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Abstract

Consider a vertex-reinforced jump process defined on a regular tree, where each vertex has

exactly b children, with b ≥ 3. We prove the strong law of large numbers and the central limit

theorem for the distance of the process from the root. Notice that it is still unknown if vertex-

reinforced jump process is transient on the binary tree.
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1 Introduction

Let D be any graph with the property that each vertex is the end point of only a finite number of

edges. Denote by Vert(D) the set of vertices of D. The following, together with the vertex occupied

at time 0 and the set of positive numbers {aν : ν ∈ Vert(D)}, defines a right-continuous process

X= {Xs, s ≥ 0}. This process takes as values the vertices of D and jumps only to nearest neighbors,

i.e. vertices one edge away from the occupied one. Given Xs, 0 ≤ s ≤ t, and {X t = x}, the

conditional probability that, in the interval (t, t + dt), the process jumps to the nearest neighbor y

of x is L(y, t)dt, with

L(y, t) := ay +

∫ t

0

1l{Xs=y}ds, ay > 0,

where 1lA stands for the indicator function of the set A. The positive numbers {aν : ν ∈ Vert(D)} are

called initial weights, and we suppose aν ≡ 1, unless specified otherwise. Such a process is said to

be a Vertex Reinforced Jump Process (VRJP) on D.

Consider VRJP defined on the integers, which starts from 0. With probability 1/2 it will jump either

to 1 or −1. The time of the first jump is an exponential random variable with mean 1/2, and is

independent on the direction of the jump. Suppose the walk jumps towards 1 at time z. Given this,

it will wait at 1 an exponential amount of time with mean 1/(2+ z). Independently of this time, the

jump will be towards 0 with probability (1+ z)/(2+ z).

In this paper we define a process to be recurrent if it visits each vertex infinitely many times a.s., and

to be transient otherwise. VRJP was introduced by Wendelin Werner, and its properties were first

studied by Davis and Volkov (see [8] and [9]). This reinforced walk defined on the integer lattice

is studied in [8] where recurrence is proved. For fixed b ∈ N := {1,2, . . .}, the b-ary tree, which

we denote by Gb, is the infinite tree where each vertex has b+ 1 neighbors with the exception of a

single vertex, called the root and designated by ρ, that is connected to b vertices. In [9] is shown

that VRJP on the b-ary tree is transient if b ≥ 4. The case b = 3 was dealt in [4], where it was

proved that the process is still transient. The case b = 2 is still open.

Another process which reinforces the vertices, the so called Vertex-Reinforced Random Walk

(VRRW), shows a completely different behaviour. VRRW was introduced by Pemantle (see [17]).

Pemantle and Volkov (see [19]) proved that this process, defined on the integers, gets stuck in at

most five points. Tarrès (see [23]) proved that it gets stuck in exactly 5 points. Volkov (in [24])

studied this process on arbitrary trees.

The reader can find in [18] a survey on reinforced processes. In particular, we would like to mention

that little is known regarding the behaviour of these processes on infinite graphs with loops. Merkl

and Rolles (see [14]) studied the recurrence of the original reinforced random walk, the so-called

linearly bond-reinforced random walk, on two-dimensional graphs. Sellke (see [21]) proved than

once-reinforced random walk is recurrent on the ladder.

We define the distance between two vertices as the number of edges in the unique self-avoiding path

connecting them. For any vertex ν , denote by |ν | its distance from the root. Level i is the set of

vertices ν such that |ν |= i. The main result of this paper is the following.

Theorem 1.1. Let X be VRJP on Gb, with b ≥ 3. There exist constants K
(1)

b
∈ (0,∞) and K

(2)

b
∈ [0,∞)
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such that

lim
t→∞

|X t |
t
= K

(1)

b
a.s., (1.1)

|X t | − K
(1)

b
t

p
t

=⇒ Normal(0, K
(2)

b
), (1.2)

where we took the limit as t → ∞, ⇒ stands for weak convergence and Normal(0,0) stands for the

Dirac mass at 0.

Durrett, Kesten and Limic have proved in [11] an analogous result for a bond-reinforced random

walk, called one-time bond-reinforced random walk, on Gb, b ≥ 2. To prove this, they break the

path into independent identically distributed blocks, using the classical method of cut points. We

also use this approach. Our implementation of the cut point method is a strong improvement of the

one used in [3] to prove the strong law of large numbers for the original reinforced random walk,

the so-called linearly bond-reinforced random walk, on Gb, with b ≥ 70. Aidékon, in [1] gives a

sharp criteria for random walk in a random environment, defined on Galton-Watson tree, to have

positive speed. He proves the strong law of large numbers for linearly bond-reinforced random walk

on Gb, with b ≥ 2.

2 Preliminary definitions and properties

From now on, we consider VRJP X defined on the regular tree Gb, with b ≥ 3. For ν 6= ρ, define

par(ν), called the parent of ν , to be the unique vertex at level |ν | − 1 connected to ν . A vertex ν0

is a child of ν if ν = par(ν0). We say that a vertex ν0 is a descendant of the vertex ν if the latter

lies on the unique self-avoiding path connecting ν0 to ρ, and ν0 6= ν . In this case, ν is said to be an

ancestor of ν0. For any vertex µ, let Λµ be the subtree consisting of µ, its descendants and the edges

connecting them, i.e. the subtree rooted at µ. Define

Ti := inf{t ≥ 0: |X t |= i}.

We give the so-called Poisson construction of VRJP on a graph D (see [20]). For each ordered pair

of neighbors (u, v) assign a Poisson process P(u, v) of rate 1, the processes being independent. Call

hi(u, v), with i ≥ 1, the inter-arrival times of P(u, v) and let ξ1 := inf{t ≥ 0: X t = u}. The first jump

after ξ1 is at time c1 := ξ1+minv h1(u, v)
�

L(v,ξ1)
�−1

, where the minimum is taken over the set of

neighbors of u. The jump is towards the neighbor v for which that minimum is attained. Suppose

we defined {(ξ j , c j), 1≤ j ≤ i − 1}, and let

ξi := inf
�

t > ci−1 : X t = u
	
, and

jv − 1= ju,v − 1 := number of times X jumped from u to v by time ξi .

The first jump after ξi happens at time ci := ξi+minv h jv
(u, v)

�
L(v,ξi)

�−1
, and the jump is towards

the neighbor v which attains that minimum.

Definition 2.1. A vertex µ, with |µ| ≥ 2, is good if it satisfies the following

h1(µ0,µ)<
h1

�
µ0, par(µ0)

�

1+ h1

�
par(µ0),µ0

� where µ0 = par(µ). (2.3)
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By virtue of our construction of VRJP, (2.3) can be interpreted as follows. When the process X

visits the vertex µ0 for the first time, if this ever happens, the weight at its parent is exactly 1 +

h1

�
par(µ0),µ0

�
while the weight at µ is 1. Hence condition (2.3) implies that when the process

visits µ0 (if this ever happens) then it will visit µ before it returns to par(µ0), if this ever happens.

The next Lemma gives bounds for the probability that VRJP returns to the root after the first jump.

Lemma 2.2. Let

αb := P
�
X t = ρ for some t ≥ T1

�
,

and let βb be the smallest among the positive solutions of the equation

x =

b∑

k=0

xkpk, (2.4)

where, for k ∈ {0,1, . . . , b},

pk :=

k∑

j=0

�
b

k

��
k

j

�
(−1) j

∫ ∞

0

1+ z

j + b− k+ 1+ z
e−zdz. (2.5)

We have ∫ ∞

0

1+ z

b+ 1+ z
be−bzdz ≤ αb ≤ βb. (2.6)

Proof. First we prove the lower bound in (2.6). The left-hand side of this inequality is the prob-

ability that the process returns to the root with exactly two jumps. To see this, notice that L(ρ, T1)

is equal 1 +minν : |ν |=1 h1(ρ,ν). Hence T1 = L(ρ, T1) − 1 is distributed like an exponential with

mean 1/b. Given that T1 = z, the probability that the second jump is from XT1
to ρ is equal to

(1+z)/(b+1+z). Hence the probability that the process returns to the root with exactly two jumps

is ∫ ∞

0

1+ z

b+ 1+ z
be−bzdz.

