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Abstract

We continue our study of intermittency for the parabolic Anderson model ∂ u/∂ t = κ∆u+ξu in a

space-time random medium ξ, where κ is a positive diffusion constant, ∆ is the lattice Laplacian

on Zd , d ≥ 1, and ξ is a simple symmetric exclusion process on Zd in Bernoulli equilibrium. This

model describes the evolution of a reactant u under the influence of a catalyst ξ.

In [3] we investigated the behavior of the annealed Lyapunov exponents, i.e., the exponential

growth rates as t → ∞ of the successive moments of the solution u. This led to an almost
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complete picture of intermittency as a function of d and κ. In the present paper we finish

our study by focussing on the asymptotics of the Lyaponov exponents as κ → ∞ in the critical

dimension d = 3, which was left open in [3] and which is the most challenging. We show that,

interestingly, this asymptotics is characterized not only by a Green term, as in d ≥ 4, but also

by a polaron term. The presence of the latter implies intermittency of all orders above a finite

threshold for κ.
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1 Introduction and main result

1.1 Model

In this paper we consider the parabolic Anderson model (PAM) on Zd , d ≥ 1,





∂ u

∂ t
= κ∆u+ ξu on Zd × [0,∞),

u(·, 0) = 1 on Zd ,
(1.1)

where κ is a positive diffusion constant, ∆ is the lattice Laplacian acting on u as

∆u(x , t) =
∑

y∈Zd

‖y−x‖=1

[u(y, t)− u(x , t)] (1.2)

(‖ · ‖ is the Euclidian norm), and

ξ= (ξt)t≥0, ξt = {ξt(x): x ∈ Zd}, (1.3)

is a space-time random field that drives the evolution. If ξ is given by an infinite particle system

dynamics, then the solution u of the PAM may be interpreted as the concentration of a diffusing

reactant under the influence of a catalyst performing such a dynamics.

In Gärtner, den Hollander and Maillard [3] we studied the PAM for ξ Symmetric Exclusion (SE),

and developed an almost complete qualitative picture. In the present paper we finish our study by

focussing on the limiting behavior as κ→∞ in the critical dimension d = 3, which was left open in

[3] and which is the most challenging. We restrict to Simple Symmetric Exclusion (SSE), i.e., (ξt)t≥0

is the Markov dynamics on Ω = {0,1}Z3

(0 = vacancy, 1 = particle) with generator L acting on

cylinder functions f : Ω→ R as

(L f )(η) =
1

6

∑

{a,b}

h
f
�
ηa,b
�
− f (η)
i

, η ∈ Ω, (1.4)

where the sum is taken over all unoriented nearest-neighbor bonds {a, b} of Z3, and ηa,b denotes

the configuration obtained from η by interchanging the states at a and b:

ηa,b(a) = η(b), ηa,b(b) = η(a), ηa,b(x) = η(x) for x /∈ {a, b}. (1.5)

(See Liggett [7], Chapter VIII.) Let Pη and Eη denote probability and expectation for ξ given ξ0 =

η ∈ Ω. Let ξ0 be drawn according to the Bernoulli product measure νρ on Ω with density ρ ∈ (0,1).

The probability measures νρ, ρ ∈ (0,1), are the only extremal equilibria of the SSE dynamics. (See

Liggett [7], Chapter VIII, Theorem 1.44.) We write Pνρ =
∫
Ω
νρ(dη)Pη and Eνρ =

∫
Ω
νρ(dη)Eη.

1.2 Lyapunov exponents

For p ∈ N, define the p-th annealed Lyapunov exponent of the PAM by

λp(κ,ρ) = lim
t→∞

1

pt
logEνρ ([u(0, t)]p) . (1.6)
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We are interested in the asymptotic behavior of λp(κ,ρ) as κ→∞ for fixed ρ and p. To this end,

let G denote the value at 0 of the Green function of simple random walk on Z3 with jump rate 1 (i.e.,

the Markov process with generator 1

6
∆), and let P3 be the value of the polaron variational problem

P3 = sup
f ∈H1(R3)

‖ f ‖2=1

�



�
−∆R3

�−1/2
f 2





2

2
−


∇R3 f


2

2

�
, (1.7)

where ∇R3 and ∆R3 are the continuous gradient and Laplacian, ‖ · ‖2 is the L2(R3)-norm, H1(R3) =

{ f ∈ L2(R3): ∇R3 f ∈ L2(R3)}, and





�
−∆R3

�−1/2
f 2





2

2
=

∫

R
3

d x f 2(x)

∫

R
3

d y f 2(y)
1

4π‖x − y‖ . (1.8)

(See Donsker and Varadhan [1] for background on how P3 arises in the context of a self-attracting

Brownian motion referred to as the polaron model. See also Gärtner and den Hollander [2], Section

1.5.)

We are now ready to formulate our main result (which was already announced in Gärtner, den

Hollander and Maillard [4]).

Theorem 1.1. Let d = 3, ρ ∈ (0,1) and p ∈ N. Then

lim
κ→∞

κ[λp(κ,ρ)−ρ] =
1

6
ρ(1−ρ)G + [6ρ(1−ρ)p]2P3. (1.9)

Note that the expression in the r.h.s. of (1.9) is the sum of a Green term and a polaron term. The

existence, continuity, monotonicity and convexity of κ 7→ λp(κ,ρ) were proved in [3] for all d ≥ 1

for all exclusion processes with an irreducible and symmetric random walk transition kernel. It was

further proved that λp(κ,ρ) = 1 when the random walk is recurrent and ρ < λp(κ,ρ) < 1 when

the random walk is transient. Moreover, it was shown that for simple random walk in d ≥ 4 the

asymptotics as κ → ∞ of λp(κ,ρ) is similar to (1.9), but without the polaron term. In fact, the

subtlety in d = 3 is caused by the appearance of this extra term which, as we will see in Section 5,

is related to the large deviation behavior of the occupation time measure of a rescaled random walk

that lies deeply hidden in the problem. For the heuristics behind Theorem 1.1 we refer the reader

to [3], Section 1.5.

1.3 Intermittency

The presence of the polaron term in Theorem 1.1 implies that, for each ρ ∈ (0,1), there exists a

κ0(ρ)> 0 such that the strict inequality

λp(κ,ρ)> λp−1(κ,ρ) ∀κ > κ0(ρ) (1.10)

holds for p = 2 and, consequently, for all p ≥ 2 by the convexity of p 7→ pλp(κ,ρ). This means

that all moments of the solution u are intermittent for κ > κ0(ρ), i.e., for large t the random

field u(·, t) develops sparse high spatial peaks dominating the moments in such a way that each

moment is dominated by its own collection of peaks (see Gärtner and König [5], Section 1.3, and

den Hollander [6], Chapter 8, for more explanation).
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In [3] it was shown that for all d ≥ 3 the PAM is intermittent for small κ. We conjecture that in d = 3

it is in fact intermittent for all κ. Unfortunately, our analysis does not allow us to treat intermediate

values of κ (see the figure).

0

ρ

1

r

r

r

p = 3

p = 2

p = 1
?

κ

λp(κ)

Qualitative picture of κ 7→ λp(κ) for p = 1,2,3.

The formulation of Theorem 1.1 coincides with the corresponding result in Gärtner and den Hollan-

der [2], where the random potential ξ is given by independent simple random walks in a Poisson

equilibrium in the so-called weakly catalytic regime. However, as we already pointed out in [3], the

approach in [2] cannot be adapted to the exclusion process, since it relies on an explicit Feynman-

Kac representation for the moments that is available only in the case of independent particle motion.

We must therefore proceed in a totally different way. Only at the end of Section 5 will we be able to

use some of the ideas in [2].

1.4 Outline

Each of Sections 2–5 is devoted to a major step in the proof of Theorem 1.1 for p = 1. The extension

to p ≥ 2 will be indicated in Section 6.

In Section 2 we start with the Feynman-Kac representation for the first moment of the solution u,

which involves a random walk sampling the exclusion process. After rescaling time, we transform

the representation w.r.t. the old measure to a representation w.r.t. a new measure via an appropriate

absolutely continuous transformation. This allows us to separate the parts responsible for, respec-

tively, the Green term and the polaron term in the r.h.s. of (1.9). Since the Green term has already

been handled in [3], we need only concentrate on the polaron term. In Section 3 we show that, in

the limit as κ→∞, the new measure may be replaced by the old measure. The resulting represen-

tation is used in Section 4 to prove the lower bound for the polaron term. This is done analytically

with the help of a Rayleigh-Ritz formula. In Section 5, which is technical and takes up almost half

of the paper, we prove the corresponding upper bound. This is done by freezing and defreezing the

exclusion process over long time intervals, allowing us to approximate the representation in terms of

the occupation time measures of the random walk over these time intervals. After applying spectral

estimates and using a large deviation principle for these occupation time measures, we arrive at the

polaron variational formula.
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2 Separation of the Green term and the polaron term

In Section 2.1 we formulate the Feynman-Kac representation for the first moment of u and show

how to split this into two parts after an appropriate change of measure. In Section 2.2 we formulate

two propositions for the asymptotics of these two parts, which lead to, respectively, the Green term

and the polaron term in (1.9). These two propositions will be proved in Sections 3–5. In Section 2.3

we state and prove three elementary lemmas that will be needed along the way.

2.1 Key objects

The solution u of the PAM in (1.1) admits the Feynman-Kac representation

u(x , t) = EX
x

�
exp

�∫ t

0

ds ξt−s

�
Xκs

�
��

, (2.1)

where X is simple random walk on Z3 with step rate 6 (i.e., with generator ∆) and PX
x and EX

x

denote probability and expectation with respect to X given X0 = x . Since ξ is reversible w.r.t. νρ,

we may reverse time in (2.1) to obtain

Eνρ

�
u(0, t)
�
= Eνρ ,0

�
exp

�∫ t

0

ds ξs

�
Xκs

���
, (2.2)

where Eνρ ,0 is expectation w.r.t. Pνρ ,0 = Pνρ ⊗ PX
0 .

As in [2] and [3], we rescale time and write

e−ρ(t/κ)Eνρ
�
u(0, t/κ)
�
= Eνρ ,0

�
exp

�
1

κ

∫ t

0

dsφ(Zs)

��
(2.3)

with

φ(η, x) = η(x)−ρ (2.4)

and

Zt =
�
ξt/κ, X t

�
. (2.5)

From (2.3) it is obvious that (1.9) in Theorem 1.1 (for p = 1) reduces to

lim
κ→∞

κ2λ∗(κ) =
1

6
ρ(1−ρ)G+ [6ρ(1−ρ)]2P3, (2.6)

where

λ∗(κ) = lim
t→∞

1

t
logEνρ ,0

�
exp

�
1

κ

∫ t

0

dsφ(Zs)

��
. (2.7)

Here and in the rest of the paper we suppress the dependence on ρ ∈ (0,1) from the notation.

Under Pη,x = Pη ⊗ PX
x , (Zt)t≥0 is a Markov process with state space Ω×Z3 and generator

A =
1

κ
L +∆ (2.8)
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(acting on the Banach space of bounded continuous functions on Ω×Z3, equipped with the supre-

mum norm). Let (St)t≥0 denote the semigroup generated byA .

Our aim is to make an absolutely continuous transformation of the measure Pη,x with the help of

an exponential martingale, in such a way that, under the new measure Pnew
η,x , (Zt)t≥0 is a Markov

process with generatorA new of the form

A new f = e−
1

κ
ψA
�

e
1

κ
ψ f
�
−
�

e−
1

κ
ψA e

1

κ
ψ
�

f . (2.9)

This transformation leads to an interaction between the exclusion process part and the random walk

part of (Zt)t≥0, controlled by ψ : Ω×Z3→ R. As explained in [3], Section 4.2, it will be expedient

to choose ψ as

ψ=

∫ T

0

ds
�
Ssφ
�

(2.10)

with T a large constant (suppressed from the notation), implying that

−Aψ= φ −STφ. (2.11)

It was shown in [3], Lemma 4.3.1, that

Nt = exp

�
1

κ

�
ψ(Zt)−ψ(Z0)
�
−
∫ t

0

ds
�

e−
1

κ
ψA e

1

κ
ψ
�
(Zs)

�
(2.12)

is an exponential Pη,x -martingale for all (η, x) ∈ Ω×Z3. Moreover, if we define Pnew
η,x in such a way

that

P
new
η,x (A) = Eη,x

�
Nt 11A

�
(2.13)

for all events A in the σ-algebra generated by (Zs)s∈[0,t], then under Pnew
η,x indeed (Zs)s≥0 is a Markov

process with generator A new. Using (2.11–2.13) and Enew
νρ ,0 =
∫
Ω
νρ(dη)E

new
η,0 , it then follows that

the expectation in (2.7) can be written in the form

Eνρ ,0

�
exp

�
1

κ

∫ t

0

dsφ(Zs)

��

= Enew
νρ ,0

�
exp

�
1

κ

�
ψ(Z0)−ψ(Zt)
�
+

∫ t

0

ds

��
e−

1

κ
ψA e

1

κ
ψ
�
−A
�

1

κ
ψ

��
(Zs)

+
1

κ

∫ t

0

ds
�
STφ
�
(Zs)

��
.

