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1 Introduction

Let {B(t),t > 0} be a standard Brownian motion. The Wiener sausage with radius r > 0 is the
random process defined by

w.()= [ B.(B(s)

0<s<t

where B, (x) is the open ball with radius r around x € RY. It is known that ([21],[27]) as t — oo,

& ifd=1
EW.(6)| ~ 2nt/logt if d=2
Kt ifd=>3

where k, = 219/2r4721((d — 2)/2).
Let p > 2 be an integer and let {;(s),1 < j < p} be p independent standard Brownian motions.
Write W/ (t) = UOSS <¢ B+(Bj(s)) and define the volume of the intersections of p Wiener sausages as

follows:
V() = W) n W2(t)n---n WP(L)|.

In the classical paper [17], Donsker and Varadhan studied asymptotic behavior of the Laplace-
transform E(exp{—A|W,(t)|}) of the Wiener sausage |W,(t)| and solved a conjecture of Mark Kac
concerning Wiener sausage. The fluctuation theorem of the Wiener sausage was obtained by Le Gall
([22]). The large deviation below the scale of the mean in the downward direction for the volume
of the Wiener sausage: P(|W,.(t)| < f(t)) where f(t) = o(E|W,(t)|), was studied in [10],[17]
and [28]. The large deviation on the scale of the mean in the downward direction: P(|W,.(t)| <
cE|W,.(t)|), was studied in [7]. The large deviation on the scale of the mean in the upward direction
: P(JW.(t)| = cE|W.(t)|), was considered in [6],[9] and [25]. Strong approximations of three-
dimensional Wiener sausages were studies in [15].

The asymptotic behavior of the volume of the intersections of Wiener sausages was obtained by Le
Gall ([23], d =2) and van den Berg ([5], d > 3). Van den Berg, Bolthausen and den Hollander [8]
first considered the large deviations for the volume of the intersections of Wiener sausages. They
obtained the following deep results: for any ¢ > 0,

1 t
lim ——logP (Vr(ct) > —) = —I%”(c) <0 (1.1
ogt logt
asd =2 and p =2; and
1 N
tginoo mlogP (Vr(Ct) = t) = _Id (c)<O0 1.2)

as d > 3 and p = 2. The intersection grows logarithmically with ¢t in d = 2 and stays bounded in
d=3.

Noting that @ ~ E(IW,.(t)])/(2n) and t ~ E(JW,(t)])/x,, a natural problem is to consider

P(V.(ct) > f(1)) (1.3)
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where f(t) = o(E(|W,(t)]). This is a motivation of our paper. In fact, the problem for the intersec-
tion of the ranges of independent random walks was studied by Chen ([12][13]). In this paper, we
prove that the volume of the intersection of Wiener sausages has the same large deviations as the
intersection of the ranges of independent random walks. As an application, the corresponding laws
of the iterated logarithm are obtained. The main results are as follows:

Theorem 1.1. (1). Letd =2 and p > 2 and let b(t) be a positive function satisfying
b(t) — +o0, b(t) =o(logt) t — +o00. 1.4

Then for any A > 0,

2p

_2 1

lim Llo P(V.(t)> A b(t)P~? —B(Zn)_ﬁx(z ) Pl AP (1.5)
t—+o0 b(t) & 77 (log t)P T 9 »P .

where k(d, p) is the best constant of the Gagliardo-Nirenberg inequality

d(p—1) 1— d(p—1)

Ifllp < CIVEI ™ Nfll, * ,  fewh(RY) (1.6)

and
wi2(RY) = {f e L2(RY); Vf e LZ(Rd)}

(2). Letd =3 and p =2 and let b(t) be a positive function satisfying

b(t) — 400, b(t) =o(t*?/(logt)?)  t — +oo. 1.7)
Then for any A > 0,
Lo )logp (V) 2 A/eb(6)°) = —(2mr)4°x(3,2)78222, (1.8)

Theorem 1.2. Let d =2 and p > 2. Then

(log ¢)? PAE
li S R — =C@rn)P| = 2,p)%P . 1.9
?EJSFSO t(loglog t)P~—1 Vi(t) = (2m) (p) x(2,p) a3 (1.9
Letd =3 and p = 2. Then
1
limsup ——V,(t) = (27r)*x(3,2)*  a.s. (1.10)

t—+oo 4/ t(loglog t)3

Remark 1.1. (1). Let us compare Theorem|1.1 with the results of van den Berg et al. in [8]. Theorem
4 in [8] gives us the following estimates:

lim cI27(c) = (2)2(2,2)™,  lim ¢7I%"(c) = (2mr)~#3k(3,2) /3,
c—00 CcC—00

On the other hand, (1.1) and (1.2) can be written as: ford =2 and p = 2,

1 t
_ = — 2n
tlgrnool logP (Vr(t) > clogt) 157(c) (1.1
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and ford =3 and p =2,
1/3

. c t K
lim mlogP (Vr(t) > E) =—I,"(c). (1.12)

t—+00

Therefore, for any A > 0,

lim lim lLlogP (Vr(t) >

C—00 t—00 og t

) =—(27)%k(2,2)"*A
clogt

as d=2and p=2; and

23 At
lim lim —;logP (Vr(t) > —) = —(2nr) 3k (3,2)78/3%/3
c—oot—oo ¢1/3 c
as d =3 and p = 2. The large deviation results in [8] give us some hints for the moderate deviations
results and also suggest that the optimal conditions on b(t) are b(t) = o(logt) for d = 2 and b(t) =
o(t'/3) for d = 3. Similarly, we can also guess the moderate deviations for the intersection of Wiener
sausages in d = 4 case from results in [8] (also see [13]).

(2). Theorem|1.1 is a complement of van den Berg, Bolthausen and den Hollander’s results ([8]). In the
case of d = 2, (1) in Theorem|1.1lanswers the problem (1.3). In the case of d = 3, there exists a gap for
answer of the problem (1.3) since we require a slightly stronger condition b(t) = o(t*/3/(log t)?) than
b(t) = o(t'/3). In [13], the author has obtained a complete result for the intersection of the range of
the random walk in which the fact that the range R,, < n is used. In the case of Wiener sausage, we can
not find a proper upper bound for |W.(t)|.

(3). The intersection local time of Brownian motions plays an important role in our proof. By classical
results of Dvoretzky, Erdos, Kakutani and Taylor ([29]), we know

p
S = ﬂ{x eRl:x= Bi(t) for some t € (0,00)},
i=1

contains points different from the starting point if and only if p(d — 2) < d. So, the intersection local
time of Brownian motions does not exist in the case of p(d — 2) > d. The corresponding moderate
deviations need a further study.

The proof of Theorem|1.1]is based on the weak and LP-convergence results for the Wiener sausage
in [20] and the high moment method that were developed in [2], [12],[14] and [26]. The key
component is the moment estimates and Feynman-Kac semigroup approach. The proofs of the main
results are given respectively in Section 2 and Section 3. The proofs of some technical lemmas are
delayed to Sections 4, 5 and 6. Our proofs draw on some ideas and techniques in [12].

