
E l e c t r o n
i

c

J
o

u
r

n a l

o
f

P
r

o
b a b i l i t y

Vol. 14 (2009), Paper no. 64, pages 1884–1899.

Journal URL

http://www.math.washington.edu/~ejpecp/

On concentration of self-bounding functions

Stéphane Boucheron∗

LPMA

Université Paris-Diderot,

Paris

stephane.boucheron@math.jussieu.fr

Gábor Lugosi†

Icrea and

Pompeu Fabra University

Barcelona

gabor.lugosi@gmail.com

Pacal Massart

Université Paris-Sud

Orsay

pascal.massart@gmail.com

Abstract

We prove some new concentration inequalities for self-bounding functions using the entropy

method. As an application, we recover Talagrand’s convex distance inequality. The new

Bernstein-like inequalities for self-bounding functions are derived thanks to a careful analysis

of the so-called Herbst argument. The latter involves comparison results between solutions of

differential inequalities that may be interesting in their own right.
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1 Introduction

Let X1, . . . , Xn be independent random variables, taking values in some measurable space X and let

f :X n→R be a real-valued function of n variables. We are interested in concentration of the ran-

dom variable Z = f (X1, . . . , Xn) around its expected value. Well-known concentration inequalities

establish quantitative bounds for the probability that Z deviates significantly from its mean under

smoothness conditions on the function f , see, for example, Ledoux [9], McDiarmid [12] for surveys.

However, some simple conditions different from smoothness have been shown to guarantee concen-

tration. Throughout the text, for each i ≤ n, fi denotes a measurable function from X n−1 to R.

The following condition used by Boucheron, Lugosi, and Massart [2] generalizes the notion of a

configuration function introduced by Talagrand [21].

Definition 1. A function f :X n→R is called self-bounding if for all x = (x1, . . . , xn) ∈ X
n,

0≤ f (x)− fi(x
(i))≤ 1 ,

and
n∑

i=1

�
f (x)− fi(x

(i))
�
≤ f (x)

where x (i) = (x1, . . . , x i−1, x i−1, . . . , xn) ∈ X
n−1 is obtained by dropping the i-th component of x.

It is shown in [2] that if f is self-bounding then Z satisfies, for all λ ∈ R, the sub-Poissonian

inequality

logE
�

eλ(Z−EZ)
�
≤
�

eλ −λ− 1
�
EZ

which implies that for every t ≥ 0,

P{Z ≥EZ + t} ≤ exp

�
−t2

2(EZ + t/3)

�

and for all 0< t <EZ ,

P{Z ≤EZ − t} ≤ exp

�
−t2

2EZ

�
.

An often convenient choice for fi is

fi(x
(i)) = inf

x ′
i
∈X

f (x1, . . . , x i−1, x ′i , x i+1, . . . , xn) . (1)

Throughout the paper we implicitly assume that fi is measurable. (McDiarmid and Reed [13, Lemma

5] point out that this is not a restrictive assumption).

Several generalizations of such inequalities have been proposed in the literature, see Boucheron, Lu-

gosi, Massart [3], Boucheron, Bousquet, Lugosi, Massart [1], Devroye [5], Maurer [11], McDiarmid

and Reed [13]. McDiarmid and Reed further generalize the notion of self-bounding functions.

Definition 2. A function f : X n → R is called (a, b)-self-bounding if for some a, b > 0, for all

i = 1, . . . , n and all x ∈ X n,

0≤ f (x)− fi(x
(i))≤ 1 ,
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and
n∑

i=1

�
f (x)− fi(x

(i))
�
≤ a f (x) + b .

McDiarmid and Reed [13] show that under this condition, for all t > 0,

P{Z ≥EZ + t} ≤ exp

�
−t2

2(aEZ + b+ at)

�

and

P{Z ≤EZ − t} ≤ exp

�
−t2

2(aEZ + b+ t/3)

�
.

Maurer [11] considers a even weaker notion.

Definition 3. A function f :X n→R is called weakly (a, b)-self-bounding if all x ∈ X n,

n∑

i=1

�
f (x)− fi(x

(i))
�2
≤ a f (x) + b .

Of course, if f is (a, b)-self-bounding then it is also weakly (a, b)-self-bounding. Maurer [11, Theo-

rem 13] proves that if f is weakly (a, 0) self-bounding, then

P{Z ≥EZ + t} ≤ exp

�
−t2

2aEZ + at

�
.