(2.14)

The first term in the exponent in the r.h.s. of (2.14) stays bounded as t →∞ and can therefore be

discarded when computing λ∗(κ) via (2.7). We will see later that the second term and the third term

lead to the Green term and the polaron term in (2.6), respectively. These terms may be separated

from each other with the help of Hölder’s inequality, as stated in Proposition 2.1 below.

2.2 Key propositions

Proposition 2.1. For any κ > 0,

λ∗(κ)
≤
≥ I

q

1(κ) + I r
2(κ) (2.15)

2097



with

I
q

1(κ) =
1

q
lim
t→∞

1

t
logEnew

νρ ,0

�
exp

�
q

∫ t

0

ds

��
e−

1

κ
ψA e

1

κ
ψ
�
−A
�

1

κ
ψ

��
(Zs)

��
,

I r
2(κ) =

1

r
lim
t→∞

1

t
logEnew

νρ ,0

�
exp

�
r

κ

∫ t

0

ds
�
STφ
�
(Zs)

��
,

(2.16)

where 1/q + 1/r = 1, with q > 0, r > 1 in the first inequality and q < 0, 0 < r < 1 in the second

inequality.

Proof. See [3], Proposition 4.4.1. The existence and finiteness of the limits in (2.16) follow from

Lemma 3.1 below.

By choosing r arbitrarily close to 1, we see that the proof of our main statement in (2.6) reduces to

the following two propositions, where we abbreviate

lim sup
t,κ,T→∞

= lim sup
T→∞

lim sup
κ→∞

lim sup
t→∞

and lim
t,κ,T→∞

= lim
T→∞

lim
κ→∞

lim
t→∞

. (2.17)

In the next proposition we write ψT instead of ψ to indicate the dependence on the parameter T .

Proposition 2.2. For any α ∈ R,

lim sup
t,κ,T→∞

κ2

t
logEnew

νρ ,0

�
exp

�
α

∫ t

0

ds

��
e−

1

κ
ψTA e

1

κ
ψT

�
−A
�1
κ
ψT

��
(Zs)

��
≤
α

6
ρ(1−ρ)G.

(2.18)

Proposition 2.3. For any α > 0,

lim
t,κ,T→∞

κ2

t
logEnew

νρ ,0

�
exp

�
α

κ

∫ t

0

ds
�
STφ
�
(Zs)

��
= [6α2ρ(1−ρ)]2P3. (2.19)

These propositions will be proved in Sections 3–5.

2.3 Preparatory lemmas

This section contains three elementary lemmas that will be used frequently in Sections 3–5.

Let p
(1)
t (x , y) and pt(x , y) = p

(3)
t (x , y) be the transition kernels of simple random walk in d = 1

and d = 3, respectively, with step rate 1.

Lemma 2.4. There exists C > 0 such that, for all t ≥ 0 and x , y, e ∈ Z3 with ‖e‖= 1,

p
(1)
t (x , y)≤

C

(1+ t)
1

2

, pt(x , y)≤
C

(1+ t)
3

2

,
��pt(x + e, y)− pt(x , y)

��≤
C

(1+ t)2
. (2.20)

Proof. Standard.

(In the sequel we will frequently write pt(x − y) instead of pt(x , y).)
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From the graphical representation for SSE (Liggett [7], Chapter VIII, Theorem 1.1) it is immediate

that

Eη

�
ξt(x)
�
=
∑

y∈Zd

pt(x , y)η(y). (2.21)

Recalling (2.4–2.5) and (2.10), we therefore have

Ssφ(η, x) = Eη,x

�
φ(Zs)
�
= Eη

� ∑

y∈Z3

p6s(x , y)
�
ξs/κ(y)−ρ
�
�

=
∑

z∈Z3

p6s1[κ](x , z)
�
η(z)−ρ
� (2.22)

and

ψ(η, x) =

∫ T

0

ds
∑

z∈Z3

p6s1[κ](x , z)
�
η(z)−ρ
�

, (2.23)

where we abbreviate

1[κ] = 1+
1

6κ
. (2.24)

Lemma 2.5. For all κ, T > 0, η ∈ Ω, a, b ∈ Z3 with ‖a− b‖= 1 and x ∈ Z3,

|ψ(η, b)−ψ(η, a)| ≤ 2C
p

T for T ≥ 1, (2.25)

���ψ
�
ηa,b, x
�
−ψ(η, x)

���≤ 2G, (2.26)

∑

{a,b}

�
ψ
�
ηa,b, x
�
−ψ(η, x)
�2
≤

1

6
G, (2.27)

where C > 0 is the same constant as in Lemma 2.4, and G is the value at 0 of the Green function of

simple random walk on Z3.

Proof. For a proof of (2.26–2.27), see [3], Lemma 4.5.1. To prove (2.25), we may without loss of

generality consider b = a+ e1 with e1 = (1,0,0). Then, by (2.23), we have

|ψ(η, b)−ψ(η, a)| ≤
∫ T

0

ds
∑

z∈Z3

��p6s1[κ](z + e1)− p6s1[κ](z)
��

=

∫ T

0

ds
∑

z∈Z3

���p(1)
6s1[κ]

(z1+ e1)− p
(1)

6s1[κ]
(z1)

��� p(1)
6s1[κ]

(z2) p
(1)

6s1[κ]
(z3)

=

∫ T

0

ds
∑

z1∈Z

���p(1)
6s1[κ]

(z1+ e1)− p
(1)

6s1[κ]
(z1)

���

= 2

∫ T

0

ds p
(1)

6s1[κ]
(0)≤ 2C

p
T .

(2.28)

In the last line we have used the first inequality in (2.20).
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Let G be the Green operator acting on functions V : Z3→ [0,∞) as

GV (x) =
∑

y∈Z3

G(x − y)V (y), x ∈ Z3, (2.29)

with G(z) =
∫∞

0
d t pt(z). Let ‖ · ‖∞ denote the supremum norm.

Lemma 2.6. For all V : Z3→ [0,∞) and x ∈ Z3,

EX
x

�
exp

�∫ ∞

0

d t V (X t)

��
≤
�

1−‖GV‖∞
�−1

≤ exp

�
‖GV‖∞

1−‖GV‖∞

�
, (2.30)

provided that

‖GV‖∞ < 1. (2.31)

Proof. See [2], Lemma 8.1.

3 Reduction to the original measure

In this section we show that the expectations in Propositions 2.2–2.3 w.r.t. the new measure Pnew
νρ ,0

are asymptotically the same as the expectations w.r.t. the old measure Pνρ ,0. In Section 3.1 we state

a Rayleigh-Ritz formula from which we draw the desired comparison. In Section 3.2 we state the

analogues of Propositions 2.2–2.3 whose proof will be the subject of Sections 4–5.

3.1 Rayleigh-Ritz formula

Recall the definition of ψ in (2.10). Let m denote the counting measure on Z3. It is easily checked

that both µρ = νρ ⊗m and µnew
ρ given by

dµnew
ρ = e

2

κ
ψ dµρ (3.1)

are reversible invariant measures of the Markov processes with generators A defined in (2.8),

respectively,A new defined in (2.9). In particular,A andA new are self-adjoint operators in L2(µρ)

and L2(µnew
ρ ). Let D(A ) and D(A new) denote their domains.

Lemma 3.1. For all bounded measurable V : Ω×Z3→ R,

lim
t→∞

1

t
logEnew

νρ ,0

�
exp

�∫ t

0

ds V (Zs)

��
= sup

F∈D(A new)

‖F‖
L2(µnew

ρ )
=1

∫∫

Ω×Z3

dµnew
ρ

�
V F2+ FA newF

�
. (3.2)

The same is true when Enew
νρ ,0, µnew

ρ ,A new are replaced by Eνρ ,0, µρ,A , respectively.

Proof. The limit in the l.h.s. of (3.2) coincides with the upper boundary of the spectrum of the

operatorA new+V on L2(µnew
ρ ), which may be represented by the Rayleigh-Ritz formula. The latter

coincides with the expression in the r.h.s. of (3.2). The details are similar to [3], Section 2.2.

2100



Lemma 3.1 can be used to express the limits as t →∞ in Propositions 2.2–2.3 as variational expres-

sions involving the new measure. Lemma 3.2 below says that, for large κ, these variational expres-

sions are close to the corresponding variational expressions for the old measure. Using Lemma 3.1

for the original measure, we may therefore arrive at the corresponding limit for the old measure.

For later use, in the statement of Lemma 3.2 we do not assume that ψ is given by (2.10). Instead,

we only suppose that η 7→ψ(η) is bounded and measurable and that there is a constant K > 0 such

that for all η ∈ Ω, a, b ∈ Z3 with ‖a− b‖= 1 and x ∈ Z3,

|ψ(η, b)−ψ(η, a)| ≤ K and

���ψ
�
ηa,b, x
�
−ψ(η, x)

���≤ K , (3.3)

but retain thatA new and µnew
ρ are given by (2.9) and (3.1), respectively.

Lemma 3.2. Assume (3.3). Then, for all bounded measurable V : Ω×Z3→ R,

sup
F∈D(A new)

‖F‖
L2(µnew

ρ )
=1

∫∫

Ω×Z3

dµnew
ρ

�
V F2+ FA newF

�

≤
≥ e∓

K

κ sup
F∈D(A )

‖F‖
L2(µρ )

=1

∫∫

Ω×Z3

dµρ

�
e±

K

κ V F2+ FA F
�

,

(3.4)

where ± means + in the first inequality and − in the second inequality, and ∓ means the reverse.

Proof. Combining (1.2), (1.4) and (2.8–2.9), we have for all (η, x) ∈ Ω×Z3 and all F ∈ D(A new),

�
V F2+ FA newF

�
(η, x) = V (η, x) F2(η, x)

+
1

6κ

∑

{a,b}
F(η, x) e

1

κ
[ψ(ηa,b ,x)−ψ(η,x)]

h
F(ηa,b, x)− F(η, x)

i

+
∑

y : ‖y−x‖=1

F(η, x) e
1

κ
[ψ(η,y)−ψ(η,x)]�F(η, y)− F(η, x)

�
.

(3.5)

Therefore, taking into account (2.9), (3.1) and the exchangeability of νρ, we find that

∫∫

Ω×Z3

dµnew
ρ

�
V F2+ FA newF

�
=

∫∫

Ω×Z3

dµnew
ρ (η, x)

�
V (η, x) F2(η, x)

−
1

12κ

∑

{a,b}
e

1

κ
[ψ(ηa,b ,x)−ψ(η,x)]

h
F(ηa,b, x)− F(η, x)

i2

−
1

2

∑

y : ‖y−x‖=1

e
1

κ
[ψ(η,y)−ψ(η,x)]�F(η, y)− F(η, x)

�2
�

.

(3.6)
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Let eF = eψ/κF . Then, by (3.1) and (3.3),

(3.6)
≤
≥

∫∫

Ω×Z3

dµnew
ρ (η, x)

�
V (η, x) F2(η, x)

−
e∓

K

κ

12κ

∑

{a,b}

h
F(ηa,b, x)− F(η, x)

i2
−

e∓
K

κ

2

∑

y : ‖y−x‖=1

�
F(η, y)− F(η, x)

�2
�

=

∫∫

Ω×Z3

dµρ(η, x)

�
V (η, x) eF 2(η, x)

−
e∓

K

κ

12κ

∑

{a,b}

h
eF(ηa,b, x)− eF(η, x)

i2
−

e∓
K

κ

2

∑

y : ‖y−x‖=1

h
eF(η, y)− eF(η, x)

i2�

= e∓
K

κ

∫∫

Ω×Z3

dµρ

�
e±

K

κ V eF2+ eFA eF
�

.

(3.7)

Taking further into account that 

eF


2

L2(µρ)
= ‖F‖2

L2(µnew
ρ )

, (3.8)

and that eF ∈ D(A ) if and only if F ∈ D(A new), we get the claim.

