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Abstract

We give three examples of stochastic processes in the Gelfand-Tsetlin cone in which each com-

ponent evolves independently apart from a blocking and pushing interaction. These processes

give rise to couplings between certain conditioned Markov processes, last passage times and ex-

clusion processes. In the first two examples, we deduce known identities in distribution between

such processes whilst in the third example, the components of the process cannot escape past a

wall at the origin and we obtain a new relation.
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1 Introduction

In [1], the authors Baik, Deift and Johansson show that suitably rescaled, the law of the longest

increasing subsequence of a uniformly chosen random permutation of {1,2, . . . , n} converges, as

n tends to infinity, to that of the Tracy-Widom distribution. The latter, first identified in [28], de-

scribes the typical fluctuations of the largest eigenvalue of a large random Hermitian matrix from

the Gaussian unitary ensemble (see [11] for a definition). This somewhat surprising discovery has

been followed by much research which has shown that the Tracy-Widom distribution also occurs as

a limiting law in various other models such as last passage percolation [12; 13], exclusion processes

[25], random tilings [14; 13] and polynuclear growth [15; 22]. See also the survey [16].

Eigenvalues of random matrices are closely related to multi-dimensional random walks whose com-

ponents are conditioned not to collide. In particular, both fall into a class of processes with determi-

nantal correlation structure and exhibit pairwise repulsion at a distance. On the other hand, models

such as the exclusion process are defined by local “hard edged” interactions rather than particles

repelling each other remotely. This paper is concerned with showing how it is possible to connect

these two types of model by coupling processes of one class with processes from the other.

In common with previous works in this area, we realise these couplings via the construction of a

stochastic process in the Gelfand-Tsetlin cone

Kn = {(x
1, x2, . . . , xn) ∈ R1×R2× . . .×Rn : xk+1

i
≤ xk

i ≤ xk+1
i+1
}.

A configuration (x1, . . . , xn) ∈ Kn is called a Gelfand-Tsetlin pattern and we may represent the inter-

lacing conditions xk+1
i
≤ xk

i
≤ xk+1

i+1
diagrammatically as follows.

x1
1

x2
1 x2

2

x3
1 x2

3 x3
3

. .
. ...

. . .

xn
1 xn

2 xn
3 . . . xn

n−1 xn
n

Suitable processes in the Gelfand-Tsetlin cone appear naturally in several settings, for example the

particle process associated with a random domino tiling of the Aztec diamond [19] and the eigen-

values of a GUE matrix and its minors [2]. In other cases, the process in Kn is not evident at first

sight and must be constructed, for example see the recent studies of asymmetric simple exclusion

processes [4; 6].

Most frequently, dynamics for the process in Kn are constructed using a combinatorial procedure

known as the Robinson-Schensted-Knuth algorithm (see O’Connell [20]). With RSK dynamics, the

n(n+1)/2 components of the process are driven by a noise with only n degrees of freedom, leading

to strong correlations between components.

In this paper we consider some alternative dynamics in which every component of the process

evolves independently except for certain blocking and pushing interactions that ensures the process

stays in Kn. This approach yields a new relation between an exclusion type process constrained

by an impenetrable wall and a multi-dimensional random walk with components conditioned to

neither become disordered nor jump over the wall. Dynamics of this type have previously been
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considered by Warren [29] for Brownian particles (see also Toth and Veto [27]), by Nordemstam

in the context of shuffling domino tilings of the Aztec diamond [19], by Borodin and Ferrari in the

context of surface growth models [3]. Analogous dynamics have also previously been studied in the

context of growth models where they are known as Gates and Westcott dynamics, see Prähofer and

Spohn [22] for example.

2 Description of dynamics and results

From here on, we work exclusively with Gelfand-Tsetlin patterns with integer valued components

and hence modify our definition of Kn to

Kn = {(x
1, x2, . . . , xn) ∈ Z1×Z2× . . .×Zn : xk+1

i
≤ xk

i ≤ xk+1
i+1
}.

2.1 Poisson case

Our first example consists of a continuous time Kn valued Markov process (X(t); t ≥ 0) that deter-

mines the positions of n(n+1)/2 interlaced particles on the integer lattice Z at time t. The stochastic

evolution of the pattern X is as follows.

Fix a vector of rates q ∈ (0,∞)n and identify each particle with its corresponding component in X.

The particle X
1
1 jumps rightwards at rate q1 > 0, i.e. after an exponentially distributed waiting time

of mean q−1
1 . The two particles, X

2
1,X2

2 corresponding to the second row of the pattern each jump

rightwards at rate q2 independently of X
1
1 and each other unless either

• X
2
1(t) = X

1
1(t), in which case any rightward jump of X

2
1 is suppressed (blocked), or

• X
2
2(t) = X

1
1(t), in which case X

2
2 will be forced to jump (pushed) if X

1
1 jumps.

In general, for k > 1 and 1≤ j < k, each particle X
k
j

attempts to jump rightwards at rate qk, and will

succeed in doing so unless it is blocked by particle X
k−1
j

. Particle X
k
k

can always jump rightwards

at rate qk without impediment. In addition, if X
k−1
j
= X

k
j+1, particle X

k
j+1 is pushed to the right

when X
k−1
j

jumps. This blocking and pushing ensures that X(t) remains in Kn for every t ≥ 0. We

will show that for certain initial conditions on X(0), the bottom layer of the pattern, (Xn(t); t ≥ 0),

is distributed as a multi-dimensional random walk with components conditioned not to become

disordered (Theorem 2.1).

To describe the result more precisely, recall that for z ∈ W n = {z ∈ Zn : z1 ≤ z2 ≤ . . . ≤ zn},

the Schur function Sz : Rn → R can be defined (see for example [10]) as a sum of geometrically

weighted patterns,

Sz(q1, . . . ,qn) =
∑

x∈Kn(z)

wq(x). (2.1)

The sum is over Kn(z) = {x ∈ Kn : xn = z}, the set of all Gelfand-Tsetlin patterns x = (x1, . . . , xn) ∈

Kn with bottom row xn equal to z and the geometric weight function is

wq(x) =

n
∏

i=1

q
|x i |−|x i−1|

i
,
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where |z|=
∑d

i=1 zi for z ∈ Rd and |x0|= 0.

This definition gives a natural probability mass function on patterns x ∈ Kn(z),

Mz(x) =
wq(x)

Sz(q)
. (2.2)

Suppose that (Z(t); t ≥ 0) is an n-dimensional random walk in which component i is, independently

of the other components, a Poisson counting process of rate qi . The function h :W n→ R defined by

h(x) = q
−x1

1 . . . q−xn
n Sx(q). (2.3)

is harmonic for Z killed at the first instant it leaves W n (see [17] for example). Hence, h may be

used to define a new process, Z†, with conservative Q-matrix on W n defined by

Q(x , x + ei) = qi

h(x + ei)

h(x)
=

Sx+ei
(q)

Sx(q)
, 1≤ i ≤ n, x ∈ W n,

where ei is the standard basis vector, and the other off diagonal rates in Q are zero.

This Doob h-transform, Z†, may be interpretted as a version of Z conditioned not to leave W n and

is closely related to the Charlier orthogonal polynomial ensemble (again see [17]).

In section 3 we prove the following result, obtained independently by Borodin and Ferrari by another

method in [3].

Theorem 2.1. If (X(t); t ≥ 0) has initial distribution Mz(·) for some z ∈ W n then (Xn(t); t ≥ 0) is

distributed as an n dimensional Markov process with conservative Q-matrix

Q(x , x + ei) =
Sx+ei

(q)

Sx(q)
1[x+ei∈W

n], 1≤ i ≤ n, x ∈ W n.

and all other off diagonal entries set to zero, started from z.

Note that from structure of the initial distribution and the construction of X, this theorem implies

that in fact every row of the pattern is distributed as a conditioned Markov process of appropriate

dimension and rates.