If, in addition, 0≤ f (x)− fi(x
(i))≤ 1, for each i ≤ n and each x ∈ X n then

P{Z ≤EZ − t} ≤ exp

�
−t2

2 max(a, 1)EZ

�
. (2)

The purpose of this paper is to further sharpen these results. The proofs, just like for the above-

mentioned inequalities, is based on the entropy method pioneered by Ledoux [8] and further devel-

oped, among others, by Boucheron, Lugosi, Massart [3], Boucheron, Bousquet, Lugosi, Massart [1],

Bousquet [4], Klein [6], Massart [10], Rio [16], Klein and Rio [7]. We present some applications. In

particular, we are able to recover Talagrand’s celebrated convex distance inequality [21] for which

no complete proof based on the entropy method has been available.

For any real number a ∈ R, we denote by a+ = max(a, 0) and a− = max(−a, 0) the positive and

negative parts of a. The main result of the paper is the following.

Theorem 1. Let X = (X1, ..., Xn) be a vector of independent random variables, each taking values in a

measurable set X and let f :X n→R be a non-negative measurable function such that Z = f (X ) has

finite mean.

For a, b ≥ 0, define c = (3a− 1)/6.

If f is (a, b)-self-bounding, then for all λ ≥ 0,

logE
�

eλ(Z−EZ)
�
≤
(aEZ + b)λ2

2(1− c+λ)
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and for all t > 0,

P {Z ≥EZ + t} ≤ exp

�
−

t2

2
�
aEZ + b+ c+ t
�
�

.

If f is weakly (a, b)-self-bounding and for all i ≤ n, all x ∈ X , fi(x
(i)) ≤ f (x), then for all 0 ≤ λ ≤

2/a,

logE
�

eλ(Z−EZ)
�
≤
(aEZ + b)λ2

2(1− aλ/2)

and for all t > 0,

P {Z ≥EZ + t} ≤ exp

�
−

t2

2 (aEZ + b+ at/2)

�
.

If f is weakly (a, b)-self-bounding and f (x) − fi(x
(i)) ≤ 1 for each i ≤ n and x ∈ X n, then for

0< t ≤EZ,

P {Z ≤EZ − t} ≤ exp

�
−

t2

2
�
aEZ + b+ c− t
�
�

.

The bounds of the theorem reflect an interesting asymmetry between the upper and lower tail

estimates. If a ≥ 1/3, the left tail is sub-Gaussian with variance proxy aEZ + b. If a ≤ 1/3, then

the upper tail is sub-Gaussian. If a = 1/3 then we get purely sub-Gaussian estimates of both sides.

Of course, if f is (a, b)-self-bounding for some a ≤ 1/3 then it is also (1/3, b)-self-bounding, so

for all values of a ≤ 1/3, we obtain sub-Gaussian bounds, though for a < 1/3 the theorem does

yield optimal constants in the denominator of the exponent. If a ≤ 1/3 and f is weakly (a, b)-self-

bounding, we thus have

P {Z ≤EZ − t} ≤min

�
exp

�
−

t2

2(aEZ + b+ t(1− 3a)/6)

�
, exp

�
−

t2

2((1/3)EZ + b)

��
.

This type of phenomenon appears already in Maurer’s bound (2) but the critical value of a is now

improved from 1 to 1/3. We have no special reason to believe that the threshold value 1/3 is optimal

but this is the best we get by our analysis.

Note that the bounds for the upper tail for weakly self-bounded random variables are due to Mau-

rer [11]. They are recalled here for the sake of self-reference.

2 The convex distance inequality

In a remarkable series of papers (see [21],[19],[20]), Talagrand developed an induction method

to prove powerful concentration results. Perhaps the most widely used of these is the so-called

“convex-distance inequality.” Recall first the definition of the convex distance:

In the sequel, ‖ · ‖2 denotes the Euclidean norm. For any x = (x1, . . . , xn) ∈ X
n, let

dT (x ,A) = sup
α∈[0,∞)n:‖α‖2=1

dα(x ,A)

denote the convex distance of x from the set A where

dα(x ,A) = inf
y∈A

dα(x , y) = inf
y∈A

∑

i:x i 6=yi

|αi |
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is a weighted Hamming distance of x to the set A. Talagrand’s convex distance inequality states that

if X is an X n-valued vector of independent random variables, then for any set A⊂X ,

E

h
edT (X ,A)2/4
i
≤

1

P{X ∈ A}

which implies, by Markov’s inequality, that for any t > 0,

P{dT (X ,A)≥ t} ·P{X ∈ A} ≤ e−t2/4 .

