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Abstract

We consider simple random walk on a discrete cylinder with base a large d-dimensional torus

of side-length N , when d ≥ 2. We develop a stochastic domination control on the local picture

left by the random walk in boxes of side-length of order N1−ǫ, with 0 < ǫ < 1, at certain

random times comparable to N2d , in terms of the trace left in a similar box of Zd+1 by random

interlacements at a suitably adjusted level. As an application we derive a lower bound on the

disconnection time TN of the discrete cylinder, which as a by-product shows the tightness of the

laws of N2d/TN , for all d ≥ 2. This fact had previously only been established when d ≥ 17, in

[3].
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0 Introduction

The present article relates random walk on a discrete cylinder with base a d-dimensional torus,

d ≥ 2, of large side-length N to the model of random interlacements recently introduced in [13].

It develops a stochastic domination control on the trace left by the random walk in boxes of side-

length of order N1−ǫ in the cylinder at times which are comparable to N2d , in terms of the trace left

by random interlacements at a suitably adjusted level in a box of Zd+1 with same side-length. As

an application of this stochastic domination control and of estimates from [11] on the percolative

character of the vacant set left by random interlacements at a small level u, we derive a lower

bound on the disconnection time TN of the discrete cylinder by simple random walk. In particular

our bounds imply that the laws of the variables N2d/TN are tight, for all d ≥ 2. This result was

previously only known to hold when d ≥ 17, cf. [3]. Combined with the upper bounds of [15], this

shows that for all d ≥ 2, “TN lives in scale N2d”.

We will now present the objects of study more precisely. For d ≥ 2 and N ≥ 1, we consider the

discrete cylinder

E = T×Z, where T = (Z/NZ)d . (0.1)

For x in E we denote with Px , resp. P, the canonical law on the space T of nearest-neighbor E-valued

trajectories, of the simple random walk on E starting at x , resp. with the uniform distribution on

T×{0}. We write X. for the canonical process and Y. and Z. for its respective T and Z components.

Another important ingredient are the so-called random interlacements at level u ≥ 0 introduced

in [13]. They describe the trace on Zd+1 (where d + 1 in the present article plays the role of

d in [13]) left by a cloud of paths constituting a Poisson point process on the space of doubly

infinite trajectories on Zd+1 modulo time-shift, tending to infinity at positive and negative infinite

times. We refer to Section 1 for precise definitions. The non-negative parameter u essentially

corresponds to a multiplicative factor of the intensity measure of this point process. In a standard

fashion one constructs on the same space (Ω,A ,P), see (1.14), (1.20), the family I u,u ≥ 0, of

random interlacements at level u. They are the traces on Zd+1 of the trajectories modulo time-shift

in the cloud, which have labels at most u. The random subsets I u increase with u, and for u > 0

constitute infinite random connected subsets of Zd+1, ergodic under space translations, cf. Theorem

2.1 and Corollary 2.3 of [13]. The complement V u of I u in Zd+1 is the so-called vacant set at level

u.

Our main result establishes a stochastic domination control on scales of order N1−ǫ, 0 < ǫ < 1, of

the local picture left by simple random walk on the cylinder E at certain random times, in terms of

the corresponding trace of a random interlacement I v, at a suitably adjusted level v. More precisely,

given a height z ∈ Z in the cylinder, we consider the sequence Rz
k
, Dz

k
, k ≥ 1, of successive return

times of the vertical component of the walk to an interval of length of order N centered at z and

departures from a concentric interval of length of order N(log N)2, cf. (1.10). We show in the main

Theorem 1.1, that for 0< ǫ < 1, α > 0, v > (d + 1)α, for large N , given any x = (y, z) in E, we can

construct a probability Q on some auxiliary space coupling the simple random walk on E under P,

with the random interlacements on Zd+1 under P, so that, cf. (1.24),

Q[(X[0,Dz
K ]
− x)∩ A⊆ I v ∩ A]≥ 1− c N−3d , (0.2)

1671



where K has order αN d−1(log N)−2, A is a box centered at the origin with side-length of order N1−ǫ,
(viewed both as subset of E and Zd+1), and c a dimension dependent constant.

When z has size of order at most N d , the random times Dz
K , which appear in (0.2) have typical order

of magnitude N2d , cf. Proposition 7.1 and Remark 7.2. As an application of the main Theorem 1.1

we derive a lower bound on the disconnection time TN of the discrete cylinder by simple random

walk, cf. (7.1). Namely we show in Theorem 7.3 that

lim
N

P[TN > γN
2d]≥W
h
ζ
�

v
p

d + 1

�
> γ
i

, for all γ > 0 , (0.3)

where v is a suitably small number, W stands for the Wiener measure, and

ζ(u) = inf
�

t ≥ 0; sup
a∈R

L(a, t)≥ u
	
, for u≥ 0 , (0.4)

with L(a, t) a jointly continuous version of the local time of the canonical Brownian motion. In

particular this implies that for d ≥ 2,

the laws of N2d/TN under P, N ≥ 2, are tight, (0.5)

a property previously only established when d ≥ 17, cf. [3].

It is an open problem, cf. Remark 4.7 2) of [15], whether in fact

TN/N
2d converges in law towards ζ

�
u∗p
d + 1

�
, (0.6)

where u∗ ∈ (0,∞) is the critical value for the percolation of V u, cf. [13], [11], see also in the present

work below (1.22). A companion upper bound to (0.3) already appears in Corollary 4.6 of [15] and

states that

lim
N

P[TN ≥ γN2d]≤W
h
ζ
�

u∗∗p
d + 1

�
≥ γ
i

, for all γ > 0, (0.7)

where u∗∗ ∈ [u∗,∞) is another critical value, cf. (0.6) of [15], and Remark 7.5 2) below. The claim

(0.6) would follow from proving (0.3) with v = u∗, and showing that u∗ = u∗∗. In this respect an

additional interest of Theorem 1.1 stems from the fact that it enables to improve the value v in

(0.3) once quantitative controls on the percolative properties of the vacant set V u, with u < u∗, are

derived. We refer to Remark 7.5 2) for further discussion of this matter. As a direct consequence of

(0.5) and of the upper bound (0.7) of [15], one thus finds that for all d ≥ 2,

the laws on (0,∞) of TN/N
2d under P, with N ≥ 2, are tight,

i.e. “TN lives in scale N2d”.
(0.8)

We will now give some comments on the proofs of the main results. The derivation of Theorem 1.1

involves a sequence of steps which combine some of the techniques which have been developed in

[13], [14] and [15]. A more detailed outline of these steps appears in Section 1 after the statement

of Theorem 1.1. For the time being we only discuss the rough strategy of the proof, and for simplicity

assume that x = 0 in (0.2). We also write Rk, Dk in place of Rz=0
k

, Dz=0
k

, for k ≥ 1, see above (0.2).

A key identity proved in Lemma 1.1 of [15] and recalled in (1.13) below, makes it advantageous to
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replace the true excursions X(Rk+·)∧Dk
, k ≥ 1, which contain all the information about X[0,DK ]

∩ A,

with an iid collection X ′k. , 1 ≤ k ≤ K ′, of “special excursions”, which have same distribution as

the walk starting uniformly on the collection of points in E with height equal to ± N , stopped

when exiting eB = T× (−hN ,hN ), where hN is of order N(log N)2, cf. (1.8), and K ′ is slightly bigger

than K , cf. (1.26). Indeed one then uses a Poissonization procedure and only retains excursions

entering A, from the time they enter A until they exist eB. In this fashion one obtains a Poisson point

measure µ′ on the set of paths starting on the “surface of A”, and stopped at the boundary of eB,

cf. (4.1). The intensity measure of this Poisson point measure has a structure similar to the intensity

measure of the Poisson point process attached to trajectories of a random interlacement entering A,

cf. Proposition 4.1 and (1.18), (1.19). This eventually leads to the desired comparison.

To replace the true excursions with the “special excursions”, we proceed as follows. The coupling

technique of Proposition 2.2, see also Section 3 of [15], takes advantage of the fact that between

each departure of eB and return to the much smaller B = T× [−N , N] ⊆ eB, the T-component of the

walk has sufficient time to homogenize. This enables us to replace the true excursions X(Rk+·)∧Dk
,

1 ≤ · ≤ K , with a collection of excursions eX k
. , 1 ≤ k ≤ K , which however are not iid. These excur-

sions are only independent conditionally on the sequences ZRk
, ZDk

, k ≥ 1, with respective laws given

by that of a “special excursion”, (see above), conditioned to start at height ZRk
and exit eB at height

ZDk
. One then needs to dominate the ranges of eX k

. , 1 ≤ k ≤ K with the ranges of a collection of

iid “special excursions” X ′k. , 1 ≤ k ≤ K ′, (with K ′ slightly bigger than K , as mentioned above). This

step is achieved by constructing a suitable coupling in Section 3, and using large deviation estimates

under P for the pair empirical distribution 1

K

∑
k≤K δ(ZRk

,ZDk
), and for a similar object attached to

the iid “special excursions”, with K ′ in place of K . The above pair empirical distribution attached to

ZRk
, ZDk

, k ≥ 1, under P, can be controlled with the pair empirical distribution recording consec-

utive values of a Markov chain on {1,−1}, with N -dependent transition probability, governing the

evolution of sign(ZDk
) = sign(ZRk+1

), P-a.s.. The crucial domination estimate appears in Proposition

3.1.

As already pointed out, once true excursions are replaced with “special excursions”, one is quickly

reduced to the consideration of the trace on A of the paths in the support of a Poisson point measure

µ′ with state space the set of excursions starting on the surface of A and stopped at the boundary

of eB. However these excursions live on a slice of the cylinder E and not on Zd+1. To correct this

feature and enable a comparison with random interlacements, we employ truncation as well as the

“sprinkling technique” of [13]. Namely we only retain the part of the excursions going from their

starting point on the surface of A up to their first exit from a box eC of side-length of order N

2
centered

at the origin, cf. (1.27). This is the truncation. We also slightly increase the intensity of the Poisson

measure. This slight increase of the intensity, the “sprinkling”, is meant to compensate for the

truncation of the original excursions as they exit eC , and ensure that the trace on A of the trajectories

in the support of this new Poisson point measure µ typically dominates the corresponding trace on

A of paths in the support of µ′. The key control appears in Proposition 5.1. This result is similar

up to some modifications to Theorem 3.1 of [15], where truncation and sprinkling is carried out

on Zd+1-valued trajectories instead of E-valued trajectories here. The interest of the step we just

described is that paths in the support of the Poisson point measure µ live in eC ∪ ∂ eC , which can both

be viewed as a subset of E and Zd+1. The intensity measure of µ, cf. (5.4), can easily be compared

to the intensity of the Poisson point measure µA,v , cf. (1.18), which contains the information of the

trace on A left by random interlacements at level v. This is the essence of the comparison which
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appears in Proposition 6.1 and leads to the conclusion of the proof of Theorem 1.1.

The lower bound on the disconnection time TN , cf. (0.3) or Theorem 7.3, now follows rather

straightforwardly. It relies on the one hand on estimates for the random times Dz
K which relate

them to the random variable ζ of (0.4), see Proposition 7.1 and Remark 7.2, and on the other hand

on the fact, see (7.16), that

lim
N

P[TN ≤ γN2d < inf
|z|≤N2d+1

Dz
K] = 0 , (0.9)

when the parameter α entering the definition of K , cf. (1.24) is chosen small enough. To prove (0.9)

one uses Theorem 1.1 as well as controls from [11] on the rarity of long planar ∗-paths in I v , when

v is small, see (1.23) below. The point is that the occurrence of the disconnection before time γN2d

forces the presence somewhere in the cylinder at height in absolute value at most N2d+1, of a long

planar ∗-path in X[0,TN ]
, cf. Lemma 7.4. Let us mention that being able to prove (0.9) for all α <

u∗
d+1

would yield (0.3) with v = u∗, and thus bring one closer to a proof of (0.6), see also Remark 7.5 2).

We will now describe the organization of this article.

Section 1 introduces further notation and recalls various useful facts concerning random walks and

random interlacements. The main Theorem 1.1 is stated and an outline of the main steps of its proof

is provided.