3.2 Reduced key propositions

At this point we may combine the assertions in Lemmas 3.1–3.2 for the potentials

V = α

��
e−

1

κ
ψA e

1

κ
ψ
�
−A
�1
κ
ψ
��

(3.9)

and

V =
α

κ

�
STφ
�

(3.10)

with ψ given by (2.10). Because of (2.25–2.26), the constant K in (3.3) may be chosen to be the

maximum of 2G and 2C
p

T , resulting in K/κ→ 0 as κ→∞. Moreover, from (2.27) and a Taylor

expansion of the r.h.s. of (3.9) we see that the potential in (3.9) is bounded for each κ and T ,

and the same is obviously true for the potential in (3.10) because of (2.4). In this way, using a

moment inequality to replace the factor e±K/κα by a slightly larger, respectively, smaller factor α′

independent of T and κ, we see that the limits in Propositions 2.2–2.3 do not change when we

replace Enew
νρ ,0 by Eνρ ,0. Hence it will be enough to prove the following two propositions.

Proposition 3.3. For all α ∈ R,

lim sup
t,κ,T→∞

κ2

t
logEνρ ,0

�
exp

�
α

∫ t

0

ds

��
e−

1

κ
ψA e

1

κ
ψ
�
−A
�1
κ
ψ
��
(Zs)

��
≤
α

6
ρ(1−ρ)G. (3.11)

Proposition 3.4. For all α > 0,

lim
t,κ,T→∞

κ2

t
logEνρ ,0

�
exp

�
α

κ

∫ t

0

ds
�
STφ
�
(Zs)

��
=
�

6α2ρ(1−ρ)
�2P3. (3.12)

Proposition 3.3 has already been proven in [3], Proposition 4.4.2. Sections 4–5 are dedicated to the

proof of the lower, respectively, upper bound in Proposition 3.4.
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4 Proof of Proposition 3.4: lower bound

In this section we derive the lower bound in Proposition 3.4. We fix α,κ, T > 0 and use Lemma 3.1,

to obtain

lim
t→∞

1

t
logEνρ ,0

�
exp

�
α

κ

∫ t

0

ds
�
STφ
�
(Zs)

��
= sup

F∈D(A )
‖F‖

L2(µρ )
=1

∫∫

Ω×Z3

dµρ

�α
κ

�
STφ
�

F2+ FA F
�

.

(4.1)

In Section 4.1 we choose a test function. In Section 4.2 we compute and estimate the resulting

expression. In Section 4.3 we take the limit κ, T → ∞ and show that this gives the desired lower

bound.

4.1 Choice of test function

To get the desired lower bound, we use test functions F of the form

F(η, x) = F1(η)F2(x). (4.2)

Before specifying F1 and F2, we introduce some further notation. In addition to the counting mea-

sure m on Z3, consider the discrete Lebesgue measure mκ on Z3
κ = κ

−1
Z

3 giving weight κ−3 to

each site in Z3
κ. Let l2(Z3) and l2(Z3

κ) denote the corresponding l2-spaces. Let ∆κ denote the lattice

Laplacian on Z3
κ defined by

�
∆κ f
�
(x) = κ2
∑

y∈Z3κ
‖y−x‖=κ−1

�
f (y)− f (x)
�

. (4.3)

Choose f ∈ C∞c (R3) with ‖ f ‖L2(R3) = 1 arbitrarily, where C∞c (R3) is the set of infinitely differen-

tiable functions on R3 with compact support. Define

fκ(x) = κ
−3/2 f
�
κ−1 x
�
, x ∈ Z3, (4.4)

and note that

‖ fκ‖l2(Z3) = ‖ f ‖l2(Z3
κ)
→ 1 as κ→∞. (4.5)

For F2 choose

F2 = ‖ fκ‖−1

l2(Z3)
fκ. (4.6)

To choose F1, introduce the function

eφ(η) =
α

‖ fκ‖2l2(Z3)

∑

x∈Z3

�
STφ
�
(η, x) f 2

κ (x). (4.7)

Given K > 0, abbreviate

S = 6T1[κ] and U = 6Kκ21[κ] (4.8)

(recall (2.24)). For κ >
p

T/K , define eψ : Ω→ R by

eψ=
∫ U−S

0

dsTs
eφ, (4.9)
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where (Tt)t≥0 is the semigroup generated by the operator L in (1.4). Note that the construction of
eψ from eφ in (4.9) is similar to the construction of ψ from φ in (2.10). In particular,

− L eψ = eφ −TU−S
eφ. (4.10)

Combining the probabilistic representations of the semigroups (St)t≥0 (generated by A in (2.8))

and (Tt)t≥0 (generated by L in (1.4)) with the graphical representation formulas (2.21–2.22), and

using (4.4–4.5), we find that

eφ(η) =
α

‖ f ‖2
l2(Z3

κ)

∫

Z
3
κ

mκ(d x) f 2(x)
∑

z∈Z3

pS(κx , z)[η(z)−ρ] (4.11)

and
eψ(η) =
∑

z∈Z3

h(z)[η(z)−ρ] (4.12)

with

h(z) =
α

‖ f ‖2
l2(Z3

κ)

∫

Z
3
κ

mκ(d x) f 2(x)

∫ U

S

ds ps(κx , z). (4.13)

Using the second inequality in (2.20), we have

0≤ h(z)≤
Cα
p

T
, z ∈ Z3. (4.14)

Now choose F1 as

F1 =


e eψ


−1

L2(νρ)
e
eψ. (4.15)

For the above choice of F1 and F2, we have ‖F1‖L2(νρ)
= ‖F2‖l2(Z3) = 1 and, consequently,

‖F‖L2(µρ)
= 1. With F1, F2 and eφ as above, and A as in (2.8), after scaling space by κ we ar-

rive at the following lemma.

Lemma 4.1. For F as in (4.2), (4.6) and (4.15), all α, T, K > 0 and κ >
p

T/K,

κ2

∫∫

Ω×Z3

dµρ

�α
κ

�
STφ
�

F2+ FA F
�

=
1

‖ f ‖2
l2(Z3

κ)

∫

Z
3
κ

dmκ f∆κ f +
κ

‖e eψ‖2
L2(νρ)

∫

Ω

dνρ

�
eφe2 eψ + e
eψLe
eψ
�

,

(4.16)

where eφ and eψ are as in (4.7) and (4.9).

4.2 Computation of the r.h.s. of (4.16)

Clearly, as κ→∞ the first summand in the r.h.s. of (4.16) converges to

∫

R
3

d x f (x)∆ f (x) = −


∇R3 f


2

L2(R3)
. (4.17)

The computation of the second summand in the r.h.s. of (4.16) is more delicate:
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Lemma 4.2. For all α > 0 and 0< ε < K,

lim inf
κ,T→∞

κ

‖e eψ‖2
L2(νρ)

∫

Ω

dνρ

�
eφe2 eψ + e
eψLe
eψ
�

≥ 6α2ρ(1−ρ)
∫

R
3

d x f 2(x)

∫

R
3

d y f 2(y)

�∫ 6K

6ε

d t p
(G)
t (x , y)−
∫ 12K

6K

d t p
(G)
t (x , y)

�
,

(4.18)

where

p
(G)
t (x , y) = (4πt)−3/2 exp[−‖x − y‖2/4t] (4.19)

denotes the Gaussian transition kernel associated with ∆R3 , the continuous Laplacian on R3.

Proof. Using the probability measure

dνnew
ρ =


e eψ


−2

L2(νρ)
e2 eψ dνρ (4.20)

in combination with (4.10), we may write the term under the lim inf in (4.18) in the form

κ

∫

Ω

dνnew
ρ

�
e−
eψLe
eψ − L eψ+TU−S

eφ
�

. (4.21)

This expression can be handled by making a Taylor expansion of the L-terms and showing that the

TU−S-term is nonnegative. Indeed, by the definition of L in (1.4), we have

�
e−
eψLe
eψ − L eψ
�
(η) =

1

6

∑

{a,b}

�
e[
eψ(ηa,b)− eψ(η)]− 1−

h
eψ
�
ηa,b
�
− eψ(η)
i�

. (4.22)

Recalling the expressions for eψ in (4.12–4.13) and using (4.14), we get for a, b ∈ Z3 with ‖a− b‖=
1,

�� eψ
�
ηa,b
�
− eψ(η)
��= |h(a)− h(b)| |η(b)−η(a)| ≤

Cα
p

T
. (4.23)

Hence, a Taylor expansion of the exponent in the r.h.s. of (4.22) gives

∫

Ω

dνnew
ρ

�
e−
eψ Le
eψ − L eψ
�
≥

e−Cα/
p

T

12

∫

Ω

dνnew
ρ

∑

{a,b}

h
eψ
�
ηa,b
�
− eψ(η)
i2

. (4.24)

Using (4.12), we obtain

∫

Ω

νnew
ρ (dη)
∑

{a,b}

h
eψ
�
ηa,b
�
− eψ(η)
i2
=
∑

{a,b}

�
h(a)− h(b)
�2
∫

Ω

νnew
ρ (dη)
�
η(b)−η(a)
�2

. (4.25)

Using (4.20), we have (after cancellation of factors not depending on a or b)

∫

Ω

νnew
ρ (dη)
�
η(b)−η(a)
�2
=

∫

Ω

νρ(dη) e
2χa,b(η)
�
η(b)−η(a)
�2

∫

Ω

νρ(dη) e
2χa,b(η)

(4.26)

2105



with

χa,b(η) = h(a)η(a) + h(b)η(b). (4.27)

Using (4.14), we obtain that

∫

Ω

νnew
ρ (dη)
�
η(b)−η(a)
�2 ≥ e−4Cα/

p
T

∫

Ω

νρ(dη)
�
η(b)−η(a)
�2
= e−4Cα/

p
T 2ρ(1−ρ). (4.28)

On the other hand, by (4.13),

∑

{a,b}

�
h(a)− h(b)
�2
=

α2

‖ f ‖4
l2(Z3

κ)

∫ U

S

d t

∫ U

S

ds

∫

Z
3
κ

mκ(d x) f 2(x)

∫

Z
3
κ

mκ(d y) f 2(y)

×
∑

{a,b}

�
pt(κx , a)− pt(κx , b)

��
ps(κy, a)− ps(κy, b)

� (4.29)

with
∑

{a,b}

�
pt(κx , a)− pt(κx , b)

��
ps(κy, a)− ps(κy, b)

�
=−
∑

a∈Z3

pt(κx , a)∆ps(κx , a)

=−6
∑

a∈Z3

pt(κx , a)

�
∂

∂ s
ps(κy, a)

�
,

(4.30)

where ∆ acts on the first spatial variable of ps(· , ·) and ∆ps = 6(∂ ps/∂ s). Therefore,

(4.29) = 6

∫ U

S

d t

∫

Z
3
κ

mκ(d x) f 2(x)

∫

Z
3
κ

mκ(d y) f 2(y)
∑

a∈Z3

pt(κx , a)
�

pS(κy, a)− pU(κy, a)
�

= 6

∫

Z
3
κ

mκ(d x) f 2(x)

∫

Z
3
κ

mκ(d y) f 2(y)

�∫ S+U

2S

d t pt(κx ,κy)−
∫ 2U

U+S

d t pt(κx ,κy)

�
.

(4.31)

Combining (4.24–4.25) and (4.28–4.29) and (4.31), we arrive at

∫

Ω

dνnew
ρ

�
e−
eψLe
eψ − L eψ
�
≥

e−5Cα/
p

Tα2

‖ f ‖4
l2(Z3

κ)

ρ(1−ρ)
∫

Z
3
κ

mκ(d x) f 2(x)

∫

Z
3
κ

mκ(d y) f 2(y)

×
�∫ S+U

2S

d t pt(κx ,κy)−
∫ 2U

U+S

d t pt(κx ,κy)

�
.

(4.32)

After replacing 2S in the first integral by 6εκ21[κ], using a Gaussian approximation of the transition

kernel pt(x , y) and recalling the definitions of S and U in (4.8), we get that, for any ε > 0,

lim inf
κ,T→∞

κ

∫

Ω

dνnew
ρ

�
e−
eψLe
eψ − L eψ
�

≥ 6α2ρ(1−ρ)
∫

R
3

d x f 2(x)

∫

R
3

d y f 2(y)

�∫ 6K

6ε

d t p
(G)
t (x , y)−
∫ 12K

6K

d t p
(G)
t (x , y)

�
.

