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Abstract

We prove that a stochastic flow of reflected Brownian motions in a smooth multidimensional

domain is differentiable with respect to its initial position. The derivative is a linear map rep-

resented by a multiplicative functional for reflected Brownian motion. The method of proof is

based on excursion theory and analysis of the deterministic Skorokhod equation.
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1 Introduction

This article contains a result on a stochastic flow X x
t of reflected Brownian motions in a smooth

bounded domain D ⊂ Rn, n ≥ 2. We will prove that for some stopping times σr defined later in the

introduction, the mapping x → X x
σr

is differentiable a.s., and we will identify the derivative with a

mapping already known in the literature.

We start with an informal overview of our research project. We call a pair of reflected Brownian

motions X t and Yt in D a synchronous coupling if they are both driven by the same Brownian motion.

To make things interesting, we assume that X0 6= Y0. The ultimate goal of the research project of

which this paper is a part, is to understand the long time behavior of Vt := X t−Yt in smooth domains.

This project was started in [BCJ], where synchronous couplings in 2-dimensional smooth domains

were analyzed. An even earlier paper [BC] was devoted to synchronous couplings in some classes

of planar non-smooth domains. Multidimensional domains present new challenges due to the fact

that the curvature of ∂ D is not a scalar quantity and it has a significant influence on Vt . Eventually,

we would like to be able to prove a theorem analogous to the main result of [BCJ], Theorem 1.2.

That theorem shows that |Vt | goes to 0 exponentially fast as t goes to infinity, provided a certain

parameter Λ(D) characterizing the domain D is strictly positive. The exponential rate at which |Vt |
goes to 0 is equal to Λ(D). The proof of Theorem 1.2 in [BCJ] is extremely long and we expect that

an analogous result in higher dimensions will not be easier to prove. This article and its predecessor

[BL] are devoted to results providing technical background for the multidimensional analogue of

Theorem 1.2 in [BCJ].

Suppose that |Vt | is very small for a very long time. Then we can think about the evolution of Vt

as the evolution of an infinitesimally small vector, or a differential form, associated to X t . This idea

is not new—in fact it appeared in somewhat different but essentially equivalent ways in [A; IW1;

IW2; H]. The main theorem of [BL] showed existence of a multiplicative functional governing the

evolution of Vt , using semi-discrete approximations. The result does not seem to be known in this

form, although it is close to theorems in [A; IW1; H]. However, the main point of [BL] was not

to give a new proof to a slightly different version of a known result but to develop estimates using

excursion techniques that are analogous to those in [BCJ], and that can be applied to study Vt .

Suppose that for every x ∈ D we have a reflecting Brownian motion X x
t in D starting from X x

0 = x ,

and all processes X x
t , x ∈ D, are driven by the same Brownian motion. For a fixed x0 ∈ D, let σr be

the first time t when the local time of X x0 on ∂ D reaches the value r. The main result of the present

article, Theorem 3.1, says that for every r > 0, the mapping x → X x
σr

is differentiable at x = x0 a.s.,

and the derivative is a linear mapping defined in Theorem 3.2 of [BL].

The differentiability in the initial data was proved in [DZ] for a stochastic flow of reflected diffusions.

The main difference between our result and that in [DZ] is that that paper was concerned with diffu-

sions in (0,∞)n, and our main goal is to study the effect of the curvature of ∂ D. The results in [DZ]

have been transferred to SDEs in a convex polyhedron with possibly oblique reflection—see a paper

by Andres [An1]. A new preprint by Andres [An2] goes much further, proving differentiability in

the initial condition for a large class of solutions to reflecting SDE’s in smooth domains, generalizing

the results of this paper. An effective representation of the derivative is a subtle issue; it is tackled

in different ways in the present paper and in [An2]. The author has recently learned about a series

of papers by Pilipenko [P1; P2; P3]. They discuss differentiability of stochastic flows in initial data

in a generalized sense. The article [P4] is posted on Math ArXiv; it is a review and discussion of

Pilipenko’s previously published results. Differentiability of a stochastic flow of diffusions (without
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reflection) in the initial condition is a classical topic, see, e.g., [K], Chap. II, Thm. 3.1.

Our main result can be considered a pathwise version of theorems proved in [A; H; IW1] and

[IW2], Section V.6 (see also references therein). In a sense, we exchange the operations of taking

the derivative with respect to the initial condition and the operation of transporting a (non-zero)

vector along the trajectories of the process. To be more precise, the publications cited above are

concerned with the motion of differentiable forms—this can be interpreted as taking the limit in the

first place, so that the difference in the initial condition is infinitesimally small. A similar approach

was taken in [BL]. In this paper, the derivative in the initial condition is taken at a (random) time

greater than zero. Hence, our main theorem is closer in spirit to the results in [LS; S; DI; DR].

There is a difference, though. The articles [LS; S; DI; DR] are concerned with the transformation of

the whole driving path into a reflected path (the “Skorokhod map”). At this level of generality, the

Skorokhod map was proved to be Hölder with exponent 1/2 in Theorems 1.1 an 2.2 of [LS] and

Lipschitz in Proposition 4.1 in [S]. See [S] for further references and history of the problem. Under

some other assumptions, the Skorokhod map was proved to have the Lipschitz property in [DI; DR].

Articles [MM] (Lemma 5.2) and [MR] contain results about directional derivatives of the Skorokhod

map in an orthant, without and with oblique reflection, respectively. The first theorems on existence

and uniqueness of solutions to the stochastic differential equation representing reflected Brownian

motion were given in [T]. Some results on stochastic flows of reflected Brownian motions were

proved in an unpublished thesis [W]. Synchronous couplings in convex domains were studied in

[CLJ1; CLJ2], where it was proved that under mild assumptions, Vt is not 0 at any finite time.

The proof of the main result depends in a crucial way on ideas developed in a joint project with

Jack Lee ([BL]). I am indebted to him for his implicit contributions to this paper. I am grateful to

Sebastian Andres, Peter Baxendale, Elton Hsu and Kavita Ramanan for very helpful advice. I would

like to thank the referee for many helpful suggestions.

2 Preliminaries

2.1 General notation

All constants are assumed to be strictly positive and finite, unless stated otherwise. The open ball in

Rn with center x and radius r will be denoted B(x , r). We will use d( · , · ) to denote the distance

between a point and a set.

2.2 Differential geometry

We will review some notation and results from [BL]. We will be concerned with a bounded domain

D ⊂ Rn, n ≥ 2, with a C2 boundary ∂ D. We may consider M := ∂ D to be a smooth, properly

embedded, orientable hypersurface (i.e., submanifold of codimension 1) in Rn, endowed with a

smooth unit normal inward vector field n. We consider M as a Riemannian manifold with the

induced metric. We use the notation 〈·, ·〉 for both the Euclidean inner product on Rn and its

restriction to the tangent space Tx M for any x ∈ M , and |·| for the associated norm. For any x ∈ M ,

let πx : Rn→Tx M denote the orthogonal projection onto the tangent space Tx M , so

πxz= z− 〈z,n(x)〉n(x), (2.1)
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and let S (x): Tx M → Tx M denote the shape operator (also known as the Weingarten map), which

is the symmetric linear endomorphism of Tx M associated with the second fundamental form. It is

characterized by

S (x)v= −∂vn(x), v ∈ Tx M , (2.2)

where ∂v denotes the ordinary Euclidean directional derivative in the direction of v. If γ: [0, T]→ M
is a smooth curve in M , a vector field along γ is a smooth map v: [0, T]→ M such that v(t) ∈ Tγ(t)M
for each t. The covariant derivative of v along γ is given by

Dtv(t) := v′(t)− 〈v(t),S (γ(t))γ′(t)〉n(γ(t))

= v′(t) + 〈v(t),∂t(n ◦ γ)(t)〉n(γ(t)).

The eigenvalues of S (x) are the principal curvatures of M at x , and its determinant is the Gaussian

curvature. We extend S (x) to an endomorphism of Rn by defining S (x)n(x) = 0. It is easy to

check that S (x) and πx commute, by evaluating separately on n(x) and on v ∈ Tx M .

For any linear mapA : Rn→ Rn, we let ‖A‖ denote the operator norm.

We recall two lemmas from [BL].