As for the upper bound in (2.6) we reason as follows. We give an upper bound for the probability

that there exists an infinite random tree which is composed only of good vertices and which has

root at one of the children of XT1
. If this event holds, then the process does not return to the root

after time T1 (see the proof of Theorem 3 in [4]). We prove that a particular cluster of good vertices

is stochastically larger than a branching process which is supercritical. We introduce the following

color scheme. The only vertex at level 1 to be green is XT1
. A vertex ν , with |ν | ≥ 2, is green if and

only if it is good and its parent is green. All the other vertices are uncolored. Fix a vertex µ. Let C

be any event in

Hµ := σ(hi(η0,η1) : i ≥ 1, with η0 ∼ η1 and both η0 and η1 /∈ Λµ), (2.7)

that is the σ-algebra that contains the information about X t observed outside Λµ. Next we show that

given C ∩ {µ is green}, the distribution of h1(par(µ),µ) is stochastically dominated by an exponen-

tial(1). To see this, first notice that h1(par(µ),µ) is independent of C . Let D := {par(µ) is green} ∈
Hµ and set

W :=
h1

�
µ0, par(µ0)

�

1+ h1

�
par(µ0),µ0

� where µ0 = par(µ). (2.8)
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The random variable W is independent of h1(par(µ),µ) and is absolutely continuous with respect

the Lebesgue measure. By the definition of good vertices we have

{µ is green} = {h1(par(µ),µ)<W} ∩ D.

Denote by fW the conditional density of W given D ∩ C ∩ {h1(par(µ),µ)<W}. We have

P

�
h1(par(µ),µ)≥ x

�� {µ is green} ∩ C
�

= P
�

h1(par(µ),µ)≥ x
�� {h1(par(µ),µ)<W} ∩ C ∩ D

�

=

∫ ∞

0

P

�
h1(par(µ),µ)≥ x

�� {h1(par(µ),µ)< w} ∩ C ∩ D ∩ {W = w}
�

fW (w)dw

(2.9)

Using the facts that h1(par(µ),µ) is independent of W, C and D and

P(h1(par(µ),µ)≥ x | h1(par(µ),µ)< w)≤ P(h1(par(µ),µ)≥ x),

we get that the expression in (2.9) is less or equal to P
�

h1(par(µ),µ)≥ x
�

. Summarising

P

�
h1(par(µ),µ)≥ x | {µ is green} ∩ C

�
≥ P
�

h1(par(µ),µ)≥ x
�

. (2.10)

The inequality (2.9) implies that if µ1 is a child of µ and C ∈Hµ we have

P

�
µ1 is green | {µ is green} ∩ C

�
≥ P
�
µ1 is green

�
. (2.11)

To see this, it is enough to integrate over the value of h1(par(µ),µ) and use the fact that, condition-

ally on h1(par(µ),µ), the events {µ1 is green} and {µ is green}∩C are independent. The probability

that µ1 is good conditionally on {h1(par(µ),µ) = x} is a non-increasing function of x , while the dis-

tribution of h1(par(µ),µ) is stochastically smaller than the conditional distribution of h1(par(µ),µ)

given {µ is green} ∩ C , as shown in (2.10).

Hence the cluster of green vertices is stochastically larger than a Galton–Watson tree where each

vertex has k offspring, k ∈ {0,1, . . . , b}, with probability pk defined in (2.5). To see this, fix a vertex

µ and let µi , with i ∈ {0,1, . . . , b} be its children. It is enough to realize that pk is the probability that

exactly k of the h1(µ,µi), with i ∈ {0,1, . . . , b}, are smaller than
�
1+h1(par(µ),µ)

�−1
h1

�
µ, par(µ)

�
.

As the random variables h1(µ,µi),h1

�
µ, par(µ)

�
and h1(par(µ),µ) are independent exponentials

with parameter one, we have

pk =

�
b

k

�∫ ∞

0

∫ ∞

0

P
�
h1(µ0,µ)<

y

1+ z

�k
P
�
h1(µ0,µ)≥

y

1+ z

�b−k
e−ye−zdy dz

=

�
b

k

�∫ ∞

0

∫ ∞

0

�
1− e−

y

1+z
�k

e−
y

1+z
(b−k)e−ye−zdy dz

=

k∑

j=0

∫ ∞

0

∫ ∞

0

�
b

k

��
k

j

�
(−1) je−y( j+b−k+1+z)/(1+z)e−zdy dz

=

k∑

j=0

�
b

k

��
k

j

�
(−1) j

∫ ∞

0

1+ z

j + b− k+ 1+ z
e−zdz.

(2.12)
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From the basic theory of branching processes we know that the probability that this Galton–Watson

tree is finite (i.e. extinction) equals the smallest positive solution of the equation

x −
b∑

k=0

xkpk = 0. (2.13)

The proof of (2.6) follows from the fact that 1−βb ≤ 1−αb. This latter inequality is a consequence of

the fact that the cluster of green vertices is stochastically larger than the Galton-Watson tree, hence

its probability of non-extinction is not smaller. As b ≥ 3, the Galton-Watson tree is supercritical (see

[4]),hence βb < 1.

For example, if we consider VRJP on G3, Lemma 2.2 yields

0.3809≤ α3 ≤ 0.8545.

Definition 2.3. Level j ≥ 1 is a cut level if the first jump after T j is towards level j+1, and after time

T j+1 the process never goes back to XT j
, and

L(XT j
,∞)< 2 and L(par(XT j

),∞)< 2.

Define l1 to be the cut level with minimum distance from the root, and for i > 1,

li :=min{ j > li−1 : j is a cut level}.

Define the i-th cut time to be τi := Tli
. Notice that li = |Xτi

|.

3 l1 has an exponential tail

For any vertex ν ∈ Vert(Gb), we define fc(ν), which stands for first child of ν , to be the (a.s.) unique

vertex connected to ν satisfying

h1(ν , fc(ν)) =min
�
h1(ν ,µ): par(µ) = ν

	
. (3.14)

For definiteness, the root ρ is not a first child. Notice that condition (3.14) does not imply that the

vertex fc(ν) is visited by the process. If X visits it, then it is the first among the children of ν to be

visited.

For any pair of distributions f and g, denote by f ∗ g the distribution of
∑V

k=1 Mk, where

• V has distribution f , and

• {Mk, k ∈ N} is a sequence of i.i.d random variables, independent of V , each with distribution

g.

Recall the definition of pi , i ∈ {0, . . . , b}, given in (2.5). Denote by p(1) the distribution which assigns

to i ∈ {0, . . . , b} probability pi . Define, by recursion, p( j) := p( j−1) ∗p(1), with j ≥ 2. The distribution

p( j) describes the number of elements, at time j, in a population which evolves like a branching

process generated by one ancestor and with offspring distribution p(1). If we let

m :=

b∑

j=1

jp j ,
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then the mean of p( j) is m j . The probability that a given vertex µ is good is, by definition,

P

�
h1(µ0,µ)<

h1

�
µ0, par(µ0)

�

1+ h1

�
par(µ0),µ0

�
�

where µ0 = par(µ).

As the h1

�
par(µ0),µ0

�
is exponential with parameter 1, conditioning on its value and using inde-

pendence between different Poisson processes, we have that the probability above equals

P

�
h1(µ0,µ)<

1

1+ z
h1

�
µ0, par(µ0)

��
e−zdz =

∫ ∞

0

1

2+ z
e−zdz = 0.36133 . . . . (3.15)

Hence

m= b · 0.36133> 1,

because we assumed b ≥ 3.

Let q0 = p0+p1, and for k ∈ {1,2, . . . , b−1} set qk = pk+1. Set q to be the distribution which assigns

to i ∈ {0, . . . , b− 1} probability qi. For j ≥ 2, let q( j) := p( j−1) ∗q. Denote by q
( j)

i
the probability that

the distribution q( j) assigns to i ∈ {0, . . . , (b− 1)b j−1}. The mean of q( j) is m j−1(m− 1). From now

on, ζ denotes the smallest positive integer in {2,3, . . . , } such that

mζ−1(m− 1)> 1. (3.16)

Next we want to define a sequence of events which are independent and which are closely related

to the event that a given level is a cut level. For any vertex ν of Gb let Θν be the set of vertices µ

such that

• µ is a descendant of ν ,

• the difference |µ| - |ν | is a multiple of ζ,

• µ is a first child.

By subtree rooted at ν we mean a subtree of Λν that contains ν . Set eν = fc(ν) and let

A(ν) :=
�
∃ an infinite subtree of Gb root at a child of eν , which is composed only by

good vertices and which contains none of the vertices in Θν}
(3.17)

For i ∈ N, let Ai := A
�
XTi

�
. Notice that if the process reaches the first child of ν and if A(ν) holds,

then the process will never return to ν . Hence if Ai holds, and if XTi+1
= XTi

+1, then i is a cut level,

provided that the total weights at XTi
and its parent are less than 2.

Proposition 3.1. The events Aiζ, with i ∈ N, are independent.