(4.33)
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At this point it only remains to check that the TU−S-term in (4.21) is nonnegative. By (4.11) and

the probabilistic representation of the semigroup (Tt)t≥0, we have

∫

Ω

dνnew
ρ TU−S
eφ =

α

‖ f ‖2
l2(Z3

κ)

∫

Z
3
κ

mκ(d x) f 2(x)
∑

z∈Z3

pU(κx , z)

∫

Ω

νnew
ρ (dη)[η(z)−ρ] (4.34)

and, by (4.20),

∫

Ω

νnew
ρ (dη)[η(z)−ρ] =−ρ+

ρe2h(z)

ρe2h(z)+ 1−ρ
= −ρ+

ρ

1− (1−ρ)
�
1− e−2h(z)
�

≥−ρ+ρ
h

1+ (1−ρ)
�

1− e−2h(z)
�i
= ρ(1−ρ)
�

1− e−2h(z)
�

,

(4.35)

which proves the claim.

4.3 Proof of the lower bound in Proposition 3.4

We finish by using Lemma 4.2 to prove the lower bound in Proposition 3.4.

Proof. Combining (4.16–4.18), we get

lim inf
κ,T→∞

κ2

∫∫

Ω×Z3

dµρ

�α
κ

�
STφ
�

F2− FA F
�

≥ 6α2ρ(1−ρ)
∫

R
3

d x f 2(x)

∫

R
3

d y f 2(y)

�∫ 6K

6ε

d t p
(G)
t (x , y)−
∫ 12K

6K

d t p
(G)
t (x , y)

�

−


∇R3 f


2

L2(R3)
.

(4.36)

Letting ε ↓ 0, K → ∞, replacing f (x) by γ3/2 f (γx) with γ = 6α2ρ(1− ρ), taking the supremum

over all f ∈ C∞c (R
3) such that ‖ f ‖L2(R3) = 1 and recalling (4.1), we arrive at

lim inf
t,κ,T→∞

κ2

t
logEνρ ,0

�
exp

�
α

κ

∫ t

0

ds
�
STφ
�
(Zs)

��
≥
�

6α2ρ(1−ρ)
�2P3, (4.37)

which is the desired inequality.

5 Proof of Proposition 3.4: upper bound

In this section we prove the upper bound in Proposition 3.4. The proof is long and technical.

In Sections 5.1 we “freeze” and “defreeze” the exclusion dynamics on long time intervals. This

allows us to approximate the relevant functionals of the random walk in terms of its occupation

time measures on those intervals. In Section 5.2 we use a spectral bound to reduce the study of

the long-time asymptotics for the resulting time-dependent potentials to the investigation of time-

independent potentials. In Section 5.3 we make a cut-off for small times, showing that these times

are negligible in the limit as κ → ∞, perform a space-time scaling and compactification of the

underlying random walk, and apply a large deviation principle for the occupation time measures,

culminating in the appearance of the variational expression for the polaron term P3.
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5.1 Freezing, defreezing and reduction to two key lemmas

5.1.1 Freezing

We begin by deriving a preliminary upper bound for the expectation in Proposition 3.4 given by

Eνρ ,0

�
exp

�∫ t

0

ds V (Zs)

��
(5.1)

with

V (η, x) =
α

κ

�
STφ
�
(η, x) =

α

κ

∑

y∈Z3

p6T1[κ](x , y)(η(y)−ρ), (5.2)

where, as before, T is a large constant. To this end, we divide the time interval [0, t] into ⌊t/Rκ⌋
intervals of length

Rκ = Rκ2 (5.3)

with R a large constant, and “freeze” the exclusion dynamics (ξt/κ)t≥0 on each of these intervals.

As will become clear later on, this procedure allows us to express the dependence of (5.1) on the

random walk X in terms of objects that are close to integrals over occupation time measures of X on

time intervals of length Rκ. We will see that the resulting expression can be estimated from above by

“defreezing” the exclusion dynamics. We will subsequently see that, after we have taken the limits

t → ∞, κ → ∞ and T → ∞, the resulting estimate can be handled by applying a large deviation

principle for the space-time rescaled occupation time measures in the limit as R → ∞. The latter

will lead us to the polaron term.

Ignoring the negligible final time interval [⌊t/Rκ⌋Rκ, t], using Hölder’s inequality with p,q > 1 and

1/p+ 1/q = 1, and inserting (5.2), we see that (5.1) may be estimated from above as

Eνρ ,0

�
exp

�∫ ⌊t/Rκ⌋Rκ

0

ds V (Zs)

��

= Eνρ ,0

�
exp

�
α

κ

⌊t/Rκ⌋∑

k=1

∫ kRκ

(k−1)Rκ

ds
∑

y∈Z3

p6T1[κ](Xs, y)
�
ξs/κ(y)−ρ
�
��

≤
�
E (1)R,αq(t)
�1/q�

E (2)R,αp(t)
�1/p

(5.4)

with

E (1)R,α(t) = E
(1)
R,α(κ, T ; t) = Eνρ ,0

�
exp

�
α

κ

⌊t/Rκ⌋∑

k=1

∫ kRκ

(k−1)Rκ

ds
∑

y∈Z3

�
p6T1[κ](Xs, y)ξ s

κ
(y)

− p
6T1[κ]+

s−(k−1)Rκ
κ

(Xs, y)ξ (k−1)Rκ
κ

(y)

��� (5.5)

and

E (2)R,α(t) = E
(2)
R,α(κ, T ; t)

= Eνρ ,0

�
exp

�
α

κ

⌊t/Rκ⌋∑

k=1

∫ kRκ

(k−1)Rκ

ds
∑

y∈Z3

p
6T1[κ]+

s−(k−1)Rκ
κ

(Xs, y)
�
ξ (k−1)Rκ

κ

(y)−ρ
���

.
(5.6)
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Therefore, by choosing p close to 1, the proof of the upper bound in Proposition 3.4 reduces to the

proof of the following two lemmas.

Lemma 5.1. For all R,α > 0,

lim sup
t,κ,T→∞

κ2

t
logE (1)R,α(κ, T ; t)≤ 0. (5.7)

Lemma 5.2. For all α > 0,

lim sup
R→∞

lim sup
t,κ,T→∞

κ2

t
logE (2)R,α(κ, T ; t)≤

�
6α2ρ(1−ρ)
�2P3. (5.8)

Lemma 5.1 will be proved in Section 5.1.2, Lemma 5.2 in Sections 5.1.3–5.3.3.

5.1.2 Proof of Lemma 5.1

Proof. Fix R,α > 0 arbitrarily. Given a path X , an initial configuration η ∈ Ω and k ∈ N, we first

derive an upper bound for

Eη

�
exp

�
α

κ

∫ Rκ

0

ds
∑

y∈Z3

�
p6T1[κ]

�
X (k,κ)

s , y
�
ξ s

κ
(y)− p6T1[κ]+ s

κ

�
X (k,κ)

s , y
�
η(y)

���
, (5.9)

where

X (k,κ)
s = X(k−1)Rκ+s. (5.10)

To this end, we use the independent random walk approximation eξ of ξ (cf. [3], Proposition 1.2.1),

to obtain

(5.9)≤
∏

y∈Aη

EY
0

�
exp

�
α

κ

∫ Rκ

0

ds

�
p6T1[κ]

�
X (k,κ)

s , y + Y s

κ

�
− p6T1[κ]+ s

κ

�
X (k,κ)

s , y
����

, (5.11)

where Y is simple random walk on Z3 with jump rate 1 (i.e., with generator 1

6
∆), EY

0 is expectation

w.r.t. Y starting from 0, and

Aη = {x ∈ Z3 : η(x) = 1}. (5.12)

Observe that the expectation w.r.t. Y of the expression in the exponent is zero. Therefore, a Taylor

expansion of the exponential function yields the bound

EY
0

�
exp

�
α

κ

∫ Rκ

0

ds

�
p6T1[κ]

�
X (k,κ)

s , y + Y s

κ

�
− p6T1[κ]+ s

κ

�
X (k,κ)

s , y
����

≤ 1+

∞∑

n=2

n∏

l=1

�
α

κ

∫ Rκ

sl−1

dsl

∑

yl∈Z3

p sl−sl−1
κ

(yl−1, yl)

×
�

p6T1[κ]

�
X (k,κ)

sl
, y + yl

�
+ p6T1[κ]+

sl
κ

�
X (k,κ)

sl
, y
���

,

(5.13)
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where s0 = 0, y0 = 0, and the product has to be understood in a noncommutative way. Using the

Chapman-Kolmogorov equation and the inequality pt(z)≤ pt(0), z ∈ Z3, we find that

∫ Rκ

sl−1

dsl

∑

yl∈Z3

p sl−sl−1
κ

(yl−1, yl)

�
p6T1[κ]

�
X (k,κ)

sl
, y + yl

�
+ p6T1[κ]+

sl
κ

�
X (k,κ)

sl
, y
���

≤ 2

∫ ∞

0

ds pT+ s

κ
(0) = 2κGT (0)

(5.14)

with

GT (0) =

∫ ∞

T

ds ps(0) (5.15)

the cut-off Green function of simple random walk at 0 at time T . Substituting this into the above

bound for l = n, n − 1, · · · , 3, computing the resulting geometric series, and using the inequality

1+ x ≤ ex , we obtain

(5.13)≤ exp

�
CTα

2

κ2

2∏

l=1

∫ Rκ

sl−1

dsl

∑

yl∈Z3

p sl−sl−1
κ

(yl−1, yl)

×
�

p6T1[κ]

�
X (k,κ)

sl
, y + yl

�
+ p6T1[κ]+

sl
κ

�
X (k,κ)

sl
, y
���

(5.16)

with

CT =
1

1− 2αGT (0)
, (5.17)

provided that 2αGT (0) < 1, which is true for T large enough. Note that CT → 1 as T → ∞.

Substituting (5.16) into (5.11), we find that

(5.9)≤ exp

�
CTα

2

κ2

∑

y∈Z3

2∏

l=1

∫ Rκ

sl−1

dsl

∑

yl∈Z3

p sl−sl−1
κ

(yl−1, yl)

×
�

p6T1[κ]

�
X (k,κ)

sl
, y + yl

�
+ p6T1[κ]+

sl
κ

�
X (k,κ)

sl
, y
���

.

(5.18)

Using once more the Chapman-Kolmogorov equation and pt(x , y) = pt(x − y), we may compute

the sums in the exponent, to arrive at

(5.9)≤ exp

�
CTα

2

κ2

∫ Rκ

0

ds1

∫ Rκ

s1

ds2

�
p

12T1[κ]+
s2−s1
κ

�
X (k,κ)

s2
− X (k,κ)

s1

�

+ 3p
12T1[κ]+

s2+s1
κ

�
X (k,κ)

s2
− X (k,κ)

s1

���
.

(5.19)

Note that this bound does not depend on the initial configuration η and depends on the process

X only via its increments on the time interval [(k − 1)Rκ, kRκ]. By (5.10), the increments over

the time intervals labelled k = 1,2, · · · , ⌊t/Rκ⌋ are independent and identically distributed. Using

Eνρ ,0 =
∫
νρ(dη)E

X
0Eη, we can therefore apply the Markov property of the exclusion dynamics
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(ξt/κ)t≥0 at times Rκ, 2Rκ, · · · , (⌊t/Rκ⌋ − 1)Rκ to the expectation in the r.h.s. of (5.5), insert the

bound (5.19) and afterwards use that (X t)t≥0 has independent increments, to arrive at

logE (1)R,α(t)≤
t

Rκ
log EX

0

�
exp

�
CTα

2

κ2

∫ Rκ

0

ds1

∫ Rκ

s1

ds2

�
p

12T1[κ]+
s2−s1
κ

�
Xs2
− Xs1

�

+ 3p
12T1[κ]+

s2+s1
κ

�
Xs2
− Xs1

��
��

.

(5.20)

Hence, recalling the definition of Rκ in (5.3), we obtain

lim sup
t→∞

κ2

t
logE (1)R,α(t)

≤
1

R
log EX

0

�
exp

�
CTα

2R

Rκ

∫ Rκ

0

ds1

∫ Rκ

s1

ds2

�
p

12T1[κ]+
s2−s1
κ

�
Xs2
− Xs1

�

+ 3p
12T1[κ]+

s2+s1
κ

�
Xs2
− Xs1

��
��

.

(5.21)

Let
bX t = X t + Yt/κ, (5.22)

and let E
bX
0 = EX

0 EY
0 be the expectation w.r.t. bX starting at 0. Observe that

pt+s/κ(z) = EY
0

�
pt

�
z + Ys/κ

��
. (5.23)

We next apply Jensen’s inequality w.r.t. the first integral in the r.h.s. of (5.21), substitute s2 = s1+ s,

take into account that X has independent increments, and afterwards apply Jensen’s inequality w.r.t.