Lemma 2.1. For any bounded C2 domain D ⊂ Rn and c1, there exists c2 such that the following
estimates hold for all x , y ∈ ∂ D, 0≤ l, r ≤ c1, b ≥ 0 and z ∈ Rn:

‖ebS (x)‖ ≤ ec2 b. (2.3)

‖elS (x)− Id‖Tx
≤ c2l. (2.4)

‖elS (x)− elS (y)‖ ≤ c2l |x − y |. (2.5)

‖elS (x)− erS (x)‖ ≤ c2|l − r|. (2.6)

|n(x)− n(y)| ≤ c2|x − y |. (2.7)

Lemma 2.2. For any bounded C2 domain D ⊂ Rn, there exists a constant c1 such that for all w, x , y, z ∈
∂ D, the following operator-norm estimate holds:




πz ◦
�
πy −πx

�
◦πw




≤ c1

���w − y
�� ��y − z

��+ |w − x | |x − z|
�

.

Remark 2.3. Since ∂ D is C2, it is elementary to see that there exist r > 0 and ν ∈ (1,∞) with the

following properties. For all x , y ∈ ∂ D, z ∈ D, with |x − y | ≤ r and |x − z| ≤ r,

1− ν |x − y |2 ≤


n(x),n(y)

�
≤ 1, (2.8)��
x − y,n(x)

���≤ ν |x − y |2, (2.9)

〈x − z,n(x)〉 ≤ ν |x − z|2, (2.10)



x − z,n(y)
�
≤ ν |x − y | |x − z|, (2.11)

|πy(n(x))| ≤ ν |x − y |. (2.12)

If x , y ∈ ∂ D, z ∈ D and |πx(z − y)| ≤ |πx(x − y)| ≤ r then

〈z − y,n(x)〉 ≥ −ν |πx(x − y)| |πx(z− y)|. (2.13)
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2.3 Probability

Recall that D ⊂ Rn, n ≥ 2, is an open connected bounded set with C2 boundary and n(x) denotes

the unit inward normal vector at x ∈ ∂ D. Let B be standard d-dimensional Brownian motion and

consider the following Skorokhod equation,

X x
t = x + Bt +

∫ t

0

n(X x
s )d Lx

s , for t ≥ 0. (2.14)

Here x ∈ D and Lx is the local time of X x on ∂ D. In other words, Lx is a non-decreasing continuous

process which does not increase when X x is in D, i.e.,
∫∞

0
1D(X

x
t )d Lx

t = 0, a.s. Equation (2.14)

has a unique pathwise solution (X x , Lx) such that X x
t ∈ D for all t ≥ 0 (see [LS]). The reflected

Brownian motion X x is a strong Markov process. The results in [LS] are deterministic in nature, so

with probability 1, for all x ∈ D simultaneously, (2.14) has a unique pathwise solution (X x , Lx). In

other words, there exists a stochastic flow (x , t)→ X x
t , in which all reflected Brownian motions X x

are driven by the same Brownian motion B.

We fix a point z0 ∈ D. We will abbreviate (X z0 , Lz0) by writing (X , L).

We need an extra “cemetery point” ∆ outside Rn, so that we can send processes killed at a finite

time to∆. For s ≥ 0 such that Xs ∈ ∂ D we let ζ(es) = inf{t > 0 : Xs+t ∈ ∂ D}. Here es is an excursion

starting at time s, i.e., es = {es(t) = X t+s, t ∈ [0,ζ(es))}. We let es(t) = ∆ for t ≥ ζ(es), so et ≡∆ if

ζ(es) = 0.

Let σ be the inverse of local time L, i.e., σt = inf{s ≥ 0 : Ls ≥ t}, and Er = {es : s < σr}. Fix some

r,ǫ > 0 and let {eu1
, eu2

, . . . , eum
} be the set of all excursions e ∈ Er with |e(0)− e(ζ−)| ≥ ǫ. We

assume that excursions are labeled so that uk < uk+1 for all k and we let ℓk = Luk
for k = 1, . . . , m.

We also let u0 = inf{t ≥ 0 : X t ∈ ∂ D}, ℓ0 = 0, ℓm+1 = r, and ∆ℓk = ℓk+1 − ℓk. Let xk = euk
(ζ−) be

the right endpoint of excursion euk
for k = 1, . . . , m, and x0 = Xu0

.

Recall from Section 2.2 that S denotes the shape operator and πx is the orthogonal projection on

the tangent space Tx∂ D, for x ∈ ∂ D. For v0 ∈ Rn, let

vr = exp(∆ℓmS (xm))πxm
· · ·exp(∆ℓ1S (x1))πx1

exp(∆ℓ0S (x0))πx0
v0. (2.15)

Note that all concepts based on excursions euk
depend implicitly on ǫ > 0, which is often suppressed

in the notation. LetA ǫr denote the linear mapping v0→ vr .

We will impose a geometric condition on ∂ D. To explain its significance, we consider D such that

∂ D contains n non-degenerate (n−1)-dimensional balls, such that vectors orthogonal to these balls

are orthogonal to each other. If the trajectory {X t , 0 ≤ t ≤ r} visits the n balls and no other part

of ∂ D, then it is easy to see that A ǫr = 0. To avoid this uninteresting situation, we impose the

following assumption on D.

Assumption 2.4. For every x ∈ ∂ D, the (n − 1)-dimensional surface area measure of {y ∈ ∂ D :

〈n(y),n(x)〉= 0} is zero.

The following theorem has been proved in [BL].

Theorem 2.5. Suppose that D satisfies all assumption listed so far in Section 2. Then for every r > 0,
a.s., the limit Ar := limǫ→0A

ǫ
r exists and it is a linear mapping of rank n − 1. For any v0, with

probability 1,A ǫr v0→Arv0 as ǫ→ 0, uniformly in r on compact sets.
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Let t0 = inf{t ≥ 0 : X t ∈ ∂ D} and z1 = X t0
. Intuitively speaking, Ar is defined by v(r) = Arv0,

where v(t) represents the solution to the following ODE,

Dv= (S ◦ X (σt))v d t, v(0) = πz1
v0.

In the 2-dimensional case, and only in the 2-dimensional case, we have an alternative intuitive

representation of |Arv0|. If v0 = (v
1
0 , v2

0 ) then we write bv0 = (−v2
0 , v1

0 ). Let µ(x) be the curvature at

x ∈ ∂ D, that is, the eigenvalue of S (x). Then

|Arv0|= exp

�∫ r

0

µ(Xσt
)d Lt

�
|〈n(z1),bv0〉|

∏

es∈Er

��
n(es(0)),n(es(ζ−))
��� .

The remaining part of this section is a short review of the excursion theory. See, e.g., [M] for the

foundations of the excursion theory in the abstract setting and [Bu] for the special case of excursions

of Brownian motion. Although [Bu] does not discuss reflected Brownian motion, all results we need

from that book readily apply in the present context.

An “exit system” for excursions of the reflected Brownian motion X from ∂ D is a pair (L∗t , H x)

consisting of a positive continuous additive functional L∗t and a family of “excursion laws” {H x}x∈∂ D.

In fact, L∗t = Lt ; see, e.g., [BCJ]. Recall that ∆ denotes the “cemetery” point outside Rn and let C
be the space of all functions f : [0,∞)→ Rn ∪ {∆} which are continuous and take values in Rn on

some interval [0,ζ), and are equal to ∆ on [ζ,∞). For x ∈ ∂ D, the excursion law H x is a σ-finite

(positive) measure on C , such that the canonical process is strong Markov on (t0,∞), for every

t0 > 0, with transition probabilities of Brownian motion killed upon hitting ∂ D. Moreover, H x gives

zero mass to paths which do not start from x . We will be concerned only with “standard” excursion

laws; see Definition 3.2 of [Bu]. For every x ∈ ∂ D there exists a unique standard excursion law H x

in D, up to a multiplicative constant.