Proof. We recall that ζ ≥ 2. We proceed by backward recursion and show that the events Aiζ

depend on disjoint Poisson processes collections. Choose integers 0 < i1 < i2 < . . . < ik, with

i j ∈ ζN := {ζ, 2ζ, 3ζ, . . .} for all j ∈ {1,2, . . . , k}. It is enough to prove that

P

� k⋂

j=1

Ai j

�
=

k∏

j=1

P
�
Ai j

�
. (3.18)
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Fix a vertex ν at level ik. The set A(ν) belongs to the sigma-algebra generated by
�

P(u, w): u, w ∈
Vert(Λν)

	
. On the other hand, the set

⋂k−1

j=1 Ai j
∩ {XTik

= ν} belongs to
�

P(u, w): u /∈ Vert(Λν)
	
. As

the two events belong to disjoint collections of independent Poisson processes, they are independent.

As P(A(ν)) = P(A(ρ)), we have

P

�
Aik
∩

k−1⋂

j=1

Ai j

�
=

∑

ν : |ν |=ik

P

�
Aik
∩

k−1⋂

j=1

Ai j
∩ {XTik

= ν}
�

=
∑

ν : |ν |=ik

P

�
A(ν)∩

k−1⋂

j=1

Ai j
∩ {XTik

= ν}
�
=

∑

ν : |ν |=ik

P
�
A(ν)

�
P

� k−1⋂

j=1

Ai j
∩ {XTik

= ν}
�

= P
�
A(ρ)

� ∑

ν : |ν |=ik

P

� k−1⋂

j=1

Ai j
∩ {XTik

= ν}
�
= P
�
A(ρ)

�
P

� k−1⋂

j=1

Ai j

�
.

(3.19)

The events A(ν) and {XTik
= ν} are independent, and by virtue of the self-similarity property of the

regular tree we get P
�
A(ρ)

�
= P
�
Aik

�
. Hence

P

�
Aik
∩

k−1⋂

j=1

Ai j

�
= P
�
Aik

�
P

� k−1⋂

j=1

Ai j

�
. (3.20)

Reiterating (3.20) we get (3.18).

Lemma 3.2. Define γb to be the smallest positive solution of the equation

x =

b−1∑

k=0

xkq
(ζ)

k
, (3.21)

where ζ and (q
(n)

k
) have been defined at the beginning of this section. We have

P(Ai)≥ 1− γb > 0, ∀i ∈ N. (3.22)

Proof. Fix i ∈ N and let ν∗ = XTi
. We adopt the following color scheme. The vertex fc

�
XTi

�
is

colored blue. A descendant µ of ν∗ is colored blue if it is good, its parent is blue, and either

• |µ| − |ν∗| is not a multiple of ζ, or

• 1

ζ

�
|µ| − |ν∗|

�
∈ N and µ is not a first child.

Vertices which are not descendants of ν∗ are not colored. Following the reasoning given in the proof

of Lemma 2.2, we can conclude that the number of blue vertices at levels |ν∗| + jζ, with j ≥ 1, is

stochastically larger than the number of individuals in a population which evolves like a branching

process with offspring distribution q(ζ), introduced at the beginning of this section. Again, from the

basic theory of branching processes we know that the probability that this tree is finite equals the

smallest positive solution of the equation (3.21). By virtue of (3.16) we have that γb < 1.

The proof of the following Lemma can be found in [10] pages 26-27 and 35.
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Lemma 3.3. Suppose Un is Bin(n, p). For x ∈ (0,1) consider the entropy

H(x | p) := x ln
x

p
+ (1− x) ln

1− x

1− p
.

We have the following large deviations estimate, for s ∈ [0,1],

P
�
Un ≤ sn

�
≤ exp{−n inf

x∈[0,s]
H(x | p)}.

Proposition 3.4.

i) Let ν be a vertex with |ν | ≥ 1. The quantity

P
�
A(ν) | h1(ν , fc(ν)) = x

�

is a decreasing function of x, with x ≥ 0.

ii) P
�
A(ν) | h1(ν , fc(ν))≤ x

�
≥ P
�
A(ν)

�
, for any x ≥ 0.

Proof. Suppose {fc(ν) = ν}. Given
�
h1(ν ,ν) = x

	
, the set of good vertices in Λν is a function of

x . Denote this function by T : R+ → {subset of vertices of Λν}. A child of ν , say ν1, is good if and

only if

h1(ν ,ν1)<
h1(ν ,ν)

1+ x
.

Hence the smaller x is, the more likely ν1 is good. This is true for any child of ν . As for descendants

of ν at level strictly greater than |ν |+ 2, their status of being good is independent of h1(ν , fc(ν)).

Hence T (x) ⊃ T (y) for x < y . This implies that the connected component of good vertices

contining ν is larger if {h1(ν ,ν) = x} rather than {h1(ν ,ν) = y}, for x < y . Hence

P
�
A(ν) | h1(ν , fc(ν)) = x , fc(ν) = ν

�
≥ P
�
A(ν) | h1(ν , fc(ν)) = y, fc(ν) = ν

�
, for x < y.

Using symmetry we get i). In order to prove ii), use i) and the fact that the distribution of h1(ν , fc(ν))

is stochastically larger that the conditional distribution of h1(ν , fc(ν)) given {h1(ν , fc(ν))≤ x}.
Denote by [x] the largest integer smaller than x .

Theorem 3.5. For VRJP defined on Gb, with b ≥ 3, and s ∈ (0,1), we have

P
�
l[sn] ≥ n

�
≤ exp

n
− [n/ζ] inf

x∈[0,s]
H
�

x
�� (1− γb)ϕb

�o
, (3.23)

where γb was defined in Lemma 3.2, and

ϕb :=
�

1− e−b
��

1− e−(b+1)
� b

b+ 2
. (3.24)

Proof. By virtue of Proposition 3.1 the sequence 1lAkζ
, with k ∈ N, consists of i.i.d. ran-

dom variables. The random variable
∑[n/ζ]

j=1 1lA jζ
has binomial distribution with parameters�

P
�
A(ρ)

�
, [n/ζ]

�
. We define the event

B j :={the first jump after T j is towards level j + 1 and L
�
XT j

, T j+1

�
< 2,

and L
�
par(XT j

), T j+1

�
< 2}.
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Let Ft be the smallest sigma-algebra defined by the collection {Xs, 0 ≤ s ≤ t}. For any stopping

time S define FS :=
�
A: A∩ {S ≤ t} ∈ Ft

	
. Now we show

P

�
B j | FTi−1

�
≥
�

1− e−b
��

1− e−(b+1)
� b

b+ 2
= ϕb, (3.25)

where the inequality holds a.s.. In fact, by time Ti the total weight of the parent of XTi
is stochasti-

cally smaller than 1+ an exponential of parameter b, independent of FTi−1
. Hence the probability

that this total weight is less than 2 is larger than 1− e−b. Given this, the probability that the first

jump after Ti is towards level i + 1 is larger than b/(b + 2). Finally, the conditional probability

that Ti+1 − Ti < 1 is larger than 1− e−(b+1). This implies, together with ζ ≥ 2, that the random

variable
∑[n/ζ]

j=1 1lB j
is stochastically larger than a binomial(n,ϕb). For any i ∈ N, and any vertex ν

with |ν |= iζ, set

Z := min
�

1,
h1

�
ν , par(ν)

�

1+ h1

�
par(ν),ν

�
�

E := {XTiζ
= ν} ∩ {L(par(ν), Tiζ)< 2}.

We have

Biζ ∩ {XTiζ
= ν}= {h1(ν , fc(ν))< Z} ∩ E.

Moreover, the random variable Z and the event E are both measurable with respect the sigma-

algebra

fHν := σ
n

P(par(ν),ν),
�

P(u, w): u, w /∈ Vert(Λν)
	o

.

Let fZ be the density of Z given {h1(ν , fc(ν))< Z}∩E. Using 3.4, ii), and the independence between

h1(ν , fc(ν)) and fHν , we get

P
�
Aiζ

��Biζ ∩ {XTiζ
= ν}

�
= P
�
A(ν)

�� {h1(ν , fc(ν))< Z} ∩ E
�

=

∫ ∞

0

P
�
A(ν)

�� {h1(ν , fc(ν))< z}
�

fZ(z)dz ≥ P
�
A(ν)

�

=
∑

ν : |ν |=iζ

P
�
A(ν)∩ {XTiζ

= ν}
�
= P(Aiζ).

(3.26)

The first equality in the last line of (3.26) is due to symmetry. Hence

P(Aiζ

��Biζ)≥ P(Aiζ). (3.27)

If Ak ∩ Bk holds then k is a cut level. In fact, on this event, when the walk visits level k for the

first time it jumps right away to level k + 1 and never visits level k again. This happens because

XTk+1
= fc(XTk

) has a child which is the root of an infinite subtree of good vertices. Moreover the

total weights at XTk
and its parent are less than 2. Define

en :=

[n/ζ]∑

i=1

1lAiζ∩Biζ
.