EY
0 , to arrive at the following upper bound for the expectation in (5.21):

EX
0

�
exp

�
CTα

2R

Rκ

∫ Rκ

0

ds1

∫ Rκ

s1

ds2

�
p

12T1[κ]+
s2−s1
κ

�
Xs2
− Xs1

�

+ 3p
12T1[κ]+

s2+s1
κ

�
Xs2
− Xs1

��
�

≤
1

Rκ

∫ Rκ

0

ds1 EX
0

�
exp

�
CTα

2R

∫ ∞

0

ds EY
0

�
p12T1[κ]

�
Xs + Y s

κ

�

+ 3p
12T1[κ]+

2s1
κ

�
Xs + Y s

κ

����

≤
1

Rκ

∫ Rκ

0

ds1 E
bX
0

�
exp

�
CTα

2R

∫ ∞

0

ds
�

p12T1[κ]

�bXs

�
+ 3p

12T1[κ]+
2s1
κ

�bXs

��
��

.

(5.24)

Applying Lemma 2.6, we can bound the last expression from above by

exp

�
4CTα

2RbG2T (0)

1− 4CTα
2RbG2T (0)

�
, (5.25)

where bG2T (0) is the cut-off at time 2T of the Green function bG at 0 for bX (which has generator

1[κ]∆). Since bG2T (0)→ 1

6
G12T (0) as κ→∞, and since the latter converges to zero as T →∞, a

combination of the above estimates with (5.21) gives the claim.

2111



5.1.3 Defreezing

To prove Lemma 5.2, we next “defreeze” the exclusion dynamics in E (2)R,α(t). This can be done in a

similar way as the “freezing” we did in Section 5.1.1, by taking into account the following remarks.

In (5.6), each single summand is asymptotically negligible as t →∞. Hence, we can safely remove

a summand at the beginning and add a summand at the end. After that we can bound the resulting

expression from above with the help of Hölder’s inequality with weights p,q > 1, 1/p + 1/q = 1,

namely,

Eνρ ,0

�
exp

�
α

κ

⌊t/Rκ⌋∑

k=1

∫ (k+1)Rκ

kRκ

ds
∑

y∈Z3

p
6T1[κ]+

s−kRκ
κ

(Xs, y)
�
ξ kRκ

κ

(y)−ρ
���

≤
�
E (3)R,αq(t)
�1/q�

E (4)R,αp(t)
�1/p

(5.26)

with

E (3)R,α(t) = E
(3)
R,α(κ, T ; t)

= Eνρ ,0

�
exp

�
α

κRκ

⌊t/Rκ⌋∑

k=1

∫ kRκ

(k−1)Rκ

du

∫ (k+1)Rκ

kRκ

ds
∑

y∈Z3

�
p

6T1[κ]+
s−kRκ
κ

(Xs, y)ξ kRκ
κ

(y)

− p6T1[κ]+ s−u

κ
(Xs, y)ξ u

κ
(y)

���
(5.27)

and

E (4)R,α(t) = E
(4)
R,α(κ, T ; t)

= Eνρ ,0

�
exp

�
α

κRκ

⌊t/Rκ⌋∑

k=1

∫ kRκ

(k−1)Rκ

du

∫ (k+1)Rκ

kRκ

ds
∑

y∈Z3

p6T1[κ]+ s−u

κ
(Xs, y)
�
ξ u

κ
(y)−ρ
���

.
(5.28)

In this way, choosing p close to 1, we see that the proof of Lemma 5.2 reduces to the proof of the

following two lemmas.

Lemma 5.3. For all R,α > 0,

lim sup
t,κ,T→∞

κ2

t
logE (3)R,α(κ, T ; t)≤ 0. (5.29)

Lemma 5.4. For all α > 0,

lim sup
R→∞

lim sup
t,κ,T→∞

κ2

t
logE (4)R,α(κ, T ; t)≤

�
6α2ρ(1−ρ)
�2P3. (5.30)

In the remaining sections we prove Lemmas 5.3–5.4 and thereby complete the proof of the upper

bound in Proposition 3.4.
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5.1.4 Proof of Lemma 5.3

Proof. The proof goes along the same lines as the proof of Lemma 5.1. Instead of (5.9), we consider

Eη

�
exp

�
α

κRκ

∫ Rκ

0

du

∫ 2Rκ

Rκ

ds
∑

y∈Z3

�
p

6T1[κ]+
s−Rκ
κ

�
X (k,κ)

s , y
�
ξ Rκ

κ

(y)

− p6T1[κ]+ s−u

κ

�
X (k,κ)

s , y
�
ξ u

κ
(y)

���
.

(5.31)

Applying Jensen’s inequality w.r.t. the first integral and the Markov property of the exclusion dy-

namics (ξt/κ)t≥0 at time u/κ, we see that it is enough to derive an appropriate upper bound for

Eζ

�
exp

�
α

κ

∫ 2Rκ

Rκ

ds
∑

y∈Z3

�
p

6T1[κ]+
s−Rκ
κ

�
X (k,κ)

s , y
�
ξ Rκ−u

κ

(y)

− p6T1[κ]+ s−u

κ

�
X (k,κ)

s , y
�
ζ(y)

��� (5.32)

uniformly in ζ ∈ Ω and u ∈ [0,Rκ]. The main steps are the same as in the proof of Lemma 5.1.

Instead of (5.19), we obtain

(5.32)≤ exp

�
CTα

2

κ2

∫ 2Rκ

Rκ

ds1

∫ 2Rκ

s1

ds2

�
p

12T1[κ]+
s2−s1
κ
+

2(s1−Rκ)

κ

�
X (k,κ)

s2
− X (k,κ)

s1

�

+ 3p
12T1[κ]+

s2−s1
κ
+

2(s1−u)

κ

�
X (k,κ)

s2
− X (k,κ)

s1

���
,

(5.33)

and this expression may be bounded from above by (5.25).

5.2 Spectral bound

The advantage of Lemma 5.4 compared to the original upper bound in Proposition 3.4 is that,

modulo a small time correction of the form (s − u)/κ, the expression under the expectation in

(5.28) depends on X only via its occupation time measures on the time intervals [kRκ, (k+ 1)Rκ],

k = 1,2, · · · , ⌊t/Rκ⌋. This will allow us in Section 5.3 to use a large deviation principle for these

occupation time measures. The present section consists of five steps, organized in Sections 5.2.1–

5.2.5, leading up to a final lemma that will be proved in Section 5.3.

We abbreviate

Vk,u(η) = V
κ,X

k,u
(η) =

1

Rκ

∫ (k+1)Rκ

kRκ

ds
∑

y∈Z3

p6T1[κ]+ s−u

κ

�
Xs, y
�
(η(y)−ρ) (5.34)

and rewrite the expression for E (4)R,α(t) in (5.28) in the form

E (4)R,α(t) = Eνρ ,0

�
exp

�
α

κ

⌊t/Rκ⌋∑

k=1

∫ kRκ

(k−1)Rκ

du Vk,u

�
ξu/κ

�
��

. (5.35)

In (5.34) and subsequent expressions we suppress the dependence on T and R.
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5.2.1 Reduction to a spectral bound

Let B(Ω) denote the Banach space of bounded measurable functions on Ω equipped with the supre-

mum norm ‖ · ‖∞. Given V ∈ B(Ω), let

λ(V ) = lim
t→∞

1

t
logEνρ

�
exp

�∫ t

0

V (ξs) ds

��
(5.36)

denote the associated Lyapunov exponent. The limit in (5.36) exists and coincides with the upper

boundary of the spectrum of the self-adjoint operator L + V on L2(νρ), written

λ(V ) = sup Sp(L+ V ). (5.37)

Lemma 5.5. For all t > 0 and all bounded and piecewise continuous V : [0, t]→ B(Ω),

Eνρ

�
exp

�∫ t

0

Vu(ξu) du

��
≤ exp

�∫ t

0

λ(Vs) ds

�
. (5.38)

Proof. In the proof we will assume that s 7→ Vs is continuous. The extension to piecewise continuous

s 7→ Vs will be straightforward. Let 0 = t0 < t1 < · · · < tr = t be a partition of the interval [0, t].

Then
∫ t

0

Vu(ξu) du≤
r∑

k=1

∫ tk

tk−1

Vtk−1
(ξs) ds+

r∑

k=1

max
s∈[tk−1,tk]

‖Vs − Vtk−1
‖∞
�

tk − tk−1

�

≤
r∑

k=1

∫ tk

tk−1

Vtk−1
(ξs) ds+ t max

k=1,··· ,r
max

s∈[tk−1,tk]
‖Vs − Vtk−1

‖∞.

(5.39)

Let (S V
t )t≥0 denote the semigroup generated by L+V on L2(νρ) with inner product (· , ·) and norm

‖ · ‖. Then 

S V
t



= etλ(V ). (5.40)

Using the Markov property, we find that

Eνρ

�
exp

�
r∑

k=1

∫ tk

tk−1

Vtk−1
(ξs) ds

��
=

�
S Vt0

t1
S Vt1

t2−t1
· · ·S Vtr−1

tr−tr−1
11, 11

�

≤


S Vt0

t1





S Vt1

t2−t1



 · · ·


S Vtr−1

tr−tr−1





= exp

�
r∑

k=1

λ
�
Vtk−1

�
(tk − tk−1)

�
.

(5.41)

Combining (5.39) and (5.41), we arrive at

logEνρ

�∫ t

0

Vs(ξs) ds

�
≤

r∑

k=1

λ
�
Vtk−1

�
(tk − tk−1) + t max

k=1,··· ,r
max

s∈[tk−1,tk]



Vs − Vtk−1




∞. (5.42)

Since the map V 7→ λ(V ) from B(Ω) to R is continuous (which can be seen e.g. from (5.40) and the

Feynman-Kac representation of S V
t ), the claim follows by letting the mesh of the partition tend to

zero.
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Lemma 5.6. For all α, T,R, t,κ > 0,

Eνρ ,0

�
exp

�
α

κ

⌊t/Rκ⌋∑

k=1

∫ kRκ

(k−1)Rκ

du Vk,u

�
ξu/κ

�
��
≤ EX

0

�
exp

� ⌊t/Rκ⌋∑

k=1

∫ kRκ

(k−1)Rκ

duλk,u

��
(5.43)

with

λk,u = λ
κ,X

k,u
= lim

t→∞

1

t
logEνρ

�
exp

�
α

κ

∫ t

0

ds V
κ,X

k,u

�
ξs/κ

���
, (5.44)

where u ∈ [(k− 1)Rκ, kRκ], k = 1,2, · · · , ⌊t/Rκ⌋.

Proof. Apply Lemma 5.5 to the potential Vu(η) = (α/κ)Vk,u(η) for u ∈ [(k−1)Rκ, kRκ] with (ξu)u≥0

replaced by (ξu/κ)u≥0, and take the expectation w.r.t. EX
0 .

The spectral bound in Lemma 5.6 enables us to estimate the expression in (5.35) from above by

finding upper bounds for the expectation in (5.44) with a time-independent potential Vk,u. This goes

as follows. Fix κ, X , k and u, and abbreviate

bφ = αV
κ,X

k,u
. (5.45)

Let (Qt)t≥0 be the semigroup generated by (1/κ)L, and define

bψ =
∫ M

0

dr
�
Qr
bφ
�

(5.46)

with

M = 3K1[κ]κ3 (5.47)

for a large constant K > 0. Then

−
1

κ
L bψ = bφ −QM
bφ (5.48)

with

�
Qr
bφ
�
(η) =

α

Rκ

∫ (k+1)Rκ

kRκ

ds
∑

y∈Z3

p6T1[κ]+ s−u+r

κ
(Xs, y)
�
η(y)−ρ
�

= α
∑

y∈Z3

Ξr(y)[η(y)−ρ]
(5.49)

and

Ξr(x) = Ξ
κ,X

k,u,r
(x) =

1

Rκ

∫ (k+1)Rκ

kRκ

ds p6T1[κ]+ s−u+r

κ
(Xs, x). (5.50)

As in Section 2, we introduce new probability measures Pnew
η by an absolute continuous transforma-

tion of the probability measures Pη, in the same way as in (2.12–2.13) with ψ and A replaced by

bψ and (1/κ)L, respectively. Under Pnew
η , (ξt/κ)t≥0 is a Markov process with generator

1

κ
Lnew f = e−

1

κ
bψ 1

κ
L

�
e

1

κ
bψ f

�
−
�

e−
1

κ
bψ 1

κ
Le

1

κ
bψ
�

f . (5.51)
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Since η 7→ bψ(η) is bounded, we have, similarly as in Proposition 2.1 with q = r = 2,

λ
κ,X

k,u
≤ lim sup

t→∞

1

2t
log
�
E (5)

k,u
(t)
�
+ lim sup

t→∞

1

2t
log
�
E (6)

k,u
(t)
�

(5.52)

with

E (5)
k,u
(t) = E (5)

k,u
(κ, X ; t) = Enew

νρ

�
exp

�
2

κ

∫ t

0

dr

��
e−

1

κ
bψLe

1

κ
bψ
�
− L

�
1

κ
bψ
���

ξr/κ

���
(5.53)

and

E (6)
k,u
(t) = E (6)

k,u
(κ, X ; t) = Enew

νρ

�
exp

�
2

κ

∫ t

0

dr
�
QM
bφ
��
ξr/κ

���
, (5.54)

where Enew
νρ
=
∫
Ω
νρ(dη)E

new
η , and we suppress the dependence on the constants T , K , R.