Recall that excursions of X from ∂ D are denoted es and σt = inf{s ≥ 0 : Ls ≥ t}. Let I be the set of

left endpoints of all connected components of (0,∞)r {t ≥ 0 : X t ∈ ∂ D}. The following is a special

case of the exit system formula of [M],

E



∑

t∈I

Wt · f (et)


= E

∫ ∞

0

Wσs
HX (σs)( f )ds = E

∫ ∞

0

Wt H
X t ( f )d Lt , (2.16)

where Wt is a predictable process and f : C → [0,∞) is a universally measurable non-negative

function which vanishes on excursions et identically equal to ∆. Here H x( f ) =
∫
C

f dH x .

The normalization of the exit system is somewhat arbitrary, for example, if (Lt , H x) is an exit system

and c ∈ (0,∞) is a constant then (cLt , (1/c)H
x) is also an exit system. Let P

y
D denote the distribution

of Brownian motion starting from y and killed upon exiting D. Theorem 7.2 of [Bu] shows how to

choose a “canonical” exit system; that theorem is stated for the usual planar Brownian motion but

it is easy to check that both the statement and the proof apply to the reflected Brownian motion in

Rn. According to that result, we can take Lt to be the continuous additive functional whose Revuz

measure is a constant multiple of the surface area measure on ∂ D and H x ’s to be standard excursion

laws normalized so that

H x(A) = lim
δ↓0

1

δ
P

x+δn(x)
D (A), (2.17)
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for any event A in a σ-field generated by the process on an interval [t0,∞), for any t0 > 0. The

Revuz measure of L is the measure d x/(2|D|) on ∂ D where d x represents the surface area mea-

sure. In other words, if the initial distribution of X is the uniform probability measure µ in D then

Eµ
∫ 1

0
1A(Xs)d Ls =

∫
A

d x/(2|D|) for any Borel set A⊂ ∂ D, see Example 5.2.2 of [FOT]. It has been

shown in [BCJ] that (Lt , H x) is an exit system for X in D, assuming the above normalization.

3 Differentiability of the stochastic flow in the initial parameter

Recall that z0 ∈ D is a fixed point. Our main result is the following theorem.

Theorem 3.1. Suppose that D satisfies all assumptions of Section 2. Then for every r > 0 and compact

set K ⊂ Rn, we have limǫ→0 supv∈K

���(X z0+ǫv
σr
− X z0

σr
)/ǫ−Arv

���= 0, a.s.

Note that in the above theorem, both processes are observed at the same random time σr , the

inverse local time for the process X z0 . In other words, we do not consider

(X z0+ǫv

σ
z0+ǫv
r

− X z0

σ
z0
r
)/ǫ.

Corollary 3.2. Suppose that D satisfies all assumptions of Section 2. Then for every t > 0 and compact

set K ⊂ Rn, we have limǫ→0 supv∈K

���(X z0+ǫv
t − X z0

t )/ǫ−ALt
v

���= 0, a.s.

The proof of Theorem 3.1 will consist of several lemmas. We start by introducing some notation.

We will prove the theorem only for r = 1, and we will suppress r in the notation from now on. It is

clear that the same proof applies to any other value of r.

It follows from Lemma 3.3 below that we can find a constant c∗ and a sequence of stopping times
eTk such that eTk → ∞, a.s., and supz∈D Lz

eTk
≤ kc∗ for all k. We fix some integer k∗ ≥ 1 and let

σ∗ = σ1 ∧ eTk∗ . The dependence of σ∗ on k∗ and c∗ will be suppressed in the notation.

In much of the paper, we will consider “fixed” starting points z0 and y . We will write X t = X z0

t and

Yt = X y
t , so that X0 = z0 and Y0 = y . Later in this section, we will often take ǫ = |X0 − Y0|. Let

τ+
δ
= τ+(δ) = inf{t > 0 : |X t − Yt | ≥ δ}.

We fix some (small) a1, a2 > 0. We will impose some conditions on the values of a1 and a2 later on.

Let S0 = U0 = inf{t ≥ 0 : X t ∈ ∂ D} and for k ≥ 1 define

Sk = inf
¦

t ≥ Uk−1 : d(X t ,∂ D)∨ d(Yt ,∂ D)≤ a2|X t − Yt |
2
©
∧σ∗, (3.1)

Uk = inf
¦

t ≥ Sk : |X t − XSk
| ∨ |Yt − YSk

| ≥ a1|XSk
− YSk
|
©
∧σ∗.

The filtration generated by the driving Brownian motion will be denotedFt . As usual, for a stopping

time T , FT will denote the σ-field of events preceding T .

Since D is bounded and ∂ D is C2, there exists δ0 > 0 such that if x ∈ D and d(x ,∂ D) < δ0 then

there is only one point y ∈ ∂ D with |x − y | = d(x ,∂ D). We will call this point Πx = Π(x). For all

other points, we let Πx = z∗, where z∗ ∈ ∂ D is a fixed reference point. We define (random) linear

operators,

Gk = exp
�
(LUk
− LSk

)S (Π(XSk
))
�
πΠ(XSk

), (3.2)

Hk = exp
�
(LSk+1

− LSk
)S (Π(XSk

))
�
πΠ(XSk

).
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Recall the notation for excursions from Section 2.3. For ǫ∗ > 0, let
n

et∗1
, et∗2

, . . . , et∗
m∗

o
= {et ∈ E1 : |et(0)− et(ζ−)| ≥ ǫ∗, t < σ∗}.

We label the excursions so that t∗k < t∗k+1
for all k and we let ℓ∗k = Lt∗k

for k = 1, . . . , m∗. We also

let t∗0 = inf{t ≥ 0 : X t ∈ ∂ D}, ℓ∗0 = 0, ℓ∗m∗+1
= Lσ∗ , and ∆ℓ∗k = ℓ

∗
k+1
− ℓ∗k. Let x∗k = et∗k

(ζ−) for k =
1, . . . , m∗, and x∗0 = X t∗

0
. Let γ∗(s) = x∗k for s ∈ [ℓ∗k,ℓ∗k+1

) and k = 0,1, . . . , m∗, and γ∗(1) = γ∗(ℓ∗m∗).

Let

Ik = exp(∆ℓ∗kS (x
∗
k))πx∗k

. (3.3)

Let ξk = t∗k + ζ(et∗k
) for k = 1, . . . , m∗, and ξ0 = 0.

Let m′ be the largest integer such that Sm′ ≤ σ∗. We let ℓ′k = LSk
for k = 1, . . . , m′. We also let

t ′0 = inf{t ≥ 0 : X t ∈ ∂ D}, ℓ′0 = 0, ℓ′
m′j+1

= Lσ∗ , and ∆ℓ′k = ℓ
′
k+1
− ℓ′k. Note that we may have

∆ℓ′k = 0 for some k, with positive probability. Let x ′k = Π(XSk
) for k = 1, . . . , m′, and x ′0 = X t ′0

. Let

γ′(s) = x ′k for s ∈ [ℓ′k,ℓ′k+1
) and k = 0,1, . . . , m′, and γ′(1) = γ′(ℓ′m′).

Let λ : [0,1] → [0,1] be an increasing homeomorphism with the following properties. If t∗j =
σℓ∗j
∈ (Uk,Sk+1] for some j and k then we let λ(ℓ∗j ) = ℓ

′
k+1

. For all other j, λ(ℓ∗j ) = ℓ
∗
j . Let

ℓ′′k = λ(ℓ
∗
k) for k = 1, . . . , m′′ := m∗. We also let t ′′k = t∗k for k = 0,1, . . . , m′′, ℓ′′0 = 0, ℓ′′

m′′j +1
= Lσ∗ ,

and ∆ℓ′′k = ℓ
′′
k+1
− ℓ′′k . Let x ′′k = x∗k for k = 0,1, . . . , m′′. Let γ′′(s) = x ′′k for s ∈ [ℓ′′k ,ℓ′′k+1

) and

k = 0,1, . . . , m′′, and γ′′(1) = γ′′(ℓ′′m′′). Let

Jk = exp(∆ℓ′′k S (x
′′
k ))πx ′′k

.

Note that ξk = t ′′k + ζ(et ′′k
).

Lemma 3.3. There exists c1 and c2, depending only on D, such that if for some integer m < ∞ and
a sequence 0 = s0 < s1 < · · · < sm we have supsk≤s,t≤sk+1

|Bt − Bs| ≤ c1 for k = 0,1, . . . , m− 1, then
supz∈D Lz

sm
≤ mc2. Therefore, for every u<∞, we have supz∈D Lz

u <∞, a.s.