Theorem 2.1 readily yields a coupling of the type discussed in the introduction – the (shifted) left

hand edge (X1
1(t),X

2
1(t)− 1, . . . ,Xn

1(t)− n+ 1; t ≥ 0) of X has the same “hard edged” interactions

as an asymmetric exclusion process (the particle with position X
k
1(t)− k+ 1, 1 ≤ k ≤ n takes unit

jumps rightwards at rate qk but is barred from occupying the same site as any particle to its right).

However, Theorem 2.1 implies that (Xn
1(t); t ≥ 0) has the same law as (Z

†
1(t); t ≥ 0), the first

component of the random walk Z conditioned to stay in W n, when started from Z†(0) = z. Further

we observe that when z = (0, . . . , 0), Mz is concentrated on the origin and a version of the left hand

edge can be constructed from the paths of Z via X
1
1(t) = Z1(t) and

X
k+1
1 (t) = Zk+1(t) + inf

0≤s≤t

�

X
k
1(s)− Zk+1(s)

�

, 1≤ k < n.

Iterating this expression and appealing to Theorem 2.1,

�

Z
†
1(t); t ≥ 0

� dist
=

 

inf
0=t0≤t1≤...≤tn=t

n
∑

i=1

�

Zi(t i)− Zi(t i−1)
�

; t ≥ 0

!

. (2.4)

This identity was previously derived by O’Connell and Yor in [21] using a construction based on the

Robinson-Schensted-Knuth correspondence.

1748



2.2 Geometric jumps

For our second example we consider a discrete time process (X(t); t ∈ Z+) (where Z+ is the set

of non-negative integers) in Kn in which components make independent geometrically distributed

jumps perturbed by interactions that maintain the interlacing constraints.

Let q be a fixed vector in (0,1)n and update the pattern at time t beginning with the top particle by

setting X
1
1(t+1) = X

1
1(t)+ξ, where ξ is a geometric random variable with mean (1−q1)/q1. That is,

the top most particle always takes geometrically distributed jumps rightwards without experiencing

pushing or blocking.

Suppose rows 1 through k − 1 have been updated for some k > 1 and we wish to update the

position of the particle corresponding to the j th component of the kth row in the pattern, X
k
j
. If

X
k−1
j−1
(t+1)> X

k
j
(t), then X

k
j
(t) is pushed to an intermediate position X̃

k
j
(t) = X

k−1
j−1
(t+1), while if

X
k−1
j−1
(t + 1)≤ X

k
j
(t), no pushing occurs and X̃

k
j
(t) = X

k
j
(t).

X
1
1(t0) X

1
1(t0+ 1)

X
2
1(t0) X

2
1(t0+ 1)

block

X
2
2(t0) X̃

2
2(t0)

push

X
2
2(t0+ 1)

Figure 1: Example of blocking and pushing

The particle X
k
j

then attempts to make a rightward jump of size that is geometrically distributed with

mean (1− qk)/qk from its intermediate position X̃
k
j
(t) (so the particle is pushed before it attempts

to jump). It always succeeds if j = k (i.e. it is the right most particle) while if j < k, it cannot

jump past X
k−1
j
(t), the position of particle to the right of it on the row above before the update.

The leftmost particle X
k
1, k > 1 is not subject to pushing by any particle, but is still blocked by the

“ghost” of the particle X
k−1
1 .

To state the result, let us write x ≺ x ′ when the inequality x1 ≤ x ′1 ≤ x2 ≤ . . . ≤ x ′n−1 ≤ xn ≤ x ′n
holds for x , x ′ ∈ Rn and suppose Mz is as defined in (2.2). Then,

Theorem 2.2. If X(0) has initial distribution Mz(·) for some z ∈ W n then (Xn(t); t ∈ Z+) is distributed

as an n dimensional Markov process in W n with transition kernel

p(x , x ′) =

n
∏

i=1

(1− qi)
Sx ′(q)

Sx(q)
1[x≺x ′], x , x ′ ∈ W n,

beginning at z.

The Markov process with transition kernel p can be described by a Doob h-transform - suppose Z

is now a discrete time random walk beginning at z ∈ W n in which the kth component makes a

geometric(qk) rightward jump at each time step, independently of the other components. Then

the function h defined in (2.3) is harmonic for Z killed at the instant that the interlacing condition

Z(t) ≺ Z(t + 1) fails to hold (see [20]). The corresponding h-transform Z† is the discrete analogue

of a process that arises from eigenvalues of Wishart matrices [8].
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The right hand edge of the pattern, (X1
1(t),X

2
2(t), . . . ,Xn

n(t); t ∈ Z+) has a simple connection to the

last passage percolation model with geometric weights that may be formulated as follows. Suppose

that ηk(t) are independent geometric(qk) random variables attached to sites in the lattice 1≤ k ≤ n,

t ≥ 1. An increasing path π from (1,1) to (t, k) is a collection of sites {(t1, k1), . . . , (tN , kN )},

N = t + k− 2, such that the step (tm+1, km+1)− (tm, km) ∈ {(1,0), (0,1)}, and we denote the set of

such paths by Π(t, k). The quantity of interest is the k-dimensional process of last passage times

Gk(t) = max
π∈Π(t,k)

∑

(i, j)∈π

η j(i), t ∈ Z+.

It is not difficult to confirm that (G1(t), . . . , Gn(t); t ∈ Z+) has the same law as the right hand edge

(X1
1(t),X

2
2(t), . . . ,Xn

n(t); t ∈ Z+) when X has initial distribution Mz , z = (0, . . . , 0) (i.e. X
j

k
(0) = 0,

1 ≤ k ≤ j ≤ n). But, a version of the right hand edge may be constructed from paths of Z begun at

the origin so that Theorem 2.2 gives

�

Z†
n(t); t ≥ 0

� dist
=






max
π∈Π(t,n)

∑

(i, j)∈π

(Z j(i)− Z j(i − 1)); t ≥ 0






. (2.5)

As a consequence, Theorem 2.2 provides a new proof that such last passage percolation times have

the same distribution as the rightmost particle in the conditioned process Z† (the distribution of

which, at a fixed time, is given by the Meixner ensemble – see Johansson [13] or [12]). This is a

key step in obtaining the Tracy-Widom distribution in this setting.

Note that the dynamics discussed above are different to those exhibited in [3] for geometric jumps.

In particular, the particles in the process we described above are blocked by the position of the

particle immediately above and to the right of them at the previous time step.

2.3 With wall at the origin

The final example of the paper uses the ideas introduced above to construct a continuous time

process (X(t); t ≥ 0) on a symplectic Gelfand-Tsetlin cone. The latter are so termed because they

are in direct correspondence with the symplectic tableau arising from the representations of the

symplectic group [26].

The space K0
n of integer valued symplectic Gelfand-Tsetlin patterns may be defined (see for example

[7] or [23]) as the set of point configurations (x1, x2, . . . , xn−1, xn) such that

• x2i−1, x2i ∈ Zi
+ for 1≤ i ≤ ⌊ n

2
⌋ and xn ∈ Z

(n+1)/2
+ if n is odd,

• x2i−1 ≺ x2i for 1≤ i ≤ ⌊ n

2
⌋,

• x2i � x2i+1 for 1≤ i ≤ ⌊ n−1

2
⌋.

So the all the points in a symplectic pattern lie to the right of an impenetrable wall at the origin,

represented diagrammatically below.
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x1
1

x2
1

x3
1 x2

3

x4
1 x4

2

x5
1 x5

2 x5
3

...
...

. . .

xn
1 xn

2 xn
3 . . . xn

n

In the vein of previous sections, we construct a process (X(t), t ≥ 0) in K0
n in which only one

particle jumps of its own volition at each instant and a blocking and pushing interaction maintains

the interlacing constraints.