5.2.2 Two further lemmas

For a, b ∈ Z3 with ‖a− b‖= 1, define

Kk,u(a, b) =K κ,X

k,u
(a, b) = e2Cα/T

α2

3κ3

∫ M

0

dr

∫ M

r

der
�
Ξr(a)−Ξr(b)
��
Ξer(a)−Ξer(b)
�

(5.55)

with Ξr given by (5.50) and C the constant from Lemma 2.4. Abbreviate



Kk,u




1
=
∑

{a,b}
K κ,X

k,u
(a, b). (5.56)

Lemma 5.7. For all α, T, K ,R,κ, t > 0, u ∈ [(k− 1)Rκ, kRκ], k = 1,2, · · · , ⌊t/Rκ⌋, and all paths X ,

E (5)
k,u
(t)≤ Eνρ

�
exp

�
κ


Kk,u




1

∫ t/κ

0

dr
�
ξr(e1)− ξr(0)
�2
��

(5.57)

with



Kk,u




1
≤ e2Cα/T

2α2

κ2R2
κ

∫ (k+1)Rκ

kRκ

ds

∫ (k+1)Rκ

kRκ

des
∫ M

0

dr p
12T1[κ]+ s+es−2u+2r

κ

�
Xes − Xs

�
. (5.58)

Lemma 5.8. There exists κ0 > 0 such that for all κ > κ0, K > 1, α, T,R,κ, t > 0, u ∈ [(k−1)Rκ, kRκ],

k = 1,2, · · · , ⌊t/Rκ⌋, and all paths X ,

E (6)
k,u
(t)≤ exp

�
Dα,T,K

κ2
ρ t

�
, (5.59)

where the constant Dα,T,K does not depend on R, t, κ, u or k and satisfies

lim
K→∞

Dα,T,K = 0, uniformly in T ≥ 1. (5.60)
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5.2.3 Proof of Lemma 5.7

Proof. We want to replace Enew
νρ

by Eνρ in formula (5.53) by applying the analogues of Lemmas 3.1

and 3.2. To this end, we need to compute the constant K in (3.3) for ψ replaced by bψ. Recalling

(5.46) and (5.49), we have, for η ∈ Ω and a, b ∈ Z3 with ‖a− b‖= 1,

bψ(ηa,b)− bψ(η) = α
∫ M

0

dr
�
Ξr(a)−Ξr(b)
�
[η(b)−η(a)]. (5.61)

Hence,

��� bψ
�
ηa,b
�
− bψ(η)
���≤ α
∫ M

0

dr
��Ξr(a)−Ξr(b)
��≤ Cα

∫ ∞

0

dr

�
1+ 6T +

r

κ

�−2

≤
Cα

T
κ. (5.62)

Here we have used (5.50) and the right-most inequality in (2.20). This yields

E (5)
k,u
(t)≤ Eνρ
�

exp

�
2

κ
eCα/T

∫ t

0

dr

��
e−

1

κ
bψLe

1

κ
bψ
�
− L

�
1

κ
bψ
���

ξr/κ

���
. (5.63)

By (1.4), we have

1

κ

�
e−

1

κ
bψLe

1

κ
bψ − L
�1
κ
bψ
��
(η) =

1

6κ

∑

{a,b}

�
e

1

κ
[ bψ(ηa,b)− bψ(η)]− 1−

1

κ

h
bψ(ηa,b)− bψ(η)
i�

. (5.64)

In view of (5.62), a Taylor expansion of the r.h.s. of (5.64) gives

1

κ

�
e−

1

κ
bψLe

1

κ
bψ − L
�1
κ
bψ
��
(η)≤

eCα/T

12κ3

∑

{a,b}

�
bψ(ηa,b)− bψ(η)
�2

. (5.65)

Hence, recalling (5.55) and (5.61), we get

Eνρ

�
exp

�
2

κ
eCα/T

∫ t

0

dr

��
e−

1

κ
bψLe

1

κ
bψ
�
− L
�1
κ
bψ
���

ξr/κ

���

≤ Eνρ
�

exp

�∫ t

0

dr
∑

{a,b}
Kk,u(a, b)
h
ξ r

κ
(b)− ξ r

κ
(a)
i2��

.

(5.66)

Using Jensen’s inequality w.r.t. the probability kernel Kk,u/‖Kk,u‖1, together with the translation

invariance of ξ under Pνρ , we arrive at (5.57). To derive (5.58), observe that for arbitrary h,eh, r,er >
0 and x , y ∈ Zd ,
∑

{a,b}

h
ph+ r

κ
(x , a)− ph+ r

κ
(x , b)
ih

peh+ er
κ

(y, a)− peh+ er
κ

(y, b)
i

= −
∑

a∈Z3

ph+ r

κ
(x , a)∆peh+ er

κ

(y, a) =−6κ
∑

a∈Z3

ph+ r

κ
(x , a)

∂

∂ er peh+ er
κ

(y, a),

(5.67)

where ∆ acts on the first spatial variable of pt(·, ·) and 1

6
∆pt/κ = κ(∂ /∂ t)pt/κ. Recalling (5.50), it

follows that ∑

{a,b}

�
Ξr(a)−Ξr(b)
��
Ξer(a)−Ξer(b)
�
=−6κ
∑

a∈Z3

Ξr(a)
∂

∂ er Ξer(a) (5.68)
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and, consequently,



Kk,u




1
= e2Cα/T

2α2

κ2

∫ M

0

dr
∑

a∈Z3

Ξr(a)
�
Ξr(a)−ΞM (a)
�

≤ e2Cα/T
2α2

κ2

∫ M

0

dr
∑

a∈Z3

Ξr(a)
2.

(5.69)

Hence, taking into account (5.50), we arrive at (5.58).

5.2.4 Proof of Lemma 5.8

Proof. Using the same arguments as in (5.62–5.63), we can replace Enew
νρ

by Eνρ in formula (5.54),

to obtain

E (6)
k,u
(t)≤ Eνρ
�

exp

�
2

κ
eCα/T

∫ t

0

dr
�
QM
bφ
��
ξr/κ

���
. (5.70)

Because of (5.49), this yields

exp

�
2α

κ
eCα/Tρ t

�
E (6)

k,u
(t)≤ Eνρ
�

exp

�
2α

κ
eCα/T

∫ t

0

dr
∑

y∈Z3

ΞM (y)ξr/κ(y)

��
. (5.71)

Now, using the independent random walk approximation eξ of ξ (see [3], Proposition 1.2.1), we

find that

Eνρ

�
exp

�
2α

κ
eCα/T

∫ t

0

dr
∑

y∈Z3

ΞM (y)ξr/κ(y)

��

≤
∫
νρ(dη)
∏

x∈Aη

EY
x

�
exp

�
2α

κ
eCα/T

∫ t

0

dr ΞM

�
Yr/κ

���
,

(5.72)

where Aη is given by (5.12) and Y is simple random walk with step rate 1. Define

v(x , t) = EY
x

�
exp

�
2α

κ
eCα/T

∫ t

0

dr ΞM

�
Yr/κ

���
, (x , t) ∈ Z3× [0,∞), (5.73)

and write

w(x , t) = v(x , t)− 1. (5.74)

Then we may bound (5.71) from above as follows:

r.h.s. (5.71)≤
∫
νρ(dη)
∏

x∈Z3

�
1+η(x)w(x , t)

�

=
∏

x∈Z3

�
1+ρw(x , t)
�

≤ exp

�
ρ
∑

x∈Z3

w(x , t)

�
.

(5.75)
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By the Feynman-Kac formula, w is the solution of the Cauchy problem

∂

∂ t
w(x , t) =

1

6κ
∆w(x , t) +

2α

κ
eCα/TΞM (x)
�

1+w(x , t)
�

, w(·, 0)≡ 0. (5.76)

Therefore
∂

∂ r

∑

x∈Z3

w(x , r) =
2α

κ
eCα/T
∑

x∈Z3

ΞM (x)
�

1+w(x , r)
�

. (5.77)

Integrating (5.77) w.r.t. r over the time interval [0, t] and substituting the resulting expression into

(5.75), we get

r.h.s. (5.71)≤ exp

�
2α

κ
eCα/Tρ

∫ t

0

dr
∑

x∈Z3

ΞM (x)
�
1+w(x , r)
�
�

. (5.78)

Since
∑

x∈Z3 ΞM (x) = 1, this leads to

E (6)
k,u
(t)≤ exp

�
2α

κ
eCα/Tρ

∫ t

0

dr
∑

x∈Z3

ΞM (x)w(x , r)

�
. (5.79)

An application of Lemma 2.6 to the expectation in the r.h.s. of (5.73) gives

v(x , t)≤
�

1− 2αeCα/T


GΞM




∞

�−1

. (5.80)

Next, using (5.47) and (5.50), we find that


GΞM




∞ ≤ G6T+M/κ(0)≤ G3Kκ2(0), (5.81)

where the r.h.s. tends to zero as κ → ∞. Thus, if K > 1 and κ > κ0 with κ0 large enough (not

depending on the other parameters), then v(x , t) ≤ 2, and hence w(x , t) ≤ 1, for all x ∈ Z3 and

t ≥ 0, so that (5.76) implies that w ≤ bw, where bw solves

∂

∂ t
bw(x , t) =

1

6κ
∆bw(x , t) +

4α

κ
eCα/TΞM (x), bw(·, 0)≡ 0. (5.82)

The solution of this Cauchy problem has the representation

bw(x , t) =
4α

κ
eCα/T

∫ t

0

dr
∑

y∈Z3

p r

κ
(x , y)ΞM (y) =

4α

κ
eCα/T

∫ t

0

dr ΞM+r(x). (5.83)

Hence

∑

x∈Z3

ΞM (x)w(x , r)≤
4α

κ
eCα/T

∫ r

0

der
∑

x∈Z3

ΞM (x)ΞM+er(x)

≤
4α

κ
eCα/T

1

R2
κ

∫ (k+1)Rκ

kRκ

ds

∫ (k+1)Rκ

kRκ

des
∫ r

0

der p
12T1[κ]+ s+es−2u+2M+er

κ

(0)

≤
4α

κ
eCα/T

∫ ∞

0

der p 2M+er
κ

(0)

≤
4Cα
p

Kκ
eCα/T ,

(5.84)

where we again use the second inequality of Lemma 2.4. Substituting (5.84) into (5.79), we arrive

at the claim with Dα,T,K = 8α2Ce2Cα/T/
p

K .
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5.2.5 Further reduction of Lemma 5.4

To further estimate the expectation in Lemma 5.7 from above, we use the following two lemmas.

Lemma 5.9. Let

Γ(β) = lim sup
t→∞

1

t
logEνρ

�
exp

�
β

∫ t

0

du
�
ξu(e1)− ξu(0)
�2
��

. (5.85)

Then

lim
β→0

Γ(β)

β
= 2ρ(1−ρ). (5.86)

Proof. The proof is a straightforward adaptation of what is done in Gärtner, den Hollander and

Maillard [3], Lemmas 4.6.8 and 4.6.10.

Lemma 5.10. For all α, T, K ,R,κ > 0, u ∈ [(k− 1)Rκ, kRκ], k = 1,2, · · · , ⌊t/Rκ⌋, and all paths X ,

lim sup
t→∞

1

2t
logE (5)

k,u
(t)≤ ϑα,T ρ(1−ρ)



Kk,u




1
, (5.87)

where ϑα,T does not depend on K ,R,κ,u, k or X , and ϑα,T → 1 as T →∞.