2 Moderate deviations

In this section, we give the proof of Theorem|1.1. Since V,(t) is a non-negative random variable, by
a version of Géartner-Ellis theorem advised by Chen ([12]), in order to prove Theorem (1.1 we need
only to prove the following result.
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Theorem 2.1. (1). Letd =2 and p > 2 and let b(t) be a positive function satisfying (1.4). Then for
any 6 > 0,

1 © 9™ (b(t)log P \> 1
tll)ngob()l Zml (f) (EVr (©)r

_ 1
== (Z(p—l))p (2m 0)Pk(2,p)*.
b p

(2). Letd =3 and p =2 and let b(t) be a positive function satisfying (1.7). Then for any 6 > 0,

lim —— o Z o" (b(”) VEV() =2 (§)3(2n9r)4,<(3 2)° 2.2)
2% b() OF T4 o '

(2.1)

We only prove the case of d = 2. The proof of the case of d = 3 is analogous. For simplicity, we

denote by [, = #t).

2.1 Upper bound

We apply the high moment method to prove the upper bound (cf. [12]). The proof is based on LP-
convergence results for the Wiener sausage in [20] and the high moment estimates of the volume
of intersections of Wiener sausages.

By the scaling property of Brownian motion, we can easily get the following LP-convergence results
from Corollary 3.2 in [20].

Lemma2.1. Asd=2,p>2 m=1,2,---,
( 0g )p’"

t—>OO

EV(¢) = (27)"E(a([0, 1]7))" 2.3)
andasd=3, p=2, m=1,2,---,

lggo mL/ZEVrm(t) = (2nr)*"E(a([0,1]P)™ (2.4)

where a([0,1])? is the p-multiple intersection local time for Brownian motions, the quantity formally

written as
a([0,1] P)_f ]_[f 5.(B;(s)ds | dox.

The key estimates in the upper bound are the following moment estimates. Their proofs will be
given in Section 4.

Lemma 2.2. For any integer a > 1, let tq,t,, -+, t, be positive real numbers satisfying t,+---+t, = t.
Then for any integer m > 1,

EOp < Y. mﬁm(vk(t 0. (2.5)

kq+ko+-+kg=m,
kq,kg, kg =0
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Consequently, for any 6 > 0,

>3, O™ 1 o O™ 1
D EV) < Z — (B(V(1))). 2:6)
m= O i=1 m=0
Lemma 2.3. There is a constant C depending only on d and p such that:
(1). Whend =2andp = 2,
sup sup EUW2Y)expd € (( gt) ) WV.(eNYCPD L < 0. 2.7)
t=>3 Y1:Y2,5Yp t
(2). Whend =3 and p =2,
C
sup sup E’172 exp {—Vr(t)Z/B} < 00. (2.8)
£>3 y1.72 t1/3

The proof of the upper bound

Let s > 0 be fixed. By Lemma/(2.2, we get

0 gm (b(t)(logt)p

m' t

m=0

[F1+
ud b(t)(logt)P e
< (Z m! (M) G )

m=0

) (EV’”(t))P

By (2.3), Lemma 2.3, and dominated convergence theorem, we have

i 30 (PR ot

t
m=0 (2.9)

2 2nO)™ m 1
:Z( ;') s? (E(a([0,1]P)™))>.

m=0

So,

hmsolipml gZ (w) (Evm(t))p

<tiog 3, 2T (Bal (0,117

s
m=0
Now applying the large deviation result for Brownian intersection local time given by Chen (Theo-
rem 2.1, [11]), we obtain the upper bound:

sll)n(}o 5 log Z

—sup{ZnGlp — —K(2 p) » _pl Ll}
A>0

_ -1
_L (_Z(P 1))p (210)Px(2, p).
p p

SP(Ea([O DLE
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2.2 Lower bound

We will use the Feynman-Kac semigroup method (cf. [12]) to prove the lower bound. The key is to
find a proper Feynman-Kac type operator and obtain a good lower bound.

Notice that for any non-negative, bounded and uniformly continuous function f on R? with ||f]] =
1, for any integer m > 1,

b m
E (J f (V ?X) Iixew, (t)}dx)

b(t) l_[f(xk)E (HI{\/%xkewr(t)}) dxy -+ dxp,

R2m k=

m p 1/p
=l (ﬁ) URM (Egl{ ﬁxkewr(r)}) dxl"'dxm) (2.10)

_ 1/p
£\ AL
~(5t5) " | | LT ot
RTH

j=1k=1

" (EV," ()P

Therefore,

m m/
0 (%togt)i“) p(EVrm(t))l/p

m=0
m=0 """ R2
=E eXP{GWJ f (\/ ?X) I{err(t)}dx}) :
RZ

Therefore, the lower bound transfer to estimate the following linear operator T on L?(R?) defined

by
b(t) 2(md
(TE)(x)=E, | exp f s Iiyew,epdy ¢ E(B(t)) & € L*(RY).
Rd

Lemma 2.4. T is a self-adjoint operator on L*(R?).
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Proof. For any &,n € L2(R?),
(1. TE) = J N(0E, (exp{ J f(Viy) I{yewm}dy}g(ﬁ(m) dx
:f n(x)E(exp{JRdf(r(x+y) I{yew(t)}dy}i(x—l-[a’(t)))dx
( f n(x)exp{ f f (Viriee+ ) I{yew(t)}dJ’}g(X"‘ﬁ(f))dx)
U n(x — ﬁ(t))exp{fwf \/7 (x+y- [D’(t)))l{yew(t)}dy}E(x)dx)
= U n(x+/5(t))exp{f f \/7(x+y) I{yew(t)}dy}g(x)dx)
(

J n(x+ﬁ(t))exp{ J fF (VT e+ I{yew(t)}dy}é(x)dx)

=E

=E

=E
{Tn,&)

where {'(s) = —B(t) + B(t —s),0 <s < t} 4 {B(s),0 <s < t}, and W/(t) is the Wiener sausage
associated with B'(s).

O
The following lemma plays an important role in the lower bound. Its proof is given in section 6.
Lemma 2.5. Let f be bounded and continuous on R,
(1). If d = 2 and b(t) satisfies (1.4), then
1 b(t)logt [ b(t
liminf ——logE | exp ()—og f Qx Iiyew. (pdx
t—oo  b(t) 21t R2 t
(2.12)
1
> sup {f f(x)g?(x)dx — EJ <Vg(X),Vg(X))dX}-
geH, R2 R2
(2). If d = 3 and b(t) satisfies (1.7), then
1 b(t) b(t)
lltl‘I_l)glfﬁ logE | exp Cy— RSf Tx Iiyew,oydx
(2.13)

1
= sup {J f(x)gz(x)dx—EJ (Vg(x), Vg(x)>dx}-
R3 R3

8EH,
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The proof of the lower bound

We now complete the proof of the lower bound. By (2.11) and Lemma 2.5} we have

00 m m/
hmmfbil Z%(w) p(EVrm(t))l/p

t—oo b(t) / t
> sup {mef Flx)g2(x)dx — lj (Vg(x), Vg(x))dx}.
geHt R2 2 R2

Taking supremum over all non-negative, bounded and uniformly continuous function f on R? with
|Iflq = 1, the right hand side becomes

1/p 1
sup 1 276 (J |g(x)|2pdx) ——f (Vg(x),Vg(x))dx
R? 2 Jge

=%/ 2]

. -1
= 1 (M)p (2719)p1<(2,p)21’
P p

where the last step follows from Lemma A.2 in [11].