Fix q ∈ (0,1)n. The top particle X
1
1 jumps right at rate q1 and left at rate q−1

1 , apart from at origin

where its left jumps are suppressed. The second row also only has one particle, X
1
2, which jumps

rightwards at rate q−1
1 and leftwards at rate q1 (notice rates are reversed), except at instances when

X
1
1(t) = X

2
1(t). In the latter case, it is pushed rightwards if X

1
1 jumps to the right and any leftward

jumps are suppressed.

The remaining particles evolve in a similar fashion – on row 2k− 1, particles take steps to the right

at rate qk and left at rate q−1
k

when they are not subject to the blocking or pushing required to keep

the process in the state space, in particular X
2k−1
1 has any leftward jump from the origin suppressed.

On row 2k, the rates are reversed but the same blocking and pushing mantra applies.

We will deduce that for appropriate initial conditions, the marginal distribution of each row

(Xk(t); t ≥ 0) is a Markov process. The Q-matrices for the marginal processes can be written in

terms of symplectic Schur functions, the definition of which is similar to that of the classic Schur

function (2.1) – they are sums over geometrically weighted symplectic Gelfand-Tsetlin patterns.

Fix k > 0 and suppose that either n= 2k−1 or n= 2k. Now letW k
0 = {z ∈ Z

k : 0≤ z1 ≤ z2 . . .≤ zk}

and define K0
n(z) to be the set of symplectic patterns x in K0

n with bottom row xn equal to z ∈ W k
0 .

The geometric weight w
q
n on K0

n is

w
(q1,...,qk)

2k−1
(x) = q

|x2k−1|−|x2k−2|

k

k−1
∏

i=1

q
|x2i−1|−|x2i−2|+|x2i−1|−|x2i |

i

and

w
(q1,...,qk)

2k
(x) =

k
∏

i=1

q
|x2i−1|−|x2i−2|+|x2i−1|−|x2i |

i
,

using the convention that |x0|= 0 and empty products are equal to 1 (so w
(q1)

1 (x) = q
|x1|

1 ).

Then, the symplectic Schur function Spn
z : Rk→ R, z ∈ W k

0 , k ≥ 1 is defined (see [9]) by

Spn
z (q1, . . . ,qk) =

∑

x∈K0
n(z)

wq
n(x). (2.6)

For even n, Spn gives the characters of irreducible representations of the symplectic group Sp(n)

[26]. For odd n, Spn was introduced by Proctor [23] and can interpretted as the character of

the irreducible representations of a group that interpolates between the classical groups Sp(n) and

Sp(n+ 1) [18].
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Define the Q-matrix Qn :W k
0 ×W

k
0 → R as follows. For x ∈ W k

0 and x ± ei ∈ W
k
0 , some 1≤ i ≤ k,

Qn(x , x ± ei) =
Spn

x±ei
(q)

Spn
x(q)

. (2.7)

All other off diagonal entries vanish and the diagonals are given by

−Q2k−1(x , x) =

k−1
∑

i=1

�

qi + q−1
i

�

+ q−1
k 1[x1>0]+qk, (2.8)

and

−Q2k(x , x) =

k
∑

i=1

�

qi + q−1
i

�

. (2.9)

A corollary of the intertwinings we prove in sections 5.1 and 5.2 is that Qn is conservative.

For z ∈ W k
0 define M n

z :K0
n→ [0,1] by

M n
z (x) =

w
q
n(x)

Spn
z (q)

.

Then the definitions of the symplectic Schur functions imply that M n
z (·) gives a probability distribu-

tion on patterns in K0
n(z).

From these ingredients we obtain

Theorem 2.3. Suppose X has initial distribution given by M n
z (·), then (Xn(t); t ≥ 0) is distributed as

a Markov process with Q-matrix Qn, started from z.

The relevance of this theorem to the discussion in the introduction may again be seen by examining

the evolution of the right hand edge of X. Suppose we have a system of n particles with positions

(X1
1(t),X

2
1(t) + 1,X3

2(t) + 2, . . . ,Xn
⌊(n+1)/2⌋

(t) + n− 1; t ≥ 0).

Particle i > 1 attempts to jump rightwards at rate γi = q(i+1)/2 if i is odd or γi = q−1
i/2

if i is even

and leftwards at rate γ−1
i

. An attempted left jump succeeds only if the destination site is vacant,

otherwise it is suppressed. A rightward jump always succeeds, and, any particle occupying the

destination site is pushed rightwards. A particle being pushed rightwards also pushes any particle

standing in its way, so a rightward jump by a particle could cause many particles to be pushed. So

far we have essentially described the dynamics of the “PushASEP” process introduced in [4]. Our

process differs by the presence of a wall: the leftmost particle (identified with X
1
1) is modified so

that any leftward jump at the origin suppressed. Also, the particle rates are restricted in that for odd

i, the jump rates of particle i and i + 1 are inverses of each other (which is not the case in [4]).

As in the previous examples, the bottom row (Xn(t); t ≥ 0) may be realised as a Doob h-transform

and we deduce identities analogous to (2.4) and (2.5). For simplicity, we shall only consider the

case that n = 2k. The case of odd n can be treated with similar arguments but it is complicated

slightly due to the non-standard behaviour of X
n
1 at the wall.

Let Z be a k-dimensional random walk in which the i th component jumps rightwards at rate q−1
i

and leftwards at rate qi . It is readily seen that Q2k is the Q-matrix of Z†, the h-transform of Z killed

on leaving W k
0 under harmonic functions

h2k(x) = q
−x1

1 q
−x2

2 . . . q
−xk

k
Sp2k

x (q), x ∈ W k
0 .
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Theorem 2.3 shows that
�

Z
†
k
(t); t ≥ 0

�

has the same law as
�

X
2k
k
(t); t ≥ 0

�

when X is initially

distributed according to M2k
z and Z(0) = z ∈ W k

0 .

But if z = (0, . . . , 0), a process with the same law as the right hand edge of X can be constructed

from the paths of Z and a random walk Z̃ that is independent of, but identically distributed to −Z .

The resulting identity in distribution can be stated succinctly in terms of the 2k-dimensional random

walk Z̄(t) = (Z1(t), Z̃1(t), Z2(t), Z̃2(t), . . . , Zk(t), Z̃k(t)) as follows

�

Z
†
k
(t); t ≥ 0

� dist
=

 

sup
0≤t1≤...≤t2k+1=t

2k
∑

i=1

�

Z̄i(t i+1)− Z̄i(t i)
�

; t ≥ 0

!

.

The Brownian analogue of this result will be considered in [5].

3 Proof of Theorem 2.1

Let (X(t); t ≥ 0) be the process on Kn satisfying the dynamics described in section 2.1. It is clear

from this description that the law of {Xn(t); t ≥ 0} is conditionally independent of {X j(t); t ≥

0, j < n− 1} given {Xn−1(t); t ≥ 0}. That is, the dynamics of the particle in row n depend on the

evolution of particles in the rows above only through the particles in row n− 1. Hence the theorem

may be proven inductively by studying only the bottom and penultimate layers of the pattern.

To this end, we assume for induction that the conclusion of 2.1 holds. Then, when X(0) is distributed

according to Mz(·), the bottom layer (Xn(t); t ≥ 0) is Markovian and evolves according to the

conservative Q-matrix QX defined via

QX (x , x + ei) =
Sx+ei

(q)

Sx(q)
1[x+ei∈W

n], 1≤ i ≤ n, x ∈ W n,

and all other off diagonal entries set to zero.