By virtue of (3.22), (3.25), (3.27) and Proposition 3.1 we have that en is stochastically larger than

a bin([n/ζ], (1− γb)ϕb). Applying Lemma 3.3, we have

P
�
l[sn] ≥ n

�
≤ P
�
en ≤ [sn]

�
≤ exp

n
− [n/ζ] inf

x∈[0,s]
H
�

x
�� (1− γb)ϕb

�o
.
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The function H
�

x
�� (1− γb)ϕb

�
is decreasing in the interval (0, (1− γb)ϕb). Hence for n> 1/

�
(1−

γb)ϕb

�
, we have infx∈[0,1/n] H

�
x
�� (1− γb)ϕb

�
= H

�
1/n

�� (1− γb)ϕb

�
.

Corollary 3.6. For n> 1/
�
(1− γb)φb

�
, by choosing s = 1/n in Theorem 3.5, we have

P
�
l1 ≥ n

�
≤ exp

n
− [n/ζ] inf

x∈[0,1/n]
H
�

x
�� (1− γb)ϕb

�o

= exp
n
− [n/ζ]H

�1

n

�� (1− γb)ϕb

�o
,

(3.28)

where, from the definition of H we have

lim
n→∞

H
�1

n

�� (1− γb)ϕb

�
= ln

1

1− (1− γb)ϕb

> 0.

4 τ1 has finite (2+δ)-moment

The goal of this section is to prove the finiteness of the 11/5 moment of the first cut time. We adopt

the following strategy

• first we prove the finiteness of all moments for the number of vertices visited by time τ1, then

• we prove that the total time spent at each of these sites has finite 12/5-moment.

Fix n ∈ N and let

Πn := number of distinct vertices that X visits by time Tn,

Πn,k := number of distinct vertices that X visits at level k by time Tn.

Let T (ν) := inf{t ≥ 0: X t = ν}. For any subtree E of Gb, b ≥ 1, define

δ(a, E) := sup

¨
t :

∫ t

0

1l{Xs∈E}ds ≤ a

«
.

The process Xδ(t,E) is called the restriction of X to E.

Proposition 4.1 (Restriction principle (see [8])). Consider VRJP X defined on a tree J rooted at

ρ. Assume this process is recurrent, i.e. visits each vertex infinitely often, a.s.. Consider a subtree eJ
rooted at ν . Then the process Xδ(t, eJ ) is VRJP defined on eJ . Moreover, for any subtree J ∗ disjoint from

eJ , we have that Xδ(t, eJ ) and Xδ(t,J ∗) are independent.

Proof. This principle follows directly from the Poisson construction and the memoryless property

of the exponential distribution.

Definition 4.2. Recall that P(x , y), with x , y ∈ Vert
�
Gb

�
are the Poisson processes used to generate X

on Gb. Let J be a subtree of Gb. Consider VRJP V on J which is generated by using
�

P(u, v): u, v ∈
Vert(J )

	
, which is the same collection of Poisson processes used to generate the jumps of X from the

vertices of J . We say that V is the extension of X in J . The processes Vt and Xδ(t,J ) coincide up to a

random time, that is the total time spent by X in J .
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We construct an upper bound for Πn,k, with 2 ≤ k ≤ n − 1. . Let G(k) be the finite subtree of

Gb composed by all the vertices at level i with i ≤ k − 1, and the edges connecting them. Let V

be the extension of X to G(k). This process is recurrent, because is defined on a finite graph. The

total number of first children at level k− 1 is bk−2, and we order them according to when they are

visited by V, as follows. Let η1 be the first vertex at level k − 1 to be visited by V. Suppose we

have defined η1, . . . ,ηm−1. Let ηm be the first child at level k− 1 which does not belong to the set

{η1,η2, . . . ,ηm−1}, to be visited. The vertices ηi , with 1 ≤ i ≤ bk−2 are determined by V. All the

other quantities and events such as T (ν) and A(ν), with ν running over the vertices of Gb, refer to

the process X. Define

fn(k) := 1+ b2 inf{m≥ 1: 1lA(par(ηm))
= 1}.

Let J := inf{n: T (ηn) = ∞}, if the infimum is over an empty set, let J = ∞. Suppose that A(ηm)

holds, then X, after time T (ηm), is forced to remain inside Ληm
, and never visits fc(ηm) again.

This implies that T (ηm+1) = ∞. Hence, if J = m then
⋂m−1

i=1 (A(par(ηi)))
c holds, and fn(k) ≥

1+ b2(m− 1). Similarly if J = ∞ then fn(k) = 1+ b2 bk−2 = 1+ bk, which is an obvious upper

bound for the number of vertices at level k which are visited by X. On the other hand, if J = m then

the number of vertices at level k which are visited by X is at most 1+(m−1)b2. In fact, the processes

X and V coincide up to the random time when the former process leaves G(k) and never returns to

it. Hence if T (ηi) <∞ then X visited exactly i − 1 distinct first children at level k− 1 before time

T (ηi). On the event {J = m} we have that {T (ηm−1 < ∞} ∩ {T (ηm) = ∞}, hence exactly m− 1

first children are visited at level k−1. This implies that at most 1+(m−1)b2 vertices at level k are

visited.

We conclude that fn(k) overcounts the number of vertices at level k which are visited, i.e. Πn,k ≤
fn(k).

Recall that h1(ν , fc(ν)), being the minimum over a set of b independent exponentials with rate 1, is

distributed as an exponential with mean 1/b.

Lemma 4.3. For any m ∈ N, we have

P
�

fn(k) > 1+mb2
�
≤ (γb)

m.

Proof. Given
⋂m−1

i=1 (A(par(ηi))
c the distribution of h(par(ηm),ηm) is stochastically smaller than

an exponential with mean 1/b. Fix a set of vertices νi with 1≤ i ≤ m−1 at level k−1 and each with

a different parent. Given ηi = νi for i ≤ m− 1, consider the restriction of V to the finite subgraph

obtained from G(k) by removing each of the νi and par(νi), with i ≤ m− 1. The restriction of V

to this subgraph is VRJP, independent of
⋂m−1

i=1 (A(par(ηi))
c, and the total time spent by this process

in level k− 2 is exponential with mean 1/b. This total time is an upper bound for h(par(ηm),ηm).

This conclusion is independent of our choice of the vertices νi with 1 ≤ i ≤ m− 1. Finally, using

Proposition 3.4 i), we have

P
�

fn(k)> 1+mb2 | fn(k)> 1+ (m− 1)b2
�
= P
�
(A(par(ηm)))

c |
m−1⋂

i=1

(A(par(ηi))
c
�

≤ P
�
(A(par(ηm)))

c
�
≤ γb.

(4.29)

Let an, cn be numerical sequences. We say that cn = O(an) if cn/an is bounded.
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Lemma 4.4. For p ≥ 1, we have E
�
Π

p
n

�
= O(np).

Proof. Consider first the case p > 1. Notice that Πn,0 = Πn,n = 1. By virtue of Lemma 4.3, we

have that supnE[ f
p

n ]<∞. By Jensen’s inequality

E[Πp
n] = E



 

2+

n−1∑

k=1

Πn,k)

!p
 ≤ np

E




n−1∑

k=1

Π
p

n,k

n
+

2p

n


 ≤ np

E




n−1∑

k=1

f
p

n (k)

n
+

2p

n


 = O(np).

(4.30)

As for the case p = 1,

E[Πn]≤ 2+

n−1∑

k=1

E[ fn(k)] = O(n).

Let

Π :=
∑

ν

1l{ν is visited before time τ1}.

where the sum is over the vertices of Gb. In words, Π is the number of vertices visited before τ1.

Lemma 4.5. For any p > 0 we have E[Πp]<∞.

Proof. By virtue of Lemma 4.4,

Æ
E
�
Π

2p
n

�
≤ C

(1)

b,p
np, for some positive constant C

(1)

b,p
. Hence using

Cauchy-Schwartz,

E [Πp] =

∞∑

n=1

E
�
Πp

n1l{l1=n}
�
≤
∞∑

n=1

Æ
E
�
Π

2p
n

�
P(l1 ≥ n)

≤ C
(1)

b,p

∞∑

n=1

np exp
n
−

1

2
[n/ζ]H

�1

n

�� (1− γb)ϕb

�o
<∞.

In the last inequality we used Corollary 3.6.

Next, we want to prove that the 12/5-moment of L(ρ,∞) is finite. We start with three intermediate

results. The first two can be found in [9]. We include the proofs here for the sake of completeness.

Lemma 4.6. Consider VRJP on {0,1}, which starts at 1, and with initial weights a0 = c and a1 = 1.