(2.14)

3 Laws of the iterated logarithm

We prove Theorem (1.2 in this section. The upper bound of the law of the iterated logarithm is a
direct application of Theorem 1.1 and Borel-Cantelli lemma. So we only give proof of the lower
bound. Because the proof of the case of d = 3 is analogous, we only prove the case of d = 2. That is

limsup— 8y iy s anp (2 o K202, as (3.1)

t—oo  t(loglogt)P~1 " p ’ ’ o )
We first give some notations and a basic lemma which is the main tool to prove (3.1). For each
X = (x1,xg,°0,Xx,) € (R?)P, write ||x|| = max; <j<, |x;|, and let P* denote the probability induced
by the p independent Brownian motions f3;(s), B(s), - - - ,(s) starting at x;, x5, - , X,,, respectively.
E* denotes the expectation correspondent to P*. To be consistent with the notation we used before,
we have P00 = p EO0- 0 = E,

Lemma 3.1. (1). Let d =2 and p > 2 and let (1.4) hold. Then

1 _
hmmf— log inf P* (Vr(t) >A b(t)P~ 1)
b(O) yai< /35 (lo f)p 3.2)

p _p _2 p
>~ (2m) FIk(2,p) P
2). Let d =3 and p = 2 and let (1.7) hold. Then

hmmf—log inf  PY(V.(t) > A/ tb(t)?
OB ( ) (3.3)

> —(27'cr)_§1<(2,p)_§7t§.
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Proof. The proof is analogous to Lemma 7 in [12]. We only prove (3.2). For given y =
(V1Yo > ¥p) €(R*P and m > 1,

m

yym —
E'VI(t) = , l_[I{xmewJ(r)}dx
]_

£R2)m l_! (H {Xk""J’jEer(t)}) dxy - -dxy
]: =

p m P 1/p.
= (J (E (l_[ I{xk+yj€er(t)})) dxy "'dxm)
j=1 \J(®RH)™ k=1

[l
=
N,

3
N
23]
< N

T
on
=
m
=
~_
~
e
QL
=
A
o
=
3

Therefore, by (2.1), we have

m/
limsup - )logZ (b(t)(logt)P) P(quEerm(t))l/p
Yy

t—00

_ 1
< 1 (M)p (2n9)p,<(2’p)2p
p p

It is easy to see from Theorem 4 in [12] that (3.2) is a consequence of (3.4) and the following

1/p
1 ® o™ rp(t)(logt)P\™P
liminf—logg —(M) ( inf EyVm(t))
t—co  b(t) — m! t I71I<y/Tc

_ -1
> 1 (M)p (2n9)p,<(2,p)2p.
p p

(3.4)

(3.5)

For € > 0, set B,(x) = {y; |x —y| < e\/l—[}, B, = B,(0) and

p
1
Vr,e(t) :f | | (J mI{X—ZGer(t)}dZ) dx
R? j=1 z€B, It

where |B,| denotes the Lebesgue measure of the set B,. For any function f on R2, define
1
fe(x)=— flx+y)dy.
e Jiylze

Let f be a non-negative, bounded and uniformly continuous function on R? with ||f|] q = 1. Similar
to (2.10), for any integer m > 1 we have

U (Vi) U Lt Zewm}dz)d") <) EIOY @6
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and

L
=j f (\/ltj(x +z)) (J |Bl |I{x€W(t)}dZ) dx
R2 i

€B,

=ltf ﬁ[{xewr(t)} (f f (\/FX +Z) dZ) dx
RrR2 7t lz|<e
:f Iixew, o fe (\/7 )dx

Hence, we have

E

~

and

D

f Ixew,(1fe (\/ lt_lx) dx)m < (lt)p;_lm (EVr';(t))l/p
RZ
Z

m ( b(t)(log t)P ) m/p (Evm(t)) 1p
= V€

z;)_n: (b(t)logt) E (J;R I{xew (t)}fe ( lt_lX) )

b(t)logt
ij‘ {er(t)}fe }

3<D§|

=Eex

o
—

By lemma 2.5, we have

0 om m/

1
> sup {270 | fo(x)g*(x) — 3 J (Vg(x), Vg(x))dx}
ge% R2 R2

1
= sup {277:0f F(x)(g*)e(x) — EJ (Vg(x), Vg(x)>dx}.
R2 R2

8EH,

Taking supremum over all non-negative, bounded and uniformly continuous function f on R? with
|If1lq = 1 in the last inequality, we get

1 2, 0™ (b(O)(logt)P\™P N1
htrgg)lfmlo Z - (f) (EVr’e(t))

VI (3.7)
> sup | 2716 U I(gz)e(x)lpdx) _EJ (Vg(x), Vg(x))dx
R? R?

geH,
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Take [, = ﬁ. Then

m
yym _
EVV"(t) = l_[I{X-i-yjeWJ(t)}dx
]R ]—
B E dx+---d
J(®2)ym l:! (l_[ {xk+yJ€W1(r)}) X1
Co (e
> J g2 l_[E l_[I{xk"‘.Yjeer([lt,t])} dxl ...dxm
(R)™ j=1 k=1
Co (e
> l_[E l_[Hﬁj(lt)EBf(yj)}I{xk""yj_ﬁj(lt)ewrj(t—lt)} dxl . dxm
J (@)™ j=1 k=1

where ﬁj(t) = B;(t +1;) — B;(I;)- Notice that

m

E (l_[ I{ﬁj(lt)eBt(Yj)}I{xk+yj—ﬁj(l[)Eer(t—lt)})

k=1 i

=E (I{ﬁj(l[)EB[(y,-)} l_[I{xk+yj—ﬁj(lt)€W,j(t—lt)})
‘o

=LeBt(yj)plt(Z)E (g I{xkﬂj_zewrj([o’t_lt])}) “

m
> .
1I<n]l£lp zellan(gfj)pl (=) E (kl:! I{xk—ZGWrJ(f—lr)}) dz

Z€EB;

m
ZY(f)J E (l_[ I{xk—zewrj(t—lt)}) dz
2€B, k=1

where y(t) = min; <<, infzeBt(yj)plt(z) min; <<, infcp ) 2;1 e
ity density of $(I,)). We have

p m
E'VT(t) > (y(t))l’f l_[ (J E (l_[ I{xk—ZEer(t—lt)}) dz) dxy---dx,,
(R2)m j=1 \ Jz€B, k=1

m
=(r())’E J (J {Xk—ZEer(f—lt)}dz) daxy---dxm
(R2)m j=1 2€B, k=1

p m
=(y(t))’E J2 J J l_[l_[I{xk—zJGW ez dzpdx o diy,
(R#)™ Jz,€B, 2,€B, j=1 k=1

22/21[ and plt(z) is the probabil-
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m