We will define a Markov process (X (t), Y (t); t ≥ 0) on W n,n+1 = {(x , y) ∈ W n ×W n+1 : x � y}

(recall x � y means that yi ≤ x i ≤ yi+1, 1 ≤ i ≤ n) in which X evolves according to QX while

Y evolves independently of X apart from the blocking and pushing interaction. One should think

of (X , Y ) as the penultimate and bottom layer of our construction in Kn+1. So, to complete the

induction step it is sufficient to show that marginally Y is Markovian and evolves according to

QY (y, y + ei) = qi

h̃(y + ei)

h̃(y)
,

for y ∈ W n+1, where h̃ is given by

h̃(y) = q
−x1

1 . . . q
−xn+1

n+1 Sy(q1, . . . ,qn+1), y ∈ W n+1.

for some qn+1 > 0, and all other off diagonal entries vanish. The diagonal entries are given by

QY (y, y) =−

n+1
∑

i=1

qi .
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Appropriate dynamics for (X , Y ) are specified by the conservative Q-matrix A with off diagonal

entries given by

A ((x , y), (x ′, y ′)) =







QX (x , x + ei), (x ′, y ′) = (x + ei , y), x i < yi+1,

QX (x , x + ei), (x ′, y ′) = (x + ei , y + ei+1), x i = yi+1,

qn+1, (x ′, y ′) = (x , y + e j),

0 otherwise

for (x , y), (x ′, y ′) ∈ W n,n+1 and 1 ≤ i ≤ n, 1 ≤ j ≤ n+ 1. The diagonal entry −A ((x ′, y ′), (x ′, y ′))

is given by
n
∑

i=1

qi + qn+1

n
∑

i=1

1[y ′
i
<x ′

i
]+qn+1 =

n+1
∑

i=1

qi + qn+1

n
∑

i=1

1[y ′
i
<x ′

i
] . (3.1)

Now, as an immediate consequence of the definition of the Schur function in (2.1), we have

Sz(q1,q2, . . . ,qn,qn+1) =
∑

x∈Kn(z)

wq(x)

=
∑

z′∈W n:z′�z

q
|z|−|z′|

n+1

∑

x∈Kn(z
′)

n
∏

j=1

q
|x j |−|x j−1|

j

=
∑

z′�z

q
|z|−|z′|

n+1 Sz′(q1, . . . ,qn).

So the marginal distribution of the penultimate row of particles under the initial distribution defined

in (2.2) is given by m(·, y) where y ∈ W n+1 is fixed and m :W n,n+1→ [0,1] is defined by

m(x , y) = q
|y|−|x |

n+1

Sx(q)

Sy(q̃)
,

where q̃ = (q1,q2, . . . ,qn,qn+1).

Furthermore,

Λ(y, (x ′, y ′)) = m(x ′, y ′)1[y ′=y] . (3.2)

defines a Markov kernel from W n+1 to W n,n+1. That is, for each y ∈ W n+1, Λ(y, ·) defines a

probability distribution on W n,n+1.

The heart of our proof is showing that the conservative QY is intertwined withA via Λ,

QYΛ = ΛA . (3.3)

From here, lemma A.1 shows that Λ intertwines the corresponding transition kernels. That is, if

(pt ; t ≥ 0) are the transition kernels corresponding to QY and (qt ; t ≥ 0) those to A , then for

y ∈ W n+1, (x ′, y ′) ∈ W n,n+1 and t ≥ 0,

pt(y, y ′)m(x ′, y ′) =
∑

x≺y

m(x , y)qt((x , y), (x ′, y ′)),
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An immediate consequence of this relationship is that for bounded f :W n+1→ R,

E
y[ f (Y (t))] =

∑

(x ′,y ′)

∑

x≺y

m(x , y)qt((x , y), (x ′, y ′)) f (y ′)

=
∑

(x ′,y ′)

pt(y, y ′)m(x ′, y ′) f (y ′)

=
∑

y ′

pt(y, y ′) f (y ′)
∑

x ′≺y ′

m(x ′, y ′)

=
∑

y ′

pt(y, y ′) f (y ′),

where Ey is the expectation operator corresponding to the measure under which (X , Y ) has initial

distribution Λ(y, ·).

When 0 ≤ t1 ≤ . . . ≤ tN and f1, . . . , fN : W n+1 → R are bounded, the preceeding argument gener-

alises and the intertwining shows that

E
y[ f1(Y (t1)) . . . fN (Y (tN ))] =

∑

y1,...,yN

pt(y, y1)pt(y
1, y2) . . . pt(y

N−1, yN ) f1(y
1) . . . fN (y

N ).′

This is essentially the argument of Rogers and Pitman [24] and establishes

Theorem 3.1. Suppose (X (t), Y (t); t ≥ 0) is a Markov process with Q-matrix A and initial distri-

bution Λ(y, ·), for some y ∈ W n+1. Then QY and A are interwined via Λ and as a consequence,

(Y (t); t ≥ 0) is distributed as a Markov process with Q-matrix QY , started from y.

The intertwining (3.3) is equivalent to

QY (y, y ′) =
∑

x�y

m(x , y)

m(x ′, y ′)
A ((x , y), (x ′, y ′)), y ∈ W n+1, (x ′, y ′) ∈ W n,n+1, (3.4)

where the summation is over the points x in W n that interlace with y . As the particles can only

make unit jumps rightwards, both sides of the expression vanish unless either y ′ = y or y ′ = y+ e j ,

for some 1≤ j ≤ n+ 1.

We first consider the case when y = y ′, corresponding to the diagonal entries of QY . The right hand

side of the expression is
∑

x�y ′

m(x , y ′)

m(x ′, y ′)
A ((x , y ′), (x ′, y ′)).

Using the definition of m, this becomes

∑

x�y ′

q
|x ′|−|x |

n+1

Sx(q)

Sx ′(q)
A ((x , y ′), (x ′, y ′)). (3.5)

Now, A ((x , y ′), (x ′, y ′)) is non zero for x � y ′ only if x = x ′ or x = x ′ − ei for some 1 ≤ i ≤ n.

When x = x ′, −A ((x , y ′), (x ′, y ′)) is the rate of leaving at (x ′, y ′), given in (3.1). On the other

hand if x = x ′ − ei , A ((x , y ′), (x ′, y ′)) is the rate at which the i th X particle jumps rightwards
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(without pushing a Y particle). But, such values of x are included in the summation only if x =

x ′− ei � y = y ′, i.e. x ′i > y ′i .

Combining this with (3.5) and (3.1) and the fact that q
|x ′|−|x ′−ei |

n+1 = qn+1, we see that if y = y ′ the

right hand side of (3.4) is

n
∑

i=1

qn+1

Sx ′−ei
(q)

Sx ′(q)
QX (x

′− ei , x ′)1[x ′
i
>y ′

i
]−

n+1
∑

i=1

qi −

n
∑

i=1

qn+11[y ′
i
<x ′

i
] .

The first summand above is

qn+1

Sx ′−ei
(q)

Sx ′(q)
QX (x

′− ei , x ′)1[x ′
i
>y ′

i
] = qn+11[y ′

i
<x ′

i
],

so the first and last summations above disappear and we are left with −
∑n+1

i=1 qi , which is exactly

QY (y
′, y ′).

If y 6= y ′, the only other possibility is that y ′ = y + ei for some 1 ≤ i ≤ n + 1. Let us first

deal with the simplest case, where i = 1, that is, y ′ = y + e1. The only value of x for which

A ((x , y ′− e1), (x
′, y ′)) is non zero is x = x ′ as the first Y particle is never pushed by an X particle.

Furthermore, y ′1− 1< y ′1 ≤ x ′1 and so the jump of Y1 is certainly not blocked. Hence,

∑

x:x�y

m(x , y)

m(x ′, y ′)
A ((x , y), (x ′, y ′)) =

m(x ′, y ′− e1)

m(x ′, y ′)
A ((x ′, y ′− e1), (x

′, y ′))

=
q
|y ′−e1|−|x

′|

n+1

q
|y ′|−|x ′|

n+1

Sx ′(q)

Sx ′(q)

Sy ′(q̃)

Sy ′−e1
(q̃)

qn+1

= QY (y
′− e1, y ′).

So in this case, (3.4) is satisfied.