Proof. Using the bound in (5.58) for ‖Kk,u‖1, we find that

κ


Kk,u




1
≤ e2Cα/T 2α2

∫ ∞

0

dr p12T+2r(0)≤
Cα2e2Cα/T

p
T

, (5.88)

which tends to zero as T →∞. Hence, we may apply Lemma 5.9 to (5.57) to get the claim.

At this point we may combine Lemmas 5.10 and 5.8 with (5.52), to get

λ
κ,X

k,u
≤ ϑα,T ρ(1−ρ)



Kk,u




1
+

Dα,T,K

2κ2
ρ. (5.89)

Note that the upper bound in (5.58) for ‖Kk,u‖1 depends on X only via its increments on the

times interval [(k− 1)Rκ, kRκ] and that these increments are i.i.d. for k = 1,2, · · · , ⌊t/Rκ⌋. Hence,

combining (5.35) and Lemma 5.6 with (5.89) and splitting the resulting expectation w.r.t. EX
0 into

⌊t/Rκ⌋ equal factors with the help of the Markov property at times kRκ, k = 1,2, · · · , ⌊t/Rκ⌋, we

obtain, after also substituting (5.58),

lim sup
t→∞

κ2

t
logE (4)R,α(t)≤

1

R
logE (7)R,α(κ) +

Dα,T,K

2
ρ (5.90)

with

E (7)R,α(κ) = E
(7)
R,α(T, K;κ)

= EX
0

�
exp

�
Θα,T,ρ

κ2

1

R2
κ

∫ Rκ

0

ds

∫ Rκ

s

des
∫ 0

−Rκ

du

∫ M

0

dr p
12T1[κ]+ s+es−2u+2r

κ

�
Xes − Xs

�
��

,
(5.91)

where

Θα,T,ρ = 4ϑα,Tα
2e2Cα/Tρ(1−ρ)→ 4α2ρ(1−ρ) as T →∞. (5.92)

Because of (5.60), we therefore conclude that the proof of Lemma 5.4 reduces to the following

lemma.
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Lemma 5.11. For all α, K > 0,

lim sup
κ,T,R→∞

1

R
logE (7)R,α(T, K;κ)≤

�
6α2ρ(1−ρ)
�2P3. (5.93)

5.3 Small-time cut out, scaling and large deviations

5.3.1 Small-time cut out

The proof of Lemma 5.11 will be reduced to two further lemmas in which we cut out small times.

These lemmas will be proved in Sections 5.3.2–5.3.3.

For ε > 0 small, let

m= 3εκ31[κ] (5.94)

and define

E (8)R,α(κ) = E
(8)
R,α(T,ε;κ)

= EX
0

�
exp

�
Θα,T,ρ

κ2R2
κ

∫ Rκ

0

ds

∫ Rκ

s

des
∫ 0

−Rκ

du

∫ m

0

dr p
12T1[κ]+ s+es−2u+2r

κ

�
Xes − Xs

�
��

(5.95)

and

E (9)R,α(κ) = E
(9)
R,α(T,ε, K;κ)

= EX
0

�
exp

�
Θα,T,ρ

κ2R2
κ

∫ Rκ

0

ds

∫ Rκ

s

des
∫ 0

−Rκ

du

∫ M

m

dr p
12T1[κ]+ s+es−2u+2r

κ

�
Xes − Xs

�
��

.
(5.96)

By Hölder’s inequality with weights p,q > 1, 1/p+ 1/q = 1, we have

E (7)R,α(κ) =
�
E (8)

R,
p

qα
(κ)
�1/q�

E (9)
R,
p

pα
(κ)
�1/p

. (5.97)

Hence, by choosing p close to 1, we see that the proof of Lemma 5.11 reduces to the following

lemmas.

Lemma 5.12. For all α > 0 and ε > 0 small enough,

lim sup
κ,T,R→∞

1

R
logE (8)R,α(T,ε;κ) = 0. (5.98)

Lemma 5.13. For all α,ε, K > 0 with 0< ε < K,

lim sup
κ,T,R→∞

1

R
logE (9)R,α(T,ε, K;κ)≤

�
6α2ρ(1−ρ)
�2P3. (5.99)

Note that in E (8)R,α(κ) we integrate the transition kernel over “small” times r ∈ [0, m]. What

Lemma 5.12 shows is that the integral is asymptotically negligible.
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5.3.2 Proof of Lemma 5.12

Proof. We need only prove the upper bound in (5.98). An application of Jensen’s inequality yields

E (8)R,α(κ)≤
1

Rκ

∫ Rκ

0

ds EX
0

�
exp

�
Θα,T,ρ

κ2Rκ

∫ ∞

0

des
∫ 0

−Rκ

du

∫ m

0

dr p
12T1[κ]+2 s−u+r

κ
+ es
κ

�
Xes
�
��

. (5.100)

Observe that

p
12T1[κ]+2 s−u+r

κ
+ es
κ

�
Xes
�
= EY

0

�
p12T1[κ]+2 s−u+r

κ

�
Xes + Yes/κ
��

. (5.101)

As in (5.22), let bX t = X t + Yt/κ and let E
bX
0 denote expectation w.r.t. bX starting at 0. Then, using

Jensen’s inequality w.r.t. EY
0 , we find that

E (8)R,α(κ)≤
1

Rκ

∫ Rκ

0

ds E
bX
0

�
exp

�
Θα,T,ρ

κ2Rκ

∫ ∞

0

des
∫ 0

−Rκ

du

∫ m

0

dr p12T1[κ]+2 s−u+r

κ

�
bXes
���

. (5.102)

For the potential

Vκs (x) =
1

κ2Rκ

∫ 0

−Rκ

du

∫ m

0

dr p12T1[κ]+2 s−u+r

κ
(x), (5.103)

we obtain



 bGVκs





∞
≤

1

κ2

∫ m

0

dr bG2T+ r

3κ1[κ]
(0)≤

3

κ
1[κ]

∫ εκ2

0

dr bGr(0)≤ C
p
ε, (5.104)

where bG and bG are the Green operator, respectively, the Green function corresponding to 1[κ]∆.

Hence, an application of Lemma 2.6 to (5.102) yields

E (8)R,α(κ)≤
�
1− CΘα,T,ρ

p
ε
�−1

, (5.105)

which, together with (5.92), leads to the claim for 0< ε < (4Cρ(1−ρ)α2)−2.

For further comments on Lemma 5.12, see the remark at the end of Section 5.3.3.

5.3.3 Scaling, compactification and large deviations

In this section we prove Lemma 5.13 with the help of scaling, compactification and large deviations.

Proof. Recalling the definition of m in (5.94) and M in (5.47), we obtain from (5.96), after appro-

priate time scaling (s→ κ2s, es→ κ2es, u→ κ2u and r → 3κ31[κ]r),

E (9)R,α(κ)

= EX
0

�
exp

�
3Θα,T,ρ1[κ]

1

R2

∫ R

0

ds

∫ R

s

des
∫ 0

−R

du

∫ K

ε

dr p
(κ)
2T1[κ]

κ2 + s+es−2u

6κ
+1[κ]r

�
X (κ)s , X

(κ)

es

��� (5.106)

with the rescaled transition kernel

p
(κ)
t (x , y) = κ3p6κ2 t(κx ,κy), x , y ∈ Z3

κ =
1

κ
Z

3, (5.107)
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and the rescaled random walk

X
(κ)
t = κ−1Xκ2 t , t ∈ [0,∞). (5.108)

Let Q be a large centered cube in R3, viewed as a torus, and let Q(κ) = Q ∩ Z3
κ. Let l(Q), l(Q(κ))

denote the side lengths of Q and Q(κ), respectively. Define the periodized objects

p
(κ,Q)
t (x , y) =
∑

k∈Z3

p
(κ)
t

�
x , y +

k

κ
l
�
Q(κ)
��

(5.109)

and

X
(κ,Q)
t = X

(κ)
t mod
�
Q(κ)
�
. (5.110)

Clearly,

p
(κ)
t

�
X (κ)s , X

(κ)

es

�
≤ p

(κ,Q)
t

�
X (κ,Q)

s , X
(κ,Q)

es

�
. (5.111)

Let β = (βt)t≥0 be Brownian motion on the torus Q with generator ∆R3 and transition kernel

p
(G,Q)
t (x , y) =
∑

k∈Z3

p
(G)
t

�
x , y + k l(Q)
�

(5.112)

obtained by periodization of the Gaussian kernel p
(G)
t (x , y) defined in (4.19). Fix θ > 1 (arbitrarily

close to 1). Then there exists κ0 = κ0(θ ;ε, K ,Q)> 0 such that

p
(κ,Q)
t (x , y)≤ θ p

(G,Q)
t (x , y), for all κ > κ0 and (t, x , y) ∈ [ε/2,2K]×Q×Q. (5.113)

Hence, it follows from (5.106) that there exists κ1 = κ1(θ ; T,ε, K ,R,Q) > 0 such that

E (9)R,α(κ)≤ EX
0

�
exp

�
3

2
θ2Θα,T,ρ

1

R

∫ R

0

ds

∫ R

0

des
∫ K

ε

dr p(G,Q)
r

�
X (κ,Q)

s , X
(κ,Q)

es

���
. (5.114)

Applying Donsker’s invariance principle and recalling (5.92), we find that

lim sup
κ,T→∞

1

R
logE (9)R,α(κ)

≤
1

R
log E

β
0

�
exp

�
6θ2α2ρ(1−ρ)

1

R

∫ R

0

ds

∫ R

0

des
∫ K

ε

dr p(G,Q)
r

�
βs,βes
�
��

.

(5.115)

Applying the large deviation principle for the occupation time measures of β , we get

lim sup
κ,T,R→∞

1

R
logE (9)R,α(T,ε;κ)≤P (Q)3 (θ ;ε, K), (5.116)

where

P (Q)3 (θ ;ε, K) = sup
ν∈M1(Q)

�
6θ2α2ρ(1−ρ)

∫

Q

ν(d x)

∫

Q

ν(d y)

∫ K

ε

dr p(G,Q)
r (x , y)− SQ(ν)

�
(5.117)

with large deviation rate function SQ :M1(Q)→ [0,∞] defined by

SQ(µ) =




‖∇R3 f ‖22 if µ≪ d x and

q
dµ

d x
= f (x) with f ∈ H1

per(Q),

∞ otherwise,
(5.118)
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whereM1(Q) is the space of probability measures on Q, and H1
per(Q) denotes the space of functions

in H1(Q) with periodic boundary conditions. By [2], Lemma 7.4, we have

lim sup
Q↑R3

P (Q)3 (θ ;ε, K)≤P3(θ ;ε, K) (5.119)

with

P3(θ ;ε, K)

= sup
f ∈H1(R3)

‖ f ‖2=1

�
6θ2α2ρ(1−ρ)

∫

R
3

d x f 2(x)

∫

R
3

d y f 2(y)

∫ K

ε

dr p(G)r (x , y)−


∇R3 f


2

L2(R3)

�

≤ sup
f ∈H1(R3)

‖ f ‖2=1

�
6θ2α2ρ(1−ρ)

∫

R
3

d x f 2(x)

∫

R
3

d y f 2(y)

∫ ∞

0

dr p(G)r (x , y)−


∇R3 f


2

L2(R3)

�

=
�

6θ2α2ρ(1−ρ)
�2P3.

(5.120)

Combining (5.116) and (5.120), and letting θ ↓ 1, we arrive at the claim of Lemma 5.13.

This, after a long struggle by the authors and considerable patience on the side of the reader, com-

pletes the proof of the upper bound in Proposition 3.4.

Remark. The reader might be surprised that the expression in the l.h.s. of (5.98) does not only

vanish in the limit as ε ↓ 0 but vanishes for all ε > 0 sufficiently small. This fact is closely related to

the observation that

P3

�
π3
�
= 0 whereas P3(∞) =P3 > 0 (5.121)

with

P3(ε) = sup
f ∈H1(R3)

‖ f ‖2=1

�∫

R
3

d x f 2(x)

∫

R
3

d y f 2(y)

∫ ε

0

dr p(G)r (x − y)−


∇R3 f


2

2

�
. (5.122)

Indeed, given a potential V ≥ 0 with ‖GR3 V‖∞ < 1/2, where GR3 denotes the Green operator

associated with ∆R3 , the method used in the proof of Lemma 5.12 leads to

lim
R→∞

1

R
log E

β
0

�
exp

�
1

R

∫ R

0

ds

∫ R

0

des V (βes − βs)

��
= 0. (5.123)

On the other hand, the large deviation principle for the occupation time measures of β shows that

this limit coincides with

sup
f ∈H1(R3)

‖ f ‖2=1

�∫

R
3

d x f 2(x)

∫

R
3

d y f 2(y)V (x − y)−


∇R3 f


2

2

�
. (5.124)

But, for 0< ε < π3 the potential

Vε(x) =

∫ ε

0

dr p(G)r (x) (5.125)

satisfies the assumption ‖GR3 Vε‖∞ < 1/2, implying P3(π
3) = 0.
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6 Higher moments

In this last section we explain how to extend the proof of Theorem 1.1 to higher moments p ≥ 2.