P
=(y(t))PE f . J _ JRzl_!I{x_zjew!(t_zt)}dx dzy---dz,
21&5, zp€B, j=
( , p
SOV J eB f ez B fRzHI{X—ZﬁWﬂ(r—lt)}d’c dz, ---dz,
21 t Zp t j=
( 1 p m
=(y(t))P|B.|’E J B_l_[ f {X ZEer(t_lt)}dz dx
:] ZE

where the fifth step follows from Jensen’s 1nequality. It follows from inf,.,v(t)|B,| > O that for
some constant 6 > 0 and for any t > 0,

m

1 p
inf Eyvm(t)_5E f i (J I dz)dx
I71I<4/T; g2 1Bl l_[ seB, {x—zeW] (t—1,)}

By (3.7) with t replaced by t — [,, we obtain

1 & oM [ b(t)log )P\ ™ R
hmlnfmlo Z — (f) (”y'llr(lf/_EYV (t))

Z sup {271'9( |(8®)e()Pdx)P — %J (Vg(X),Vg(X))dX}-
R2

gEHS, R?

Finally, we let € — 0" on the right hand. Then (3.5) follows from (2.14). O

We now complete the proof of (3.1). Let n; = kX, k > 1. Since V,(ng41) > V.([ny, ng111), we only
need to prove that for any
A< @ny (2/p)" " k(2,p)?,
: (logny41)”
lim sup —
k—oo Ni41(loglogny )P
First, applying (3.2) with b(t) = loglogmax{t, 27}, we get

Vil D=4 as. (3.8)

loglo p-1
ny.41(loglogny 1) A}:OO, (3.9)

inf P { V(g — ng) >
{ (P = e (logny1)P

; [1%1|< 4/ ng11/ loglog ny4y
Let us consider the 2p-dimensional Brownian motion f(s) = (8;(s), -, By(s)). Then by the law

of the iterated logarithm of the Brownian motion and 4/n; loglogn, = o(\/ niy1/loglogng, 1) as
k — oo, we have that with probability 1, the events

{IBIl < Vngia/loglogneyr b, k=1,2,---

eventually hold. Therefore, (3.9) implies

_ p—1
B _ ny41(loglogny ) .
E PP {Vr(nkH ne) > (o8 ey )? Ap =00, as (3.10)

and so by the Markov property and the conditional Borel-Cantelli lemma, (3.8) holds.
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4 High Moment estimates

In this section we prove Lemmas|2.2 and|2.3| Our proofs are analogous to the case of the range of
random walk ([24][12]). There also exist some technical difficulties. For examples, the range R,
of the random walk has a natural upper bound n, but |W,.(t)| < t is not true. In the case of Wiener
sausage, the behavior of the Wiener sausage within a short time should be concerned.

We first prove Lemma/2.2, which is a conclusion of the following lemma.
For A C R, denote by

W,(A) = B, (BG)), V:(A) =W AN WAA)N---n WP(A).
seA

Let us make a decomposition of the domain [0, t] which is come from Chen ([12]). Let a > 2 be
an integer and let t; =0 and t{, ty,- -, t, be positive real numbers satisfying to +t; + -+ t, =t.
Write

Aiz[t0+t1+"'+ti_l,t0+t1+"'+ti], i=1,-~,a

f nzl{yew’m %

and

j=1i=
Then it is obvious from I iy, < hI- I ewica,y that
p
V,(t) = f d [ 1y ewicndy <A 4.1)
RY j=1
Lemma 4.1. For any integer m = 1,
my: k; 1
(EA™) < kl,kz F[ (BVE ()7 “42)
kq+ko+++kg=m i=1
ky,kg, kg =0
Consequently, for any 6 > 0,
Qm a (o) Gm l
Z —(EA’”)P <[ 12— (Bvren)’. (4.3)
m=0 i=1 m=0
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Proof.

[SHTN

eewi(ay | 41dY2 - dym

m a p %
N ( (E (l_[ I{ykewr(ai)})) dy;dy,- --dym)
(RI)™ k=1 i=1

p 1
a
s ( Z E(l{ylewf(Ail)}"'I{ymGWr(Aim)}) dy;--dyn
R il “’im:]-

ﬁ
=
O
=
I
=
2
=
e
s
I~
—~

a

p p
S‘ Z:—1 (J(]Rd)m (E(I{‘ylewr(Ail)}”.I{ymewr(Aim)})) dJ’l"'dJ’m)

i1, im

Given integers i,,i5,**,i,, between 1 and a, let k;,k, -+ ,k, be the number of occurrences of
i=1,i=2,---i =a, respectively. Then k; + k, +---+ k, = m. In order to get (4.2), we need only
to prove

J( 4 E1ysew, a1 Timema, )Py dyn < [ [E@S @), 4.4)
o i=1

Let {Z,,s > 0} denote the o-algebra filter generated by {£(s),s > 0}. Then

p
f (E(I{yleW,(Ail)} e I{ymEWr(Aim)})) dyy---dy,
®)™

a p
- E l_[I{inWr(Ai)}"'I{y,i_eW,(Ai)} dyi- --dy]fa
®Y)mka \ J(r)a i=1 (

dyll...dylil ...dy:fll—l._'dykatl
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and

p
f(ﬂw{ (nf{yleww I{ykewm})} dyj---dyj,

p
(Rd)k { (l_[I{JﬁEW(A)} I{yk eW(A)}lgt t )}} dyi‘...dyila

a— p
(Rd)k{ ( Lyiew, a0y I{y;;iew,(Ai)}Eﬁ(r—ra)U{yfewr(ta)}'“I{y;aew,(ra)}))}

i=
a

Y1 dyk

a—1
I
i=1

-1

Il
:|~a

iew/ At ) ewl e

1

.
Il
~.

J(]Rd)k l_[EﬁJ(t (I {yiew (e} I{yk ew!(t, Wayy--dyg

j:
p a—-1
<E{[] | 1 yiewicany Tyt ewdicany™
j=1i=1 i
1
P p ]
. P . a e e a
[ J o~ (Eﬁ,—(f—fa(l{yfewﬂ(ra)} Ty ewz(ra)})) dyy---dy,
j=1 (R%)fa “
p a-1
<E l_[ | 1 iiewicans ™ Tt ewicay ™
j=1i=1 !
p a a
U (E(I{yfews(ra)} Iy ew&(ra)})) dyy "'dyka) }
(R)ka ¢
p a—1
et . : cee . - ka
=E l—! | jew/any ™ o ew/an E(V,(to)).
j=1i=
Repeating this process gives (4.4). (4.3) is easy to get from (4.2). O

We now prove Lemma|2.3| We first give the following useful lemma.

Lemma 4.2. For any integer m > 1, E(V™(t)) < (m!)P(E(V,.(t)))™.