For i > 1, consider the dichotomy x ′i−1 < y ′i or x ′i−1 = y ′i . Suppose we are in the former case, i.e.

y ′ = y + ei and x ′i−1 < y ′i . It is not possible that the movement in the i th component of Y could

have been instigated due to pushing by the (i − 1)th X particle (a push could only have occurred if

x ′i−1 − 1 = y ′i − 1). Thus, as in the i = 1 case above, A ((x , y ′ − ei), (x
′, y ′)) is non zero only for

x = x ′ and almost identical calculations verify (3.4).

The second i > 1 subcase is that x ′i−1 = y ′i and y = y ′− ei . Here the only possibility is that the i th Y

particle “did not jump but was pushed”, which one may confirm by noting that x ′ does not interlace

with y ′− ei when x ′i−1 = y ′i . So, the right hand side of (3.4) is given by

m(x ′− ei−1, y ′− ei)

m(x ′, y ′)
A ((x ′− ei−1, y ′− ei), (x

′, y ′)).

Using the definitions of m andA , this becomes

q
|y ′−ei |−|x

′−ei−1|

n+1

q
|y ′|−|x ′|

n+1

Sx ′−ei−1
(q)

Sy ′−ei
(q̃)

Sy ′(q̃)

Sx ′(q)

Sx ′(q)

Sx ′−ei−1
(q)

,

a quantity which is easily seen to equal QY (y
′− ei , y ′).

This concludes the proof that QY andA are intertwined via Λ.

1756



4 Proof of Theorem 2.2

It is again sufficient to consider any pair of consecutive rows (X , Y ) and construct the process itera-

tively.

Let (X (t); t ∈ Z+) be an n dimensional Markov chain in W n with one step transition kernel

pX (x , x ′) = a(q)
Sx ′(q)

Sx(q)
1[x≺x ′] .

where q ∈ (0,1)n, a(q) =
∏n

i=1(1 − qi) and for x , x ′ ∈ Rn, x ≺ x ′ indicates that the inequality

x1 ≤ x ′1 ≤ x2 ≤ . . .≤ x ′n−1 ≤ xn ≤ x ′n holds.

Let ξi(t) (t ∈ Z+, 1≤ i ≤ n+ 1) be geometric(qn+1) random variables that are independent of each

other and of X ,

P(ξi(k) = j) = (1− qn+1)q
j

n+1, j = 0,1,2, . . . .

Define a process (Y (t); t ∈ Z+) in W n+1 in terms of X using the recursion

Y1(t + 1) =min(Y1(t) + ξ1(t + 1), X1(t)),

Yn+1(t + 1) =max(Yn+1(t), Xn(t + 1)) + ξn+1(t + 1),

Yj(t + 1) =min(max(Yj(t), X j−1(t + 1)) + ξ j(t + 1), X j(t)),

for 2≤ j ≤ n.

The recursion encodes the blocking and pushing mechanism, maintaining the initial interlacing

relationship, so X (t)≺ Y (t) for each t.

We will prove that if Λ is as defined in (3.2) then

Theorem 4.1. If (X , Y ) is initially distributed according to Λ(y, ·), y ∈ W n+1, and then evolves accord-

ing to the recursion above, the marginal process (Y (t); t ≥ 0) is distributed as an n+ 1 dimensional

Markov process with transition kernel

pY (y, y ′) = a(q1, . . . ,qn+1)
Sy ′(q1, . . . ,qn+1)

Sy(q1, . . . ,qn+1)
1[y≺y ′] .

started from y.

Our strategy, again, is to prove that Λ interwines the corresponding transition probabilities. Suppose

(x , y), (x ′, y ′) ∈ W n,n+1, x ≺ x ′ and y ≺ y ′. Let us write down q((x , y), (x ′, y ′)), the one step

transition probabilities for (X , Y ). Firstly note that

q((x , y), (x ′, y ′)) = r(y ′, x ′, x , y)pX (x , x ′).

where

r(y ′, x ′, x , y) = P(Y (1) = y ′|X (1) = x ′, X (0) = x , Y (0) = y).

Using the definition of Y , r can be conveniently expressed in terms of the “blocking” and “pushing”

factors b, c : Z2→ R+
b(u, v) = (1− qn+1)1[v<u]+1[u=v],
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c(u, v) = q−v
n+11[u≤v]+q−u

n+11[u>v] .

Then r(y ′, x ′, x , y) is equal to

q
y ′1−y1

n+1 b(x1, y ′1)

 

n
∏

i=2

q
y ′

i

n+1 b(x i , y ′i )c(x
′
i−1, yi)

!

q
y ′n+1

n+1 (1− qn+1)c(x
′
n, yn+1).

To prove the theorem we will need the following “integrating out” lemma.

Lemma 4.2. Suppose v2, v′1,u′ ∈ Z satisfy v′1 ≤ v2, v′1 ≤ u′ and qn+1 6= 1. Then we have

v2∧u′
∑

u=v′
1

q−u
n+1 b(u, v′1)c(u

′, v2) = q
−u′−v2

n+1 (4.1)

The lemma may be understood more readily by imagining that we are considering the n = 1 case,

so that there is one “X ” particle nestled between two “Y ” particles. We may fix the initial and final

positions of the “Y ” particles (v and v′ in the lemma above) and also the final position of the “X ”

particle (u in the lemma) – it is the starting location of the X particle that we are integrating out.

The summation is over the possible values that the X particle may have started from. It must be at

least equal to the final position of the left most Y particle v′1, as this particle cannot overtake the

X particle (see recursion equations above). Also, it cannot exceed either the initial position of the

second Y particle v2 (due to the interlacing constraint) or the final position of the X particle u′ (as

the particles may only jump rightwards).

Proof. After using the definitions of b and c, the sum becomes

v2∧u′
∑

u=v′1

q−u
n+1

�

(1− qn+1)1[v′1<u]+1[u=v′1]

�
�

q
−v2

n+11[u′≤v2]
+q−u′

n+11[u′>v2]

�

Now expand the brackets in the summand and sum the terms individually. We find

v2∧u′
∑

u=v′
1

(1− qn+1)1[v′
1
<u] q

−v2−u

n+1 1[u′≤v2]
= q
−v2

n+1

�

q−u′

n+1− q
−v′1
n+1

�

1[u′≤v2]
,

v2∧u′
∑

u=v′1

(1− qn+1)1[v′1<u] q
−u′−u
n+1 1[u′>v2]

= q−u′

n+1

�

q
−v2

n+1− q
−v′1
n+1

�

1[u′>v2]
,

v2∧u′
∑

u=v′
1

1[u=v′
1
] q
−v2−u

n+1 1[u′≤v2]
= q
−v2−v′1
n+1 1[u′≤v2]

and
v2∧u′
∑

u=v′
1

1[u=v′
1
] q
−u′−u
n+1 1[u′>v2]

= q
−u′−v′1
n+1 1[u′>v2]

.

Summing the above expressions gives the result.
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The interesting thing about this scheme, as we will see in a moment, is that we may apply it suc-

cessively from left to right when there are n particles so that the leftmost particles get heavier and

heavier until we have reduced the problem to the n= 1 case.

When the initial distribution is Λ(y, ·), the joint distribution after one time step is given by

π(x ′, y ′) =
∑

x≺y

m(x , y)q((x , y), (x ′, y ′)).

Expanding the sum and incorporating the conditions y ′i ≤ x i and x ≺ x ′ into the summation indices

yields

π(x ′, y ′) =

yn+1∧x ′n
∑

xn=y ′n

. . .

y2∧x ′1
∑

x1=y ′1

m(x , y)q((x , y), (x ′, y ′)). (4.2)

The summand in (4.2) equals

q
y ′1+y2+...+yn+1+y ′n+1−x1−...−xn

n+1 b(x1, y ′1)

 

n
∏

i=2

q
y ′

i

n+1 b(x i , y ′i )c(x
′
i−1, yi)

!