Proof. Let ν > 1 and r be as in Remark 2.3. We can suppose without loss of generality that 1/(2ν)<

r. Let r1 = 1/(64ν). Then, by (2.8), for |x− y | ≤ r1, x , y ∈ ∂ D, we have |


n(x),n(y)

�
−1| ≤ ν r2

1 <

1/2, and, therefore,


n(x),n(y)

�
≥ 1/2. Suppose that for some t1 and ω, sup0≤s,t≤t1

|Bt − Bs| ≤

r1/64. Consider any z ∈ D and let t2 = inf{t ≥ 0 : X z
t ∈ ∂ D} ∧ t1 and y1 = X z

t2
. If t2 = t1 then

Lz
t1
= 0.

Suppose that t2 < t1. Let t3 = inf{t ≥ t2 : |X z
t − y1| ≥ r1} ∧ t1, t4 = sup{t ≤ t3 : X z

t ∈ ∂ D} and z1 =

X z
t4

. Then |z1− y1| ≤ 1/(64ν), so, by (2.10),
��
z1− y1,n(y1)

���≤ ν/(642ν2) = 1/(642ν) = r1/64.

We have X z
t − X z

t4
= Bt − Bt4

for t ∈ [t4, t1], so supt4≤s,t≤t1
|X z

t − X z
s | ≤ r1/64. This implies that

D
X z

t3
− X z

t2
,n(y1)

E
=
D

X z
t3
− y1,n(y1)

E
(3.4)

=
D

X z
t3
− z1,n(y1)

E
+


z1− y1,n(y1)

�

=
D

X z
t3
− X z

t4
,n(y1)

E
+


z1− y1,n(y1)

�

≤ r1/64+ r1/64= r1/32.
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This implies that

(1/2)(Lz
t3
− Lz

t2
)≤

*∫ t3

t2

n(X z
t )d Lz

t ,n(y1)

+
(3.5)

=
D

X z
t3
− X z

t2
− (Bt3

− Bt2
),n(y1)

E

=
D

X z
t3
− X z

t2
,n(y1)

E
−
¬
(Bt3
− Bt2

),n(y1)
¶

≤ r1/32+ r1/64< r1/16.

Thus

���πy1

�
X z

t3
− X z

t2

����=
�����πy1

 
Bt3
− Bt2

+

∫ t3

t2

n(X z
t )d Lz

t

!�����
≤ |Bt3

− Bt2
|+ (Lz

t3
− Lz

t2
)≤ r1/64+ r1/8< r1/4.

This and (3.4) imply that

|X z
t3
− y1|= |X

z
t3
− X z

t2
| ≤ ((r1/32)2+ (r1/4)

2)1/2 < r1/2.

In view of the definition of t3, we see that t1 = t3. Hence, (3.5) shows that Lz
t1
= Lz

t1
− Lz

t2
≤ r1/8.

For a fixed ω, the above argument applies to all z ∈ D simultaneously, so supz∈D Lz
t1
≤ r1/8.

Suppose that for some integer m < ∞ and a sequence 0 = s0 < s1 < · · · < sm, we have

supsk≤s,t≤sk+1
|Bt − Bs| ≤ r1/64 for k = 0,1, . . . , m− 1. We can repeat the above argument on each

interval [sk, sk+1] to obtain supz∈D Lz
sk+1
− Lz

sk
≤ r1/8, and, consequently, supz∈D Lz

sm
≤ mr1/8. This

proves the first assertion of the lemma.

By continuity of Brownian motion, for any fixed u, with probability 1, one can find a (random)

integer m <∞ and a sequence 0 = s0 < s1 < · · · < sm = u such that supsk≤s,t≤sk+1
|Bt − Bs| ≤ r1/64

for k = 0,1, . . . , m− 1. The second assertion of the lemma follows from this and the first part of the

lemma.

Recall σ∗ defined at the beginning of this section.

Lemma 3.4. There exists c1 such that a.s., for all t ≤ σ∗ and y, z ∈ D, we have |X y
t − X z

t |< c1|y − z|.

Proof. Fix any y, z ∈ D, let L∗t = L y
t + Lz

t , and σ∗t = inf{s ≥ 0 : L∗s ≥ t}. It follows from (2.10) that

x − y,n(x)

�
≤ c2|x − y |2 for all x ∈ ∂ D and y ∈ D. This and (2.14) imply that,

d

dr
|X z
σ∗r
− X y

σ∗r
|=

*
n(X z

σ∗r
),

X z
σ∗r
− X y

σ∗r

|X z
σ∗r
− X y

σ∗r
|

+
1{X z

σ∗r
∈∂ D}+

*
n(X y

σ∗r
),

X y
σ∗r
− X z

σ∗r

|X y
σ∗r
− X z

σ∗r
|

+
1{X y

σ∗r
∈∂ D}

≤ c2|X
z
σ∗r
− X y

σ∗r
|1{X z

σ∗r
∈∂ D} + c2|X

y
σ∗r
− X z

σ∗r
|1{X y

σ∗r
∈∂ D} ≤ 2c2|X

z
σ∗r
− X y

σ∗r
|.

By Gronwall’s inequality,

|X z
σ∗r
− X y

σ∗r
| ≤ |X z

σ∗0
− X y

σ∗0
|e2c2r = |y − z|e2c2r .

Recall from the beginning of this section that supz∈D Lz
σ∗
≤ k∗c∗ <∞. This and the definitions of σ∗

and σ∗r imply that σ∗ ≤ σ
∗
2k∗c∗

. Hence, |X z
t − X y

t |< e4k∗c∗c2 |y − z| for all t ≤ σ∗.
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Lemma 3.5. Let τD = inf{t ≥ 0 : X t /∈ D} and τB(x ,r) = inf{t ≥ 0 : X t /∈B(x , r)}.

(i) There exists c1 such that if X0 = z0 ∈ D and d(z0,∂ D)≤ r then,

P(τB(z0,r) ≤ τD)≤ c1d(z0,∂ D)/r.

(ii) Suppose d(X0,∂ D) = b. Then E sup0≤t≤τD

��X0− X t

��≤ c2 b| log b|.

Proof. (i) See Lemma 3.2 in [BCJ].

(ii) By part (i),

E

����� sup
0≤t≤τD

X0− X t

�����≤
∑

b≤2 j≤diam(D)

2 j+1P

 ����� sup
0≤t≤τD

X0− X t

����� ∈ [2
j , 2 j+1]

!

≤
∑

b≤2 j≤diam(D)

2 j+1c1 b2− j ≤ c2 b| log b|.

Recall the notation from the beginning of this section. In particular, ǫ = |X0− Y0|.

Lemma 3.6. For some c1,

E

 
max

0≤k≤m∗
sup

ξk≤t≤t∗k+1

|x∗k − X t |

!
≤ c1ǫ

1/3
∗ . (3.6)

Proof. It follows from (3.19) in [BL] that, for any β < 1, some c2, and all ǫ∗ > 0,

E

 
max

0≤k≤m∗
sup

ξk≤t≤t∗k+1
,X t∈∂ D

|x∗k − X t |

!
≤ c2ǫ

β
∗ . (3.7)

The main difference between (3.6) and (3.7) is the presence of the condition X t ∈ ∂ D in the supre-

mum. Let

bE1 = {e ∈ E1 : |e(0)− e(ζ−)|< ǫ∗, sup
0≤t<ζ
|e(0)− e(t)| ≥ ǫ∗}.

Then

max
0≤k≤m∗

sup
ξk≤t≤t∗k+1

|x∗k − X t | ≤ max
0≤k≤m∗

sup
ξk≤t≤t∗k+1

,X t∈∂ D
|x∗k − X t | (3.8)

+ sup
e∈ bE1

sup
0≤t<ζ(e)

|e(0)− e(t)|.