Proof. Set T(y) = inf{s > 0;(B(s) — y| < r} and T;(y) = inf{s = 0;|B;(s) — y| < r}. Zm denotes

1915



the set of all permutations on {1,2,---,m}. Then

m_p
E(V'(t))= E f l_[ I{yiewrj(t)}dJ’r'-dym
(RIY™ i=1 j=1
4.5
N , (4.5)
= J E(Hf{yiewr(r)}) dyi--dYpm.
(RE)m i=1

It is easy to see that P{y € W,.(t)} =P{T(y) < t}, and P{y € er(t)} =P{T;(y) < t}. Hence, by the
strong Markov property, we have

E(V" (1))

= ( ( Z P (T(ya(l)) STWoe) < S TYomm) < t))pdyl cedy,
J(rdym Uezm

( mP P(TOD)STY) < <T(ym) <)) dydym
GOk

P
= ( (m!)? {E{E(IT(yl)ST(yz)s-~~5T(ym)§t|9T(ym_1))}} dyy -+ dym
J(Rd)m

IA
e

p
S(m’)pf( , {E{lronsrons<rvnnzoBsao, o=t} dye-dyn
R m

p
I{Ti(YI)STJ(YZ)S"’STj(Ym—l)Sf}Eﬁj(T(ym—ﬂ)(I{Tj(}’m)St}) dyy -+ dym
]:

= (m!)pf E
(RI)m

j=1
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and by Holder’s inequality,

p
JdE l_[I{T,»(yl)STj(yz)smsn(ym_l)sr}Eﬁj(T(ym_l))(I{Tj(ym)sr}) dym
R j=1

:"t;

L7 ()< (7)< < T (Y 1)<t}f l_[E/sjcr(ym UirGm<e)dYm

~.
Il
-

=1

.

':|~a

p
Iy )< T, ()< <T (Y )<t} J( ) (Eﬁ(T(ymfl))U{T(ym)sr})) dYym
R

~.
I
-

P P
<E {HI{TJ(y1)<T;(y2)<~--<T(ym1)<t} l_! (JRd (Eﬁj(T(ym-lD(I{Tj(ym)if}))pdym)
J:

\

p
=E l_[1{Tj(yl)sn(yz)s---sr,-(ym_l)sr}} x EV,.(0).
j=1

Repeating this procedure yields the conclusion of Lemma O

Remark 4.1. We borrow the method from ([24]) in which the analogous result for intersections of the
ranges of random walks is given by LeGall and Rosen. But we need a different analysis when applying
the Markov property at time T (y;) due to V,(t) is a continuous version of the intersections of the range
of random walks.

Using Lemma 4.2, we get the following high moment estimates.

Lemma 4.3. There is a constant C depending only on d and p such that:
(1). Whend =2 and p > 2,

E(V™(t)) < (m!)P~ic™ , =1,2,---, t>3. .6
(V"(t)) < (m!) ((logt)p) m > (4.6)
(2). Whend =3 and p =2,

E(V™(t)) < (mD2C™t?, m=1,2,---,t>3. 4.7)

-1
Proof. We only prove (4.6) because the proof of (4.7) is analogous. We first consider m < (log t)b.
Let [(m,t) = i + 1, write [ for I(m, t) for simplicity. Then, by Corollary 2.2 and Lemma and
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Lemma[2.1]
(EV(6)r

s Z m#m(vkl(zm PE(VER()))7 - BV (1))

m!
< -
= Z kilky!- k!

kq+ko++t+km=m
kq,kg, km=0

= ( 2m —1 ) mI(EV,(1))"/?

ky
P

Kythy! -kl (ECV, (1)) 7 BV, (D) 7 -+ (BV, (1)) 7

m

om —1 w( t/m O\
= ( m )"”C ((mgnp)
b1 t \™Pp
s (Gy)

By the help of Lemma|4.2 with p = 1, we have EW"(t) < m!(EW,(t))™. For the case m > (log t) -2,

EV"(t) <EW™(t) < m!(EW,(t)"

St " . t m ((log )P 1\"
<mi” (i) <o (s ) (“e)

m
<mP~Icm ! )
- (log t)P

Therefore, (4.6) is valid. O

Remark 4.2. The proof is based on a decomposition of the time interval [0, t] which comes from Lemma
1in [12]. When m is large enough, the behavior of the Wiener sausage within a short time must be
concerned.

The proof of Lemma (2.3, (1). For given (yq,Ya,"*,¥p) € (R?)P and m > 1,

m

p
E012 V(1) = B fﬂf{xﬂ.ewﬂ(t)}d’c
R2 ]:1 !
p m
(R2)m j=1 k=1

p p 1/p.
< l_[ (f , ( (l_[ {xk+yJ€WJ(t)})) dxl .. 'dxm)
j=1 R2)™
J ( (l_[I{kaW (r)})) dxy -+ dxy,
(RZ)m

= E(V™(t)).
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Therefore, by Holder’s inequality, we have

p~ m/(p—1)
((logt)) sup  EQ0Y2Yn)(V (¢))y™ @0

Y1.Y2,5Yp

IA

log )P\ W/@=D)
Y1:Y2,Yp

((log t)P ) m/(p—1) {EVrm(t)}l/(p_l)
C™m

IA

IA

1/(p—1)

where the last step follows from (4.6) and C is a positive constant. Lemma|(2.3 follows from a Taylor

expansion.

(2). By Lemma 4.3|and Jensen’s inequality, we have

EVZ/3(t) < (BV™(£))F <mIC™t™3, m>1.

For given (y1,y,) € (R®)? and m > 1,

m

2
E(yl,yz)vrm(t):E f l_[I{xﬂjew,j(t)}dx
R? j=1

2 m
— J(Rz)m l_!E (ﬂ I{xkﬂjewrj(t)}) dx;---dx,,
j= =

2

m
= J E2 l_[I{xkEWr(t)} Xm"'de
(RH)m k=1

— E(V™(t)).

Therefore, one can get (2.8]) by Taylor expansion.

m
2 5 DR
<[] U E (Hl{ijew#(r)})dxl A
j=1 \J(®>)™ k=1

)

5 Exponential moment estimates of the Wiener sausage

In this section, we give some exponential moment estimates of single Wiener sausage which will be

used in the proof of Lemma|2.5|

From ([27]), we have the following asymptotic behavior of the expectation of the Wiener sausage:

1%)7; (kz)gtt)z(l +7v —log2+2logr) +o(g
E\W.(6)| =

2nrt + 427122 4 o(t1/2)

1919

t)2

) d=2

(5.1
d=3



Lemma 5.1. (1). Asd =2, for any 6 > 0,

Ologt
supEexp{ ——|W,.(t)| ; < o0. (5.2)
>3 t
(2). Asd > 3, forany 6 > 0,
0
supEexp{—lWr(t)I} < 00. (5.3)
t>3 t

Proof. We only prove (5.2). By Lemma 4.2 with p = 1, we have
E[W,(OI™ < m!(E[W,(6)D™.