Define

ξ(t) := inf
n

s : L(1, s) = t
o

.

We have

sup
t≥1

E

��
L(0,ξ(t))

t

�3
�
= c3+ 3c2+ 3c. (4.31)

Proof. We have L(0,ξ(t + dt)) = L(0,ξ(t)) + χη, where χ is a Bernoulli which takes value 1

with probability L(0,ξ(t))dt, and η is exponential with mean 1/t. Given L
�
0,ξ(t)

�
, the random

variables χ and η are independent. Hence

E

h
L(0,ξ(t + dt))

i
−E
h

L(0,ξ(t))
i
=
E[L(0,ξ(t))]

t
dt,
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i.e. E[L(0,ξ(t))] is solution of the equation y
′
(t) = y(t)/t, with initial condition y(1) = c (see

[8]). Hence

E[L(0,ξ(t))] = c t.

Similarly

E

h
L(0,ξ(t + dt))2

i

= E
h

L(0,ξ(t))2
i
+ 2E

h
L(0,ξ(t))E

h
χ | L(0,ξ(t))

ii
E[η] + E

h
χ2 | L(0,ξ(t))

i
E[η2]

= E
h

L(0,ξ(t))2
i
+ (2/t)E

h
L(0,ξ(t))2

i
dt + (2/t2)E

h
L(0,ξ(t))

i
dt

= E
h

L(0,ξ(t))2
i
+ (2/t)E

h
L(0,ξ(t))2

i
dt + (2c/t)dt.

Thus E
h

L(0,ξ(t))2
i

satisfies the equation y
′
= (2/t)y + (2c/t), with y(1) = c2. Then,

E

h
L(0,ξ(t))2

i
=−c +

�
c2+ c

�
t2.

Finally, reasoning in a similar way, we get that E
h

L(0,ξ(t))3
i

satisfies the equation y
′
= (3/t)y +

6(c2+ c), with y(1) = c3. Hence,

E

h
L(0,ξ(t))3

i
=−3(c2+ c)t +

�
c3+ 3c2+ 3c

�
t3.

Divide both sides by t3, and use the fact that c > 0 to get (4.31).

A ray σ is a subtree of Gb containing exactly one vertex of each level of Gb. Label the vertices of

this ray using {σi , i ≥ 0}, where σi is the unique vertex at level i which belongs to σ. Denote by S

the collection of all rays of Gb.

Lemma 4.7. For any ray σ, consider VRJP X(σ) := {X (σ)t , t ≥ 0}, which is the extension of X to σ.

Define

T (σ)n := inf{t > 0: X (σ)t = σn},

L(σ)(σi, t) := 1+

∫ t

0

1l{X (σ)s =σi}
ds.

We have that

E
�

L(σ)(σ0, T (σ)n )
3
�
≤ (37)n. (4.32)

Proof. By the tower property of conditional expectation,

E

h�
L(σ)(σ0, T (σ)n )

�3
i
= E



�

L(σ)(σ1, T (σ)n )
�3
E



 

L(σ)
�
σ0, T (σ)n

�

L(σ)
�
σ1, T

(σ)

n

�
!3 ��� L(σ)

�
σ1, T (σ)n

�




 . (4.33)

At this point we focus on the process restricted to {0,1}. This restricted process is VRJP which starts

at 1, with initial weights a1 = 1, and a0 = 1+ h1(σ0,σ1) and σ0 = ρ. By applying Lemma 4.6, and
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using the fact that h1(σ0,σ1) is exponential with mean 1, we have

E



 

L(σ)
�
σ0, T (σ)n

�

L(σ)
�
σ1, T

(σ)

n

�
!3 ���L(σ)

�
σ1, T (σ)n

�

 ≤ E

�
3(1+ h1(σ0,σ1)) + (1+ h1(σ0,σ1))

2+ (1+ h1(σ0,σ1))
3
�

= 37.

(4.34)

Then

E

h�
L(σ0, Tn)

�3
i
= E


E



 

L(σ)
�
σ0, T (σ)n

�

L(σ)
�
σ1, T

(σ)

n

�
!3 ���L(σ)

�
σ1, T (σ)n

�


�

L(σ)(σ1, T (σ)n )
�3




≤ 37E
h�

L(σ)(σ1, T (σ)n )
�3
i

.

(4.35)

The Lemma follows by recursion and restriction principle.

Next, we prove that

L(ρ, T (σn))≤ L(σ)(σ0, T (σ)n ). (4.36)

In fact, we have equality if T (σn)<∞, because the restriction and the extension of X to σ coincide

during the time interval [0, T (σn)]. If T (σn) =∞, it means that X left the ray σ at a time s < T (σ)n .

Hence

L(ρ, T (σn)) = L(σ)(σ0, s)≤ L(σ)(σ0, T (σ)n ).

Hence, for any ν , with |ν |= n, we have

E
�

L(ρ, T (ν))3
�
≤ (37)n. (4.37)

Lemma 4.8. E
h�

L(ρ,∞)
�12/5

i
<∞.

Proof. Recall the definition of A(ν) from (3.17) and set

Dk :=
⋃

ν : |ν |=k−2

A(ν).

If A(ν) holds, after the first time the process hits the first child of ν , if this ever happens, it will never

visit ν again, and will not increase the local time spent at the root. Roughly, our strategy is to use

the extensions on paths to give an upper bound of the total time spent at the root by time Tk and

show that the probability that
⋂k

i=1 Dc
i

decreases quite fast in k.

Using the independence between disjoint collections of Poisson processes, we infer that A(ν), with

|ν | = k − 2 are independent. In fact each A(ν) is determined by the Poisson processes attached to

pairs of vertices in Λν . Hence

P(Dc
k
)≤ (γb)

bk−2
(4.38)

Define d = inf{n ≥ 1: 1lDn
= 1}. Fix k ∈ N. On the set {d = k}, define µ to be one of the first

children at level k − 1 such that A(par(µ)) holds. On {T (µ) < ∞} ∩ {d = k}, we clearly have

L(ρ,∞) = L(ρ, T (µ)). On the other hand, on {T (µ)<∞}∩{d = k}, we have that, after the process

reaches µ it will never return to the root. Hence

L(ρ,∞) = 1+

∫ T (µ)

0

1l{Xu=ρ}du+

∫ ∞

T (µ)

1l{Xu=ρ}du= 1+

∫ T (µ)

0

1l{Xu=ρ}du= L(ρ, T (µ)).
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Using this fact, combined with

L(ρ, T (µ))≤
∑

ν : |ν |=k−2

L(ρ, T (fc(ν)),

and 1l{d=k} ≤ 1l{d>k−1} ≤ 1lDc
k−1

, we have

L(ρ,∞)1l{d=k} = L(ρ, T (µ))1l{d=k} ≤
� ∑

ν : |ν |=k−2

L
�
ρ, T (fc(ν))

��
1l{d=k}

≤
� ∑

ν : |ν |=k−2

L
�
ρ, T (fc(ν))

��
1lDc

k−1
.

(4.39)

Using (4.39), Holder’s inequality (with p = 5/4) and (4.38) we have

E

h�
L(ρ,∞)

�12/5
i
=

∞∑

k=1

E

h�
L(ρ,∞)

�12/5
1l{d=k}

i
=

∞∑

k=1

E

h�
L(ρ,∞)1l{d=k}

�12/5
i

≤
∞∑

k=1

E







∑

ν : |ν |=k−2

L
�
ρ, T (fc(ν))

�
1lDc

k−1




12/5

 ≤

∞∑

k=1

E







∑

ν : |ν |=k−2

L
�
ρ, T (fc(ν))

�



3



4/5

(γb)
bk−3/5

≤
∞∑

k=1

E







∑

ν : |ν |=k−2

L
�
ρ, T (fc(ν))

�



3

 (γb)

bk−3/5 (using L(ρ, t)≥ 1)

≤
∞∑

k=1


b2k

∑

ν : |ν |=k−2

E
�

L
�
ρ, T (fc(ν))

�3�

 (γb)

bk−3/5 (by Jensen)

≤
∞∑

k=1

b3k(37)k(γb)
bk−3/5 <∞.

Lemma 4.9. For ν 6= ρ, there exists a random variable ∆ν which is σ
�

P(u, v): u, v ∈ Vert(Λν)
	
-

measurable, such that

i) L(ν ,∞)≤∆ν , and

ii) ∆ν and L(ρ,∞) are identically distributed.

Proof. Let eX := {eX t , t ≥ 0} be the extension of X on Λν . Define

∆ν := 1+

∫ ∞

0

1l{eX t=ν}dt.

By construction, this random variable satisfies i) and ii) and is σ
�

P(u, v): u, v ∈ Vert(Λν)
	
-

measurable.

