therefore, there cannot be i random variables ξ taking value 1 in the
sequence (ξk)k≥1 before the ith failure. This means that p(i, i) = 0.

Proof of Proposition 1.8. Let X be a (p1, p2,

K times
︷ ︸︸ ︷

0, . . . , 0 ; q) cookie random walk with K ≥ 2. Using
similar argument as before, it is easily checked that the irreducible classes of the cookie environment
matrix P are, in this case, {0}, [1,2] and [K + 1,∞). Moreover, the matrix associated with the
irreducible class [1,2] is given, as in Proposition 6.5, by

 
p1

b
+

p1p2

b
− 2p1p2

b2
p1p2

b2
p1+p2

b
− 2p1p2

b2
p1p2

b2

!

. (49)

Thus, denoting by ν the largest spectral radius of this matrix and using Proposition 7.6, we deduce
that, for q < b

b+1
, the maximal spectral radius of P is given by:

λ =max(ν ,λsym).

We conclude the proof of the Proposition using Theorem 1.2 and the fact that λsym > 1/b whenever
q ≥ b

b+1
(c.f. Remark 1.5).

8 Other models

8.1 The case q = 0.

As stated in Proposition 1.8, a (p1, p2, 0, 0 ; q) cookie random walk is transient as soon as the spectral
radius ν(p1, p2) of the matrix given in (49) is strictly larger that 1/b. Let us remark that this quantity
does not depend on q. Therefore, when ν(p1, p2) >

1
b

the walk is transient for any arbitrarily small
q. In fact, using similar arguments to those provided in this paper, one can deal with the case q = 0.
The study of the walk is even simpler in this case since the cookie environment matrix P does not
have an infinite class (p(i, i) = 0 for all i ≥ M). Thus, the process L is, in this case, just a multi-type
branching process with finitely many types.

However, when q = 0, a 0− 1 law does not hold for the walk anymore since it always has a strictly
positive probability of getting stuck at o eventually (this probability is bounded below by

∏

(1−pi)).
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2

Figure 3: Phase transition of a (p, p ; 0) cookie random walk on a binary tree.

Therefore, the recurrence/transience criterion now translates to finding whether the walk eventually
gets stuck at o with probability 1 or has a positive probability of drifting towards infinity.

For instance, an easy adaptation of Proposition 1.8 (the details are left over for the reader) shows
that, for a two cookies environment C = (p1, p2 ; 0), the walk has a positive probability of drifting
towards infinity if and only if ν(p1, p2) >

1
b
. Moreover, the process L is, in this setting, a 2-type

branching process and the probability that the walk gets stuck at o is equal to the probability that
L, starting from one particle located at 2, dies out. This probability of extinction is obtained by
computing the fixed point of the generating function of L (c.f. Theorem 2, p186 of [3]) and yields

P{X is stuck at o eventually}=
(

1 if ν(p1, p2)≤ 1
b
,

(1−p1)(b+bp2+p2
1 p3

2−bp1p2
2−p1p3

2−bp1p2)

p1p2(b−1)
if ν(p1, p2)>

1
b
.

An illustration of this phase transition is given in Figure 3 for the case of a binary tree.

8.2 Multi-excited random walks on Galton-Watson trees

In the paper, we assumed that the tree T is regular. Yet, one may also consider a cookie random
walk on more general kinds of trees like, for instance, Galton-Watson trees. Recalling the classical
model of biased random walk on Galton-Watson trees [14], a natural way to define the excited
random walk on such a tree is as follows: a cookie random walk X on T in a cookie environment
B = (β1, . . . ,βM ;α) ∈ [0,∞)M×(0,∞) is a stochastic process moving according the following rule:

• If Xn = x is at a vertex with B children and there remain the cookies with strengths
β j ,β j+1, . . . ,βM at this vertex, then X eats the cookie with attached strength β j and then
jumps at time n+ 1 to the father of x with probability 1

1+Bβ j
and to each son of x with proba-

bility
β j

1+Bβ j
.

• If Xn = x is at a vertex with B children and there is no remaining cookie at site x , then X jumps
at time n+ 1 to the father of x with probability 1

1+Bα
and to each son of x with probability

α

1+Bα
.

In the case of a regular b-ary tree, this model coincides with the one studied in this paper with

the transformation p j =
bβ j

1+bβ j
and q = bα

bα+1
. In this new setting, one can still construct a Markov
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process L associated with the local time process of the walk and one can easily adapt the proof of
Theorem 1.2 to show the following result:

Let X be aB = (β1, . . . ,βM ;α) cookie random walk on a Galton-Watson tree T with reproduction law

B such that P{B = 0} = 0 and P{B = 1} < 1 and E[B] < ∞. Fix b ≥ 2 and let P be the matrix of

Definition 3.1 associated with a cookie random walk on a regular b-ary tree in the cookie environment

C = (p1, . . . , pM ; q), where pi
def
=

bβi

bβi+1
and q

def
= bα

bα+1
(this matrix does not, in fact, depend, on the

choice of b). Then, theB -cookie random walk on the Galton Watson tree T is transient if and only if

α≥ 1 or λ(C )>
1

E[B]
,

where λ(C ) denotes, as before, the largest spectral radius of the irreducible sub-matrices of P.
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model. We would also like to thank Sebastian Müller and Serguei Popov for showing us how to
prove the recurrence of the walk in the critical case λ(C ) = 1/b.
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