×c(x ′n, yn+1)a(q̃)
Sx ′(q)

Sy(q̃)
,

for x � y, x ′ � y ′, x ≺ x ′, y ≺ y ′ and vanishes elsewhere.

Now, one notices that we may use lemma 4.2 to iteratively evaluate the summation over

x1, x2, . . . , xn (in that order). More concretely, first apply the lemma with u′ = x ′1, v = (y1, y2), v′ =

(y ′1, y ′2) to reveal that the sum
∑y2∧x ′1

x1=y ′1
m(x , y)Q((x , y), (x ′, y ′)) is equal to

q
y ′1+y ′2+y3+...+yn+1+y ′n+1−x ′1−x2−...−xn

n+1 b(x2, y ′2)

×

 

n
∏

i=3

q
y ′

i

n+1 b(x i , y ′i )c(x
′
i−1, yi)

!

c(x ′n, yn+1)a(q̃)
Sx ′(q)

Sy(q̃)
.

This expression is again in a suitable form to apply lemma 4.2, but this time with u′ = x ′2, v =

(y2, y3), v′ = (y ′2, y ′3) and summing over x2. Continuing in this fashion shows that (4.2) is equal to

q
y ′1+y ′2...+y ′n+1−x ′1−...−x ′n
n+1 a(q̃)

Sx ′(q)

Sy(q̃)
= m(x ′, y ′)pY (y, y ′). (4.3)

Hence we have verified the intertwining

m(x ′, y ′)pY (y, y ′) =
∑

x�y

m(x , y)q((x , y), (x ′, y ′)),

and Theorem 4.1 follows from the argument of [24] discussed in the previous section.
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5 Proof of Theorem 2.3

As in the previous two examples, we give a row by row construction. This time the asymmetry

between odd rows and even rows means we have to specify how to iterate from even rows to odd

rows and odd rows to even rows separately (presented below in 5.1 and 5.2 respectively).

En route to proving Theorem 2.3, we need to conclude that Qn is a conservative Q-matrix for each

n.

This will be achieved by an inductive argument. Let H(n) denote the hypothesis that Qn is a con-

servative Q-matrix. It is easy to establish H(1), that Q1 is conservative – recall that for x1 ≥ 0,

Sp1
(x1)
= q

x1

1 so

Q1(x , x + e1) +Q1(x , x − e1) +Q1(x , x) =
q

x1+1

1

q
x1

1

+
q

x1−1

1

q
x1

1

1[x1>0]−q1− q−1
1 1[x1>0],

a quantity equal to zero, and the off diagonal entries are clearly positive.

Under the assumption that H(2n− 1) holds we will define a conservative Q-matrix A0 on W
n,n
0 =

{(x , y) ∈ W n
0 ×W

n
0 : x ≺ y} in terms of Q2n−1 and prove the intertwining relationship

Q2nΛ = ΛA0.

where Λ is a Markov kernel. Expanding the intertwining and summing both sides shows that
∑

x ′Q2n(x , x ′) = 0, so we conclude that H(2n) holds as well. The step from H(2n) to H(2n+ 1)

follows a similar argument.

5.1 Part I: Iterating from an odd row to an even row

Suppose H(2n − 1) holds and identify QX ≡ Q2n−1. Introduce a Q-matrix A0 on W
n,n
0 with off

diagonal entries defined by

A0((x , y), (x ′, y ′)) =















QX (x , x ± e j), (x ′, y ′) = (x ± e j , y)

QX (x , x − ei+1), (x ′, y ′) = (x − ei+1, y − ei), x i+1 = yi

QX (x , x + e j), (x ′, y ′) = (x + e j , y + e j), x j = y j

q∓1
n , (x ′, y ′) = (x , y ± e j)

0 otherwise

,

for (x , y), (x ′, y ′) ∈ W
n,n
0 , 1≤ i < n, 1≤ j ≤ n. The diagonal entry −A0((x , y), (x , y)) is given by

n−1
∑

i=1

�

qi + q−1
i

�

+ qn+ q−1
n 1[x1>0]+

n−1
∑

i=1

�

q−1
n 1[yi<x i+1]

+qn1[yi>x i]

�

+ qn1[yn>xn]
+q−1

n , (5.1)

so under the assumption that QX is conservative,A0 is also conservative.

Define m :W
n,n
0 → [0,1] by

m(x , y) = q|x |−|y|n

Sp2n−1
x (q)

Sp2n
y (q)

.

Note that the geometric factor is now q
|x |−|y|
n instead of the usual q

|y|−|x |
n . By definition (2.6),
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Sp2n
z (q) =

∑

x∈K0
2n
(z)

w
q

2n(q)

=
∑

x∈K0
2n
(z)

q|x
2n−1|−|x2n|

n q|x
2n−1|−|x2n−2|

n

n−1
∏

i=1

q
2|x2i−1|−|x2i |−|x2i−2|

i

=
∑

z′∈W n
0 :z′≺z

q|z
′|−|z|

n

∑

x∈K0
2n−1(z

′)

q|x
2n−1|−|x2n−2|

n

n−1
∏

i=1

q
2|x2i−1|−|x2i |−|x2i−2|

i

=
∑

z′∈W n
0 :z′≺z

q|z
′|−|z|

n Sp2n−1
z′
(q).

Hence, m gives a Markov kernel Λ from W n
0 to W

n,n
0 defined by

Λ(y, (x ′, y ′)) = m(x ′, y ′)1[y ′=y] .

We then have

Theorem 5.1. Assume Q2n−1 is a conservative Q-matrix and (X (t), Y (t); t ≥ 0) is a Markov process

with Q-matrixA0 and initial distribution Λ(y, ·) for some y ∈ W n
0 . Then Q2n is a conservative Q-matrix

and (Y (t); t ≥ 0) is distributed as a Markov process with Q-matrix Q2n, started from y.

Suppose QY ≡Q2n, then as usual we prove an intertwining relationship

QYΛ = ΛA0.

This is equivalent to

QY (y, y ′) =
∑

x≺y

m(x , y)

m(x ′, y ′)
A0((x , y), (x ′, y ′)), y ∈ W n

0 , (x ′, y ′) ∈ W
n,n
0 . (5.2)

where the sum is over x ∈ W n
0 such that (x , y) ∈ W

n,n
0 .

Particles may take unit steps in either direction so we need to check the equality (5.2) holds for

y = y ′, y = y ′+ e j and y = y ′− e j for some 1≤ j ≤ n.

Let us first consider the case y = y ′. When x = x ′, −A0((x , y), (x ′, y ′)) is the rate of leaving (x ′, y ′)

and is given by (5.1). The only other possible values of x in the summation for which the summand

is non-zero are x = x ′± ei , 1≤ i ≤ n. For such values (i.e. if (x ′± ei , y) ∈ W
n,n
0 ), the summand is

m(x ′± ei , y ′)

m(x ′, y ′)
QX (x

′± ei , x ′) =
q
|x ′±ei |−|y

′|
n

q
|x ′|−|y ′|
n

Sp2n−1
x ′±ei
(q)

Sp2n
y ′
(q)

Sp2n
y ′
(q)

Sp2n−1
x ′
(q)

Sp2n−1
x ′
(q)

Sp2n−1
x ′±ei
(q)

,

which is a rather fancy way of writing q±1
n . But, for (x ′, y ′) ∈ W

n,n
0 ,

• (x ′+ ei , y ′) ∈ W
n,n
0 only if x ′i < y ′i

• (x ′− ei , y ′) ∈ W
n,n
0 , i > 1 only if x ′i > y ′i−1
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• (x ′− e1, y ′) ∈ W
n,n
0 , only if x ′1 > 0.