Theorem 4.10. E
�
(τ1)

11/5
�
<∞.
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Proof. Suppose we relabel the vertices that have been visited by time τ1, using θ1,θ2, . . . ,θΠ,

where vertex ν is labeled θk if there are exactly k− 1 distinct vertices that have been visited before

ν . Notice that ∆ν and {θk = ν} are independent, because they are determined by disjoint non-

random sets of Poisson processes (∆ν is σ
�

P(u, v): u, v ∈ Vert(Λν)
	
-measurable). As the variables

∆ν , with ν ∈ Vert(Gb), share the same distribution, for any p > 0, we have

E[∆
p

θk
] = E[∆p

ν] = E[L(ρ,∞)p].

By Jensen’s and Holder’s (with p = 12/11) inequalities, Lemma 4.9 i) and ii), and Lemma 4.8, we

have

E

�
(τ1)

11/5
�
≤ E



 
Π∑

k=1

∆θk

!11/5

≤ E


Π(11/5)−1

Π∑

k=1

(∆θk
)11/5




= E



∞∑

k=1

∆
11/5

θk
Π6/5 1l{Π≥k}


 ≤

∞∑

k=1

E

h
∆

12/5

θk

i11/12

E

�
Π72/5 1l(Π≥k)

�1/12

≤ C
(3)

b

∞∑

k=1

E

�
Π144/5

�1/24
P (Π ≥ k)1/24 (by Cauchy-Schwartz and Lemma 4.8)

≤ C
(4)

b

∞∑

k=1

P (Π ≥ k)1/24 , (by Lemma 4.5),

for some positive constants C
(3)

b
and C

(4)

b
. It remains to prove the finiteness of the last sum. We use

the fact

lim
k→∞

k48
P(Π≥ k) = 0. (4.40)

The previous limit is a consequence of the well-known formula

∞∑

k=1

k48
P(Π≥ k) = E[Π49], (4.41)

and the finiteness of E[Π49] by virtue of Lemma 4.5.

∞∑

k=1

P (Π≥ k)1/24 =

∞∑

k=1

1

k2

�
k48
P(Π≥ k)

�1/24

<∞.

Lemma 4.11. supx∈[1,2]E[(L(ρ,∞))12/5 | L(ρ, T1) = x]<∞.

Proof. Using 4.9, and the fact that ∆XT1
is independent of L(ρ, T1), we have

sup
x∈[1,2]

E[(L(XT1
,∞))12/5 | L(ρ, T1) = x]≤ sup

x∈[1,2]

E[(∆XT1
)12/5 | L(ρ, T1) = x]

= E[(∆XT1
)12/5] = E[(L(ρ,∞))12/5]<∞.

(4.42)

Given L(ρ, T1) = x , the process X restricted to {ρ, XT1
} is VRJP which starts from XT1

, with initial

weights aρ = x and 1 on XT1
. This process runs up to the last visit of X to one of these two vertices.
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Using Lyapunov inequality, i.e. E[Zq]1/q ≤ E[Z p]1/p whenever 0 < q ≤ p, Lemma 4.7, and the fact

x ≥ 1, we have

E

h� L(ρ, Tn)

L(XT1
, Tn)

�12/5
| L(XT1

, Tn), {L(ρ, T1) = x}
i

≤ E
h� L(ρ, Tn)

L(XT1
, Tn)

�3

| L(XT1
, Tn), {L(ρ, T1) = x}

i4/5

≤ (x3+ 3x2+ 3x)4/5 ≤ x3+ 3x2+ 3x .

(4.43)

Finally

E[(L(ρ, Tn))
12/5 | L(ρ, T1) = x] = E

h� L(ρ, Tn)

L(XT1
, Tn)

�12/5
(L(XT1

, Tn))
12/5 | L(ρ, T1) = x

i

≤ (x3+ 3x2+ 3x)E
h
(L(XT1

, Tn))
12/5 | L(ρ, T1) = x

i

≤ (x3+ 3x2+ 3x)E
h
(L(XT1

,∞))12/5 | L(ρ, T1) = x
i

≤ (x3+ 3x2+ 3x)E[(L(ρ,∞))12/5].

(4.44)

By sending n→∞ and taking the suprema over x ∈ [1,2] we get

sup
x∈[1,2]

E[(L(ρ, Tn))
12/5 | L(ρ, T1) = x]≤ 26E[(L(ρ,∞))12/5]<∞.

Theorem 4.12. supx∈[1,2]E

�
(τ1)

11/5 | L
�
ρ, T1

�
= x
�
<∞.

Proof. Label the vertices at level 1 by µ1,µ2, . . . ,µb. Let τ1(µi) be the first cut time of the ex-

tension of X on Λµi
. This extension is VRJP on Λµi

with initial weights 1, hence we can apply

Theorem 4.10 to get

E[
�
τ1(µi)

�11/5
]<∞. (4.45)

Hence, it remains to prove that for x ∈ [1,2]

E

h�
τ1

�11/5 | L
�
ρ, T1

�
= x
i
≤ E
h�

L(ρ,∞) +max
i
τ1(µi)

�11/5
��� L
�
ρ, T1

�
= x
i

≤ E
h�

L(ρ,∞) +
b∑

i=1

τ1(µi)
�11/5

��� L
�
ρ, T1

�
= x
i

≤ (b+ 1)11/5−1
E

h�
L(ρ,∞)

�11/5
| L
�
ρ, T1

�
= x
i
+ (b+ 1)11/5

E

h�
(τ1(µ1)

�11/5
i
<∞,

where we used Jensen’s inequality, the independence of τ(µi) and T1 and Lemma 4.11. In fact, as

L
�
ρ,∞

�
≥ 1 , we have

E[(L(ρ,∞))11/5 | L(ρ, T1) = x]≤ E[(L(ρ,∞))12/5 | L(ρ, T1) = x]<∞.
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5 Splitting the path into one-dependent pieces

Define Zi = L(Xτi
,∞), with i ≥ 1.

Lemma 5.1. The process Zi , with i ≥ 1 is a homogenous Markov chain with state space [1,2].

Proof. Fix n ≥ 1. On {Zn = x} ∩ {Xτn
= ν} the random variable Zn+1 is determined by the

variables {P(u, v),u, v ∈ Λν ,u 6= ν}. In fact these Poisson processes, on the set {Zn = x}∩{Xτn
= ν},

are the only ones used to generate the jumps of the process {XT (fc(ν)+t}t≥0. Let E1, E2, . . . , En−1, En+1

be Borel subsets of [0,1]. Conditionally on {Zn = x}∩ {Xτn
= ν}, the two events {Zn+1 ∈ En+1} and

{Z1 ∈ E1, Z2 ∈ E2, . . . Zn−1 ∈ En−1} are independent because are determined by disjoint collections

of Poisson processes. By symmetry

P(Zn+1 ∈ En+1 | {Zn = x} ∩ {Xτn
= ν})

does not depend on ν . Hence

P(Zn+1 ∈ En+1 | Z1 ∈ E1, Z2 ∈ E2, . . . Zn−1 ∈ En−1, Zn = x)

=
∑

ν

P(Zn+1 ∈ En+1 | Z1 ∈ E1, . . . , Zn−1 ∈ En−1, Zn = x , Xτn
= ν)P(Xτn

= ν | Z1 ∈ E1, . . . , Zn = x)

= P(Zn+1 ∈ En+1 | Zn = x , Xτn
= ν) = P(Zn+1 ∈ En+1 | Zn = x).

This implies that Z is a Markov chain. The self-similarity property of Gb and X yields the homegene-

ity.

From the previous proof, we can infer that given Zi = x , the random vectors (τi+1 − τi, li+1 − li)

and (τi −τi−1, li − li−1), are independent.

Proposition 5.2.

sup
i∈N

sup
x∈[1,2]

E

h�
τi+1−τi

�11/5
�� Zi = x

i
<∞ (5.46)

sup
i∈N

sup
x∈[1,2]

E

h�
li+1− li

�11/5 | Zi = x
i
<∞. (5.47)

Proof. We only prove (5.46), the proof of (5.47) being similar. Define C :=
�

X t 6= ρ, ∀t > T1

	

and fix a vertex ν . Notice that by the self-similarity property of Gb, we have

E

h
(τi+1−τi)

11/5 | {Zi = x} ∩ {Xτi
= ν}

i
= E
h
(τ1)

11/5|{L(ρ, T1) = x} ∩ C
i

.