Recall that n ≥ 2 is the dimension of the space Rn into which D is embedded. Standard estimates

show that if T∂ D = inf{t ≥ 0 : X t ∈ ∂ D}, x ∈ ∂ D, y ∈ ∂B(x , r)∩ D, r > ρ, and X0 = y , then

P(XT∂ D
∈B(x ,ρ)∩ ∂ D)≤ c3(ρ/r)

n−1. (3.9)
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We have for every x ∈ ∂ D and b > 0,

c4/b ≤ H x

�
sup

0≤t<ζ(e)
|e(0)− e(t)| ≥ b

�
≤ c5/b. (3.10)

The upper bound in the last estimate follows from (2.17) and Lemma 3.5 (i). The lower bound can

be proved in a similar way.

We combine (3.9) and (3.10) using the strong Markov property of the measure H x applied at the

hitting time ofB(x , r) to obtain,

H x

�
sup

0≤t<ζ(e)
|e(0)− e(t)| ≥ ǫ1/3

∗ , |e(0)− e(ζ−)|< ǫ∗

�
≤ c5ǫ

−1/3
∗ c3(ǫ∗/ǫ

1/3
∗ )

n−1 = c6ǫ
(2/3)n−1
∗ .

By the exit system formula (2.16),

P

�
∃e ∈ bE1 : sup

0≤t<ζ
|e(0)− e(t)| ≥ ǫ1/3

∗

�
≤ c7ǫ

(2/3)n−1
∗ .

So

E

 
sup
e∈ bE1

sup
0≤t<ζ(e)

|e(0)− e(t)|

!
≤ ǫ1/3
∗ + diam(D)P

�
∃e ∈ bE1 : sup

0≤t<ζ
|e(0)− e(t)| ≥ ǫ1/3

∗

�

≤ ǫ1/3
∗ + diam(D)c7ǫ

(2/3)n−1
∗ ≤ c8ǫ

1/3
∗ .

The lemma follows by combining this estimate with (3.7) and (3.8).

Lemma 3.7. There exists c1 such that if X0 ∈ ∂ D then,

E

�
sup

0≤t≤ξ1

��X t − Xξ1

��
�
≤ c1ǫ

1/3
∗ .

Proof. We have

sup
0≤t≤ξ1

��X t − Xξ1

��≤ max
0≤k≤m∗

sup
ξk<t<t∗k+1

|x∗k − X t |+ sup
0≤t≤ζ(et∗

1
)

���et∗1
(0)− et∗1

(t)
��� . (3.11)

It follows from Lemma 3.6 that, for some c2,

E

 
max

0≤k≤m∗
sup

ξk<t<t∗k+1

|x∗k − X t |

!
≤ c2ǫ

1/3
∗ . (3.12)

Estimate (3.10) and the exit system formula (2.16) imply that

E


 sup

0≤t≤ζ(et∗
1
)

���et∗1
(0)− et∗1

(t)
���


 ≤ ǫ∗+

∑

ǫ∗≤2 j≤diam(D)

2 j+1P


 sup

0≤t≤ζ(et∗
1
)

���et∗1
(0)− et∗1

(t)
���≥ 2 j




≤ ǫ∗+
∑

ǫ∗≤2 j≤diam(D)

2 j+1c3

2− j

1/ǫ∗
≤ c4ǫ∗| logǫ∗|.

The lemma follows by combining the last estimate with (3.11) and (3.12).
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Recall that τ+
δ
= τ+(δ) = inf{t > 0 : |X t − Yt | ≥ δ}. Recall also that ǫ∗ is the parameter used in the

definition of ξ j and x∗j at the beginning of this section.

Lemma 3.8. There exist c1, . . . , c5 and ǫ0, r0, p0 > 0 with the following properties. Let ǫ2 = ǫ0 ∧ r0.
Assume that X0 ∈ ∂ D, |X0− Y0|= ǫ1, d(Y0,∂ D) = r and let

T1 = inf{t ≥ 0 : |X t − X0| ∨ |Yt − Y0| ≥ c1r},

T4 = inf{t ≥ 0 : Yt ∈ ∂ D}.

(T2 and T3 will be defined in the proof.)

(i) If ǫ1 ≤ ǫ0 and r ≤ r0 then P(S1 ≤ T1 ∧ T4, LS1
− L0 ≤ c2r)≥ p0.

(ii) If ǫ1 ≤ ǫ2 then E(LS1∧τ
+(ǫ2)
− L0)≤ c3(r + ǫ

3
2).

(iii) If ǫ1 ≤ ǫ2 then E(sup0≤t≤S1∧τ
+(ǫ2)
|X t − X0|)≤ c4| log r|(r + ǫ3

2).

(iv) If ǫ1 ≤ ǫ2 and ǫ∗ ≥ c1ǫ2 then for any β1 < 1 and all k,

E




∑

Sk≤ξ j≤Sk+1

(LSk+1
− Lξ j

)|x∗j −Π(XSk+1
)| | FSk


 ≤ c5|XSk

− YSk
|2+β1 .

Remark 3.9. (i) Typically, we will be interested in small values of ǫ1 = |X0− Y0|. In view of Lemma

3.4, |X t − Yt | ≤ c0ǫ1 for all t ≤ σ∗. Hence, S1 ∧ τ
+(ǫ2) = S1 for ǫ1 much smaller than ǫ2. It follows

that parts (ii) and (iii) of Lemma 3.8 can be applied with S1 in place of S1 ∧τ
+(ǫ2), assuming small

ǫ1.

(ii) The following remark applies to Lemma 3.8 and all other lemmas. Typically, their proofs require

that we assume that |X0− Y0| is bounded above. However, in many cases, the quantity that is being

estimated is bounded above by a universal constant, for trivial reasons. Hence, by adjusting the

constant appearing in the estimate, we can easily extend the lemmas to all values of |X0− Y0|.

Proof of Lemma 3.8. (i) Recall ν defined in Remark 2.3. Assume that r0 < ǫ0 < 1/(200ν). Let

c6 ∈ (0,1/12) be a small constant whose value will be chosen later. Let

T2 = inf{t ≥ 0 : 〈Yt − Y0,n(X0)〉 ≥ 2r},

T3 = inf{t ≥ 0 : |πX0
(Yt − Y0)| ≥ c6r},

A1 = {T4 ≤ T2 ∧ T3},

T5 = inf{t ≥ 0 : |πX0
(X t − X0)| ≥ 2c6r}.

First we will assume that r ≤ ǫ1/2. We will show that T5 ≥ T2 ∧ T3 ∧ T4 if A1 holds. We will argue

by contradiction. Assume that A1 holds and T5 < T2∧ T3∧ T4. Then πX0
(Bt −B0) = πX0

(Yt − Y0) for

t ∈ [0, T5] so |πX0
(Bt − B0)| ≤ c6r for the same range of t ’s. We have

πX0
(XT5
− X0) = πX0

(BT5
− B0) +

∫ T5

0

πX0
(n(X t))d Lt ,

so

���
∫ T5

0
πX0
(n(X t))d Lt

���≥ c6r. By (2.12), we may assume that ǫ0 > 0 is so small that for r ≤ r0 < ǫ0

and x ∈ B(X0, 2c6r), we have |πX0
(n(x))| ≤ 4νc6r. This and the estimate

���
∫ T5

0
πX0
(n(X t))d Lt

��� ≥
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c6r imply that LT5
− L0 ≥ c6r/(4νc6r) = 1/(4ν). By (2.8), we may choose ǫ0 so small that for

r ≤ r0 < ǫ0 and x ∈B(X0, 2c6r)∩ ∂ D, 〈n(X0),n(x)〉 ≥ 1/2. It follows that

*
n(X0),

∫ T5

0

n(X t)d Lt

+
≥ 1/(8ν). (3.13)

By (2.9), we can assume that r0 and ǫ0 are so small that if for some y ∈ ∂ D we have |πX0
(y−X0)| ≤

2c6r then

|〈y − X0,n(X0)〉| ≤ r ≤ ǫ1 ≤ ǫ0. (3.14)

Since d(Y0,∂ D) = r, it is easy to see that if r0 > 0 is sufficiently small then for r ≤ r0 and t ≤
T2 ∧ T3 ∧ T4, we have 〈Yt − Y0,n(X0)〉 ≥ −2r, and, therefore,

|〈Yt − Y0,n(X0)〉| ≤ 2r. (3.15)

Note that 〈Bt − Bs,n(X0)〉 = 〈Yt − Ys,n(X0)〉 for s, t ∈ [0, T4]. Since we have assumed that T5 <

T2 ∧ T3 ∧ T4, it follows that for s, t ∈ [0, T5],

|〈Bt − Bs,n(X0)〉|= |〈Yt − Ys,n(X0)〉| ≤ |〈Yt − Y0,n(X0)〉|+ |〈Ys − Y0,n(X0)〉| ≤ 4r. (3.16)

This, (2.14) and (3.13) imply that

〈XT5
− X0,n(X0)〉 ≥ −|〈BT5

− B0,n(X0)〉|+

*∫ T5

0

n(X t)d Lt ,n(X0)

+

≥ −4r + 1/(8ν)≥ −2ǫ0+ 1/(8ν)≥ 23ǫ0.