So

∑

x≺y,x 6=x ′

m(x , y)

m(x ′, y ′)
A0((x , y), (x ′, y ′)) =

n−1
∑

i=1

�

qn1[x ′
i
<yi]
+q−1

n 1[x ′
i+1
>yi]

�

+

qn1[x ′n<yn]
+q−1

n 1[x ′
1
>0]

On subtracting the rate of leaving −A0((x
′, y ′), (x ′, y ′)) defined in (5.1) we find that the indicator

functions all cancel and the right hand side of (5.2) is

n
∑

i=1

�

qi + q−1
i

�

,

which is equal to the left hand side.

Next we consider the case that y ′ = y − ei ∈ W
n
0 . If i = n, the only possibility is that the Y particle

jumped by itself. When i < n, the only possibilities are that the i th component of Y was pushed by

the (i + 1)th component of X (i.e. x = x ′ + ei+1) or it jumped by its own volition (i.e. x = x ′).

The former only occurs if y ′i = x ′i+1, while the latter can only occur if y ′i < x ′i+1, inducing a natural

partition on the values we have to check the intertwining on. When y ′ = y − ei , y ′i < x ′i+1, i < n, or

i = n, the right hand side of (5.2) is

m(x ′, y ′+ ei)

m(x ′, y ′)
A0((x

′, y ′+ ei), (x
′, y ′)) =

q
|x ′|−|y ′+ei |
n

q
|x ′|−|y ′|
n

Sp2n−1
x ′
(q)

Sp2n
y ′+ei
(q)

Sp2n
y ′
(q)

Sp2n−1
x ′
(q)

qn =
Sp2n

y ′
(q)

Sp2n
y ′+ei
(q)

.

When y ′ = y − ei , x ′i+1 = y ′i , i < n, the sum on the right hand side of the intertwining involves a

single term,
m(x ′+ ei+1, y ′+ ei)

m(x ′, y ′)
QX (x

′+ ei+1, x ′).

Using the definitions of m and QX shows this summand is

q
|x ′+ei+1|−|y

′+ei |
n

q
|x ′|−|y ′|
n

Sp2n−1
x ′+ei+1

(q)

Sp2n
y ′+ei
(q)

Sp2n
y ′
(q)

Sp2n−1
x ′
(q)

Sp2n−1
x ′
(q)

Sp2n−1
x ′+ei+1

(q)
.

Both of these quantities are equal to QY (y
′+ ei , y).

Finally we consider the case y ′ = y + ei , 1 ≤ i ≤ n. As in the previous case, the dichotomy x ′i = y ′i
and x ′i < y ′i divides the possible values of x in the summation into two cases, each of which having

only one term contributing to the sum. When x ′i = y ′i , the i th Y particle must have been pushed,

and

m(x ′− ei , y ′− ei)

m(x ′, y ′)
QX (x

′− ei , x ′) =
q
|x ′−ei |−|y

′−ei |
n

q
|x ′|−|y ′|
n

Sp2n−1
x ′−ei
(q)

Sp2n
y ′−ei
(q)

Sp2n
y ′
(q)

Sp2n−1
x ′
(q)

Sp2n−1
x ′
(q)

Sp2n−1
x ′−ei
(q)

.

Simplifying the expression on the right hand side by cancelling common factors in the numerator

and denominator reveal it to be simply QY (y
′− ei , y).
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On the other hand, when x ′i < y ′i the i th Y particle cannot have been pushed so the right hand side

of the intertwining (5.2) is

m(x ′, y ′− ei)

m(x ′, y ′)
A0((x

′, y ′− ei), (x
′, y ′)) =

q
|x ′|−|y ′−ei |
n

q
|x ′|−|y ′|
n

Sp2n−1
x ′
(q)

Sp2n
y ′−ei
(q)

Sp2n
y ′
(q)

Sp2n−1
x ′
(q)

q−1
n =

Sp2n
y ′
(q)

Sp2n
y ′−ei
(q)

.

The proof of the intertwining relationship is concluded by noting that this is QY (y
′ − ei , y) as re-

quired.

Now, summing both sides of the intertwining

∑

(x ′,y ′)

QY (y, y ′)m(x ′, y ′) =
∑

(x ′,y ′)

∑

x≺y

m(x , y)A0((x , y), (x ′, y ′))

over all pairs in (x ′, y ′) in W
n,n
0 shows that QY is conservative as

∑

x ′ m(x
′, y ′) = 1 and

∑

(x ′,y ′)A0((x , y), (x ′, y ′)) = 0.

We then apply lemma A.1 to recover the rest of the theorem.

5.2 Part II: Iterating from an even row to an odd

Suppose QX ≡ Q2n, QY ≡ Q2n+1 and A0 is a conservative Q-matrix A0 on W
n,n+1
0 = {(x , y) ∈

W n
0 ×W

n+1
0 : x � y} with off diagonal entries given by

A0((x , y), (x ′, y ′)) =















QX (x , x ± ei), (x ′, y ′) = (x ± ei , y)

QX (x , x − ei), (x ′, y ′) = (x − ei , y − ei), x i = yi

QX (x , x + ei), (x ′, y ′) = (x + ei , y + ei+1), x i = yi+1

q±1
n+1, (x ′, y ′) = (x , y ± e j)

0 otherwise

,

for (x , y), (x ′, y ′) ∈ W
n,n+1
0 , 1≤ i ≤ n, 1≤ j ≤ n+ 1. The diagonal −A0((x , y), (x , y)) is given by

n
∑

i=1

(qi + q−1
i ) +

n
∑

i=1

(qn+11[yi<x i]
+q−1

n+11[yi+1>x i]
) + qn+1+ q−1

n+11[y1>0] . (5.3)

HenceA0 is conservative if QX is.

From definition (2.6) we calculate

Sp2n+1
z (q̃) =

∑

x∈K0
2n+1(z)

w
q

2n+1(q̃)

=
∑

x∈K0
2n+1

(z)

q
|x2n+1|−|x2n|

n+1

n
∏

i=1

q
2|x2i−1|−|x2i |−|x2i−2|

i

=
∑

z′∈W n
0 :z′�z

q
|z|−|z′|

n+1

∑

x∈K0
2n
(z′)

n
∏

i=1

q
2|x2i−1|−|x2i |−|x2i−2|

i

=
∑

z′∈W n
0 :z′�z

q
|z|−|z′|

n+1 Sp2n
z′
(q).

1763



So the function m :W
n,n+1
0 → [0,1] given by

m(x , y) = q
|y|−|x |

n+1

Sp2n
x (q)

Sp2n+1
y (q̃)

.

induces a Markov kernel from W n+1
0 to W

n,n+1
0 ,

Λ(y, (x ′, y ′)) = m(x ′, y ′)1[y ′=y] .

Our final theorem is

Theorem 5.2. Assume Q2n is a conservative Q-matrix and suppose (X (t), Y (t); t ≥ 0) is a Markov

process with Q-matrix A0 and initial distribution Λ(y, ·) for some y ∈ W n+1
0 . Then Q2n+1 is a con-

servative Q-matrix and (Y (t); t ≥ 0) is distributed as a Markov process with Q-matrix Q2n+1, started

from y.

The intertwining via Λ is equivalent to

QY (y, y ′) =
∑

x�y

m(x , y)

m(x ′, y ′)
A0((x , y), (x ′, y ′)), y ∈ W n+1

0 , (x ′, y ′) ∈ W
n,n+1
0 , (5.4)

where we sum over x such that (x , y) ∈ W
n,n+1
0 .

We only need to check (5.4) holds for y of the form y = y ′, y = y ′ ± e j for 1 ≤ j ≤ n+ 1 as both

sides vanish otherwise.