By the proof of Lemma 2.2, we have that

inf
1≤x≤2
P
�
C
�� L(ρ, T1) = x

�
≥

b

b+ x
P(A1)≥ (1− γb)

b

b+ 2
> 0. (5.48)
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Hence

sup
x : x∈[1,2]

E

h
(τ1)

11/5
��L(ρ, T1) = x

i

≥ sup
x : x∈[1,2]

E

h
(τ1)

11/5
��{L(ρ, T1) = x} ∩ C

i
P(C | L(ρ, T1) = x)

≥ (1− γb)
b

b+ 2
sup

x : x∈[1,2]

E

h
(τ1)

11/5
��{L(ρ, T1) = x} ∩ C

i

≥ (1− γb)
b

b+ 2
sup

x : x∈[1,2]

E

h
(τi+1−τi)

11/5 | {Zi = x} ∩ {Xτi
= ν}

i

Hence

E

h
(τi+1−τi)

11/5 | {Zi = x} ∩ {Xτi
= ν}

i
≤

b+ 2

b(1− γb)
sup

1≤x≤2

E

h
(τ1)

11/5 | {L(ρ, T1 = x}
i

.

Next we prove that Z satisfies the Doeblin condition.

Lemma 5.3. There exists a probability measure φ(·) and 0< λ ≤ 1, such that for every Borel subset B

of [1,2], we have

P
�

Zi+1 ∈ B | Zi = z
�
≥ λ φ(B) ∀ z ∈ [1,2]. (5.49)

Proof. As Zi is homogeneous, it is enough to prove (5.49) for i = 1. In this proof we show that the

distribution of Z2 is absolutely continuous and we compare it to 1+ an exponential with parameter

1 conditionated on being less than 1. The analysis is technical because Zi depend on the behaviour

of the whole process X. Our goal is to find a lower bound for

P

�
Z2 ∈ (x , y)

�� Z1 = z
�

, with z ∈ [1,2]. (5.50)

Moreover, we require that this lower bound is independent of z ∈ [1,2].

Fix ǫ ∈ (0,1). Our first goal is to find a lower bound for the probability of the event {Z2 ∈
(x , y), Z1 ∈ Iǫ(z)}, where Iǫ(z) := (z − ǫ, z + ǫ). Fix z ∈ [1,2] and consider the function

e−(b+u)(t−1)− (b+ 1)e−(b+2)e−(t−1). (5.51)

Its derivative with respect t is

(b+ 1)e−(b+2)−(t−1)− (b+ u)e−(b+u)(t−1),

which is non-positive for t ∈ [1,2] and u ∈ [1,2]. In fact

(b+ 1)e−(b+2)−(t−1)− (b+ u)e−(b+u)(t−1) ≤ (b+ 1)e−(b+2)−(1−1)− (b+ u)e−(b+u)(2−1)

= (b+ 1)e−(b+2)− (b+ u)e−(b+u) ≤ 0.

Hence for fixed u ∈ [1,2], the function in (5.51) is non-increasing for t ∈ [1,2]. For 1≤ x < y ≤ 2,

we have

e−(b+u)(x−1)− e−(b+u)(y−1) ≥ (b+ 1)e−(b+2)
�

e−(x−1)− e−(y−1)
�

. (5.52)

We use this inequality to get a lower bound for the probability of the event {Z2 ∈ (x , y), Z1 ∈
Iǫ(z)}. Our strategy is to calculate the probability of a suitable subset of the latter set. Consider the

following event. Suppose that
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a) T1 < 1, then

b) the process spends at XT1
an amount of time enclosed in (z − 1− ǫ, z − 1+ ǫ), then

c) it jumps to a vertex at level 2, spends there an amount of time t where t + 1 ∈ (x , y), and

d) it jumps to level 3 and never returns to XT2
.

In the event just described, levels 1 and 2 are the first two cut levels, and {Z2 ∈ (x , y), Z1 ∈ Iǫ(z)}
holds. The probability that a) holds is exactly e−b. Given T1 = s − 1, the time spent in XT1

before

the first jump is exponential with parameter (b+ s). Hence b) occurs with probability larger than

inf
s∈[1,2]

�
e−(b+s)(z−ǫ)− e−(b+s)(z+ǫ)

�
.

Given a) and b), the process jumps to level 2 and then to level 3 with probability larger than�
b/(b+2)

��
b/(b+ z+ ǫ)). The conditional probability, given a) and b), that the time gap between

these two jumps lies in (x − 1, y − 1) is larger than

inf
u∈Iǫ(z)

�
e−(b+u)(x−1)− e−(b+u)(y−1)

�
.

At this point, a lower bound for the conditional probability that the process never returns to XT2
is

b

b+ y
(1−αb)≥

b

b+ 2
(1−αb).

We have

P

�
Z2 ∈ (x , y), Z1 ∈ Iǫ(z)

�

≥ e−b
b3

(b+ 2)2(b+ z + ǫ)
inf

s∈[1,2]

�
e−(b+s)(z−ǫ)− e−(b+s)(z+ǫ)

�

inf
u∈Iǫ(z)

�
e−(b+u)(x−1)− e−(b+u)(y−1)

�
(1−αb)

≥ (1−αb)e
−b

b3(b+ 1)

(b+ 2)2(b+ z + ǫ)
e−(b+2)

�
e−(x−1)− e−(y−1)

�
inf

s∈[1,2]

�
e−(b+s)(z−ǫ)− e−(b+s)(z+ǫ)

�
,

(5.53)

where in the last inequality we used (5.52). Notice that there exists a constant C
(4)

b
> 0 such that

inf
ǫ∈(0,1)

inf
z,s∈[1,2]

1

ǫ

�
e−(b+s)(z−ǫ)− e−(b+s)(z+ǫ)

�
≥ C

(4)

b
. (5.54)

Summarizing, we have

P

�
Z2 ∈ (x , y), Z1 ∈ Iǫ(z)

�
≥ C

(5)

b

�
e−(x−1)− e−(y−1)

�
ǫ, (5.55)

where C
(5)

b
depends only on b.

In order to find a lower bound for (5.50) we need to prove that

sup
ǫ∈(0,1)

1

ǫ
P

�
Z1 ∈ Iǫ(z)

�
≤ C

(6)

b
, (5.56)
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for some positive constant C
(6)

b
. To see this, recall the definition of B j from the proof of Theorem 3.5,

and ζ from (3.16). The event that level i is not a cut level is subset of (Bi ∩ Ai)
c (see the proof of

Theorem 3.5). Denote by mi = h1

�
XTi

, fc(XTi
)
�
, which is exponential with mean 1/b. Then

P(Z1 ∈ Iǫ(z))≤
∞∑

i

P

�
mi ∈ Iǫ(z)

�
P

� i−1⋂

k=1

(Bk ∩ Ak)
c | mi ∈ Iǫ(z)

�

≤ Cǫ

∞∑

i

P

� i−1⋂

k=1

(Bk ∩ Ak)
c | mi ∈ Iǫ(z)

�
,

where the constant C is independent of ǫ and z. It remains to prove that the sum in the right-

hand side is bounded by a constant independent of ǫ. Notice that, for i > ζ, Ai−ζ and Bi−ζ are

independent of mi . Moreover the events

Ai−ζ ∩ Bi−ζ, Ai−2ζ ∩ Bi−2ζ, Ai−3ζ ∩ Bi−3ζ, . . .

are independent by the proof of Proposition 3.1. Hence

P(Z1 ∈ Iǫ(z))≤ Cǫ

∞∑

i

P

� [(i−1)/ζ]⋂

k=1

(Bi−kζ ∩ Ai−kζ)
c | mi ∈ Iǫ(z)

�

= Cǫ

∞∑

i

P

� [(i−1)/ζ]⋂

k=1

(Bi−kζ ∩ Ai−kζ)
c
�

(by independence)

= Cǫ

∞∑

i

P

�
(Bi−kζ ∩ Ai−kζ)

c
�[(i−1)/ζ]

<∞.

Combining (5.53), (5.54) and (5.56), we get

P

�
Z2 ∈ (x , y)

�� Z1 = z
�
= lim
ǫ↓0

1

P

�
Z1 ∈ Iǫ(z)

�P
�

Z2 ∈ (x , y) , Z1 ∈ Iǫ(z)
�

≥ λ
�

e−(x−1)− e−(y−1)
�

�
1− e−1

� ,

(5.57)

for some λ > 0. . A finite measure defined on field A can be extended uniquely to the sigma-field

generated byA , and this extension coincides with the outer measure. We apply this result to prove

that (5.57) holds for any Borel set C ⊂ [1,2], using the fact that it holds in the field of finite unions

of intervals. For any interval E, the right-hand side of (5.57) can be written in an integral form as

λ

∫

E

e−x+1

�
1− e−1

�dx .