Let T6 = sup{t ≤ T5 : X t ∈ ∂ D}. The last estimate and (3.14) yield

〈BT5
− BT6

,n(X0)〉= 〈XT5
− XT6

,n(X0)〉= 〈XT5
− X0,n(X0)〉+ 〈X0− XT6

,n(X0)〉

≥ 23ǫ0− ǫ0 = 22ǫ0,

a contradiction with (3.16). This proves that T5 ≥ T2 ∧ T3 ∧ T4 if A1 holds. This and the definition

of A1 imply that if A1 holds then T5 ≥ T4.

We will next show that if A1 holds then S1 ≤ T4. Assume that A1 holds and let T7 = sup{t ≤ T4 :

X t ∈ ∂ D}. Note that neither X t nor Yt visit ∂ D on the interval (T7, T4). Hence, XT7
−YT7

= XT4
−YT4

.

If ǫ0 and r0 are sufficiently small then |πX0
(X0 − Y0)| ≥ 3ǫ1/8 because r ≤ ǫ1/2 and d(Y0,∂ D) = r.

We have assumed that A1 holds so |πX0
(YT4
− Y0)| ≤ c6r. We have proved that T5 ≥ T4 on A1, so

|πX0
(XT4
− X0)| ≤ 2c6r. Recall that c6 ≤ 1/12 and r ≤ ǫ1/2. It follows that

|XT7
− YT7
|= |XT4

− YT4
| ≥ |πX0

(XT4
− YT4

)| (3.17)

≥ |πX0
(X0− Y0)| − |πX0

(YT4
− Y0)| − |πX0

(XT4
− X0)|

≥ 3ǫ1/8− c6r − 2c6r ≥ ǫ1/4.

We have from the definition of T3 that

|πX0
(YT4
− YT7

)|= |πX0
(YT4
− Y0)|+ |πX0

(Y0− YT7
)| ≤ c6r + c6r = 2c6r. (3.18)
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The definition of T3 and (3.15) imply that for t ≤ T2 ∧ T3 ∧ T4,

|Y0− Yt | ≤ 2r + c6r < 3r. (3.19)

Hence,

|X0− YT7
| ≤ |X0− Y0|+ |Y0− YT7

| ≤ ǫ1+ 3r ≤ 3ǫ1. (3.20)

We have proved that T5 ≥ T4 on A1, so

|πX0
(XT7
− X0)| ≤ 2c6r ≤ ǫ1. (3.21)

Let x∗ ∈ ∂ D be the point with the minimal distance to YT7
among points satisfying πX0

(x∗) =
πX0
(YT7
). We use the definition of x∗, (3.18), (3.20) and (2.13) to see that

〈YT4
− x∗,n(X0)〉 ≤ ν · 2c6r · 3ǫ1 = 6c6ν rǫ1. (3.22)

We use the fact that YT7
− YT4

= XT7
− XT4

and apply (2.13), (3.18) and (3.21), to obtain,

〈YT7
− YT4

,n(X0)〉= 〈XT7
− XT4

,n(X0)〉 ≤ ν · 2c6r · ǫ1 = 2c6ν rǫ1.

We combine this estimate with (3.22) to see that

d(YT7
,∂ D)≤ |YT7

− x∗|= 〈YT7
− x∗,n(X0)〉 (3.23)

= 〈YT7
− YT4

,n(X0)〉+ 〈YT4
− x∗,n(X0)〉 ≤ 2c6ν rǫ1+ 6c6ν rǫ1 = 8c6ν rǫ1.

This bound and (3.17) yield

d(YT7
,∂ D)

|XT7
− YT7
|
≤

8c6ν rǫ1
ǫ1/4

= 32c6rν ≤ 16c6νǫ1 ≤ 64c6ν |XT7
− YT7
|.

We make c6 > 0 smaller, if necessary, so that 64c6ν ≤ a2. Then d(YT7
,∂ D) ≤ a2|XT7

− YT7
|2.

We obviously have d(XT7
,∂ D) ≤ a2|XT7

− YT7
|2 because XT7

∈ ∂ D. This shows that S1 ≤ T7 and

completes the proof that if A1 holds then S1 ≤ T4.

Assume that A1 holds and suppose that
D

n(X0),
∫ T4

0
n(X t)d Lt

E
≥ 20r. We will show that these

assumptions lead to a contradiction. It follows from (3.15) that for s, t ≤ T2 ∧ T3 ∧ T4,

|〈Yt − Ys,n(X0)〉| ≤ 4r.

Since Yt − Ys = Bt − Bs for the same range of s and t, we obtain

|〈Bt − Bs,n(X0)〉| ≤ 4r. (3.24)

This implies that

〈n(X0), XT4
− X0〉 ≥ −|〈n(X0), BT4

− B0〉|+

*
n(X0),

∫ T4

0

n(X t)d Lt

+
≥ −4r + 20r = 16r. (3.25)
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Recall that T7 = sup{t ≤ T4 : X t ∈ ∂ D}. In view of the definition of T5 and (3.14),

〈n(X0), X0− XT7
〉 ≥ −r. (3.26)

We have BT4
− BT7

= XT4
− XT7

so (3.25) and (3.26) give

〈n(X0), BT4
− BT7
〉= 〈n(X0), XT4

− XT7
〉

= 〈n(X0), XT4
− X0〉+ 〈n(X0), X0− XT7

〉 ≥ 16r − r = 15r.

This contradicts (3.24) so we conclude that if A1 holds then
*

n(X0),

∫ T4

0

n(X t)d Lt

+
≤ 20r. (3.27)

Note that 〈n(X0),n(x)〉 ≥ 1/2 for all x ∈ ∂ D ∩ B(X0, 2c6r), assuming that ǫ0 > 0 is small and

r ≤ r0 < ǫ0. We have shown that if A1 holds then T5 ≥ T4, so 〈n(X0),n(X t)〉 ≥ 1/2 for t ∈ [0, T4]

such that X t ∈ ∂ D. This and (3.27) imply that,

(1/2)(LS1
− L0)≤ (1/2)(LT4

− L0)≤

*
n(X0),

∫ T4

0

n(X t)d Lt

+
≤ 20r,

and, therefore, LS1
− L0 ≤ 40r.

By (3.24) and the fact that LT4
− L0 ≤ 40r, we have for t ≤ T4,

|〈n(X0), X t − X0〉| ≤ |〈n(X0), Bt − B0〉|+

®
n(X0),

∫ t

0

n(X t)d Lt

¸
≤ 4r + 40r = 44r.

This, the definition of T5 and the fact that T5 ≥ T4 on A1 imply that for t ≤ T4, we have |X t − X0| ≤
45r. If we take c1 = 45 then this and (3.19) show that on A1, T4 ≤ T1 and, therefore, S1 ≤ T1 ∧ T4.

We proved that A1 ⊂ {S1 ≤ T1∧T4, LX
S1
− LX

0 ≤ 40r}. It is easy to see that P(A1)> p1 for some p1 > 0

which depends only on c6. This completes the proof of part (i) in the case r ≤ ǫ1/2, with c1 = 45

and c2 = 40.

Next consider the case when r ≥ ǫ1/2. Let

T8 = inf{t > 0 : |Yt − X0| ≥ 2ǫ1},

T9 = inf{t > 0 : X t ∈ ∂ D,d(Yt ,∂ D)≤ |X t − Yt |/2},

T10 = inf{t > 0 : Lt − L0 ≥ 20ǫ1},

A2 = {T4 ≤ T8},

A3 = {T9 ≤ T4 ∧ T8 ∧ T10}.