In Section 2 we construct the excursions eX k
. , k ≥ 1, mentioned in the above discussion. The main

result appears in Proposition 2.2.

Section 3 shows how one can dominate the ranges X[Rk ,Dk]
, 1 ≤ k ≤ K , in terms of the ranges of an

iid collection of “special excursions” X ′k. , 1 ≤ k ≤ K ′, where K ′ is slightly bigger than K . The key

control appears in Proposition 3.1.

Section 4 contains a Poissonization step where the Poisson point measure µ′ is introduced.

In Section 5 truncation and sprinkling enable to dominate the trace on A of the paths in the support

of µ′ in terms of the corresponding trace of the truncated paths in the support of the Poisson point

measure µ. The main step is Proposition 5.1. The Proposition 5.4 comes as a direct consequence

and encapsulates what is needed for the next section.

Section 6 develops the final comparison between random walk on E and random interlacements on

Zd+1, so as to complete the proof of Theorem 1.1.

In Section 7 we give an application to the derivation of a lower bound on the disconnection time in

Theorem 7.3. Some open problems are mentioned in Remark 7.5.

Let us comment on the convention we use for constants. Throughout the text c or c′ denote positive

constants solely depending on d, with values changing from place to place. The numbered con-

stants c0, c1, . . . are fixed and refer to the value at their first appearance in the text. Dependence of

constants on additional parameters appear in the notation. For instance c(α) stands for a positive

constant depending on d and α.
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Finally some pointers to the literature on random interlacements might be useful to the reader.

Random interlacements on Zd+1 have been introduced in [13], where the investigation of the per-

colative properties of the vacant set was initiated. The uniqueness of the infinite cluster of the

vacant set has been shown in [16], and the positivity of u∗ in full generality in [11], (in [13] this

had only been shown when d ≥ 6). The stretched exponential decay of the connectivity function

for u > u∗∗, is proved in [12], and quantitative controls on the rarity of large finite clusters in the

vacant set, when d ≥ 4 and u sufficiently small, are developed in [18]. Random interlacements on

transient weighted graphs are discussed in [17]. The fact that random interlacements describe the

microscopic structure left by random walks on discrete cylinders at times comparable to the square

of the number of points of the base is the object of [14]. Similar results for the random walk on the

torus, and generalizations to cylinders with more general bases can respectively be found in [19],

and [20]. Applications of random interlacements to the control of the disconnection time of discrete

cylinders are the main theme of [15], where an upper bound on the disconnection time is derived,

and of the present article, where a lower bound on the disconnection time is obtained.

1 Some notation and the main result

In this section we introduce additional notation and recall some useful results concerning random

walks and random interlacements. In particular a key identity from Lemma 1.1 of [15] for the

hitting distribution of the walk on the cylinder lies at the heart of the comparison with random

interlacements. We recall it below in (1.13). We then state the main Theorem 1.1 and outline the

key steps of its proof.

We write N = {0,1,2, . . . } for the set of natural numbers. Given a non-negative real number a, we

write [a] for the integer part of a, and for real numbers b, c we write b∧c and b∨c for the respective

minimum and maximum of b and c. We write ei , 1≤ i ≤ d+1, for the canonical basis of Rd+1. We let

| · | and | · |∞ respectively stand for the Euclidean and ℓ∞-distances on Zd+1 or for the corresponding

distances induced on E. Throughout the article we assume d ≥ 2. We say that two points on Zd+1

or E are neighbors, respectively ∗-neighbors, if their | · |-distance, respectively | · |∞-distance equals

1. By finite path, respectively finite ∗-path, we mean a finite sequence x0, x1, . . . , xn on Zd+1 or E,

n≥ 0, such that for each 0≤ i < n, x i and x i+1 are neighbors, respectively ∗-neighbors. Sometimes,

when this causes no confusion, we simply write path or ∗-path, in place of finite path or finite ∗-path.

We denote the closed | · |∞-ball and the | · |∞-sphere with radius r ≥ 0 and center x in Zd+1 or E with

B(x , r) and S(x , r). For A, B subsets of Zd+1 or E we write A+ B for the set of elements x + y with

x in A and y in B. We also write U ⊂⊂ Zd+1 or U ⊂⊂ E to indicate that U is a finite subset of Zd+1

or E. Given U subset of Zd+1 or E, we denote with |U | the cardinality of U , with ∂ U the boundary

of U and ∂intU the interior boundary of U:

∂ U = {x ∈ U c; ∃x ′ ∈ U , |x − x ′|= 1}, ∂intU = {x ∈ U; ∃x ′ ∈ U c , |x − x ′|= 1} . (1.1)

We write πT and πZ for the respective canonical projections from E = T × Z onto T

and Z.

We let T stand for the set of nearest neighbor E-valued trajectories with time indexed by N, see

below (0.1). When F is a subset of E, or of Zd+1, we denote with TF the countable set of nearest

neighbor (F ∪ ∂ F)-valued trajectories which remain constant after a finite time. The canonical shift
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on T is denoted with (θn)n≥0 and the canonical filtration with (Fn)n≥0. Further notation concerning

the canonical process on T appears below (0.1). Given a subset U of E we denote with HU , eHU and

TU , the respective entrance time of U , hitting time of U , and exit time from U:

HU = inf{n≥ 0; Xn ∈ U}, eHU = inf{n≥ 1, Xn ∈ U} ,

TU = inf{n≥ 0; Xn /∈ U} .
(1.2)

In the case of a singleton U = {x}, we simply write Hx or eHx .

We denote with PZ
d+1

x the canonical law of simple random walk on Zd+1 starting at x and with

EZ
d+1

x the corresponding expectation. We otherwise keep the same notation as for the walk on E

concerning the canonical process, the canonical shift and natural objects such as in (1.2). Given

K ⊂⊂ Zd+1 and U ⊇ K , a subset of Zd+1, the equilibrium measure and the capacity of K relative to

U are defined by:

eK ,U(x) = PZ
d+1

x [ eHK > TU], for x ∈ K , (1.3)

= 0, for x /∈ K , and

capU(K) =
∑
x∈K

eK ,U(x)(≤ |K |) . (1.4)

The Green function of the walk killed outside U is defined as

gU(x , x ′) = EZ
d+1

x

h ∑
n≥0

1{Xn = x ′, n< TU}
i

, for x , x ′ in Zd+1 . (1.5)

When U = Zd+1, we drop U from the notation in (1.3) - (1.5). The Green function is symmetric in

its two variables and the probability to enter K before exiting U can be expressed as:

PZ
d+1

x [HK < TU] =
∑

x ′∈Zd+1

gU(x , x ′) eK ,U(x
′), for x ∈ Zd+1 . (1.6)

One also has the bounds, (see for instance (1.7) of [15]):

∑
x ′∈K

gU(x , x ′)/ sup
y∈K

∑
x ′∈K

gU(y, x ′)≤ PZ
d+1

x [HK < TU]≤

∑
x ′∈K

gU(x , x ′)/ inf
y∈K

∑
x ′∈K

gU(y, x) .

(1.7)

In the case of the discrete cylinder E, when U ( E is a strict subset of E, we define the corresponding

objects just as in (1.3) - (1.5), with Px and Ex in place of PZ
d+1

x and EZ
d+1

x . We then have similar

identities and bounds as in (1.6), (1.7). When ρ is a measure on E or Zd+1, we write Pρ or PZ
d+1

ρ in

place of
∑

x∈E ρ(x) Px or
∑

x∈Zd+1 ρ(x) PZ
d+1

x .

As mentioned above (0.2) the main Theorem 1.1 involves measuring time in terms of excursions

of the random walk in and out of certain concentric boxes in the cylinder E. More specifically we

introduce the vertical scales

rN = N < hN = [N(2+ (log N)2)] , (1.8)
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and the boxes in E centered at level z ∈ Z:

B(z) = T× (z + I)⊆ eB(z) = T× (z + eI), where

I = [−rN , rN ] and eI = (−hN ,hN ) .
(1.9)

When z = 0, we simply write B and eB. The sequence of successive returns of X. to B(z) and

departure from eB(z), Rz
k
, Dz

k
, k ≥ 1, is then defined via:

Rz
1 = HB(z), Dz

1 = TeB(z) ◦ θRz
1
+ Rz

1, and for k ≥ 1,

Rz
k+1
= Rz

1 ◦ θDz
k
+ Dz

k
, and Dz

k+1
= Dz

1 ◦ θDz
k
+ Dz

k
,

(1.10)

so that 0 ≤ Rz
1 ≤ Dz

1 ≤ · · · ≤ Rz
k
≤ Dz

k
≤ · · · ≤ ∞, and these inequalities except maybe for the first

one are P-a.s. strict. When z = 0, we simply write Rk, Dk in place of R0
k
, D0

k
, for k ≥ 1.

Certain initial distributions of the walk on E will be useful in what follows. Namely, we will consider

for z ∈ Z:
qz =

1

N d

∑
x∈T×{z}

δx , as well as q =
1

2
(qrN

+ q−rN
) . (1.11)

As a result of Lemma 1.1 of [15], the initial distribution q plays a central role in linking random

walk on E and random interlacements, see also Remark 1.2 of [15]. Indeed for K ⊆ T× (−rN , rN ),

one has:

Pq[HK < TeB, XHK
= x] = (d + 1)

(hN − rN )

N d
eK ,eB(x), for x ∈ K , (1.12)

and with the application of the strong Markov property,

Pq[HK < TeB, (XHK+ ·) ∈ dw] = (d + 1)
(hN − rN )

N d
PeK ,eB
(dw) . (1.13)

We will now recall some notation and results from [13] concerning random interlacements. We

denote with W the space of doubly infinite nearest neighbor Zd+1-valued trajectories which tend

to infinity at positive and negative infinite times, and with W ∗ the space of equivalence classes of

trajectories in W modulo time-shift. The canonical projection from W onto W ∗ is denoted by π∗.
We endow W with its canonical σ-algebra W , and denote by Xn, n ∈ Z, the canonical coordinates.

We endow W ∗ with W ∗ = {A ⊆ W ∗; (π∗)−1(A) ∈ W}, the largest σ-algebra on W ∗ for which π∗ :

(W,W )→ (W ∗,W ∗) is measurable. We also consider W+ the space of nearest neighbor Zd+1-valued

trajectories defined for non-negative times and tending to infinity. We write W+ and Xn, n ≥ 0, for

the canonical σ-algebra and the canonical process on W+. Since d ≥ 2, the simple random walk on

Zd+1 is transient and W+ has full measure for any PZ
d+1

x , x ∈ Zd+1, see above (1.3), and we view

whenever convenient the law of simple random walk on Zd+1 starting from x , as a probability on

(W+,W+). We consider the space of point measures on W ∗×R+:

Ω =




ω =
∑
i≥0

δ(w∗
i
,ui)

, with (w∗i ,ui) ∈W ∗×R+, i ≥ 0, and

ω(W ∗K × [0,u])<∞, for any K ⊂⊂ Zd+1,u≥ 0,



 (1.14)
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where for K ⊂⊂ Zd+1, W ∗K ⊆W ∗ is the subset of trajectories modulo time-shift, which enter K:

W ∗K = π
∗(WK) and WK = {w ∈W ; for some n ∈ Z, Xn(ω) ∈ K}. (1.15)

We endow Ω with the σ-algebra A generated by the evaluation maps ω → ω(D), where D runs

over the product σ-algebra W ∗×B(R+). We denote with P the probability on (Ω,A ) under which

ω becomes a Poisson point measure on W ∗ ×R+ with intensity ν(dw∗)du, giving finite mass to the

sets W ∗K × [0,u], for K ⊂⊂ Zd+1, u≥ 0. Here ν stands for the unique σ-finite measure on (W ∗,W ∗)
such that for every K ⊂⊂ Zd+1, cf. Theorem 1.1 of [13]:

1W ∗K
ν = π∗ ◦QK , (1.16)

with QK the finite measure on W 0
K , the subset of WK of trajectories which enter K for the first time

at time 0, such that for A, B in W+, x ∈ Zd+1:

QK[(X−n)n≥0 ∈ A, X0 = x , (Xn)n≥0 ∈ B] = PZ
d+1

x [A | eHK =∞] eK(x) PZ
d+1

x [B] , (1.17)

where eK , cf. (1.3) and below (1.5), stands for the equilibrium measure of K , and is concentrated

on the points of ∂intK for which Px[ eHK =∞] > 0.