By (5.1) and the Taylor’s expansion, we can easily get (5.2) holds for some 6, > 0. For any 6 > 0,
we choose § > 0 such that 8 < 6,[6] and denote k, = [6t], Then

flogt Ologt [6711+1
Eexp [W.(t)|  <Eexp W, (k)

t t
0, log k [6717+1
SEexp{‘)k—WWr(km}
t

where the first inequality is due to the subadditivity of the Wiener sausage and the Markov property
of Brownian motion. O]

Next, we will give an exponential estimate for |W,.(t)| —E|W,(t)|. The proof is analogous to Theorem
5.4 in [2]. The following lemma plays an important role in the proof of Lemma|5.3} which was given
by Bass, Chen and Rosen ([[1]).

Lemma 5.2. Let 0 < p <1 and {Y;({)}x>1 be a family (indexed by {) of sequences of i.i.d real valued
random functions such that EY;({) = 0 and

lim sup EefMOF =1,
0—0 ¢

Then for some A > 0,

supEexp {AI Z Yk(g)/mp} < o0.
ng k=1

Lemma 5.3. Set W,.(t) = |W,(t)| — E|W,(t)|. Then there is a constant C such that:
(1). When d =2,

sup Eexp

C(log t)?
t>27 t

|Wr(t)|} < . (5.4)

(2). When d =3,

sup Eexp

C _ 2
—\W, 3 . 55
>97 { tl/S(IOgt)z | r(t)l } <0 ( )
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Proof. (1). For t > 27, set N = [2(log2) !loglog t], so that 2V ~ (log t)?. Write

oN

W, (0] =D W, ([(k — D27, ke27™V )|
k=1

N
=3 W2k - 2)e277, (2k — D)e2 ) n W ([(2k — De2 7, (2K)e277]))

N

j=1k=1
and set
Br = W, ([(k — 127N, ke27N])|
and
aj = [W.([(2k —2)t277,(2k — 1)t27 ) nW,([(2k — 1)e277, (2k)e27/])].
Then

2N N 27!
AGEDWA ZZ
k=1

j=1k=1

where B, = B — Ef, and a; = a;j —Ea; . By Lemmal5.1, we have that

logt2 -N
supEexp{ A | ——— |[3’1|
t>27 t2

Therefore, by Lemma|5.2, there is a 6 > 0 such that

log t27N 2
sup Eexp{ §27N/2 < 00.
tZ§; P 2N ;E:

By choice of N it is easy to see that there is a C > 0 independent of t such that

/2108 t2™N ¢ (log t)?
t27N T t

So there is some C > 0 such that

log )2 |5 -
supEexp{ C (logt) Z[J’k < 00.
t>27 t P

Next, We need only to show that for some C > 0,

2 N 2~
supEexp4{ C ((logt) ) ZZ < 00. (5.6)

t=>27 1 k=1
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Set V.(t) = |[W.(t) N W/(t)|, where W/(t) is an independent copy of W,(t). Then, for each 1 <
JSN, {ajq,aj9, ", (_Xj,zj—l} is a sequence of i.i.d random variables with the same distribution as

V.(t277). By Lemmal2.3 (with p = 2), there is a § > 0 such that

{ 5(logt277)?

sup sup Eexp 5] | ]1|}<+oo.

t>27 j<N

By Lemma|5.2/again, there is a 6 > 0 such that

62712(log t)? 25
sup sup Eexp flz%ﬂ < +o0.
t>27 j<N t27 =

Hence for some ¢ > 0,

c22(log t)? 25,
M(c) = sup supEexp ( gt) |Z @l < oo.
t>27 j<N

Set Ay = ]‘[7:1(1 —277/2)yand A = ]‘[;";1(1 —277/2), Using Hélder’s inequality with 1/p = 1 —27N/2
and 1/q = 27N/2 we have

Ayc(logt)? | & 2

Eexp{ ——— ajk
t =1k=1
1-27N/2
1
Av—1c(log £)* R 2
< | Boxp | Bl IS8
j=1 k=1
2—N/2
Anc2N/2(log t)? 2
X | Eexp ; ay k
k=1
1
Ay_1c(logt)? [N3% :
<Eexp M a| + x M(c)? e
j=1 k=1

where the second inequality follows from the fact that Ay < 1. Repeating this procedure,

Axc(logt N 27 _ _
Eexp Ancliogt)” ( gt)? ZZ < M(c)? 1/24..49-N/2 < M(c).
=1k=
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So we have

Ac(log t)? L2
Eexp C( 2080 ) ZZ < M(c) < +o0.
j=1k=1
So holds.
(2). For t > 27, set N = [(log2) !logt], so that 2V ~ t. From the proof of (5.4)), we have
) 2N N 2/~
W(0)=> P — ZZ
k=1 1 k=1
where . .
B =W ([(k - 1)2_N’k2_N])|
and
ajr = W.([(2k - 2)— (2k—1) ])ﬂW([(Zk—l) (Zk) ])I-
Then

N 271

W, (0] < |Zﬁk|2/3+2 Za W2,

By Lemma/5.1/and 2V ~ t, for some A > 0

sup Eexp {)L|[51|} < 00.
>27

So there exists A > 0 such that

sup Eexp {AI[;lIZ/B} < 00.
t>27

Notice that f31, -+, By is an i.i.d sequence with Ef; = 0. By lemma 5.2, there exists 6 > 0 such that

2N
supEexp{ 02~ N/3|Zﬁ >3} < 0.
t>27 k=1

So there exists C > 0 such that

sup Eexp | Bel?® } < 0.
t>27 t1/3 Z

Next, we need only to show that for some C >0,

N 271

sup Eexp{ —— 123 < oo (5.7)
t22p7 P fl/?’(logf) 21: = %l
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Set V.(t) = |W.(t)N W/(t)|, where W/(t) is an independent copy of W,.(t). Then, for each 1 < j <
N, {@j1,Qj2, ", ;9 1} is an i.i.d sequence with the same distribution as V, ( -). By Lemma
for some 6 > 0,

su E —9 a3
psupEexp | —— a4 < +4o00.
t>27 j<N ()

By Lemma 5.2/ again, for some 6 > 0,

= gi-1

M(6) := sup supEexp{ —=]| 2P < +oo.
£>27 j<N 1/3 Z %

Write Ay = ]_[;V:l(l —j ™) and A, = ]_[;'il(l — j72). Then using Holder’s inequality with 1/p =
1—-N"2and 1/q = N2 we have

1
A6 (log2)* & 21 e
Eex a /3

( 1-N2
An_10(log2)? N=t 27
Eexp e |Z|Z ]k|2/3

t1/3(log t)? =

( v
AN9(10g2)2N2| Z |2/3
t1/3(log t)?

IA

k=1

\

a2t x MO

Av_+c(lo 221\’1211
<Eexp N1(8)|Z

t'3(logt)* S &

where the second inequality follows from the fact that Ay < 1. Repeating this procedure,

i—1

An0(log2)?? & & i

Eexp d,k|2/3 S M(9)1+2 +‘“+N .
3(log )2 Zl 1; ’

So (5.7) holds.
O

Remark 5.1. The analogous results for the range of the random walk R,, are proved in [2] and [13].
When d = 3, the author of [13] shows that there is a 0 > 0 such that

|Rn_ERn|
supE exp 92—/3 < 00,
n

n>1
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where the fact that R, < n is used. In the case of Wiener sausage, we can not find a proper upper bound
for |W.(t)|. That is why we can not improve the restriction on b(t) for d = 3.