We will show that A2 ⊂ A3. Assume that A2 holds. Let T11 = inf{t ≥ 0 : |πX0
(X t − X0)| ≥ 5ǫ1}.

We will show that T11 ≥ T4. We will argue by contradiction. Assume that T11 < T4. We have

assumed that A2 holds, so T11 < T8. Since T11 < T4, we have πX0
(Bt − B0) = πX0

(Yt − Y0) and

〈nX0
, Bt − B0〉 = 〈nX0

, Yt − Y0〉 for t ∈ [0, T11], which implies in view of the definition of T8 that for

s, t ∈ [0, T11],

|πX0
(Bt − B0)|= |πX0

(Yt − Y0)| ≤ |πX0
(Yt − X0)|+ |πX0

(Y0− X0)| ≤ 2ǫ1+ ǫ1 = 3ǫ1, (3.28)

|〈nX0
, Bt − Bs〉|= |〈nX0

, Yt − Ys〉| ≤ |〈nX0
, Yt − X0〉|+ |〈nX0

, X0− Ys〉| ≤ 2ǫ1+ 2ǫ1 = 4ǫ1. (3.29)
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We obtain from (3.28),

�����πX0

 ∫ T11

0

n(X t)d Lt

!�����= |πX0
(XT11
− X0)−πX0

(BT11
− B0)| (3.30)

≥ |πX0
(XT11
− X0)| − |πX0

(BT11
− B0)| ≥ 5ǫ1− 3ǫ1 = 2ǫ1.

If ǫ0 > 0 is sufficiently small and ǫ1 ≤ ǫ0 then by (2.12), |πX0
(n(x))| ≤ 10νǫ1 for x ∈ ∂ D ∩

B(X0, 5ǫ1). This and the estimate

���
∫ T11

0
πX0
(n(X t))d Lt

���≥ 2ǫ1 imply that LT11
− L0 ≥ 2ǫ1/(10νǫ1) =

1/(5ν). By (2.8), we may choose ǫ0 so small that for ǫ1 ≤ ǫ0 and x ∈ B(X0, 5ǫ1) ∩ ∂ D,

〈n(X0),n(x)〉 ≥ 1/2. It follows that

*
n(X0),

∫ T11

0

n(X t)d Lt

+
≥ 1/(10ν).

Recall that ǫ1 < ǫ0 < 1/(200ν). We obtain from the last estimate and (3.29),

〈nX0
, XT11
− X0〉 ≥ −|〈nX0

, BT11
− B0〉|+

*
nX0

,

∫ T11

0

n(X t)d Lt

+
≥−4ǫ1+ 1/(10ν)≥ 16ǫ1.

Let T12 = sup{t ≤ T11 : X t ∈ ∂ D} and note that, by (2.9), assuming ǫ0 is small, we have

〈nX0
, X0− X t〉 ≥ −ǫ1, (3.31)

for t ≤ T11 such that X t ∈ ∂ D. Then

〈nX0
, BT11
− BT12

〉= 〈nX0
, XT11
− XT12

〉

= 〈nX0
, XT11
− X0〉+ 〈nX0

, X0− XT12
〉 ≥ 16ǫ1− ǫ1 = 15ǫ1.

This contradicts (3.29) and, therefore, completes the proof that T11 ≥ T4.

Next we will prove that LT4
− L0 ≤ 20ǫ1. Suppose otherwise, i.e., LT4

− L0 > 20ǫ1. We have

〈nX0
,n(x)〉 ≥ 1/2 for x ∈ ∂ D ∩B(0,10ǫ1), assuming ǫ0 > 0 is small and ǫ1 ≤ ǫ0. Since T11 ≥ T4,

〈nX0
,n(X t)〉 ≥ 1/2 for t ≤ T4 such that X t ∈ ∂ D, so, using (3.29),

〈nX0
, XT4
− X0〉 ≥ −|〈nX0

, BT4
− B0〉|+

*
nX0

,

∫ T4

0

n(X t)d Lt

+
≥−4ǫ1+ (1/2)(LT4

− L0)

≥−4ǫ1+ 10ǫ1 = 6ǫ1.

Recall that T7 = sup{t ≤ T4 : X t ∈ ∂ D} and note that we can use (3.31) because T11 ≥ T4, so

〈nX0
, X0− XT7

〉 ≥ −ǫ1. Then

〈nX0
, BT4
− BT7
〉= 〈nX0

, XT4
− XT7
〉= 〈nX0

, XT4
− X0〉+ 〈nX0

, X0− XT7
〉

≥ 6ǫ1− ǫ1 = 5ǫ1.

This contradicts (3.29) because T7 ≤ T4 ≤ T11. This proves that if A2 holds then

LT4
− L0 ≤ 20ǫ1 ≤ 40r. (3.32)
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Recall the definition of T11 and the fact that T11 ≥ T4 to see that |πX0
(X t − X0)| ≤ 5ǫ1 for t ≤ T4,

assuming that A2 holds. It follows from the definition of T8 that |Yt − Y0| ≤ 4ǫ1 for t ≤ T4. Recall

that T7 = sup{t ≤ T4 : X t ∈ ∂ D}. Note that XT4
− YT4

= XT7
− YT7

, YT4
, XT7
∈ ∂ D, and T7 ≤ T4. This

and the bounds |πX0
(X t − X0)| ≤ 5ǫ1 and |Yt − Y0| ≤ 4ǫ1 for t ≤ T4, easily imply that d(YT7

,∂ D) ≤
|XT7
− YT7
|/2, assuming that ǫ0 is small. Hence, T9 ≤ T4. This fact combined with (3.32) shows that

if A2 occurs then T9 ≤ T4 ≤ T8 ∧ T10. This completes the proof that A2 ⊂ A3.

It is easy to see that P(A2)> p2, for some p2 > 0. It follows that P(A3)> p2.

We may now apply the strong Markov property at the stopping time T9 and repeat the argument

given in the first part of the proof, which was devoted to the case r ≤ ǫ1/2. It is straightforward to

complete the proof of part (i), adjusting the values of c1, c2,ǫ0, r0 and p0, if necessary.

(ii) We will restart numbering of constants, i.e., we will use c6, c7, . . . , for constants unrelated to

those with the same index in the earlier part of the proof.

Let c1, c2,ǫ0 and r0 be as in part (i) of the lemma, ǫ2 = ǫ0 ∧ r0, and ǫ1 ≤ ǫ2. Recall that τ+(ǫ2) =

inf{t > 0 : |X t − Yt | ≥ ǫ2}. Let T0
5 = 0, and for k ≥ 1 let

T k
1 = inf{t ≥ T k−1

5 : |XT k−1
5
− X t | ∨ |YT k−1

5
− Yt | ≥ c1d(YT k−1

5
,∂ D)} ∧τ+(ǫ2), (3.33)

T k
2 = inf{t ≥ T k−1

5 : Lt − LT k−1
5
≥ c2d(YT k−1

5
,∂ D)} ∧τ+(ǫ2), (3.34)

T k
3 = inf{t ≥ T k−1

5 : Yt ∈ ∂ D} ∧τ+(ǫ2), (3.35)

T k
4 = T k

1 ∧ T k
2 ∧ T k

3 , (3.36)

T k
5 = inf{t ≥ T k

4 : X t ∈ ∂ D} ∧τ+(ǫ2). (3.37)

We will estimate Ed(YT k
5
,∂ D). By Lemma 3.5 (i) and the definition of T k

1 , on the event {T k
4 <

τ+(ǫ2)},

P


 sup

t∈[T k
4 ,T k

5 ]

|X t − XT k
4
| ∈ [2− j−1, 2− j] | FT k

4


 ≤ c6d(XT k

4
,∂ D)/2− j

≤ c7d(YT k−1
5

,∂ D)/2− j . (3.38)

Write R = d(YT k−1
5

,∂ D), assume that T k
4 < τ

+(ǫ2), and let j be the largest integer such that

supt∈[T k
4 ,T k

5 ]
|X t − XT k

4
| ∨ ǫ2 ≤ 2− j . We will show that d(YT k

5
,∂ D) ≤ R + c8ǫ22− j , a.s. Note that

between times T k−1
5 and T k

4 , the process Yt does not hit the boundary of D. Between times T k
4

and T k
5 , the process X t does not hit ∂ D. If Yt does not hit the boundary on the same interval, it is

elementary to see that d(YT k
5
,∂ D)≤ R+ c9ǫ22− j .