Fix a Borel set C ⊂ [1,2] and ǫ > 0 choose a countable collection of disjoint intervals Ei ⊂ [1,2],
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i ≥ 1, with C ⊂
⋃∞

i=1 Ei , such that

P(Z2 ∈ C
�� Z1 = z)≥

∞∑

i=1

P(Z2 ∈ Ei

�� Z1 = z)− ǫ

≥ λ
∞∑

i=1

∫

Ei

e−x+1

�
1− e−1

�dx − ǫ

≥ λ
∫

C

e−x+1/
�

1− e−1
�

dx − ǫ.

The first inequality is true because of the extension theorem, and the fact that the right-hand side

is a lower bound for the outer measure, for a suitable choice of the Eis. The inequality (5.49), with

φ(C) =
∫

C
e−x+1/

�
1− e−1

�
dx , follows by sending ǫ to 0.

The proof of the following Proposition can be found in [2].

Proposition 5.4. There exists a constant ̺ ∈ (0,1) and a sequence of random times {Nk, k ≥ 0}, with

N0 = 0, such that

• the sequence {ZNk
, k ≥ 1} consists of independent and identically distributed random variables

with distribution φ(·)

• Ni − Ni−1, i ≥ 1, are i.i.d. with a geometric distribution(ρ), i.e.

P(N2− N1 = j) = (1−̺) j−1̺, with j ≥ 1.

Lemma 5.5. supi∈NE[(τNi+1
−τNi

)2]<∞.

Proof. It is enough to prove E[(τN2
−τN1

)2]<∞. By virtue of Jensen’s inequality, we have that

E

h
(τk −τm)

11/5
i
= E
h
(

k−m∑

j=1

τm+ j −τm+ j−1)
11/5
i

≤ (k−m)11/5
E[(τ2−τ1)

11/5].

(5.58)

Using Holder with p = 11/10, we have

E[(τN2
−τN1

)2] =

∞∑

k=2

k−1∑

m=1

E

�
(τk −τm)

21l{N1=m, N2=k}
�

≤
∞∑

k=2

k−1∑

m=1

E

h�
τk −τm

�11/5
i10/11

P(N1 = m, N2− N1 = k−m)1/11

=

∞∑

k=2

k−1∑

m=1

E

h�
τk −τm

�11/5
i10/11

P(N1 = m)1/11
P(N2− N1 = k−m)1/11

≤
∞∑

k=2

k−1∑

m=1

(k−m)3E[(τ2−τ1)
11/5]10/11̺2/11

�
1−̺

�(k−2)/11

≤ ̺2/11
E[(τ2−τ1)

11/5]10/11
∞∑

k=2

k4
�
1−̺

�(k−2)/11
<∞,
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where we used the fact that 0< ̺ < 1.

With a similar proof we get the following result.

Lemma 5.6. supi∈NE
��

lNi+1
− lNi

�2�
<∞.

Definition 5.7. A process {Yk, k ≥ 1}, is said to be one-dependent if Yi+2 is independent of

{Yj , with 1≤ j ≤ i}.

Lemma 5.8. Let Υi :=
�
τNi+1
− τNi

, lNi+1
− lNi

�
, for i ≥ 1. The process Υ :=

�
Υi , i ≥ 1

	
is one-

dependent. Moreover Υi , i ≥ 1, are identically distributed.

Proof. Given ZNi−1
, Υi is independent of {Υ j , j ≤ i − 2}. Thus, it is sufficient to prove that Υi is

independent of ZNi−1
. To see this, it is enough to realize that given ZNi

, Υi is independent of ZNi−1
,

and combine this with the fact that ZNi
and ZNi−1

are independent. The variables ZNi
are i.i.d., hence

{Υi , i ≥ 2}, are identically distributed.

The Strong Law of Large Numbers holds for one-dependent sequences of identically distributed

variables bounded in L 1. To see this, just consider separately the sequence of random variables

with even and odd indices and apply the usual Strong Law of Large Numbers to each of them.

Hence, for some constants 0< C
(7)

b
, C

(8)

b
<∞, we have

lim
i→∞

τNi

i
→ C

(7)

b
, and lim

i→∞

lNi

i
→ C

(8)

b
, a.s.. (5.59)

Proof of Theorem 1. If τNi
≤ t < τNi+1

, then by the definition of cut level, we have

lNi
≤ |X t |< lNi+1

.

Hence
lNi

τNi+1

≤
|X t |

t
<

lNi+1

τNi

.

Let

K
(1)

b
=
E[lN2

− lN1
]

E[τN2
−τN1

]
, (5.60)

which are the constants in (5.59). Then

lim sup
t→∞

|X t |
t
≤ lim

i→∞

lNi+1

τNi

= lim
i→∞

lNi+1

i + 1

i

τNi

= K
(1)

b
, a.s..

Similarly, we can prove that

lim inf
t→∞

|X t |
t
≥ K

(1)

b
, a.s..

Now we turn to the proof of the central limit theorem. First we prove that there exists a constant

C ≥ 0 such that
lNm
− K

(1)

b
τNmp

m
=⇒ Normal(0, C), (5.61)
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where Normal(0,0) stands for the Dirac mass at 0. To prove (5.61) we use a theorem from [12].

The reader can find the statement of this theorem in the Appendix, Theorem 6.1, (see also [22]). In

order to apply this result we first need to prove that the quantity

1

m
E

h�
lNm
− K

(1)

b
τNm

�2
i
= E
h� lNm

− K
(1)

b
τNmp

m

�2i
(5.62)

converges. Call Y1 = lN1
−K

(1)

b
(τN1

and let Yi = lNi
− lNi−1

−K
(1)

b
(τNi
−τNi−1

), with i ≥ 2. The quantity

in (5.62) can be written as
1

m
E

h� m∑

i=1

Yi

�2
i

.

The random variables Yi are identically distributed with the exception of Y1. From the definition of

K
(1)

b
given in (5.60), we have

E[Yi] = E[lN2
− lN1

]−E[lN2
− lN1

] = 0.

Hence Yi , with i ≥ 1, is a zero-mean one-dependent process, and we get

E

h�
lNm
− K

(1)

b
τNm

�2
i
= E
h� m∑

i=1

Yi

�2i

= (m− 1)E[Y 2
2 ] + 2(m− 2)E[Y3Y2] +E[Y

2
1 ] + 2E[Y1Y2].

(5.63)

This proves that the limit in (5.62) exists and is equal to E[Y 2
2 ] + 2E[Y3Y2]. Now we face two

options. If the limit is equal to zero, then using Chebishev we get that

lim
m→∞
P

����
lNm
− CτNmp

m

���> ǫ
�
= lim

m→∞
P

����
1
p

m

m∑

i=1

Yi

���> ǫ
�
≤ lim

m→∞

1

ǫ
E

h�∑m

i=1 Yip
m

�2i
= 0.

If the limit of the quantity in (5.62) is positive, then we can apply Theorem 6.1 and deduce central

limit theorem for Yi , i ≥ 1, yielding (5.61).

Now we use (5.61) to prove the central limit theorem for |X t |. If τNm
≤ t < τNm+1

, then

|X t | − K
(1)

b
t

K
(2)

b

p
t
≥

lNm
− K

(1)

b
τNm+1

K
(2)

b

p
τNm+1

=

r
m

τNm+1

� lNm
− K

(1)

b
τNmp

m
+

K
(1)

bp
m
(τNm
−τNm+1

)
�

=

r
m

τNm+1

�∑m

i=1 Yip
m
−

YmK b
1p

m

�
.

(5.64)

The last expression converges, by virtue of the Slutzky’s lemma, either to a Normal distribution or to

a Dirac mass at 0, depending on whether the limit in (5.62) is positive or is zero. To see this, notice

that

lim
m→∞

r
m

τNm+1

=

È
1

E[τN2
−τN1

]
, a.s.

∑m

i=1 Yip
m

=⇒ Normal(0, C)

lim
m→∞

YmK b
1p

m
= 0, a.s..

1960



Similarly

|X t | − K
(1)

b
t

K
(2)

b

p
t
≤
È

m+ 1

τNm

�∑m+1

i=1 Yip
m+ 1

+
Ym+1K b

1p
m

�
,

and the right-hand side converges to the same limit of the right-hand side of (5.64).

6 Appendix

We include a corollary to a result of Hoeffding and Robbins (see [12] or [22]).

Theorem 6.1 (Hoeffding-Robbins). Suppose Y := {Yi , i ≥ 1} is a one-dependent process whose com-

ponents are identically distributed with mean 0. If

• E[Y 2+δ
i
]<∞, for some δ > 0,

• limn→∞
1

n
Var(

∑n

i=1 Yi) converges to a positive finite constant K, then

∑n

i=1 Yi − nE[Y1]

K
p

n
=⇒ Normal(0,1).
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