Even though at the first sight it is not obvious how Talagrand’s result can be used to prove concentra-

tion for general functions f of X , with relatively little work, the theorem may be converted into very

useful inequalities. Talagrand [19], Steele [18], and Molloy and Reed [14] survey a large variety of

applications. Pollard [15] revisits Talagrand’s orginal proof in order to make it more transparent.

Several attempts have been made to recover Talagrand’s convex distance inequality using the en-

tropy method (see [3; 11; 13]). However, these attempts have only been able to partially recover

Talagrand’s result. In [3] we pointed out that the Efron-Stein inequality may be used to show that

for all X and A⊂X n,

Var
�
dT (X ,A)
�
≤ 1 .

The same argument was used to show that Talagrand’s inequality holds (with slightly different

constants) for sets A with P{X ∈ A} ≥ 1/2. Maurer [11] improved the constants but still fell short

of proving it for all sets.

Here we show how Theorem 1 may be used to recover the convex distance inequality with a some-

what worse constant (10 instead of 4) in the exponent. Note that we do not use the full power of

Theorem 1. In fact, Maurer’s results may also be applied together with the argument below.

The main observation is that the square of the convex distance is self-bounding:

Lemma 1. For any A∈ X n and x ∈ X n, the function f (x) = dT (x ,A)2 satisfies 0≤ f (x)− fi(x
(i))≤ 1

where fi is defined as in (1). Moreover, f is weakly (4,0)-self-bounding.

Proof. The proof is based on different formulations of the convex distance. LetM (A) denote the

set of probability measures on A. Then, using Sion’s minimax theorem, we may re-write dT as

dT (x ,A) = inf
ν∈M (A)

sup
α:‖α‖2≤1

n∑

j=1

α jEν[1x j 6=Yj
] (3)

where Y = (Y1, . . . , Yn) is distributed according to ν . By the Cauchy-Schwarz inequality,

dT (x ,A)2 = inf
ν∈M (A)

n∑

j=1

�
Eν[1x j 6=Yj

]
�2

.

Rather than minimizing in the large space M (A), we may as well perform minimization on the

convex compact set of probability measures on {0,1}n by mapping y ∈ A on (1y j 6=X j
)1≤ j≤n. Denote

this mapping by χ . Note that the mapping depends on x but we omit this dependence to lighten

notation. The set M (A) ◦ χ−1 of probability measures on {0,1}n coincides with M (χ(A)). It is

convex and compact and therefore the infimum in the last display is achieved at some bν . Then
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dT (X ,A) is just the Euclidean norm of the vector
�
Ebν[1x j 6=Yj

]
�

j≤n
, and therefore the supremum in

(3) is achieved by the vector bα of components

bαi =
Ebν[1x i 6=Yi

]
Ç∑n

j=1

�
Ebν[1x j 6=Yj

]
�2 .

For simplicity, assume that the infimum in the definition of fi(x
(i)) in (1) is achieved by a proper

choice of the i-th coordinate.

Clearly, f (x)− fi(x
(i)) ≥ 0 for all i. On the other hand let x

(i)

i
and bνi denote the coordinate value

and the probability distribution on A that witness the value of fi(x
(i)), that is,

fi(x
(i)) =
∑

j 6=i

�
Ebνi
1x j 6=Yj

�2
+

�
Ebνi
1

x
(i)

i
6=Yi

�2
.

As f (x)≤
∑

j 6=i

�
Ebνi

h
1x j 6=Yj

i�2
+

�
Ebνi

�
1

x
(i)

i
6=Yi

��2
, we have

f (x)− fi(x
(i))≤
�
Ebνi

�
1x i 6=Yi

��2
−

�
Ebνi

�
1

x
(i)

i
6=Yi

��2
≤ 1 .

It remains to prove that f is weakly (4,0)-self-bounding. To this end, we may use once again Sion’s

minimax theorem, as in [3], to write the convex distance as

dT (x ,A) = inf
ν∈M (A)

sup
α:‖α‖2≤1

n∑

j=1

α jEν[1x j 6=Yj
]

= sup
α:‖α‖2≤1

inf
ν∈M (A)

n∑

j=1

α jEν[1x j 6=Yj
] .