6 Some estimates of the Feynman-Kac semigroup

In this section we show Lemma 2.5, The proof is also based on a decomposition of the domain [0, t]
and the exponential moment estimates of the Wiener sausage similar to [12].

We first give a weak convergence theorem of the Wiener sausage due to LeGall ([20]).

Lemma 6.1. Let f (x) be a bounded, continuous function on R%.

(1). Whend =2,

log t
2mt

(2). Whend > 3,

1
2ntr

1
%) Iixew,(opdx —— JO FBGDds, £ +oo. (6.1)
X d !
J;Rd f (ﬁ) I{xewr(t)}dx — J;) f(/j(S))dS, t — +o00. (6.2)

Proof. We only prove (6.1). By scaling, W,.(t) 4 \/?W%(l). Set € = % Then

log t f x ! p
27t g JT {xew, (01dX

_logt x : q
= 2nt |\ V7 ) ey pand

1 r
= log— I d
—log - JRZf(X) fxew,(13dx

1
< J FB(s)ds as t— oo,
0

where the last step is a direct consequence of Theorem 3.1 in [20]. O

Denote by

and

Ay = {g € P(RY); lIglly = 1,1 Vglly < 00}

Ai = [(i_l)lbilt]’i:lyzy'” . (63)

We now use the exponential moment estimates of the Wiener sausage and the Feynman-Kac semi-
group approach to prove the following lemma.
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Lemma 6.2. Let f be bounded and continuous on RY.
(1). Whend =2,

1 b(t)log(l,) &Y b(t)
htn_l)(ljglfmlogE exp TZ sz X | Lixew.apydx

i=1

(6.4)
1
> sup {J f0)g*(x)dx — EJ <Vg(x),Vg(X)>dX}-
gEH, R2 R2
(2). When d =3,
o0 83 ([0
liminf mlogE expy 5 le Jsz X | Lixew.apydx
= (6.5)

> sup {f f(x)gz(x)dx—lj (Vg(x),Vg(x))d }
R3

Proof. The proof is analogous to Lemma 5 in [12]. We only prove (6.4). Define the linear operator
T, on L2(R?) as follows: for any & € L2(R?),

logl,
(TE)x) = E (p{ — f 7 (Viy) I{yew,at»dy} S(ﬁam) -
t JR2

By Lemma 2.4, T, is self-adjoint. Let g be an infinitely differentiable function on R? satisfying
g(x) =0 for all x ¢ [-M,M]? and fRz |g(x)|?dx = 1. Set

g(\/l?lx) =l;1/2g( lt_lx), x € R?.
Vhwe? (Vi) dy

Let p,(x) be the probability density of 5(t). Let {Z,,s > 0} denote the o-algebra filter generated by
{B(s),s = 0}. Then by the Markov property, we have

J 1/ X I{xEW(A )}dX

Ei(x)=

logl ()]

Eexp

[b(t)

logl,
:fRzpz[(y)Ey exp 2, f (\/73() Iieew (aydx pdy
1
>___ 2 l_l d t
“sup, |g(y)I? {ijg (\/Ty) Y}JRQPQ(J’K (¥)x

loglt [b(t)]-1

By exp{ gt D) fsz(\/Fx)I{xew,(Ai)}dx EBUB(O] - 1L) | dy

i=1
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and

1 lt [b(1)]-1
E, [expi g D JRZf(ﬁx)I{xewerx E(BUIBO] - L) | dy

i=1

[b()] -1
log!, _
=E, (Ey (exp { 2, > fsz (\/ L; 1x) I{err(Ai)}dx}

i=1

E(BUIb(D)] - 1)&))‘%%&)]—2)4))

loglt [b(t)]-2 —
:Ey(exp{ 27‘Elt Z sz(\/lt 1x)1{x€Wr(Ai)}dx X

i=1
log!, _
Eﬁ(([b(t)]—2)lt)(eXP{ 2, fsz(\/Fx)l{xewr(l[)}dx}gt(ﬁ(lt)))))
logl, P2
=E, [expi o= > f £ (V172) Hwemqandx p TEBUIBO] = 2)1,))
t =1 Jr?

=1 e ).

Therefore
b
. logl, &8 - - [b(0)]-1
expi o D | F (VI Inewapdx p | 26 | &I TE )y
27l ~ Jre R?
where )
inf,ool, infye[_M)M]z ﬁ exp {—%}

sup, |g(y)?

In order to estimate f & ( y)Tt[b(t)]_lé +(¥)dy, let us consider the spectral representation of T,:

T, = J AdP;
0

where {P!,A > 0} is the spectral measure of T,. Then by f |g|2dx = 1, we see that (P&, &) isa
probability measure on R2, and by Jensen’s inequality we have that

o0

(£:00), TP e (x)) = f AL@I-1g(pte &)

0

00 [b(t)]-1
> (J ld(P,{ﬁf,ét)) = (&, Te& )OI,
0
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Therefore,

[b()]
1 logl
11rn1nf e )logE exp f f (@/ x) Iivew. (A, ypdx

> liminflog(&,, T, &,).
t—00

Next we calculate (§,, T,&,). Since

<€t’ Tt€t>

-1
AL AW a) [ o (i)
R? R?

X E, (exp{logl J (\/7}') Iiyew.q, )}dJ’}g(\/lFﬁ(lt)))dX
=1 JRZ g ( lt_lx)

XE (exp{l;fll f f (Vi e+ ) I{yew,a[)}dy} g (Vi +/3(zt)))) dx
=J g(x)E (eXp{lzglt J (x + \/73’) Iyew,q, )}dJ’} (x + \/l?lﬁ(lt))) dx,

RZ

it follows from (6.1), Lemma 6.1 and dominated convergence theorem that

1
lim log(¢,, T, &) = 10gf g(x)E, (exp {J f(ﬁ(S))dS} g(ﬁ(l))) dx.
R? 0
Let us consider the following the semigroup of linear operators on L2(R?) defined by

T/ g(x) =E, (exp U f(/a’(s))ds} g(/o’(t))) :
0

Then by Feymman-Kac formula, we see that the generator .&#/ of th is self-adjoint and satisfies
f 1 2
A'g=50g+fg g€CT (R

Let {Pf,k > 0} is the spectral measure of .&#/. Then by f |g|?dx = 1, we see that (P/{g,g) is a
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probability on R?, and by Jensen’s inequality we have
JRZ 8(x)E, (exp {Llf(ﬁ(S))dS} g(ﬁ(l))) dx
=(g,T] g) = JO T edpfe.g)
zexp{ L mAd<P{g,g>} = exp{(g,-'g)}

1
=eXPU f(x)gz(x)dx—EJ (Vg(x),Vg(x)>dx}-
R?2 R2

Therefore,

hm mf ——1logE{ exp

[b(t)
b() 2 J f(FX)I{XeW(A)}dX

> sup {f FOO2()dx — J (Vg(x), Vg(x))d }
R2

gt
[
Next, we will use Lemma 5.3 to prove that |W,.(t)| is exponentially equivalent to Z[b(t) [W.(A)I-
So we can transfer Lemma|6.2 to Lemma/2.5.