Given K ⊂⊂ Zd+1, u ≥ 0, one further defines on (Ω,A ) the random point process with state space

the set of finite point measures on (W+,W+):

µK ,u(ω) =
∑
i≥0

δ(w∗
i
)K ,+ 1{w∗i ∈W ∗K ,ui ≤ u}, forω =

∑
i≥0

δ(w∗
i
,ui)

, (1.18)

where (w∗)K ,+ stands for the trajectory in W+ which follows step by step w∗ ∈ W ∗K from the first

time it enters K . One then has, cf. Proposition 1.3 of [13], for K ⊂⊂ Zd+1, u≥ 0:

µK ,u is a Poisson point process on (W+,W+) with intensity measure u PZ
d+1

eK
,

where we used the notation introduced below (1.7) .
(1.19)

Given ω ∈ Ω, the interlacement at level u≥ 0, is the subset of Zd+1:

I u(ω) =
⋃

ui≤u

range(w∗i ), if ω =
∑
i≥0

δ(w∗
i
,ui)

=
⋃

K⊂⊂Zd+1

⋃

w∈SuppµK ,u(ω)

w(N) ,

(1.20)

where for w∗ ∈ W ∗, range (w∗) = w(Z) for any w ∈ W with π∗(w) = w∗. The vacant set at level u

is then defined as:

V u(ω) = Zd+1\I u(ω), forω ∈ Ω,u≥ 0 . (1.21)

One has the identity

P[V u ⊇ K] = exp{−u cap(K)}, for all K ⊂⊂ Zd+1 , (1.22)
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and this property leads to a characterization of the law Qu on {0,1}Zd+1

of the random subset V u,

cf. Remark 2.2 2) of [13].

As a result of Theorem 3.5 of [13] and 3.4 of [11], it follows that there exists a non-degenerate

critical value u∗ ∈ (0,∞), such that for u > u∗, P-a.s., V u has only finite connected components,

whereas for u < u∗, P-a.s., V u has an infinite connected component. It is also known, cf. [16],

that for each u ≥ 0, there is P-a.s. at most one infinite connected component in V u. The existence

or absence of such a component when u = u∗ is presently an open problem. In Section 7, when

applying Theorem 1.1 to the study of disconnection time we will also need the following estimate,

cf. (3.28) of [11]:

for any ρ > 0, there exists u(ρ)> 0 such that for u≤ u(ρ)

lim
L→∞

Lρ P[ there is a ∗-path from 0 to S(0, L) in I u ∩ (Ze1+Zed+1)] = 0 , (1.23)

where we use the notation from the beginning of this section, and any ei , e j , i 6= j, could of course

replace e1 and ed+1 in (1.23).

We can now state the main result of this article. It deals with the trace left in a neighborhood of

size N1−ǫ of some point x of the cylinder by the random walk at time Dz
K , where z = πZ(x) and K

has order N d/hN , cf. (1.8). Theorem 1.1 shows that with high probability this trace is dominated by

the corresponding trace of a random interlacement at a suitably adjusted level. When |z| remains of

order at most N d , Dz
K typically corresponds to time scales of order N2d , cf. Remark 7.2.

Theorem 1.1. (d ≥ 2, α > 0, v > (d + 1)α, 0< ǫ < 1)

For N ≥ c(α, v,ǫ) and x = (y, z) ∈ E one can construct a coupling Q on some auxiliary space of the

simple random walk X. on E under P and of the Poisson point measure ω under P so that

Q[(X[0,Dz
K ]
− x)∩ A⊆ I v(ω)∩ A]≥ 1− cN−3d , (1.24)

where K = [αN d/hN] and A= B(0, N1−ǫ) is viewed both as a subset of E and Zd+1.

The proof of Theorem 1.1 involves several steps, which we now outline.

a) This first step reduces the proof to the case where x = 0 and the initial distribution of the walk

is qz0
, cf. (1.11), with z0 ∈ I , cf. (1.9).

b) This step constructs a coupling Q1 of X. under Pqz0
with a sequence eX k

. , k ≥ 1, of E-valued

processes, which are conditionally independent given ZRk
, ZDk

, k ≥ 1, cf. below (1.10), with

respective laws which coincide with that of X ·∧TeB
under PZRk

,ZDk
, where we use the notation:

Pz1,z2
= Pqz1

[· | ZTeB
= z2], for z1 ∈ I , z2 ∈ ∂ eI , (1.25)

and are such that, cf. Proposition 2.2,

Q1[eX k
. 6= X(Rk+·)∧Dk

]≤ c N−4d .
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c) This steps constructs a coupling Q2 of the above processes with a sequence of iid E-valued

processes X ′k. , k ≥ 1, with same law as X ·∧TeB
under Pq, cf. (1.11), in such a fashion that,

cf. Proposition 3.1,

Q2

h ⋃

1≤k≤K

X[Rk ,Dk]
⊆
⋃

1≤k≤K ′

range X ′k.

i
≥ 1− c N−3d ,

where

K ′ =
h�

1+
2

5
δ
�
αN d/hN

i
and 1+δ =
�

v

(d + 1)α

�
∧ 2 . (1.26)

d) This is a Poissonization step taking advantage of the special property of the distribution q,

cf. (1.12), (1.13). With Q3 one couples the above processes with an independent Poisson

variable J ′ of intensity (1+ 3

5
δ)αN d

hN
, and defines the Poisson point measure on TeB, cf. below

(1.1),

µ′ =
∑

1≤k≤J ′
δX ′k. 1{range X ′k. ∩ A 6= ;} ,

with intensity measure (1+ 3

5
δ)(d + 1)α(1− rN

hN
) PeA,eB

[X ·∧TeB
∈ dw], as well as the random

subset of A

I ′ =
⋃

w∈Suppµ′

range w ∩ A ,

where Suppµ′ denotes the support (in TeB) of the point measure µ′, so that, cf. Proposition

4.1:

Q3[X[0,DK ]
∩ A⊆ I ′]≥ 1− cN−3d .

e) In this step one constructs using truncation and sprinkling a coupling Q4 of X. and I ′ under

Q3 with a Poisson point measure µ on TeC , with intensity measure (1 + 4

5
δ)(d + 1)α(1 −

rN

hN
) PeA,eB

[X ·∧TeC
∈ dw], where

eC = B
�

0,
N

4

�
. (1.27)

Defining the random subset of eC ∪ ∂ eC

I =
⋃

w∈Suppµ

range w ,

this coupling is such that, cf. (5.44) in the proof of Proposition 5.4,

Q4[I ′ ⊆ I ∩ A]≥ 1− c N−3d .
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f) In this last step one constructs a coupling Q′ of X., I ′,I under Q4 with ω under P so that

cf. (6.5),

Q′[X[0,DK ]
∩ A⊆ I v(ω)∩ A]≥ 1− cN−3d ,

and this enables to complete the proof of Theorem 1.1.

Remark 1.2. As it will be clear from the proof of Theorem 1.1, the exponent −3d in the right-hand

side of (1.24) can be replaced by an arbitrary negative exponent by simply adjusting constants in

Theorem 1.1. The specific choice of the exponent in (1.24) will be sufficient for the application to

the lower bound on the disconnection time we give in Section 7. �

2 Reduction to the case x = 0x = 0x = 0 and a first coupling

This section takes care of steps a) an b)) in the above outline following the statement of Theorem

1.1. We first show in Proposition 2.1 that it suffices to prove Theorem 1.1 when x = 0 in (1.24),

and the initial distribution of the walk is qz0
, with z0 an arbitrary point on I , see (1.11) and (1.9).

This is step a). Then we turn to step b) and construct, very much in the spirit of Proposition 3.3

of [14], a coupling of X. with a sequence of E-valued processes eX k
. , k ≥ 1, which conditionally on

ZRk
, ZDk

, k ≥ 1, are independent and respectively distributed as PZRk
,ZDk

, cf. (1.25), in such a fashion

that each eX k
. is close to X(Rk+ ·)∧Dk

. This construction is carried out in Proposition 2.2. It uses the

fact that hN in (1.8) is sufficiently large to provide ample time to the T-component of the walk to

“homogenize” before reaching B, when the starting point of the walk lies outside eB.

We keep the notation of Theorem 1.1 and begin with the reduction to the case x = 0.

Proposition 2.1. If for N ≥ c0(ǫ,α, v) and any z0 ∈ I one can construct a coupling Q′ of X. under Pqz0

with ω under P so that

Q′[X[0,DK ]
∩ A⊆ I v(ω)]≥ 1− cN−3d , (2.1)

then Theorem 1.1 follows.

Proof. Consider N ≥ c0(ǫ,α, v) and x = (y, z) in E. Setting bX. = XRz
1
+· − x , and denoting with

bRk, bDk, k ≥ 1, the successive return times to B and departure from eB of bX., one finds that

(X[0,Dz
K ]
− x)∩ A= bX[0,bDK ]

∩ A ,

and moreover that

bX. is distributed as Pqz0
, where z0 coincides with −z, when z ∈ I , and

otherwise with rN or −rN .

With the coupling Q′ mentioned in Proposition 2.1 we can construct a conditional distribution under

Q′ ofω ∈ Ω given X[0,DK ]
∩A, which only takes finitely many values, and has same distribution under

Q′ as bX[0,bDK ]
∩ A= (X[0,Dz

K]
− x)∩ A, under P. This conditional distribution and this identity in law

enable to construct a coupling Q of X under P with ω under P so that (1.24) holds as a result of

(2.1).
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We will now carry out step b) of the outline below Theorem 1.1. With Lemma 3.1 and Remark 3.2

of [15], we know that for N ≥ 1,

|Px[XR1
= x ′]− N−d | ≤ c N−5d , for all x ∈ ∂ eB, x ′ ∈ ∂intB with πZ(x)πZ(x

′)> 0 . (2.2)

As mentioned in Remark 3.2 of [14] the exponent −5d in the right-hand side of (2.2) can be

replaced by an arbitrarily large negative exponent by adjusting constants.

The following proposition is simpler but has a similar spirit to Proposition 3.3 of [14]. It will

complete step b).

Proposition 2.2. (N ≥ 1, z0 ∈ I)

One can construct on some auxiliary space (Ω1,A1,Q1) a Z-valued process Z and T-valued processes

Y., eY k
. , k ≥ 2, such that

X. = (Y., Z.) under Q1 has same law as X. under Pqz0
, (2.3)

conditionally on ZRk
, ZDk

, k ≥ 1, eX k
. = X ·∧D1

, when k = 1,= (eY k
. , Z(Rk+ ·)∧Dk

), (2.4)

when k ≥ 2, are independent with same law as X ·∧D1
under PZRk

,ZDk
, cf. (1.25),

Q1[eX k
. 6= X(Rk+ ·)∧Dk

]≤ cN−4d , for k ≥ 1 . (2.5)

Proof. It follows from (2.2) that for x ∈ ∂ eB the total variation distance of the law of XR1
under Px

and qz(x), where |z(x)| = rN and πZ(x) · z(x) > 0, is at most N d c N−5d = c N−4d . With Theorem

5.2, p. 19 of [10], we can construct for any x ∈ ∂ eB a probability ρx(d x ′, dex) on {(x ′, ex) ∈ E2;

πZ(x
′) = πZ(ex) = z(x)}, such that under ρx

the first marginal has same law as XR1
under Px , (2.6)

the second marginal is qz(x)-distributed, (2.7)

ρx({x ′ 6= ex})≤ c N−4d . (2.8)

We define the spaces WZ, WT of respectively Z- and T-valued trajectories with jumps of | · |-size at

most 1, as well as W
f

Z
and W

f

T
the countable subsets of WZ and WT of trajectories which are constant

after a finite time. We pick the auxiliary space Ω1 =WT×WZ× (W
f

T
)[2,∞) endowed with its natural

product σ-algebraA1. We write Y., Z. and eY k
. , k ≥ 2, for the canonical coordinate processes on Ω1,

as well as X. = (Y., Z.). The probability Q1 is constructed as follows.