Denote the pair (ν ,α) at which the saddle point is achieved by (bν , bα). In [3] it is shown that for all

x ,
n∑

i=1

�p
f (x)−
p

fi(x
(i))
�2
≤ 1 . (4)

For completeness, we recall the argument:

p
fi(x

(i)) = inf
ν∈M (A)

sup
α:‖α‖2≤1

n∑

j=1

α jEν[1x
(i)

j
6=Yj
]≥ inf

ν∈M (A)

n∑

j=1

bα jEν[1x
(i)

j
6=Yj
] .

Let ν̃ denote the distribution on A that achieves the infimum in the latter expression. Then we have

p
f (x) = inf

ν

n∑

j=1

bα jEν

h
1x j 6=Yj

i
≤

n∑

j=1

bα jEν̃

h
1x j 6=Yj

i
.

Hence,

p
f (x)−
p

fi(x
(i))≤

n∑

j=1

bα jEν̃[1x j 6=Yj
− 1

x
(i)

j
6=Yj
] = bαiEν̃

�
1x i 6=Yi

− 1
x
(i)

i
6=Yi

�
≤ bαi ,
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so �p
f (x)−
p

fi(x
(i))
�2
≤ bα2

i ,

from which (4) follows. Finally,

n∑

i=1

�
f (x)− fi(x

(i))
�2

=

n∑

i=1

�p
f (x)−
p

fi(x
(i))
�2�p

f (x) +
p

fi(x
(i))
�2

≤

n∑

i=1

bα2
i 4 f (x)

≤ 4 f (x) .

�

Now the convex distance inequality follows easily:

Corollary 1.

P{X ∈ A}E
h

edT (X ,A)2/10
i
≤ 1 .

Proof. First recall that A=
�

X : dT (X ,A) = 0
	

. Observe now that combining Lemma 1 and Theo-

rem 1, and choosing t =E
�

d2
T (X ,A)
�

, we have

P{X ∈ A}=P
¦

dT (X ,A)2 ≤E
�

d2
T (X ,A)
�
− t
©
≤ exp

�
−
E[dT (X ,A)2]

8

�
.

On the other hand, for 0≤ λ ≤ 1/2, from Theorem 1 again,

logE
�

eλ(Z−EZ)
�
≤
λ2 2EZ

1− 2λ
.

Choosing λ = 1/10 leads to the desired result. �

3 The square of a regular function

Let g : X n → R+ be a function of n variables and assume that there exists a constant v > 0 and

there are measurable functions gi :X n−1→R+ such that for all x ∈ X n, g(x)≥ gi(x
(i)),

n∑

i=1

�
g(x)− gi(x

(i))
�2
≤ v .

We call such a function v-regular. If X = (X1, . . . , Xn) ∈ X
n is a vector of independent X -valued

random variables, then by the Efron-Stein inequality, Var(g(X ))≤ v. Also, it is shown in [8; 3] that

for all t > 0,

P
�

g(X )≥Eg(X ) + t
	
≤ e−t2/(2v) .
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For the lower tail, Maurer [11] showed that if, in addition, g(x)− gi(x
(i))≤ 1 for all i and x , then

P
�

g(X )≤Eg(X )− t
	
≤ e−t2/(2(v+t/3)) .

However, in many situations one expects a purely sub-Gaussian behavior of the lower tail, something

Maurer’s inequality fails to capture. Here we show how Theorem 1 may be used to derive purely

sub-Gaussian lower-tail bounds under an additional “bounded differences” condition for the square

of g.

Corollary 2. Let g : X n → R+ be a v-regular function such that for all x ∈ X n and i = 1, . . . , n,

g(x)2− gi(x
(i))2 ≤ 1. Then

P
¦

g(X )2 ≤E
�

g(X )2
�
− t
©
≤ exp

�
−t2

8vE
�

g(X )2
�
+ t(4v − 1/3)−

�
.

In particular, if v ≥ 1/12,

P
�

g(X )≤Eg(X )− t
	
≤ exp

�
−t2

8v

�
.

Proof. Introduce f (x) = g(x)2 and fi(x
(i)) = gi(x

(i))2. Then

0≤ f (x)− fi(x
(i))≤ 1 .