Again we start with the case y ′ = y . When x = x ′, the rate of leaving −A0((x
′, y ′), (x ′, y ′)) is given

by (5.3). The only other possible values of x for which the summand is non-zero are x = x ′± ei for

1≤ i ≤ n. For such x values satisfying (x , y) ∈ W
n,n+1
0 , the definitions of m and QX give

m(x ′± ei , y ′)

m(x ′, y ′)
QX (x

′± ei , x ′) =
q
|y ′|−|x ′±ei |

n+1

q
|y ′|−|x ′|

n+1

Sp2n
x ′±ei
(q)

Sp2n+1
y ′
(q̃)

Sp2n+1
y ′
(q̃)

Sp2n
x ′
(q)

Sp2n
x ′
(q)

Sp2n
x ′±ei
(q)

,

which is equal to q∓1
n+1. But, for (x ′, y ′) ∈ W

n,n+1
0 ,

• (x ′+ ei , y ′) ∈ W
n,n+1
0 only if x ′i < y ′i+1 and

• (x ′− ei , y ′) ∈ W
n,n+1
0 only if x ′i > y ′i .

So,
∑

x≺y,x 6=x ′

m(x , y)

m(x ′, y ′)
A0((x , y), (x ′, y ′)) =

n
∑

i=1

�

q−1
n+11[x ′i<yi+1]

+qn+11[x ′
i
>yi]

�

.

If we now subtract the rate of leaving (5.3) we find that at y = y ′ the right hand side of (5.4) is

equal to

−

 

n
∑

i=1

(qi + q−1
i ) + qn+1+ q−1

n+11[y ′1>0]

!

,
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which is equal to QY (y
′, y ′).

The remaining cases are y = y ′± ei for some 1≤ i ≤ n+1. Let us deal with y ′ = y− ei . If i = n+1,

this case corresponds to a leftward jump in the rightmost Y particle, a situation that cannot arise

through pushing by an X particle. If i < n+ 1, then the jump arose by pushing if x ′i = y ′i , while if

x ′i > y ′i then the Y particle jumped by its own volition. In the case of pushing (i < n+ 1, x ′i = y ′i ),

familiar calculations show

m(x ′+ ei , y ′+ ei)

m(x ′, y ′)
QX (x

′+ ei , x ′) =
Sp2n+1

y ′
(q̃)

Sp2n+1
y ′+ei
(q̃)
=QY (y, y ′).

In the case of no pushing, i.e. i < n+ 1 and x ′i > y ′i or i = n+ 1, the summand is

m(x ′, y ′+ ei)

m(x ′, y ′)
A0((x

′, y ′+ ei), (x
′, y ′)) =

Sp2n+1
y ′
(q̃)

Sp2n+1
y ′+ei
(q̃)
=QY (y, y ′).

Finally we consider the case y ′ = y + ei , 1 ≤ i ≤ n+ 1 corresponding to a rightward jump in the

i th Y particle. For i > 1, consider the dichotomy x ′i−1 = y ′i or x ′i−1 < y ′i , corresponding to the i th

Y particle being pushed upwards by the (i − 1)th X particle and a free jump respectively. The case

i = 1 corresponds to the leftmost Y particle jumping rightwards, an event that cannot arise as a

result of pushing. In the case of pushing, i.e. i > 1 and x ′i−1 = y ′i , the summand is equal to

m(x ′− ei−1, y ′− ei)

m(x ′, y ′)
A0((x

′− ei−1, y ′− ei), (x
′, y ′)).

Using the definitions ofA0 and m, this is

q
|y ′−ei |−|x

′−ei−1|

n+1

q
|y ′|−|x ′|

n+1

Sp2n
x ′−ei−1

(q)

Sp2n+1
y ′−ei
(q̃)

Sp2n+1
y ′
(q̃)

Sp2n
x ′
(q)

QX (x
′− ei−1, x ′) =

Sp2n+1
y ′
(q̃)

Sp2n+1
y ′−ei
(q̃)
=QY (y, y ′),

as required.

If y ′i > x ′i−1 (i > 1) or i = 1, then the i th Y particle jumped of its own accord and the only term in

the summation is

m(x ′, y ′− ei)

m(x ′, y ′)
A0((x

′, y ′− ei), (x
′, y ′)) =

Sp2n+1
y ′
(q̃)

Sp2n+1
y ′−ei
(q̃)
=QY (y, y ′).

This concludes the verification of the intertwining relationship and the theorem follows.

A A lemma on intertwinings of Q-matrices

Lemma A.1. Suppose that L and L′ are uniformly bounded conservative Q-matrices on discrete spaces

U and V that are intertwined by a Markov kernel Λ : U × V → [0,1] from U to V , i.e.

LΛ = ΛL′.

Then the transition kernels for the Markov processes with Q-matrices L and L′ are also intertwined.
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Note that we always use the lemma with U =W ′, V =W ×W ′ where W ⊂ Zn and either W ′ ⊂ Zn

or W ′ ⊂ Zn+1. Our Markov kernel Λ is always such that Λ(u, (v, v′)) > 0 only if u = v′, but this, of

course, is not necessary for the lemma.

Proof. The intertwining relationship LΛ = ΛL′ may be written

∑

ṽ∈V

Λ(u, ṽ)L′(ṽ, v) =
∑

ũ∈U

L(u, ũ)Λ(ũ, v), u ∈ U , v ∈ V.

Let (pt ; t ≥ 0) denote the transition kernels for the Markov process corresponding to Q-matrix L

and fix u0 ∈ U . Multiplying both sides of the expanded intertwining relationship above by pt(u0,u)

and summing over u ∈ U gives

∑

u∈U

pt(u0,u)
∑

ṽ∈V

Λ(u, ṽ)L′(ṽ, v) =
∑

u∈U

pt(u0,u)
∑

ũ∈U

L(u, ũ)Λ(ũ, v), v ∈ V. (A.1)

Now, let c ∈ R be a uniform bound for the absolute values of the entries of L and L′. Then

|pt(u0,u)Λ(u, ṽ)L′(ṽ, v)| ≤ cΛ(u, ṽ)pt(u0,u),

so the double sum on the left hand side is absolutely convergent. Also,

∑

ũ∈U

|pt(u0,u)Λ(ũ, v)L(u, ũ)| ≤
∑

ũ∈U

|pt(u0,u)L(u, ũ)| ≤ 2cpt(u0,u)

and the same conclusion holds for the double sum on the right hand side. So, we may exchange the

order of the sums on both sides to give

∑

ṽ∈V

L′(ṽ, v)
∑

u∈U

pt(u0,u)Λ(u, ṽ) =
∑

ũ∈U

Λ(ũ, v)
∑

u∈U

pt(u0,u)L(u, ũ), v ∈ V.

Now, as (pt ; t ≥ 0) is the transition kernel corresponding to the Markov process with Q matrix L, it

satisfies the Kolmogorov forward equation

d

d t
pt(u0, ũ) =

∑

u∈U

pt(u0,u)L(u, ũ).

Let us define qt(v) =
∑

ũ∈U pt(u0, ũ)Λ(ũ, v) for v ∈ V .

We may differentiate the summation term by term in t using Fubini’s theorem and the absolute

bounds on the summands discussed above. Hence, the right hand side of (A.1) is simply d

d t
qt(v).

Then, using the definition of qt in the left hand side of (A.1), we see that

d

d t
qt(v) =

∑

ṽ∈V

L′(ṽ, v)qt(ṽ), t ≥ 0. (A.2)

Now let (p′t ; t ≥ 0) denote the transition kernels of the Markov process with Q-matrix L′, and

p′t(v) =
∑

ṽ

q0(ṽ)p
′
t(ṽ, v) =

∑

ṽ∈V

Λ(u0, ṽ)p′t(ṽ, v).
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Then p′0(v) = q0(v) for all v ∈ V and p′t also satisfies the forward equation (A.2) in L′.

But when the rates are uniformly bounded there is exactly one solution to the forward differential

equation with the same boundary conditions as qt so qt(v) = p′t(v) for all t ≥ 0 and v ∈ V .

By definition of qt(v), we then have
∑

ũ∈U

pt(u0, ũ)Λ(ũ, v) =
∑

ṽ∈V

Λ(u0, ṽ)p′t(ṽ, v),

and since the argument holds for arbitrary u0 ∈ U we’re done.
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