The law of X ·∧D1
under Q1 coincides with Pqz0

[X ·∧D1
∈ dw] . (2.9)

The conditional law Q1[X(D1+·)∧R2
∈ dw, (eY 2

0 , ZR2
) ∈ dex |X ·∧D1

] (2.10)

equals PXD1
[(X ·∧R1

) ∈ dw |XR1
= x ′]ρXD1

(d x ′, dex) .
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With (2.9), (2.10) the law of (X ·∧R2
), eY 2

0 under Q1 is specified. We then proceed as follows.

Conditionally on (X ·∧R2
), eY 2

0 , the law of X(R2+·)∧D2
under Q1 is (2.11)

PXR2
[(X ·∧TeB

) ∈ dw] .

If eY 2
0 = YR2

�
= πT(XR2

)
�
, then eY 2

. = Y(R2+·)∧D2
, Q1-a.s. . (2.12)

If eY 2
0 6= YR2

, then conditionally on X ·∧D2
, eY 2

0 , the law of eY 2
. under Q1 is (2.13)

P(eY 2
0 ,ZR2

)[Y·∧TeB
∈ dw′ | Z·∧TeB

= w(·)], where w(·) = Z(R2+·)∧D2
(= πZ(X(R2+·)∧D2

) .

The above steps specify the law of (X ·∧D2
, eY 2

. ) under Q1. We then proceed using the kernel of the

last line of (2.10) with XD2
in place of XD1

to specify the conditional law under Q1 of (X ·∧R3
), eY 3

0 ,

given X ·∧D2
, eY 2

. and so on and so forth to construct the full law Q1.

With this construction the claim (2.3) follows directly from (2.6). Then (2.5) follows from (2.8) and

the statements (2.10), (2.12) and their iteration for arbitrary k ≥ 2. The proof of (2.4) is similar to

the proof of (3.22) in Proposition 3.3 of [14].

Remark 2.3. As a direct consequence of Proposition 2.2 we see that for α > 0, N ≥ 1, K as below

(1.24) and z0 ∈ I ,

Q1

h ⋃

1≤k≤K

X[Rk ,Dk]
=
⋃

1≤k≤K

range eX k
.

i (2.5)
≥ 1− cα

N−3d

hN

. (2.14)

This estimate will be used in the next section. �

3 Domination by iid excursions

In this section we carry out step c) of the outline below Theorem 1.1. We construct a coupling Q2

of X., eX k
. , k ≥ 1, see the previous section, with a collection X ′k. , k ≥ 1, of iid excursions having

same distribution as X ·∧TeB
under Pq, (the “special” excursions), in such a fashion that the trace on A,

cf. (1.24), of X[0,DK ]
is with high probability dominated by the trace on A of the union of the ranges

of X ′k. , with k ≤ K ′ and K ′ “slightly” bigger than K , cf. (1.26). This is carried out in Proposition

3.1. As mentioned in the introduction the interest of this coupling is that, roughly speaking, the iid

“special” excursions X ′k. , k ≥ 1, bring us closer to random interlacements (especially once we carry

out a Poissonization step in the next section). The idea for the construction of the coupling is to

introduce iid sequences of excursions ζ
(z1,z2)

i
, i ≥ 1, where (z1, z2) varies over {rN ,−rN}×{hN ,−hN}

and classifies the possible entrance and exit levels of the excursions respectively distributed as X ·∧TeB
under Pz1,z2

, cf. (1.25). The sequence eX k
. , k ≥ 1, is in essence realized by picking for each k an

excursion of type (z1, z2) with z1 = ZRk
and z2 = ZDk

, whereas the sequence X ′k. , k ≥ 1, is realized by

selecting for each k an excursion of type (z1, z2) with z1 = Z ′
R,k

, z2 = Z ′
D,k

, where (Z ′
R,k

, Z ′
D,k
), k ≥ 1,

is an independent iid sequence with same law as (ZR1
, ZD1

) under Pq. The domination of the union

of the ranges of the eX k
. , k ≤ K , in terms of the union of the ranges of the X ′k. , k ≤ K ′, then relies on

large deviation estimates for the empirical measure of the (ZRk
, ZDk

) under Pqz0
and of the empirical
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measure of the iid variables (Z ′
R,k

, Z ′
D,k
). The excursion eX 1

. requires a special treatment due to its

atypical starting height z0 ∈ I , which possibly differs from ±rN .

The notation TF for F ⊆ E has been introduced below (1.1), and K ′ is defined in (1.26).

Proposition 3.1. (α > 0, v > (d + 1)α)

For N ≥ c1(α, v), z0 ∈ I , one can construct on an auxiliary space (Ω2,A2) a coupling Q2 of X., eX k
. ,

k ≥ 1, under Q1 and of X ′k. , k ≥ 1, iid TeB-valued variables with same distribution as X ·∧TeB
under Pq,

so that:

Q2

h ⋃

1≤k≤K

X[Rk ,Dk]
⊆
⋃

1≤k≤K ′

range X ′k.

i
≥ 1− c N−3d . (3.1)

Proof. We introduce the space Γ of “excursion types”:

Γ = {rN ,−rN} × {hN ,−hN} , (3.2)

and for γ= (z1, z2) ∈ Γ write Pγ in place of Pz1,z2
, cf. (1.25).

We consider an auxiliary probability space (Σ,B , M) endowed with the following collection of vari-

ables and processes:

the variables (ZR,k, ZD,k), k ≥ 1, with values in {z0} × {hN ,−hN}, when k = 1, (3.3)

and in Γ, when k ≥ 2, distributed as (ZRk
, ZDk

), k ≥ 1, under Pqz0
,

the iid variables (Z ′
R,k

, Z ′
D,k
), k ≥ 1, with same distribution as (ZR1

, ZD1
) (3.4)

under Pq ,

the independent TeB-valued ζ
γ
i
(·), i ≥ 1, γ ∈ Γ, such that ζ

γ
i
(·) is distributed as (3.5)

X ·∧TeB
under Pγ ,

the iid TeB-valued ζi(·), i ≥ 1, with same distribution as X ·∧TeB
under Pq, (3.6)

and so that

the above collections in (3.3) - (3.6) are mutually independent. (3.7)

We then introduce the Γ-valued processes γk, k ≥ 1, and γ′
k
, k ≥ 1, via:

γ1 = (rN , ZD,1) and γk = (ZR,k, ZD,k), for k ≥ 2 , (3.8)

γ′k = (Z
′
R,k, Z ′D,k), k ≥ 1 . (3.9)

The definition of γ1 in (3.8) is somewhat arbitrary as a consequence of the special role of the starting

point z0 ∈ I of the walk. We also consider the counting functions:

Nk(γ) =
��{ j ∈ [2, k]; γ j = γ}

��,
N ′

k
(γ) = |{ j ∈ [1, k]; γ′j = γ}|, for γ ∈ Γ, k ≥ 1 .

(3.10)
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We will now introduce processes X .
k, k ≥ 1, on (Σ,B , M) which have same law as eX k

. , k ≥ 1, under

Q1, cf. Proposition 2.2. To this effect we define:

i0 = inf
�

i ≥ 1; ζi(·) enters T× {z0} before exiting eB through T× {ZD,1
}
	

, (3.11)

where we note that since Pq[HT×{z0} < TeB and ZTeB
= z] > 0, for z = ±hN , one has i0 <∞, M -a.s.,

thanks to (3.6), (3.7). Further we observe that

conditionally on (ZR,k, ZD,k), k ≥ 1, the processes ζi0
(HT×{z0}+ ·) and (3.12)

ζ
γk

Nk(γk)
(·), k ≥ 2, are independent and respectively distributed as X ·∧TeB

under PZR,1,ZD,1
and PZR,k,ZD,k

, k ≥ 2 .

Taking into account (2.4) and (3.3) we have thus obtained that defining

X .
k = ζi0

(HT×{z0}+ ·), when k = 1, ζ
γk

Nk(γk)
(·), when k ≥ 2 , (3.13)

one finds that

(X .
k)k≥1 under M has same distribution as (eX k

. )k≥1 under Q1 . (3.14)

In a similar fashion we also define the processes

bX k
. = ζ

γ′
k

N ′
k
(γ′

k
)
(·), k ≥ 1 . (3.15)

Observe that conditionally on γ′
k
, k ≥ 1, the bX k

. , k ≥ 1, are independent with respective distribution

that of X ·∧TeB
under Pγ′

k
or equivalently under Pq[· |(ZR1

, ZD1
) = γ′

k
]. Since the γ′

k
, k ≥ 1, are iid

Γ-valued variables with same distributions as (ZR1
, ZD1

) under Pq, cf. (3.4), (3.9), it follows that

bX k
. , k ≥ 1, are iid TeB-valued with same distribution as X ·∧TeB

under Pq , (3.16)

and they are independent from the collection ζi(·), i ≥ 1 .

We recall the definition of δ in (1.26) and then set

bK =
h�

1+
δ

5

�
αN d/hN

i
, as well as (3.17)

X ′k. = bX k
. , when 1≤ k ≤ bK , ζk−bK(·), when k > bK . (3.18)

It now follows from (3.6), (3.16) that

X ′k. , k ≥ 1, are iid with same distribution as X ·∧TeB
under Pq . (3.19)

We then introduce the “good event”:

G = {i0 ≤ K ′− bK and for each γ ∈ Γ, NK(γ)≤ N ′bK(γ)} . (3.20)
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The interest of this definition stems from the fact that on G

range X .
1
(3.13)
⊆ range ζi0

(3.18)
⊆
⋃

bK<k≤K ′

range X ′k. ,

as well as

⋃
2≤k≤K

range X .
k (3.13)
=
⋃
γ∈Γ

⋃
i≤NK (γ)

range (ζ
γ
i
)⊆
⋃
γ∈Γ

⋃
i≤N ′bK (γ)

range (ζ
γ
i
)
(3.13),(3.18)
⊆

⋃

1≤k≤bK
range X ′k. .

As a result we see that

M
h ⋃

1≤k≤K

range X .
k ⊆
⋃

1≤k≤K ′

range X ′k.

i
≥ M(G ) . (3.21)

We will now explain why Proposition 3.1 follows once we show that

for N ≥ c(α, v), M(G )≥ 1− c N−3d . (3.22)

For this purpose we note that (Ω1,A1), see above (2.9), is a standard measurable space, cf. [6],

p. 13. The (eX.
k)k≥1 after modification on a Q1-negligible set can be viewed as (eΩ, fA )-valued vari-

ables where eΩ stands for T [1,∞)
E , with TE the countable space defined below (1.1), and where

fA denotes the canonical product σ-algebra, so that (eΩ, fA ) is also a standard measurable space.

With Theorem 3.3, p. 15 of [6] and its corollary we can find a probability kernel q( eω, dω1) from

(eΩ, fA ) to (Ω1,A1) such that for any boundedA1-measurable function f on Ω1, h((eX k
. )k≥1), where

h( eω) =
∫
Ω1

f (ω1)q( eω, dω1), is a version of EQ1[ f | (eX.
k)k≥1] such that for a.e. eω relative to the

A1-law of (eX.
k)k≥1, q( eω, ·) is supported on the fiber {ω1 ∈ Ω1; (eX.

k)k≥1(ω1) = eω}.

We can thus define Ω2 = Σ × Ω1, A2 = B ⊗A1, and Q2 the semiproduct of M with the kernel

q((X .
k)k≥1, dω1). Since (X .

k)k≥1 under M has same law as (eX.
k)k≥1 under Q1, cf. (3.14), it follows

that Q2-a.s. eX.
k = X .

k, for k ≥ 1, and X., (eX.
k)k≥1 has the same law under Q2 (on the enlarged space

Ω2) as under Q1. The claim (3.1) then follows from (3.21), (3.22) together with (2.14).