Moreover,

n∑

i=1

�
f (x)− fi(x

(i))
�2

=

n∑

i=1

�
g(x)− gi(x

(i))
�2 �

g(x) + gi(x
(i))
�2

≤ 4g(x)2
n∑

i=1

�
g(x)− gi(x

(i))
�2

≤ 4v f (x)

and therefore f is (4v, 0) self-bounding. This means that the third inequality of Theorem 1 is

applicable and this is how the first inequality is obtained.

The second inequality follows from the first by noting that as Eg(X )≤
p
Eg(X )2,

P
�

g(X )≤Eg(X )− t
	
≤ P

n
g(X )
p
Eg(X )2 ≤Eg(X )2− t

p
Eg(X )2
o

≤ P

n
g(X )2 ≤Eg(X )2− t

p
Eg(X )2
o

and now the first inequality may be applied. �

For a more concrete class of applications, consider a convex function g defined on a bounded hyper-

rectangle, say [0,1]n. If X = (X1, . . . , Xn) are independent random variables taking values in [0,1],

then Talagrand [19] shows that

P{|g(X )−Mg(X )|> t} ≤ 4e−t2/(4L2)

1891



where Mg(X ) denotes the median of the random variable g(X ) and L is the Lipschitz constant of

g. (In fact, this inequality holds under the weaker assumption that the level sets {x : g(x) ≤ t} are

convex.) Ledoux [8] used the entropy method to prove the one-sided inequality

P{g(X )−Eg(X )> t} ≤ e−t2/(2L2)

under the condition that g is separately convex, that is, it is convex in any of its variables when the

rest of the variables are fixed at an arbitrary value. We may use Ledoux’s argument in combination

with the corollary above.

Let g : [0,1]n→R be a non-negative separately convex function. Without loss of generality we may

assume that g is differentiable on [0,1]n because otherwise one may approximate g by a smooth

function in a standard way. Then, denoting

gi(x
(i)) = inf

x ′
i
∈X

g(x1, . . . , x i−1, x ′i , x i+1, . . . , xn) ,

by separate convexity,

g(x)− gi(x
(i)) ≤

����
∂ g

∂ x i

(x)

���� .

Thus, for every x ∈ [0,1]n,
n∑

i=1

�
g(x)− gi(x

(i))
�2
≤ L2 .

This means that g is L2-regular and therefore Corollary 2 applies as long as g(x)2 − gi(x
(i))2 takes

its values in an interval of length 1.

4 Proofs

Our starting point is a so-called modified logarithmic Sobolev inequality that goes back (at least)

to [10]. This inequality is at the basis of several concentration inequalities proved by the entropy

method, see [2; 3; 17; 16; 4; 11; 13].

Theorem 2. (A MODIFIED LOGARITHMIC SOBOLEV INEQUALITY.) Let X = (X1, X2, . . . , Xn) be a vector of

independent random variables, each taking values in some measurable space X . Let f : X n → R be

measurable and let Z = f (X ). Let X (i) = (X1, . . . , X i−1, X i+1, . . . , Xn) and let Zi denote a measurable

function of X (i). Introduce ψ(x) = ex − x − 1. Then for any λ ∈R,

λE
�

ZeλZ
�
−E
�

eλZ
�

logE
�

eλZ
�
≤

n∑

i=1

E
�

eλZψ
�
−λ(Z − Zi)
��

.

The entropy method converts the modified logarithmic Sobolev inequality into a differential inequal-

ity involving the logarithm of the moment generating function of Z . A more-or-less standard way of

proceeding is as follows.
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If λ ≥ 0 and f is (a, b)-self-bounding, then, using Z − Zi ≤ 1 and the fact that for all x ∈ [0,1],

ψ(−λx)≤ xψ(−λ),

λE
�

ZeλZ
�
−E
�

eλZ
�

logE
�

eλZ
�
≤ ψ(−λ)E


eλZ

n∑

i=1

�
Z − Zi

�



≤ ψ(−λ)E
�
(aZ + b) eλZ
�

.

For any λ ∈R, define G(λ) = logE
�

e(λZ−EZ)
�

. Then the previous inequality may be written as the

differential inequality �
λ− aψ (−λ)
�

G′(λ)− G(λ)≤ vψ(−λ), (5)

where v = aEZ + b.