Sections 6.1–6.3 parallel Sections 2.1, 3.2, 4 and 5.

6.1 Two key propositions

Our starting point is the Feynman-Kac representation for the p-th moment,

Eνρ

�
u(0, t)p
�
= E

(p)

νρ ;0

�
exp

�∫ t

0

ds

p∑

j=1

ξs

�
X j
κs

�
��

, (6.1)

where X 1, · · · , X p are independent simple random walks on Z3 starting at 0 and E
(p)
νρ ;x denotes

expectation w.r.t. P
(p)
νρ ;x = Pνρ ⊗ PX 1

x1
⊗ · · · ⊗ PX p

xp
, x = (x1, · · · , xp) ∈ (Z3)p.

The arguments in Sections 2 and 3 easily extend to this more general case by replacing Z , A ,

(St)t≥0, φ and ψ by their p-dimensional analogues Z (p), A (p), (S (p)t )t≥0, φ(p) and ψ(p). To be

precise, consider the Markov process

Z
(p)
t =
�
ξt/κ, X 1

t , · · · , X
p
t

�
on Ω× (Z3)p (6.2)

with generator

A (p) =
1

κ
L +

p∑

j=1

∆ j , (6.3)

where the lattice Laplacian ∆ j acts on the j-th spatial variable. Denote by (S (p)t )t≥0 the associated

semigroup. We define

φ(p)(η; x1, · · · , xp) =

p∑

j=1

φ(η, x j) =

p∑

j=1

(η(x j)−ρ) (6.4)

and

ψ(p) =

∫ T

0

dsS (p)s φ(p). (6.5)

Then

ψ(p)(η; x1, · · · , xp) =

p∑

j=1

ψ(η, x j). (6.6)

In this way the proof of Theorem 1.1 for p ≥ 2 reduces to the proof of the following extension of

Propositions 3.3 and 3.4.

Proposition 6.1. For all p ∈ N and α ∈ R,

lim sup
t,κ,T→∞

κ2

pt
logE

(p)

νρ ;0

�
exp

�
α

∫ t

0

ds

��
e−

1

κ
ψ(p)A (p)e

1

κ
ψ(p)
�
−A (p)
�1
κ
ψ(p)
���

Z (p)s

�
��

≤
α

6
ρ(1−ρ)G.

(6.7)
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Proposition 6.2. For all p ∈ N and α > 0,

lim
t,κ,T→∞

κ2

pt
logE

(p)

νρ ;0

�
exp

�
α

κ

∫ t

0

ds
�
S (p)T φ(p)
��

Z (p)s

�
��
=
�

6α2ρ(1−ρ)p
�2P3. (6.8)

Proposition 6.1 has already been proven for all p ∈ N in [3], Proposition 4.4.2 and Section 4.8.

6.2 Lower bound in Proposition 6.2

We use the following analogue of the variational representation (4.1)

lim
t→∞

1

t
logE

(p)

νρ;0

�
exp

�
α

κ

∫ t

0

ds
�
S (p)T φ(p)
��

Z (p)s

�
��

= sup
F(p)∈D(A (p))
‖F(p)‖

L2(µ
p
ρ )
=1

∫∫

Ω×(Z3)p
dµp

ρ

�
α

κ

�
S (p)T φ(p)
��

F (p)
�2
+ F (p)A (p)F (p)

�
.

(6.9)

To obtain the appropriate lower bound, we use test functions F (p) of the form

F (p)(η; x1, · · · , xp) = F1(η)F2(x1) · · · F2(xp), (6.10)

where F1, F2 and F = F (1) are the same as in (4.15), (4.6) and (4.2), respectively. One easily checks

that
κ2

p

∫∫

Ω×(Z3)p
dµp

ρ

�
α

κ

�
S (p)T φ(p)
��

F (p)
�2
+ F (p)A (p)F (p)

�

=
(pκ)2

p2

∫∫

Ω×Z3

dµρ

�
pα

pκ

�
STφ
�

F2+ F

�
1

pκ
L +∆

�
F

�
.

(6.11)

But this is 1/p2 times the expression in Lemma 4.1 with α and κ replaced by pα and pκ, respectively.

Hence, we may use the lower bounds for this expression in Section 4 to arrive at the lower bound

in Proposition 6.2.

6.3 Upper bound in Proposition 6.2

1. Freezing and defreezing can be done in the same way as in Section 5.1, but with V (η, x) in (5.2)

replaced by

V (p)(η, x) =
α

κ

∑

y∈Z3

� p∑

j=1

p6T1[κ]

�
x j , y
�
�
�
η(y)−ρ
�
. (6.12)

This leads to the analogues of Lemmas 5.1 and 5.3 along the lines of Sections 5.1.2 and 5.1.4.

2. Considering

V
(p)

k,u
(η) =

1

Rκ

∫ (k+1)Rκ

kRκ

ds
∑

y∈Z3

� p∑

j=1

p6T1[κ]+ s−u

κ

�
X j

s , y
�
�
�
η(y)−ρ
�

(6.13)
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and

E (4,p)

R,α (t) = Eνρ;0

�
exp

�
α

κ

⌊t/Rκ⌋∑

k=1

∫ kRκ

(k−1)Rκ

du V
(p)

k,u

�
ξu/κ

�
��

(6.14)

instead of (5.34–5.35), the proof reduces to the following analogue of Lemma 5.4.

Lemma 6.3. For each α > 0,

lim sup
R→∞

lim sup
t,κ,T→∞

κ2

pt
logE (4,p)

R,α (t)≤
�

6α2ρ(1−ρ)p
�2P3. (6.15)

3. The proof of Lemma 6.3 follows the lines of Sections 5.2–5.3. The spectral bound is essentially

the same as in Section 5.2.1. In Lemma 5.6 we have to replace Vk,u by V
(p)

k,u
and λk,u by

λ
(p)

k,u
= lim

t→∞

1

t
logEνρ

�
exp

�
α

κ

∫ t

0

ds V
(p)

k,u

�
ξs/κ

�
��

. (6.16)

Subsequently, we replace Vk,u by V
(p)

k,u
in (5.45), to obtain functions bφ(p), bψ(p) replacing (5.45–5.46),

and

Ξ(p)r (x) =
1

Rκ

∫ (k+1)Rκ

kRκ

ds

p∑

j=1

p6T1[κ]+ s−u+r

κ

�
X j

s , x
�

(6.17)

replacing (5.50). Then, in the analogue of Lemma 5.7, instead of (5.58) we get the bound



K (p)
k,u




1
≤ e2Cα/T

2α2

κ2R2
κ

∫ (k+1)Rκ

kRκ

ds

∫ (k+1)Rκ

kRκ

des
∫ M

0

dr

p∑

i, j=1

p
12T1[κ]+ s+es−2u+2r

κ

�
X

j

es − X i
s

�
(6.18)

along the line of Section 5.2.3. Similarly, the proof of the analogue of Lemma 5.8 follows the

argument in Section 5.2.4, leading to a reduction of Lemma 6.3 to the analogue of Lemma 5.11, as

in Section 5.2.5.

4. To make the small-time cut-off, instead of (5.95) we consider

E (8,p)

R,α (κ)

= EX
0

�
exp

�
Θα,T,ρ

κ2R2
κ

∫ Rκ

0

ds

∫ Rκ

s

des
∫ 0

−Rκ

du

∫ m

0

dr

p∑

i, j=1

p
12T1[κ]+ s+es−2u+2r

κ

�
X

j

es − X i
s

�
��

.
(6.19)

Using the Chapman-Kolmogorov equation, we see that

∫ Rκ

0

ds

∫ Rκ

0

des
p∑

i, j=1

p
12T1[κ]+ s+es−2u+2r

κ

�
X

j

es − X i
s

�

=
∑

z∈Z3

� p∑

i=1

∫ Rκ

0

ds p6T1[κ]+ s−u+r

κ

�
X i

s , z
�
�2

≤ p
∑

z∈Z3

p∑

i=1

�∫ Rκ

0

ds p6T1[κ]+ s−u+r

κ

�
X i

s , z
�
�2

= p

p∑

i=1

∫ Rκ

0

ds

∫ Rκ

0

des p
12T1[κ]+ s+es−2u+2r

κ

�
X i
es − X i

s

�
.

(6.20)
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Substituting this into the r.h.s. of (6.19) and applying Hölder’s inequality for the p exponential

factors, we reduce the problem to the consideration of a single random walk and can proceed as in

Section 5.3, leading to the analogues of Lemmas 5.12–5.13.

5. The proof of the analogue of Lemma 5.12 runs along the line of Section 5.3.2. To prove the

analogue of Lemma 5.13, instead of (5.96) we consider

E (9,p)

R,α (κ)

= EX
0

�
exp

�
Θα,T,ρ

κ2R2
κ

∫ Rκ

0

ds

∫ Rκ

s

des
∫ 0

−Rκ

du

∫ M

m

dr

p∑

i, j=1

p
12T1[κ]+ s+es−2u+2r

κ

�
X

j

es − X i
s

�
��

.
(6.21)

As in Section 5.3.3, this leads to

lim sup
κ,T,R→∞

1

pR
logE (9,p)

R,α (κ)

≤
1

p
sup

νi∈M1(Q)

1≤i≤p

�
6θ2α2ρ(1−ρ)

p∑

i, j=1

∫

Q

νi(d x)

∫

Q

ν j(d y)

∫ K

ε

dr p(G,Q)
r (x , y)−

p∑

i=1

SQ(νi)

� (6.22)

instead of (5.116–5.117). Now we can proceed similarly as in [2], Lemma 7.3. Consider the Fourier

transforms bνi of the measures νi ∈M1(Q) defined by

bν j(k) =

∫

Q

e−i(2π/l(Q))k·xν j(d x), k ∈ Z3, j = 1, · · · , p. (6.23)

The transition kernel p(G,Q) admits the Fourier representation

p(G,Q)
r (x) =

1

l(Q)3

∑

k∈Z3

e−(2π/l(Q))
2|k|2r e−i(2π/l(Q))k·x , (x , t) ∈Q× (0,∞). (6.24)

Therefore we may write

∫

Q

νi(d x)

∫

Q

ν j(d y) p(G,Q)
r (x , y) =

1

l(Q)3

∑

k∈Z3

e−(2π/l(Q))
2|k|2rbνi(k)bν j(k). (6.25)

Using that

Re
�
bνi(k)bν j(k)
�
≤

1

2

��bνi(k)
��2+

1

2

��bν j(k)
��2, (6.26)

we obtain
∫

Q

νi(d x)

∫

Q

ν j(d y) p(G,Q)
r (x , y)

≤
1

2

∫

Q

νi(d x)

∫

Q

νi(d y) p(G,Q)
r (x , y) +

1

2

∫

Q

ν j(d x)

∫

Q

ν j(d y) p(G,Q)
r (x , y).

(6.27)

Therefore the term inside the square brackets in the r.h.s. of (6.22) does not exceed

p∑

i=1

�
6θ2α2ρ(1−ρ)p

∫

Q

νi(d x)

∫

Q

νi(d y)

∫ K

ε

dr p(G,Q)
r (x , y)− SQ(νi)

�
, (6.28)
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and we arrive at

lim sup
κ,T,R→∞

p

R
logE (9,p)

R,α (κ)≤P
(Q,p)

3 (θ ;ε, K) (6.29)

with

P (Q,p)

3 (θ ;ε, K) = sup
ν∈M1(Q)

�
6θ2α2ρ(1−ρ)p

∫

Q

ν(d x)

∫

Q

ν(d y)

∫ K

ε

dr p(G,Q)
r (x , y)−SQ(ν)

�
, (6.30)

which is the analogue of (5.116–5.117) for p ≥ 2. The rest of the proof can be easily obtained from

the analogues of (5.119–5.120).
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