We now turn to the proof of (3.22). We begin with an upper bound on M[i0 > K ′ − bK]. For

z ∈ {hN ,−hN}, we have the identity (with hopefully obvious notation):

Pq

�
HT×{z0} < TeB and XTeB

∈ T× {z}
�
= Pq[HT×{z0} < TeB] PZz0

[XTeI
= z] =

�
1

2

hN − rN

hN + z0

+
1

2

hN − rN

hN − z0

� z + z0

2z
=

1

2

hN − rN

h2
N − z2

0

|z + z0| ≥
1

2

hN − rN

hN + rN

≥ 1

4
,

for N ≥ c .

(3.23)

As a result of (3.6), (3.11), we thus find that for N ≥ c(α, v),

M[i0 > K ′− bK]≤
�

3

4

�K ′−bK
≤ e−c(α,v)K . (3.24)
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The next step in the proof of (3.22) is the derivation of an upper bound on M[NK(γ) > N ′bK(γ)], for

γ ∈ Γ. We introduce the probabilities

pN = PZrN

�
HhN
< H−hN

�
= PZ−rN

�
H−hN

< HhN

�
=

hN + rN

2hN

, and

qN = 1− pN =
hN − rN

2hN

, so that

���pN −
1

2

���=
���qN −

1

2

���= 1

2

rN

hN

.

(3.25)

With (3.4), we see that for γ= (z1, z2) ∈ Γ, and k ≥ 1,

M
�
(Z ′R,k, Z ′D,k) = γ
�
=

1

2
pN 1{z1z2 > 0}+ 1

2
qN 1{z1z2 < 0} def

= p(γ) . (3.26)

Then with the help of a Cramer-type exponential bound it follows that for ρ > 0, γ ∈ Γ,

M
h

N ′bK(γ)≤
�

1

4
− δ

100

�
bK
i
≤ exp
n
bK
h�

1

4
− δ

100

�
ρ+ log
�
1− (1− e−ρ) p(γ)

�io
.

Hence for N ≥ c(α, v), (ensuring in particular p(γ) ≥ 1

4
− δ

200
, for all γ ∈ Γ), and ρ = c′(α, v) small

enough, the above inequality yields that

M
h

N ′bK(γ)≤
�

1

4
− δ

100

�
bK
i
≤ e−c(α,v)bK ≤ e−c(α,v)K . (3.27)

The last (and main) step in the proof of (3.22) is the derivation of an upper bound on M[NK(γ) >

(1

4
+ δ

100
)K]. We will rely on large deviation estimates for the empirical measure of (ZR,k, ZD,k), k ≥ 2,

cf. (3.3). In essence, as we will see below, this boils down to large deviation estimates on the pair

empirical distribution of a Markov chain on {1,−1}, which at each step remains at the same location

with probability pN , (close to 1

2
, cf. (3.25)), and changes location with probability qN = 1− pN . The

transition probabilities of this Markov chain depend on N , and to derive the relevant large deviation

estimates with uniformity over N , we rely on super-multiplicativity, cf. Lemma 6.3.1 of [4], p. 273.

In view of (3.3), M.-a.s., for k ≥ 2, ZD,k−1 and ZR,k have same sign. We denote with φ the bijective

map from Γ onto eΓ def
= {1,−1}2, defined by φ(γ) = (sign(z1), sign(z2), for γ ∈ Γ. We consider the

eΓ-valued stochastic process, cf. (3.9),

eγk = φ(γk) =
�
1, sign(ZD,1)
�
, k = 1 ,

a.s.
=
�
sign(ZD,k−1), sign(ZD,k)

�
, for k ≥ 2 .

Note that under M , (sign(ZD,k))k≥1, has the same law as (ZDk
/hN )k≥1, under Pqz0

, cf. (3.3), which

is a Markov chain on {1,−1}, which at each step has a transition probability pN to remain at the

same location and qN to change location, as well as an initial distribution (at time 1) Pqz0
[HT×{hN } <

HT×{−hN }] =
hN+z0

2hN
to be at 1 and

hN−z0

2hN
to be at −1. This chain on {1,−1} induces a Markov chain

on eΓ = {1,−1}2 by looking at consecutive positions of the original chain, so that when located in

eγ = (eγ 1,eγ 2) ∈ eΓ, the induced chain jumps with probability pN to (eγ 2,eγ 2) and qN to (eγ 2,−eγ 2). We

denote with eReγ, for eγ ∈ eΓ, the canonical law on eΓN of this chain starting at eγ, and with Um, m ≥ 0,

its canonical process. This is an irreducible chain on eΓ and

eγk, k ≥ 1, under M has same law as Uk−1, k ≥ 1, under eReκ, where (3.28)

eκ stands for the initial distribution
hN + z0

2hN

δ(1,1)+
hN − z0

2hN

δ(1,−1) .
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Using sub-additivity, see [4], p. 273 and 275, we see that for N ≥ 1,

inf
eσ∈eΓ
eReσ
h

1

n

n∑
m=1

1{Um = eγ} ≥ v
i
≤ e−nΨN (eγ,v), for n≥ 1, eγ ∈ eΓ, 0< v < 1 , (3.29)

where thanks to the fact that the chain on eΓ describes the evolution of pairs of consecutive positions

of the chain on {1,−1} mentioned above, see Theorem 3.1.13, p. 79 of [4], we have set for eγ ∈ eΓ,

0< v < 1,

ΨN (eγ, v) = inf{H2,N (µ); µ probability on eΓ with µ({eγ})≥ v} , (3.30)

and for µ probability on eΓ

H2,N (µ) =∞, when the two marginals of µ are different ,

= µ(1,1) log
�
µ(1|1)

pN

�
+µ(−1,−1) log

�
µ(−1| − 1)

pN

�
+

µ(1,−1) log
�
µ(−1|1)

qN

�
+µ(−1,1) log
�
µ(1| − 1)

qN

�
, otherwise ,

(3.31)

where we wrote µ(i, j) in place of µ({i, j}), for i, j ∈ {1,−1}, and µ( j|i) for the µ-conditional

probability that the second coordinates equals j given that the first coordinate equals i.

We then introduce Ψ∞ and H2,∞ as in (3.30), (3.31) replacing pN and qN with 1

2
. In view of the last

line of (3.25) we see that for N ≥ c, for any probability µ on eΓ

the finiteness of H2,N (µ) and H2,∞(µ) are equivalent and when this holds,

|H2,N (µ)− H2,∞(µ) | ≤ c
rN

hN

.
(3.32)

The non-negative function H2,∞ is lower semi-continuous relative to weak convergence, cf. [4],

p. 79, and only vanishes at the equidistribution on eΓ. As a result Ψ∞(eγ, 1

4
+ δ

200
)> 0, for each eγ ∈ Γ,

so that with (3.29), (3.32), when N ≥ c(α, v) one finds

inf
eσ∈eΓ
eReσ
h

1

n

n∑
m=1

1{Um = eγ} ≥
1

4
+
δ

200

i
≤ e−nc′(α,v), for all eγ ∈ eΓ, n≥ 1 . (3.33)

Since infeσ,eγ∈eΓ eReσ[U2 = eγ]≥ c > 0, it follows that for eγ ∈ eΓ, n≥ 1

sup
eσ∈eΓ
eReσ
h n∑

m=1

1{Um = eγ} ≥
�

1

4
+
δ

100

�
n
i
≤

1

c
inf
eσ∈eΓ
eReσ
h n+2∑

m=1

1{Um = eγ} ≥
�

1

4
+
δ

100

�
n
i (3.33)
≤

c′ exp{−(n+ 2) c′(α, v)}, as soon as n
�

1

4
+
δ

100

�
≥ (n+ 2)
�

1

4
+
δ

200

�
.

(3.34)

Since φ is a bijection between Γ and eΓ and eγk = φ(γk), we can now deduce from (3.28) and (3.34)

with n= K − 1 that for N ≥ c(α, v),

M
h

NK(γ)≥
�

1

4
+
δ

100

�
K
i
≤ c e−c(α,v)K , for γ ∈ Γ . (3.35)
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For large N , one has (1

4
+ δ

100
)K < (1

4
− δ

100
)bK , cf. (3.17), and hence with (3.27), (3.35), for N ≥

c(α, v):

M[NK(γ)≥ N ′bK(γ)]≤ c e−c′(α,v)K , for each γ ∈ Γ . (3.36)

Together with (3.24) this proves (3.22) and concludes the proof of Proposition 3.1.

Remark 3.2. Although we will not need this fact let us mention that H2,N in (3.31) is a non-

negative lower continuous function for the weak convergence. Moreover it vanishes at the unique

probability on eΓ, for which the first coordinate is equidistributed and conditionally on the first

coordinate the second coordinate coincides with the first coordinate with probability pN (and differs

with probability qN ). This last feature follows from the relative entropy interpretation of H2,N ,

cf. [4], p. 79. �

4 Poissonization

This section carries out step d) of the outline below Theorem 1.1. We construct a coupling Q3 of

X., X ′k. , k ≥ 1, under Q2 with an independent Poisson variable J ′ of parameter (1+ 3

5
δ)α N d

hN
. This

enables to define a Poisson point measure µ′ on TeB, cf. (4.1) and below (1.1) for the definition

of TeB, such that the union of the ranges of trajectories in the support of µ′ with high probability

contains the trace on A of X[0,DK ]
.

We thus consider, cf. Proposition 3.1, N ≥ c1(α, v), z0 ∈ I and Ω3 = Ω2 × N endowed with the

product σ-algebra A3 =A2 ×P (N), where P (N) stands for the collection of subets of N, and the

probability Q3 product of Q2 with the Poisson law of parameter (1+ 3

5
δ)α N d

hN
. We denote with J ′

the N-valued coordinate which is Poisson distributed. The definition of A appears below (1.24).

Proposition 4.1. (α > 0, v > (d + 1)α, 0< ǫ < 1)

For N ≥ c(α, v,ǫ) and z0 ∈ I , the random point measure on TeB defined by

µ′ =
∑

1≤k≤J ′
δX ′kHA+·

1{range X ′k. ∩ A 6= φ} (4.1)

is Poisson with intensity measure λ′ κ′ on TeB, where

λ′ =
�

1+
3

5
δ
�
α(d + 1)
�

1− rN

hN

�
and κ′ is the law of X ·∧TeB

under PeA,eB
. (4.2)

Moreover if one defines the random subset of A

I ′ =
⋃

w∈Suppµ′

range w ∩ A , (4.3)

then one has

Q3[X[0,DK ]
∩ A⊆ I ′]≥ 1− c N−3d . (4.4)
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Proof. Since the X ′k. are iid TeB-valued variables, the Poissonian character of µ′ is immediate. It then

follows from (1.13) and the fact that the X ′k. have same distribution as X ·∧TeB
under Pq that µ′ has

intensity measure λ′ κ′ with λ′ and κ′ as in (4.2).

Finally note that on {J ′ ≥ K ′}, I ′ contains
⋃

1≤k≤K ′ range X ′k. ∩ A. Moreover choosing a = a(α, v)

small enough one has the exponential bound:

Q3[J
′ < K ′]≤ exp
n

aK ′−
�

1+
3

5
δ
�
α

N d

hN

(1− e−a)
o
≤ exp{−c(α, v)K} . (4.5)

Combined with (3.1) and the fact that X[0,DK ]
∩A⊆
⋃

1≤k≤K X[Rk ,Dk]
∩A, we easily deduce (4.4).

5 Truncation

This section is devoted to step e) of the outline below Theorem 1.1. We construct a coupling Q4

of X., X ′k. , k ≥ 1, I ′ under Q3 with a random subset I which is the union of the ranges of the

trajectories in the support of a suitable Poisson point measure µ on TeC , cf. (5.4), where eC = B(0, N

4
).

This coupling is such that with high probability I contains the trace on A of X[0,DK ]
. For large N one

can view eC ∪ ∂ eC both as a subset of E and Zd+1, and this makes I more convenient than I ′ for

the purpose of comparison with random interlacements on Zd+1, see next section. The main result

of this section appears in Proposition 5.1. In the proof we employ the technique of sprinkling intro-

duced in [13], and throw in additional trajectories so as to compensate for truncation. This result

is very similar to Theorem 3.1 of [15], except that in this reference the non-truncated trajectories

are Zd+1-valued whereas they are eB ∪ ∂ eB-valued in the present setting. This induces some changes

in the proof but the overall spirit remains the same. The main Proposition 5.1 then leads to the

construction of the desired coupling in Proposition 5.4.