On the other hand, if λ ≤ 0 and f is weakly (a, b)-self-bounding, then since ψ(x)/x2 is non-

decreasing over R+, ψ(−λ(Z − Zi))≤ψ(−λ)(Z − Zi)
2 so

λE
�

ZeλZ
�
−E
�

eλZ
�

logE
�

eλZ
�
≤ ψ(−λ)E


eλZ

n∑

i=1

�
Z − Zi

�2



≤ ψ(−λ)E
�
(aZ + b)eλZ
�

.

This again leads to the differential inequality (5) but this time for λ ≤ 0.

When a = 1, this differential inequality can be solved exactly (see [2]), and one obtains

G(λ)≤ vψ(λ) .

The right-hand side is just the logarithm of the moment generating function of a Poisson(v) random

variable.

However, when a 6= 1, it is not obvious what kind of bounds for G should be expected. If a > 1, then

λ−aψ(−λ) becomes negative when λ is large enough. Since both G′(λ) and G(λ) are non-negative

when λ is non-negative, (5) becomes trivial for large values of λ. Hence, at least when a > 1, there

is no hope to derive Poissonian bounds from (5) for positive values of λ (i.e., for the upper tail).

Note that using the fact that ψ(−λ)≤ λ2/2 for λ ≥ 0, (5) implies that for λ ∈ [0,2/a),

�
1

λ
−

a

2

�
G′(λ)−

1

λ2
G(λ)≤

v

2
.

Observe that the left-hand side is just the derivative of (1/λ− a/2)G(λ). Using the fact that G(0) =

G′(0) = 0, and that G′(λ)≥ 0 for λ > 0, integrating this differential inequality leads to

G(λ)≤ vGa/2(λ) =
vλ2

2(1− aλ/2)
for λ ∈ [0,2/a) ,

which, by Markov’s inequality and optimization of λ, leads to a first Bernstein-like upper tail in-

equality. Note that this is enough to derive the bounds for the upper tail of weakly self-bounded

random variables. But we want to prove something more.
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The following lemma is the key in the proof of the theorem. It shows that if f satisfies a self-

bounding property, then on the relevant interval, the logarithmic moment generating function of

Z −EZ is upper bounded by v times a function Gγ defined by

Gγ(λ) =
λ2

2(1− γλ)
for every λ such that γλ < 1

where γ ∈ R is a real-valued parameter. In the lemma below we mean c−1
+ =∞ (resp. c−1

− =∞)

when c+ = 0 (resp. c− = 0).

Lemma 2. Let a, v > 0 and let G be a solution of the differential inequality
�
λ− aψ (−λ)
�

H ′ (λ)− H (λ)≤ vψ (−λ) .

Define c = (a− 1/3)/2. Then, for every λ ∈
�

0, c−1
+

�

G(λ)≤ vGc+
(λ)

and for every λ ∈ (−θ , 0)

G(λ)≤ vG−c−
(λ)

where θ = c−1
−

�
1−
p

1− 6c−

�
if c− > 0 and θ = a−1 whenever c− = 0.

This lemma is proved in the next section. First we show how it implies out main result:

Proof of Theorem 1. The upper-tail inequality for (a, b)-self-bounding functions follows from

Lemma 2 and Markov’s inequality by routine calculations, exactly as in the proof of Bernstein’s

inequality when c+ > 0 and it is straightforward when c+ = 0.

The bound for the upper tail of weakly (a, b)-self-bounding functions is due to Maurer [11]. The

derivation of the bound for the lower tail requires some more care. Indeed, we have to check that

the condition λ > −θ is harmless. Since θ < c−1
− , by continuity, for every positive t,

sup
u∈(0,θ )

�
tu−

u2v

2
�
1− c−u
�
�
= sup

u∈(0,θ]

�
tu−

u2v

2
�
1− c−u
�
�

.

Note that we are only interested in values of t that are smaller than EZ ≤ v/a. Now the supremum

of

u→ tu−
u2v

2
�
1− c−u
�

on the interval
�

0, c−1
−

�
is achieved either at ut = t/v (if c− = 0) or at ut =

c−1
−

�
1−
�
1+
�
2tc−/v
��−1/2
�

(if c− > 0).