Lemma 6.3. Let € > 0 be fixed but arbitrary.
(1). If d = 2 and b(t) satisfies (1.4), then

. [b(0)] .
hrtllsolipmlogP ( ; (W.(AD] = IW.(D)]]| > e@) = —00. (6.6)
(2). If d = 3 and b(t) satisfies (1.7), then
. [b()]
l1rtrl)s(,)1§p e )logP ( ; W.(A)| = [W,.(6)]| > et) = —00. 6.7)

Proof. (1). By Chebyshev’s inequality, we need only to prove there exits a constant 6 > 0 such that

[b(8)]

1 0(logt)?
lim —— logEexp (Ogt) ZlW(A)| w0l b < 0. (6.8)

t—oo b(t)

By triangle inequality, we need only to prove there exits a constant 8 > 0 such that

[b(8)]
D EIW,(A)| - EW,(0)]

i=1

1 0(logt)?
lim ——logEexp{ ————— < 00 (6.9)

% (1)
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1 O(logt)? | .
hm—logEexp f|Wr(t)| < 00 (6.10)

50 b(e)
and
1 (Glogt)z [b(t)]
lim 5 logEexp ) —=— ;uwrmin—mwrmi)n < oo, (6.11)
By (5.1), one can easily get
[b(t)]
tlogb(t)
EW.(A)|—EW.(t)| =0 ——=
D EW, (2] - EIW,(0)] ((1ogt)2)

i=1
and so (6.9) holds.
By Lemma|5.3} (6.10) holds.
It remains to show (6.11). In fact, by the Markov property, we have

[b(0)]

0 (log t)?
O(logt)” Z (IW,.(AD] - E|Wr(Ai)|)‘

Eex
i=1

8(log 1)? [b(6)]
<|EBexpy——— 1w, (A - E[W, (A

which implies (6.11)).
(2). Set a > 0. Notice that

t—00

1 [b(1)]
lim sup bt )logP Z [W.(A)| — [W,.(t)]| > et

i=1
1 [b(t)] 2/3
=li —logP W.(A)| — [W.(t > et2/3
imsup 3 - log ;ﬂ (D) =W (0| =€
/ [b(t)] 2/3
<limsu log | e—cat?/Uogt? y poynd — — W.(A; W.(t
msup o log P\ liog Z| (2D = W, ()]
[b(t)] 2/3
=— 00+ limsu logEexp{ — W.(A: W.(t
Hoopb() BECXP A 3100 | Z| H(A) = W, (0)]

By triangle inequality, in order to get (6.7), we need only to prove there exists a constant a > 0 such
that

[b(t)] 2/3

lim sup —— D EW,(A)] - EW,(0)] < o0 6.12)
i=1

logEex
m su b() g p

t1/3(log t)?
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lim sup bt )logEeXp{tl/B(;;)2 ||W (t)| — E|w, (t)”Z/S} 00 (6.13)

t—00
and
[b(0)] 213
limsu logEexp{ ——— W.(A,; E|W.(A,; < 00. 6.14
Hoopb() BESXP | 70r e Z| (D)~ EW,(A)] (6.14)
By (5.1), it is easy to get
[b(t)]
Z EIW, (4] =~ EIW,(6)] = O(v/tb(1))
and so (6.12) holds.
By Lemma|5.3] there exists a constant ¢ > 0 such that
¢ 2/3
K :=supEexp{ ————7—= |W,
rz:ra) p{ 1/:“(logt)2| ()~ }
Therefore, (6.13) holds.
It remains to show (6.14). In fact, by the Markov property,
[b(t)] 213
Eexp{ ————— W,.(A)| — E|W.(A,
P\ liog ; (W, (AD] = EIW,(A)])

[b(1)]
< Bexp{ o W (ADI - EW A

which implies (6.14)).

The proof of Lemma|2.5] We only prove (2.12). Noticed that

b(t) [b(t)]
f f(” t )I{XEW(I)}dx> ZJ f( _X)I{XEW(A)}dx
RZ

b(0) [b(t)
fzf( TX) (Z Lixew, a0y ~ Txew, oy | 4|
R i=1

b(t) [b(6)]
f FiN—/x D Lxemay — Iixewy | dx
R? i=1
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So,

b(t)logt [b(t)
J: IEeXp{f‘f f ( TX I{xEW (t)}dx
R2
b(t)logt 2! b(t)
ZE exp f Z f TX I{er(A )}dx
n R2

i=1

b(t) [b(t)]
f TX Z I{XEWr(Ai)} - I{XEWr(t)} dx
R2 i=1
b(t)logt [5(e)] b(t)
e~ €b(DE ex f TX I{xEW (A )}dX
RZ

i:

b(t)logt [5(e)] b(t)
{ f — Iivew.(a3dx ¢ 1a,
RZ

Lie

Therefore,

1
max < liminf ——logJ, limsu
X{ o b() o il b(t)

o1
) long} > htrgglfm log.J;.

By lemma 6.2, we get

hmmf—long > —e+ sup {f Flx)g2(x)dx — lf (Vg(x),Vg(x))dx}. (6.15)
b() gEH, 2 2 R2

By Cauchy-Schwartz inequality,

1/2

2b(t)log ¢t W) b(t)
J2 S Eexp f Z f TX I{er (A )}dx X
n R?

i=1

1/2
P b(t) [%]I I st
sz t X ~ {xew, (A} {xew,(t)} X Elogt .
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Because f is bounded, we can assume inf, f (x) = m. Write ||f||,, = sup, f(x). Noticed that

b(t) [b(t)]
f fFAN—/* D Lxemagy — Ixew,y | dx
R? i=1
b(t) [b()]
= (J (f (\/ TX) —m) (Z Iixew, a0y — Tixew, oy | dx
R? i

i=1

[b(t)]
+ |m|J (Z Iixew.(a) _I{xewr(t)}) dx
RZ \ i=1
[b(t)]
< (lf =mllo + Im]) (Z [W,.(AD| - |Wr(t)|) -
i=1

Applying Lemma 6.3} we obtain

b(0) [b(t)]
J f TX Z I{XGWr(Ai)} - I{err(t)} dX
R? i=1

By (6.15) and (6.16), we need only to prove

2b(t)log t 2! b(t)
li logE e (| ——x |1 d . 6.1
imsup ;3 b( y log Eexp " Z sz X | Ixew,apdx <00 (6.17)

i=1

t
> e—) =—00
logt

(6.16)

1
limsup —— logP
ot B(E) (

Using the Markov property,

2b(t)logt 2! b(t)
lim sup bc )logEexp — Z f Tx Iixew, (A, ndx
t—00 - RZ

i=1

2b(t)logt (b))

< - - - .

lim sup ()logEexp 1£1leo = ;m(m
, 2b(t)logt (b(1)]

=limsup < logEexp |||l ————W,(A))|

2b(t)logt
<log sup Eexp 1 [|f |[loec——— . W.(ADI -

t>27

By Lemma|5.1} (6.17) holds.
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