We recall the definition of eC in (1.27), and keep the notation of Section 4. We consider an auxiliary

probability space (Ω0,A0,Q0) endowed with

an iid sequence X k
. , k ≥ 1, of TeB-valued variables with same distributions as (5.1)

X ·∧TeB
under Pq ,

an independent Poisson variable J with intensity
�

1+
4

5
δ
�
α

N d

hN

. (5.2)

This enables to define the Poisson point measure on TeC :

µ=
∑

1≤k≤J

δX k
(HA+·)∧TeC

1{range X k
. ∩ A 6= φ} , (5.3)

and the same argument as in Proposition 4.1 now leads to the fact that for N ≥ c(ǫ),

µ has intensity measure λκ on TeC , where

λ =
�

1+
4

5
δ
�
α(d + 1)
�

1− rN

hN

�
and κ is the law of X ·∧TeC

under PeA,eB
.

(5.4)

We further introduce

I =
⋃

w∈Suppµ

range w . (5.5)
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Proposition 5.1. (α > 0, v > (d + 1)α, 0< ǫ < 1)

For N ≥ c(α, v,ǫ), z0 ∈ I , there exist random subsets I ∗ and I of A, defined on (Ω3,A3,Q3) of

Proposition 4.1, such that

I ′ = I ∗ ∪I , (5.6)

I ∗ and I are independent under Q3 , (5.7)

Q3[I 6= φ]≤ c N−3d , (5.8)

I ∗ is stochastically dominated by I ∩ A . (5.9)

Proof. The proof with some modifications follows the same pattern as that of Theorem 3.1 of [15]

and we detail it for the reader’s convenience. We consider

M =
�

exp{
p

log N}
�
+ 1 and C = B
�

0,
h

N

4M

i�
⊆ eC , (5.10)

and from now on assume N ≥ c(α, v,ǫ) so that Proposition 4.1 holds true and

A⊆ B(0,100[N1−ǫ])⊆ C ⊆ B
�

0,100
h

N

4M

i�
⊆ eC ⊆ eB . (5.11)

We write eRk and eDk, k ≥ 1, for the successive return times to A and departures from C of a trajectory

belonging to TeB, just as in (1.10) with B(z) and eB(z) replaced by A and C . We then introduce the

integer

r =
h

16

ǫ

i
+ 1 , (5.12)

as well as the decomposition, see (4.1) for the notation:

µ′ =
∑

1≤ℓ≤r

µ′
ℓ
+µ, where

µ′ℓ = 1{eDℓ < TeB < eRℓ+1}µ′, for ℓ≥ 1, and µ= 1{eDr+1 < TeB}µ′ .
(5.13)

Similarly considering the last return to A before exiting eC , we write Q0-a.s.:

µ=
∑
ℓ≥1

µℓ, where µℓ = 1{eDℓ < TeC < eRℓ+1}µ, for ℓ≥ 1 . (5.14)

Observe that:

µ′
ℓ
, 1≤ ℓ≤ r, and µ are independent Poisson measures under Q3 , (5.15)

and their respective intensity measures on TeB are in the notation of (4.2):

ν ′ℓ = λ
′ 1{eDℓ < TeB < eRℓ+1}κ′, 1≤ ℓ≤ r ,

ν = λ′ 1{eDr+1 < TeB}κ′ .
(5.16)
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In a similar fashion one sees that

µℓ,ℓ≥ 1, are independent Poisson measures under Q0 , (5.17)

and their respective intensity measures on TeC are

νℓ = λ1{eDℓ < TeC < eRℓ+1}κ, ℓ≥ 1 . (5.18)

We then define

I ∗ =
⋃

1≤ℓ≤r

� ⋃

w∈Suppµ′
ℓ

range w ∩ A
�

, I =
⋃

w∈Suppµ

range w ∩ A , (5.19)

so that

I ′ = I ∗ ∪I , and I ∗,I are independent under Q3 . (5.20)

Note as well that Q0-a.s.,

I ∩ A=
⋃

ℓ≥1

� ⋃

w∈Suppµℓ

range w ∩ A
�

. (5.21)

The next lemma deviates from the proof of Theorem 3.1 of [15], as a consequence of the fact that

we work here with simple random walk on E in place of simple random walk on Zd+1.

Lemma 5.2. (N ≥ c(ǫ))

sup
x∈∂ C

Px[HA < TeB]≤ c(log N)2 (MN−ǫ)d−1 . (5.22)

Proof. Note that with (5.10),

∂ C ⊆ S
def
= S
�

0,
h

N

4M

i
+ 1
�

.

The probability that the walk starting in S reaches B(0, 1

2
[ N

4M
]) before hitting S and then enters A

before entering S, using standard estimates on the one-dimensional walk and on the Green function,

cf. [8], p. 31, combined with the right-hand of (1.7), satisfies

sup
x∈S

Px[HA < eHS ∧ TeB]≤ c
M

N

�
N

M
/N1−ǫ
�−(d−1)

= c
M

N
(MN−ǫ)d−1 . (5.23)

On the other hand using estimates on the one-dimensional simple random walk to bound from

below the probability to move at distance [c N

M
] of C ∪ S = B(0, [ N

4M
] + 1) without hitting S, then

estimates on the Green function together with the right-hand inequality of (1.7) to bound from

below the probability to reach ∂ B(0, N

4
) without entering S and the invariance principle to reach

T× {[N

4
] + N} without entering S, and then estimates on the simple random walk to bound from

below the probability to reach T× {hN} before level [N

4
], we see that for N ≥ c(ǫ):

inf
x∈S

Px[TeB < eHS ∧ HA]≥ c
M

N
× c × N

hN − [ N

4
]
≥ c

M

N
(log N)−2 . (5.24)

With the same argument as in (4.20) of [15], (5.22) follows from (5.23) and (5.24).
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We now resume the proof of Proposition 5.1 and assume N ≥ c(α, v,ǫ) so that the tacit assumption

above (5.11) as well as (5.22) hold. We can now bound the total mass of ν in (5.16) with the help

of the strong Markov property as follows:

ν(TeB) = λ′ PeA,eB
[eDr+1 < TeB]

strong Markov

≤
(4.2)

cα capeB(A)
�

sup
x∈∂ C

Px[HA < TeB]
�r

. (5.25)

Since eC ⊆ eB, it follows with (1.3), (1.4) that capeB(A) ≤ capeC(A). Moreover for N ≥ c(ǫ), as a result

of the right-hand inequality of (1.7) and standard bounds on the Green function supx∈∂ eC PZ
d+1

x [HA <

∞]≤ 1

2
. It thus follows that

capeC(A)− cap(A)
(1.3),(1.4)
≤ capeC(A) sup

∂ eC
Px[HA <∞] , (5.26)

whence with standard estimates on the capacity of A, cf. (2.16), p. 53 of [8], we find:

capeB(A)≤ capeC(A)≤ 2 cap(A)≤ c N (d−1)(1−ǫ) . (5.27)

Coming back to (5.25) we see with (5.22) that:

ν(TeB)≤ c(α)N (d−1)(1−ǫ)(c(log N)2 M d−1 N−ǫ(d−1))r

N≥c(ǫ)

≤ c(α)N (d−1)(1−ǫ)− 3

4
(d−1)ǫr

(5.12)
≤ c(α)N−11(d−1)

d≥2
≤ c(α)N−5d .

(5.28)

As a result we find that

Q3[I 6= φ]≤Q3[µ 6= 0]
(5.28)
≤ c N−3d , for N ≥ c(α, v,ǫ) . (5.29)

Then for ℓ≥ 1, we introduce the map φ′
ℓ

from {eDℓ < TeB < eRℓ+1} ⊆ TeB into W×ℓ
f

, where Wf denotes

the countable collection of finite nearest neighbor paths with values in eC ∪ ∂ eC , as well as the map

φℓ from {eDℓ < TeC < eRℓ+1} ⊆ TeC into W×ℓ
f

defined by:

φ′ℓ(w) =
�
w(eRk + ·)0≤·≤eDk−eRk

�
1≤k≤ℓ, for w ∈ {eDℓ < TeB < eRℓ+1} ,

φℓ(w) =
�
w(eRk + ·)0≤·≤eDk−eRk

�
1≤k≤ℓ, for w ∈ {eDℓ < TeC < eRℓ+1} .

(5.30)

We can respectively view µ′
ℓ

and µℓ for ℓ ≥ 1, as Poisson point processes on {eDℓ < TeB < eRℓ+1} and

{eDℓ < TeC < eRℓ+1}. If ρ′
ℓ

and ρℓ denote their respective images under φ′
ℓ

and φℓ, we see that with

(5.15) - (5.18),

ρ′
ℓ
, 1≤ ℓ≤ r, and µ are independent Poisson point processes, (5.31)

ρℓ, 1≤ ℓ, are independent Poisson point processes, (5.32)

and denoting by ξ′
ℓ

and ξℓ the intensity measures on W×ℓ
f

of ρ′
ℓ

and ρℓ, we have:

ξ′ℓ(dw1, . . . , dwℓ) = λ
′PeA,eB

[eDℓ < TeB < eRℓ+1, (XeRk+·)0≤·≤eDk−eRk
∈ dwk, 1≤ k ≤ ℓ] (5.33)

ξℓ(dw1, . . . , dwℓ) = λ
′PeA,eB

[eDℓ < TeC < eRℓ+1, (XeRk+·)0≤·≤eDk−eRk
∈ dwk, 1≤ k ≤ ℓ] . (5.34)

The following lemma corresponds in the present context to Lemma 3.2 of [15]. It will be used when

comparing ξ′
ℓ

and ξℓ, see (5.37) below.
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Lemma 5.3. (N ≥ c(ǫ))

For x ∈ ∂ C and y ∈ ∂intA,

Px[TeC < eR1 < TeB, XeR1
= y]≤ c2

(log N)2

M d−1
Px[eR1 < TeC , XR1

= y] . (5.35)

Proof. We implicitly assume (5.11). The same argument leading to (5.22), see (5.23), (5.24), and

see also (4.17), (4.18) and (4.20) of [15], now yields:

sup
x∈∂ eC

Px[H∂ C < TeB]≤
c(log N)2

M d−1
. (5.36)

Now for y ∈ ∂intA we find that

sup
z∈∂ C

Pz[TeC < eR1 < TeB, XeR1
= y]≤ sup

z∈∂ C

Ez

�
PXTeC
[XeR1

< TeB, XeR1
= y]
�
≤

sup
z′∈∂ eC

Pz′[H∂ C < TeB] sup
z∈∂ C

Pz[eR1 < TeB, XeR1
= y]

(5.36)
≤ c(log N)2

M d−1

sup
z∈∂ C

Pz[eR1 < TeB, XeR1
= y] .

Observe that the function z → Pz[eR1 < TeB, XeR1
= y] = Pz[HA < TeB, XHA

= y] is harmonic and

positive on eB\A and hence on eC\A as well. Note that eC ∪∂ eC can be identified with a subset of Zd+1.

With the Harnack inequality, cf. [8], p. 42, and a standard covering argument we find that:

sup
z∈∂ C

Pz[eR1 < TeB, XeR1
= y]≤ c inf

z∈∂ C
Pz[eR1 < TeB, XeR1

= y] ,

and therefore

sup
z∈∂ C

Pz[TeC < eR1 < TeB, XeR1
= y]≤ c′

(log N)2

M d−1
inf

z∈∂ C
Pz[eR1 < TeB, XeR1

= y] =

c′
(log N)2

M d−1
inf

z∈∂ C

�
Pz[TeC < eR1 < TeB, XeR1

= y] + Pz[eR1 < TeC , XeR1
= y]
�

.

Assuming N ≥ c(ǫ) so that c′(log N)2 M−(d−1) ≤ 1

2
, we find that for x ∈ ∂ C and y ∈ ∂intA:

Px[TeC < eR1 < TeB, XeR1
= y]≤ 2c′

(log N)2

M d−1
Px[eR1 < TeC , XeR1

= y] ,

and this proves (5.35).