It is time to take into account the restriction t ≤ v/a. In the first case, when ut = t/v, this implies

that ut ≤ a−1 = θ , while in the second case, since a =
�
1− 6c−
�
/3 it implies that 1+

�
2tc−/v
�
≤

�
1− 6c−
�−1

and therefore ut ≤ c−1
−

�
1−
p

1− 6c−

�
= θ . In both cases ut ≤ θ which means that

for every t ≤ v/a

sup
u∈(0,θ]

�
tu−

u2v

2
�
1− c−u
�
�
= sup

u∈(0,c−1
− )

�
tu−

u2v

2
�
1− c−u
�
�

and the result follows. �
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5 Proof of Lemma 2

The entropy method consists in deriving differential inequalities for the logarithmic moment gener-

ating functions and solving those differential inequalities. In many circumstances, the differential

inequality can be solved exactly as in [10; 2]. The next lemma allows one to deal with a large

family of solvable differential inequalities. Lemma 4 will allow us to use this lemma to cope with

more difficult cases and this will lead to the proof of Lemma2.

Lemma 3. Let f be a non-decreasing continuously differentiable function on some interval I containing

0 such that f (0) = 0, f ′(0) > 0 and f (x) 6= 0 for every x 6= 0. Let g be a continuous function on I

and consider an infinitely many times differentiable function G on I such that G(0) = G′(0) = 0 and

for every λ ∈ I ,

f (λ)G′(λ)− f ′(λ)G(λ)≤ f 2(λ)g(λ) .

Then, for every λ ∈ I , G(λ)≤ f (λ)
∫ λ

0
g(x)d x.

Note that the special case when f (λ) = λ, and g(λ) = L2/2 is the differential inequality obtained

by the Gaussian logarithmic Sobolev inequality via Herbst’s argument (see, e.g., Ledoux [9]) and

is used to obtain Gaussian concentration inequalities. If we choose f (λ) = eλ − 1 and g(λ) =

−d(λ/eλ − 1)/dλ, we recover the differential inequality used to prove concentration of (1,0)-self-

bounding functions in [3].

Proof. Define ρ(λ) = G(λ)/ f (λ), for every λ 6= 0 and ρ(0) = 0. Using the assumptions on G and

f , we see that ρ is continuously differentiable on I with

ρ′(λ) =
f (λ)G′(λ)− f ′(λ)G(λ)

f 2(λ)
for λ 6= 0 and ρ′(0) =

G′′(0)

2 f ′(0)
.

Hence f (λ)G′ (λ)− f ′ (λ)G (λ)≤ f 2 (λ) g (λ) implies that

ρ′ (λ)≤ g (λ)

and therefore that the function ∆(λ) =
∫ λ

0
g(x)d x − ρ(λ) is nondecreasing on I . Since ∆(0) = 0,

∆ and f have the same sign on I , which means that ∆(λ) f (λ) ≥ 0 for λ ∈ I and the result follows.

�

Except when a = 1, the differential inequality (5) cannot be solved exactly. A roundabout is provided

by the following lemma that compares the solutions of a possibly difficult differential inequality with

solutions of a differential equation.

Lemma 4. Let I be an interval containing 0 and let ρ be continuous on I . Let a ≥ 0 and v > 0. Let

H : I →R, be an infinitely many times differentiable function satisfying

λH ′(λ)− H(λ)≤ ρ(λ)
�
aH ′(λ) + v
�

with

aH ′(λ) + v > 0 for every λ ∈ I and H ′(0) = H(0) = 0 .

1895



Let ρ0 : I →R be a function. Assume that G0 : I →R is infinitely many times differentiable such that

for every λ ∈ I ,

aG′0(λ) + 1> 0 and G′0(0) = G0(0) = 0 and G′′0 (0) = 1 .

Assume also that G0 solves the differential equation

λG′0(λ)− G0(λ) = ρ0(λ)
�

aG′0(λ) + 1
�

.

If ρ(λ)≤ ρ0(λ) for every λ ∈ I , then H ≤ vG0.

Proof. Let I ,ρ, a, v, H, G0,ρ0 be defined as in the statement of the lemma. Combining the assump-

tions on H,ρ0,ρ and G0,

λH ′(λ)− H(λ)≤

�
λG′0(λ)− G0(λ)

��
aH ′(λ) + v
�

aG′0(λ) + 1

for every λ ∈ I , or equivalently,

�
λ+ aG0(λ)
�

H ′(λ)−
�

1+ aG′0(λ)
�

H(λ)≤ v
�
λG′0(λ)− G0(λ)

�
.

Setting f (λ) = λ+ aG0(λ) for every λ ∈ I and defining g : I →R by

g(λ) =
v
�
λG′0(λ)− G0(λ)

�

�
λ+ aG0(λ)
�2 if λ 6= 0 and g(0) =

v

2
,

our assumptions on G0 imply that g is continuous on the whole interval I so that we may apply

Lemma 3. Hence, for every λ ∈ I

H(λ)≤ f (λ)

∫ λ

0

g(x)d x = v f (λ)

∫ λ

0

�
G0(x)

f (x)

�′
d x

and the conclusion follows since G0(x)/ f (x) tends to 0 when x tends to 0. �

Observe that the differential inequality in the statement of Lemma 2 has the same form as the

inequalities considered in Lemma 4 where ψ replaces ρ. Note also that for any γ≥ 0,

2Gγ(λ) =
λ2

1− γλ

solves the differential inequality

λH ′(λ)− H(λ) = λ2(γH ′(λ) + 1) . (6)

So choosing γ= a and recalling that for λ ≥ 0, ψ(−λ)≤ λ2

2
, it follows immediately from Lemma 4,

that

G(λ)≤
λ2v

2(1− aλ)
for λ ∈ (0,1/a) .
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Since G is the logarithmic moment generating function of Z − EZ , this can be used to derive a

Bernstein-type inequality for the left tail of Z . However, the obtained constants are not optimal, so

proving Lemma 2 requires some more care.

Proof of Lemma 2. The function 2Gγ may be the unique solution of equation (6) but this is not the

only equation Gγ is the solution of. Define

ργ(λ) =
λG′γ(λ)− Gγ(λ)

1+ aG′γ(λ)
.

Then, on some interval I , Gγ is the solution of the differential equation

λH ′(λ)− H(λ) = ργ(λ)(1+ aH ′(λ)) ,

provided 1+ aG′γ remains positive on I .

Thus, we have to look for the smallest γ ≥ 0 such that, on the relevant interval I (with 0 ∈ I), we

have both ψ(−λ)≤ ργ(λ) and 1+ aG′γ(λ)> 0 for λ ∈ I .

Introduce

Dγ(λ) = (1− γλ)
2(1+ aG′γ(λ)) = (1− γλ)

2+ aλ

�
1−

γλ

2

�
= 1+ 2(a/2− γ)λ− γ(a/2− γ)λ2 .

Observe that ργ(λ) = λ
2/(2Dγ(λ)).

For any interval I , 1 + aG′γ(λ) > 0 for λ ∈ I holds if and only if Dγ(λ) > 0 for λ ∈ I . Hence,

if Dγ(λ) > 0 and ψ(−λ) ≤ ργ(λ), then it follows from Lemma 4 that for every λ ∈ I , we have

G(λ)≤ vGγ(λ).

We first deal with intervals of the form I = [0, c−1
+ ) (with c−1

+ =∞ when c+ = 0). If a ≤ 1/3, that

is, c+ = 0, Dc+
(λ) = 1+ aλ > 0 and ρc+

(λ)≥ λ2

2(1+λ/3)
≥ψ(−λ) for λ ∈ I = [0,+∞).

If a > 1/3, then Dc+
(λ) = 1+λ/3− c+λ

2/6 satisfies 0< 1+λ/6≤ Dc+
(λ)≤ 1+λ/3 on an interval

I containing [0, c−1
+ ), and therefore ρc+

(λ)≥ψ(−λ) on I .

Next we deal with intervals of the form I = (−θ , 0] where θ = a−1 if c− = 0, and θ = c−1
− (1−p

1− 6c−) otherwise. Recall that for any λ ∈ (−3,0], ψ(−λ)≤ λ2

2(1+λ/3)
.

If a ≥ 1/3, that is, c− = 0, D−c−
(λ) = 1+ aλ > 0 for λ ∈ (a−1, 0], while

ρ−c−
(λ) =

λ2

2(1+ aλ)
≥

λ2

2(1+λ/3)
.

For a ∈ (0,1/3), note first that 0< c− ≤ 1/6, and that

0< D−c−
(λ)≤ 1+

λ

3
+
λ2

36
≤

�
1+

λ

6

�2

for every λ ∈ (−θ , 0]. This also entails that ρ−c−
(λ)≥ψ(−λ) for λ ∈ (−θ , 0]. �
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