We now continue the proof of Proposition 5.1 and will show that for N ≥ c(α, v,ǫ),

ξ′ℓ ≤
λ′

λ

�
1+ c2

(log N)2

M d−1

�ℓ−1

ξℓ, for 1≤ ℓ≤ r , (5.37)

where we refer to (4.2), (5.4), (5.33) and (5.34) for the notation.
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Given w ∈ Wf , we write ws and wℓ for the respective starting point and endpoint of w. When

w1, . . . , wℓ ∈Wf we have

ξ′
ℓ

�
(w1, . . . , wℓ)
� (5.33)
=

λ′ PeA,eB
[eDℓ < TeB < eRℓ+1, (XeRk+·)0≤·≤eDk−eRk

= wk(·), 1≤ k ≤ ℓ] =
∑

B⊆{1,...,ℓ−1}
λ′ PeA,eB

�eDℓ < TeB < eRℓ+1, (XeRk+·)0≤·≤eDk−eRk
, 1≤ k ≤ ℓ, and

TeC ◦ θeDk
+ eDk < eRk+1, exactly for k ∈ B when,

1≤ k ≤ ℓ− 1
�

.

(5.38)

The above expression vanishes unless ws
k
∈ ∂intA and we

k
∈ ∂ C and wk takes values in C except

for the final point we
k
, for 1 ≤ k ≤ ℓ. If these conditions are satisfied, applying the strong Markov

property repeatedly at times eDℓ,eRℓ, eDℓ−1,eRℓ−1, . . . eD1 we find that the last member of (5.38) equals:

∑
B⊆{1,...,ℓ−1}

λ′ PeA,eB
[(X.)0≤·≤eD1

= w1(·)]

Ewe
1

�
1{1 /∈ B}1{TeC > eR1}+ 1{1 ∈ B}1{TeC < eR1} ,eR1 < TeB, XeR1

= ws
2

�

Pws
2
[(X.)0≤·≤eD1

= w2(·)] . . .
Ews

ℓ−1
[1{ℓ− 1 /∈ B}1{TeC > eR1}+ 1{ℓ− 1 ∈ B}1{TeC < eR1}, eR1 < TeB, XeR1

= ws
ℓ
]

Pws
ℓ
[(X.)0≤·≤eD1

= wℓ(·)]Pwe
ℓ
[TeB < eR1]

(5.35)
≤
∑

B⊆{1,...,ℓ−1}

�
c2

(log N)2

M d−1

�|B|
λ′ PeA,eB

[(X.)0≤·≤eD1
= w1(·)]

Pwe
1
[eR1 < TeC , XeR1

= ws
2] Pws

2
[(X.)0≤·≤eD1

= w2(·)] . . .
Pwe
ℓ−1
[eR1 < TeC , XeR1

= ws
ℓ
] Pws

ℓ
[(X.)0≤·≤eD1

= wℓ(·)] Pwe
ℓ
[TeB < eR1]

and using the strong Markov property this equals

λ′
�

1+ c2

(log N)2

M d−1

�ℓ−1

PeA,eB
[TeC ◦ θeDk

+ eDk > eRk+1, for 1≤ k ≤ ℓ− 1, (XeRk+·)0≤·≤eDk−eRk

= wk(·), for 1≤ k ≤ ℓ, eDℓ < TeB < eRℓ+1]≤

λ′
�

1+ c2

(log N)2

M d−1

�ℓ−1

PeA,eB
[eDℓ < TeC < eRℓ+1, (XeRk+ ·)0≤·≤eDk−eRk

= wk(·), for 1≤ k ≤ ℓ] =

λ′

λ

�
1+ c2

(log N)2

M d−1

�ℓ−1

ξℓ
�
(w1, . . . , wℓ)
�

.

This concludes the proof of (5.37).

We now assume that N ≥ c(α, v,ǫ), so that, cf. (4.2), (5.4), and (5.10):

λ ≥ λ′ exp
n

16

ǫ
c2

(log N)2

M d−1

o (5.12)
≥ λ′
�

1+ c2

(log N)2

M d−1

�ℓ−1

, for 1≤ ℓ≤ r . (5.39)

With (5.37) it thus follows that:

ξ′ℓ ≤ ξℓ, for 1≤ ℓ≤ r . (5.40)
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As a result we find with (5.19), (5.21), and (5.30) that

I ∗ =
⋃

1≤ℓ≤r

⋃

(w1,...,wℓ)∈Suppρ′
ℓ

(range w1 ∪ · · · ∪ range wℓ)∩ A

and that

I ∩ A⊇
⋃

1≤ℓ≤r

⋃

(w1,...,wℓ)∈Suppρℓ

(range w1 ∪ · · · ∪ range wℓ)∩ A .

It then follows from (5.31), (5.32), and (5.40) that

I ∩ A under Q0 stochastically dominates I ∗ under Q3 . (5.41)

Combining (5.20), (5.29), and (5.41) we have proved Proposition 5.1.

We are now ready to construct the coupling of X., X k
. , k ≥ 1,I ′ under Q3 with µ and I under Q0 as

announced at the beginning of this section.

Proposition 5.4. (α > 0, v > (d + 1)α, 0< ǫ < 1)

For N ≥ c(α, v,ǫ) and z0 ∈ I , one can construct on an auxiliary space (Ω4,A4) a coupling Q4 of X., X ′k. ,

k ≥ 1, I ′ under Q3 with µ, I under Q0 so that

Q4[X[0,DK ]
∩ A⊆ I ]≥ 1− c N−3d . (5.42)

Proof. With N ≥ c(α, v,ǫ) as in Proposition 5.1, we chose Ω4 = Ω3 × Ω0, A4 = A3 ⊗A0, and

consider the conditional probabilities for B∗, B ⊆ A:

Q3[· |I ∗ = B∗], understood as Q3 when Q3[I ∗ = B∗] = 0 ,

Q0[· |I ∩ A= B], understood as Q0 when Q0[I ∩ A= B] = 0 .

Letting P (A) stand for the collection of subsets of A, we can construct with (5.9) and Theorem 2.4,

p. 72 of [9], a probability p on P (A)2 coupling the distribution of I ∗ under Q3 and that of I ∩ A

under Q0, such that p-a.s., the first coordinate on P (A)2, (which is distributed as I ∗ under Q3),

is a subset of the second coordinate, (which is distributed as I ∩ A under Q0). We then define on

Ω4 = Ω3×Ω0 the probability

Q4[·] =
∑

B∗,B⊆A

p(B∗, B)Q3[· |I ∗ = B∗]⊗Q0[· |I ∩ A= B] . (5.43)

This probability yields a coupling of X., X ′k. , k ≥ 1, I ′ under Q3 with µ, I under Q0. Moreover in

view of (5.8) and (5.6) we find that

Q4[I ∩ A⊇ I ′]
(5.6)
≥ Q4[I ∩ A⊇ I ∗, I = φ] (5.43)

= Q4[I = φ]
(5.9)
≥ 1− c N−3d .

(5.44)

Together with (4.4) this yields (5.42).
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6 Comparison with random interlacements

In this section we complete the proof of Theorem 1.1, (cf. step f) of the outline following Theorem

1.1). We can view eC ∪∂ eC as a subset of Zd+1, and the main ingredient is to stochastically dominate

I ∩A, which is the trace on A of the ranges of trajectories in the support of the Poisson point measure

µ on TeC with intensity measure λκ, cf. (5.4), with the trace on A of random interlacements at level

v. In view of (1.18), (1.19) it suffices for this purpose to dominate the equilibrium measure eA,eB
which appears in (5.4), with a multiple slightly bigger than 1 of the equilibrium measure eA of A

relative to Zd+1. This is carried out in Proposition 6.1.

Proposition 6.1. (α > 0, v > (d + 1)α, 0< ǫ < 1)

For N ≥ c(α, v,ǫ) and z0 ∈ I ,

I ∩ A under Q4 is stochastically dominated by I v ∩ A under P . (6.1)

Proof. The random set I ∩ A is the trace on A of the ranges of trajectories in the support of the

Poisson point measure µ on TeC with intensity measure, cf. (5.4),

λκ(dw) =
�

1+
4

5
δ
�
α(d + 1)
�

1− rN

hN

�
PeA,eB
[X ·∧TeC

∈ dw] .

On the other hand I v ∩A is the trace on A of the ranges of trajectories in the support of the Poisson

point measure µA,v on W+ with intensity measure, cf. (1.19):

v PeA
[X. ∈ dw] .

The claim (6.1) will thus follow as soon as we show that for N ≥ c(α, v,ǫ),

�
1+

4

5
δ
�
α(d + 1)
�

1− rN

hN

�
eA,eB ≤ veA . (6.2)

To this end we note with similar arguments as above (5.26), that one has for x ∈ ∂intA:

eA,eB(x)− eA(x)
eC⊆eB
≤ eA,eC(x)− eA(x)

(1.3)
≤ PZ

d+1

x [TeC < eHA <∞]

strong Markov

≤ eA,eC(x) sup
x ′∈∂ eC

PZ
d+1

x ′ [HA <∞] ≤ eA,eC(x) c N−ǫ(d−1) ,

(6.3)

using the right-hand inequality of (1.7) and standard bounds on the Green function, cf. [8], p. 31.

We thus find that for N ≥ c(ǫ),

eA,eB(x)≤ eA,eC(x)≤ eA(x)(1− c N−ǫ(d−1))−1 ≤
eA(x)(1+ c′ N−ǫ(d−1)), for all x ∈ ∂intA .

(6.4)

This is more than enough to show that (6.2) holds and this concludes the proof of Proposition

6.1.
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We now turn to the

Proof of Theorem 1.1: We assume N ≥ c(α, v,ǫ) and z0 ∈ I as in Proposition 6.1. We consider the

space Ω′ = Ω4 × Ω, cf. (1.14), endowed with the product σ-algebra A ′ = A4 ⊗A . We endow

(Ω′,A ′) with a probability Q′ as follows. Using a similar construction as in (5.43) we consider a

probability p′ on P (A)2 coupling the law of I ∩ A under Q4 with the law of I v ∩ A under P, such

that p′-a.s. the first coordinate is a subset of the second coordinate. We then define the probability

Q′ on (Ω′,Q′) via

Q′[·] =
∑

A1,A2⊆A

p′(A1,A2)Q4[· |I ∩ A= A1]⊗ P[· |I v ∩ A= A2] , (6.5)

where we use a similar convention as below (5.42) to define the conditional probabilities appearing

in (6.4) when either Q4[I ∩ A= A1] or P[I ν ∩ A= A2] vanishes. As a result of (5.42) we thus find

that:

Q′[X[0,DK ]
∩ A⊆ I v ∩ A]≥ 1− c N−3d . (6.6)

The coupling Q′ satisfies the estimate (2.1) and enables with Proposition 2.1 to complete the proof

of Theorem 1.1. �

7 Lower bound on the disconnection time

In this section we apply Theorem 1.1 together with the controls of [11] recalled in (1.23) to prove

a lower bound on the disconnection time TN of the discrete cylinder, see (7.1) for the definition

of TN . We derive in Theorem 7.3 a lower bound on TN , which in particular shows that under P

the laws of N2d/TN , N ≥ 2, are tight when d ≥ 2. This had previously only been proved when

d ≥ 17, cf. [3]. Together with Corollary 4.6 of [15] this shows that for all d ≥ 2, “TN lives in

scale N2d”. An additional interest of Theorem 1.1 stems from the fact that better controls on the

percolative properties of the vacant set of random interlacements V u when u < u∗, should lead to

an improvement of the lower bound on TN we derive here, cf. Remark 7.5 2).

We begin with some terminology and notation. A finite subset S of E, cf. (0.1), is said to disconnect

E when for large M , E × (−∞,−M] and E × [M ,∞) belong to distinct connected components of

E\S. The disconnection time of E by the simple random walk X. is then defined as

TN = inf{n≥ 0; X[0,n] disconnects E} . (7.1)

It is convenient to introduce the sequence ρm, m ≥ 0 of successive displacements of the vertical

component Z. of X.:

ρ0 = 0, and by induction ρm+1 = inf{k > ρm; Zk 6= Zρm
}, for m≥ 0 , (7.2)

as well as the time changed process and its local time:

bZm = Zρm
, m≥ 0, and bLz

k
=
∑

0≤m<k

1{bZm = z}, for z ∈ Z, k ≥ 0 . (7.3)
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Note that under P, (see below (0.1) for the notation), bZ. is distributed as a simple random walk on

Z starting at the origin. We further introduce the random times:

γz
u = inf{ρk; k ≥ 0, bLz

k
≥ u}, for u≥ 0, z ∈ Z . (7.4)

We recall the notation for K below (1.24), and for Dz
k

in (1.10). In the next proposition we will

show that infz∈Z Dz
K happens at least in scale N2d . More is true, see Remark 7.2, but the controls in

Proposition 7.1 will be sufficient for our purpose. We let W stand for the canonical Wiener measure

and consider, cf. (0.4)

ζ(u) = inf{t ≥ 0; sup
a∈R

L(a, t)≥ u}, for u≥ 0 , (7.5)

with L(v, t) a jointly continuous version of the local time of the canonical Brownian motion. The

Laplace transform of ζ(u) is known thanks to the works [1], and [5], p. 89. One has the identity,

see also (0.12) of [15]:

EW [e−
θ2

2
ζ(u)] =

θu

[sinh(θu

2
)]2

I1(
θu

2
)

I0(
θu

2
)
, for θ ,u> 0 . (7.6)

Proposition 7.1. (d ≥ 2,α > 0)

lim
N

N2d+1 sup
z∈Z

P[Dz
K < γ

z

α′N d ] = 0, for 0< α′ < α . (7.7)

lim
N

P
� ⋂

|z|≤N2d+1

{Dz
K > γN2d}
�
≥W[ζ(
p

d + 1α)> γ], for γ > 0 . (7.8)

Proof. We begin with the proof of (7.7) which constitutes an intermediary step in the proof of (7.8).

Consider z ∈ Z, and observe that under any Px , when πZ(x) = z, the number of visits of bZ. to z

before exiting z + eI , see (1.9) for the definition of eI , almost surely equals
∑

m≥0 1{bZm = z,ρm <

TeB(z)}, and is distributed as a geometric random variable with success probability h−1
N . Applying the

strong Markov property at the times Rz
k′ , 1≤ k′ ≤ k, we see that

under P,
∑

m≥0 1{bZm = z,ρm < Dz
K} stochastically dominates the sum of

K independent variables distributed as UV , where U is a Bernoulli variable

with success probability
hN−rN

hN
, and V an independent geometric variable of

parameter h−1
N , (in fact when |z| ≥ rN there is an equality of distribution).

(7.9)

It then follows that for a > 0 and z ∈ Z, with Chebishev’s inequality:

P[Dz
K < γ

z

α′N d ] = P
� ∑

m≥0

1{bZm = z,ρm < Dz
K} < α′N d]≤

exp
n

a

hN

α′N d
o

E
�

e
− a

hN
UV�K

=

exp
n

a

hN

α′N d + K log
�

rN

hN

+
hN − rN

hN

e
− a

hN

hN

1

1− e
− a

hN (1− 1

hN
)

o
.

(7.10)
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For large N the second term inside the exponential in the last member of (7.10) is equivalent to

α N d

hN
log( 1

1+a
), and since α′ < α, the claim (7.7) follows from (7.10) by choosing a > 0 small

enough.

We now turn to the proof of (7.8). With (2.20) of [2], we know that we can construct an auxiliary

space (Ω,A , P) coupling bLz
k
, z ∈ Z, k ≥ 0, under P with L(a, t), a ∈ R, t ≥ 0, under W so that

P-a.s., sup
z∈Z,k≥1

|bLz
k
− L(z, k)|

k
1

4
+η

<∞, for any η > 0 . (7.11)

Note that when N ≥ 3, the sequence ρm, m ≥ 0, under P has a distribution independent of N ,

namely the law of the successive partial sums of independent geometric variables with success prob-

ability (d + 1)−1. Thus for γ′ > γ > 0 and α > α′ > α′′ > 0, we see with (7.7) and the law of large

number, that

lim
N

P
� ⋂

|z|≤N2d+1

{Dz
K > γN

2d}
� (7.7)
≥ lim

N

P
� ⋂

|z|≤N2d+1

{γz

α′N d > γN2d}
�
≥

lim
N

P
� ⋂

|z|≤N2d+1

�
γz

α′N d > ρ[ γ
′

d+1
N2d]

	� (7.4)
=

lim
N

P
� ⋂

|z|≤N2d+1

�bLz

[
γ′

d+1
N2d]
< α′N d
	� (7.11)
≥

lim
N

P
h ⋂

|z|≤N2d+1

n
L
�

z,
h
γ′

d + 1
N2d
i�
< α′′ N d
oi

scaling
=

lim
N

W
h ⋂

|z|≤N2d+1

n
L
�

z

N d
,
h
γ′

d + 1
N2d
i
/N2d
�
< α′′
oi
≥

W
h

sup
a∈R

L
�

a,
γ′

d + 1

�
< α′′
i
=W
h
ζ(α′′)>

γ′

d + 1

i
scaling
= W[ζ(1)>

γ′

(d + 1)α′′2

i
.

(7.12)

Letting γ′ decrease to γ,α′′ increase to α, as well as scaling we find (7.8).

Remark 7.2. Let us mention that one can show in a very similar fashion that

lim
N

N2d+1 sup
z∈Z

P[Dz
K > γ

z

α′N d ] = 0, for α′ > α .

(one simply uses the fact that the sum in the fist line of (7.9) is stochastically dominated by the sum

of k independent variables distributed as V , and a very similar exponential Chebishev inequality as

in (7.10)).

More importantly one can also show with similar manipulations as in (7.12) that

lim
N

P
� ⋂

|z|≤N2d+1

{Dz
K > γN2d}] ≤W[ζ(

p
d + 1α)≥ γ
�

, for γ > 0 ,

we also refer to (4.38) of [15] for a similar calculation.
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Combined with (7.8), this shows that

under P, inf
|z|≤N2d+1

Dz
K/N

2d converges in law to ζ (
p

d + 1α) . (7.13)

Note also that with scaling one has the identity

ζ (
p

d + 1α)
law
= (d + 1)ζ(α) = inf

n
t ≥ 0; sup

a∈R
(d + 1) L
�

a,
t

d + 1

�
≥ (d + 1)α
o

.

This last expression has a strong intuitive content in terms of random interlacements attached to

random walk on the cylinder E. Indeed in view of Theorem 0.1 of [15], (d + 1) L(a, t

d+1
) corre-

sponds, loosely speaking, to the level of the random interlacement governing for large N the local

picture at times of order t N2d left by the random walk in the neighborhood of a point with vertical

projection of order aN d . On the other hand (d+1)α is the level of the random interlacement which

naturally shows up in describing the local picture left by the walk near some point x at height z

by time Dz
K . Incidentally in the same vein as (7.13) one can show that for a in R and zN ∼ a N d ,

D
zN

K /N
2d under P converges in distribution to inf{s ≥ 0, L(a, s

d+1
)≥ α}. �

We now come to the main result of this section.

Theorem 7.3. (d ≥ 2)

For small v > 0,

for γ > 0, lim
N

P[TN > γN2d]≥W
h
ζ
�

v
p

d + 1

�
> γ
i

, (7.14)

and in particular the laws of N2d/TN , N ≥ 2 are tight.

(We refer to Remark 7.5 for the explanation of why we write vp
d+1

for the parameter entering ζ(·) in

(7.14) ).

Proof. We denote with v0 the value u(ρ = 6d) which appears in (1.23) and choose α > 0, so that

v0 > (d + 1)α . (7.15)

Then for γ > 0, we can write

lim
N

P[TN > γN2d]≥ lim
N

P
�

inf
|z|≤N2d+1

Dz
K > γN2d
�
− lim

N
P
�

inf
|z|≤N2d+1

Dz
K > γN2d ≥ TN

�

(7.8)
≥ W[ζ (
p

d + 1α)> γ]− lim
N

�
inf

|z|≤N2d+1
Dz

K > γN2d ≥ TN

�

Once we show that for γ > 0 and α as in (7.15)

lim
N

P
�

inf
|z|≤N2d+1

Dz
K > γN2d ≥ TN

�
= 0 , (7.16)

the claim (7.14) will follow for any v < v0, (and in fact even for v = v0, using a similar argument as

below (7.12)). To prove (7.16) we will rely on
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Lemma 7.4. (N ≥ c(γ))

P-a.s. on {TN < γN2d} there exists x∗ = z∗ ed+1, with |z∗| ≤ N2d+1, and a ∗-path in U∩X[0,TN ]
starting

at x∗ and ending in S(x∗, [
p

N]), where U is the planar strip

U =
�
− 2[
p

N], 2[
p

N]
�

e1+Z ed+1 , (7.17)

(viewed both as a subset of Zd+1 and E).

Proof. For N ≥ c(γ), P-a.s. on {TN < γN2d}, T × (−∞,−N2d+1] and T × [N2d+1 − 1,∞) are

in distinct connected components of E\X[0,TN ]
. Consequently the connected component O in U

of U\X[0,TN ]
containing U ∩ (T× [N2d+1,∞)) does not meet U ∩ (T× (−∞,−N2d+1]). Consider

x = zed+1 the point of minimal height on Zed+1 belonging to O, so that |z| < N2d+1, and set

x∗ ed+1 with z∗ = z − 1. With Proposition 2.1, p. 29 of [7], we can find a ∗-loop surrounding the

connected set O′ = O ∩ (T× [−N2d+1, N2d+1]) ⊇ [−2[
p

N], 2[
p

N]] e1 + N2d+1ed+1, contained in

∂O′ ∩ (Ze1 + Zed+1) and passing through x∗. However points of ∂O′ in B(x∗,
p

N) ∩ U necessarily

belong to X[0,TN ]
. We can thus extract from the ∗-loop a ∗-path from x∗ to S(x∗, [

p
N]) contained in

U ∩ X[0,TN ]
.

With the above lemma, the expression in (7.16) is smaller than

lim
N

P
�

for some |z∗| ≤ N2d+1 there is a ∗-path from x∗ = z∗ ed+1

to S(x∗, [
p

N]) in U ∩ X[0,D
z∗
K ]

� Theorem1.1, (7.15)
≤

lim
N

c N2d+1 (P
�

there is a ∗-path from O to S(0, [
p

N])

in I v0 ∩ (Ze1+Zed+1)
�
+ N−3d) = 0,

in view of (1.23) and our choice of v0 .

(7.18)

This proves (7.16) and concludes the proof of Theorem 7.3.

Remark 7.5.

1) As already mentioned in the Introduction, cf. (0.4), it follows from Theorem 7.3 above

and Corollary 4.6 of [15] that for d ≥ 2, “TN lives in scale N2d”, i.e. more precisely

under P

TN/N
2d and N2d/TN , N ≥ 2, are tight . (7.19)

One can also argue in a direct fashion with the help of the invariance principle that (7.19) holds as

well when d = 1.

2) It is an open problem, cf. Remark 4.7 2) of [15], whether for d ≥ 2, under P

TN/N
2d converges in law towards ζ

�
u∗p
d + 1

�
, as N →∞ , (7.20)
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with u∗ the non-degenerate critical value for the percolation of the vacant set of random interlace-

ments, see below (1.22).

It has been shown in Corollary 4.6 of [15] that when d ≥ 2,

for γ > 0, lim
N

P[TN ≥ γN2d]≤W
h
ζ
�

u∗∗p
d + 1

�
≥ γ
i

, (7.21)

with u∗∗ ∈ [u∗,∞) a certain critical value introduced in (0.6) of [15], above which there is a power

decay in L of finding a path in V u from B(0, L) to S(0,2L).

Showing that u∗ = u∗∗ and that one can choose v = u∗ in (7.14) would yield a proof of (7.20).

One interest of Theorem 1.1 is that this last statement will follow if one can derive some suitable

quantitative estimates on the presence of the infinite cluster in V u, when u< u∗, see also [18]. In a

similar fashion the identity u∗ = u∗∗ will follow if one can prove quantitative controls on the rarity

of large finite clusters in V u when u> u∗. �
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