Suppose that Yt∗ ∈ ∂ D for some t∗ ∈ [T
k
4 , T k

5 ], and assume that t∗ is the largest time with this

property. If t∗ = T k
5 then d(YT k

5
,∂ D) = 0. Otherwise we must have τ+(ǫ2) > T k

5 , XT k
5
∈ ∂ D, and

XT k
5
− YT k

5
= X t∗ − Yt∗ . Since both Yt∗ and XT k

5
belong to ∂ D, easy geometry shows that in this case

d(YT k
5
,∂ D)≤ c10ǫ22− j . This completes the proof that d(YT k

5
,∂ D)≤ R+ c8ǫ22− j , a.s.

Let j0 be the smallest integer such that 2− j0 ≥ diam(D) and let j1 be the largest integer such that

2− j1+1 ≥ R. The estimate d(YT k
5
,∂ D) ≤ R + c8ǫ22− j and (3.38) imply that on the event {T k

4 <
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τ+(ǫ2)},

E(d(YT k
5
,∂ D) | FT k

4
)

≤
∑

j0≤ j≤ j1

(R+ c8ǫ22− j)P( sup
t∈[T k

4 ,T k
5 ]

|X t − XT k
4
| ∈ [2− j−1, 2− j] | FT k

4
)

≤ R+
∑

j0≤ j≤ j1

c8ǫ22− jP( sup
t∈[T k

4 ,T k
5 ]

|X t − XT k
4
| ∈ [2− j−1, 2− j] | FT k

4
)

≤ R+
∑

j0≤ j≤ j1

c11ǫ22− j(R/2− j)

≤ R+ c12ǫ2R| log R|

= d(YT k−1
5

,∂ D)(1+ c12ǫ2| logd(YT k−1
5

,∂ D)|). (3.39)

For R≤ ǫ4
2 we have R(1+ c12ǫ2| log R|)≤ c13ǫ

3
2 , so R(1+ c12ǫ2| log R|)≤ R(1+4c12ǫ2| logǫ2|)+ c13ǫ

3
2 .

Thus, on the event {T k
4 < τ

+(ǫ2)},

E(d(YT k
5
,∂ D) | FT k

4
)≤ (1+ c12ǫ2| logǫ2|)d(YT k−1

5
,∂ D) + c13ǫ

3
2 . (3.40)

Let S∗1 = S1 ∧ τ
+(ǫ2). By the strong Markov property applied at T k−1

5 and part (i) of the lemma, on

the event {S∗1 > T k−1
5 },

P(T k−1
5 < S∗1 ≤ T k

5 | FT k−1
5
)≥ P(T k−1

5 < S∗1 ≤ T k
4 | FT k−1

5
)≥ p0. (3.41)

By the strong Markov property and induction,

P(S∗1 > T k−1
5 )≤ c14pk

0. (3.42)

This, (3.40) and (3.41) imply,

E
�

d(YT k
5
,∂ D)1{S∗1>T k

5 }
1{T k−1

5 <τ+(ǫ2)}

�

= E
�

1{S∗1>T k
5 }

1{T k−1
5 <τ+(ǫ2)}

E
�

d(YT k
5
,∂ D) | FT k

4

��

≤ E
�

1{S∗1>T k
5 }

1{T k−1
5 <τ+(ǫ2)}

�
(1+ c12ǫ2| logǫ2|)d(YT k−1

5
,∂ D) + c13ǫ

3
2

��

= E
�

1{S∗1>T k−1
5 }1{S∗1>T k

5 }
1{T k−1

5 <τ+(ǫ2)}

�
(1+ c12ǫ2| logǫ2|)d(YT k−1

5
,∂ D) + c13ǫ

3
2

��

≤ E
�

1{S∗1>T k−1
5 }1{T k−1

5 <τ+(ǫ2)}

�
(1+ c12ǫ2| logǫ2|)d(YT k−1

5
,∂ D) + c13ǫ

3
2

�

× E(1{S∗
1
>T k

5 }
| FT k−1

5
)
�

≤ E
�

1{S∗1>T k−1
5 }1{T k−1

5 <τ+(ǫ2)}

�
(1+ c12ǫ2| logǫ2|)d(YT k−1

5
,∂ D) + c13ǫ

3
2

�
(1− p0)

�

≤ (1+ c12ǫ2| logǫ2|)(1− p0)E
�

d(YT k−1
5

,∂ D)1{S∗1>T k−1
5 }1{T k−2

5 <τ+(ǫ2)}

�

+ c13(1− p0)ǫ
3
2P(S∗1 > T k−1

5 )

≤ (1+ c12ǫ2| logǫ2|)(1− p0)E(d(YT k−1
5

,∂ D)1{S∗
1
>T k−1

5 }1{T k−2
5 <τ+(ǫ2)}

)

+ c15(1− p0)ǫ
3
2 pk

0.
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We assume without loss of generality that p0 > 0 is so small that (1− p0)p
−1
0 > 1. We obtain by

induction,

E(d(YT k
5
,∂ D)1{S∗1>T k

5 }
1{T k−1

5 <τ+(ǫ2)}
) (3.43)

≤ (1+ c12ǫ2| logǫ2|)
k(1− p0)

kE(d(YT0
5
,∂ D)1{S∗1>0}1{T0

5<τ
+(ǫ2)}

)

+ c15(1− p0)ǫ
3
2

k−1∑

m=0

(1+ c12ǫ2| logǫ2|)
m(1− p0)

mpk−m
0

≤ (1+ c12ǫ2| logǫ2|)
k(1− p0)

kr + c15ǫ
3
2 pk

0

k−1∑

m=0

(1+ c12ǫ2| logǫ2|)
m(1− p0)

mp−m
0

≤ (1+ c12ǫ2| logǫ2|)
k(1− p0)

kr + c16ǫ
3
2 pk

0(1+ c12ǫ2| logǫ2|)
k(1− p0)

kp−k
0

= (1+ c12ǫ2| logǫ2|)
k(1− p0)

kr + c16ǫ
3
2(1+ c12ǫ2| logǫ2|)

k(1− p0)
k

≤ c17(1+ c12ǫ2| logǫ2|)
k(1− p0)

k(r + ǫ3
2).

Note that, by (3.34) and (3.37),

LT j+1

2

− LT j
5
≤ c2d(YT j

5
,∂ D),

LT j+1
5
− LT j+1

2

= 0.

Hence,

LT j+1
5
− LT j

5
≤ c2d(YT j

5
,∂ D). (3.44)
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It follows from this and (3.43) that

E(LS1∧τ
+(ǫ2)
− L0) = E(LS∗1

− L0)

=

∞∑

k=0

E
�
(LS∗1
− L0)1{S∗1∈(T

k
5 ,T k+1

5 ]}

�

≤
∞∑

k=0

E


1{S∗

1
∈(T k

5 ,T k+1
5 ]}

k∑

j=0

1
{T j

5<τ
+(ǫ2)}

(LT j+1
5
− LT j

5
)




≤
∞∑

k=0

E


1{S∗

1
∈(T k

5 ,T k+1
5 ]}

k∑

j=0

1
{T j−1

5 <τ+(ǫ2)}
c2d(YT j

5
,∂ D)




= E



∞∑

k=0

k∑

j=0

1{S∗1∈(T
k
5 ,T k+1

5 ]}1{T j−1
5 <τ+(ǫ2)}

c2d(YT j
5
,∂ D)




= E



∞∑

j=0

∞∑

k= j

1{S∗1∈(T
k
5 ,T k+1

5 ]}1{T j−1
5 <τ+(ǫ2)}

c2d(YT j
5
,∂ D)




= c2

∞∑

j=0

E
�

1
{S∗

1
>T j

5}
1
{T j−1

5 <τ+(ǫ2)}
d(YT j

5
,∂ D)

�

≤
∞∑

j=0

c18(1+ c12ǫ2| logǫ2|)
j(1− p0)

j(r + ǫ3
2).

If we assume that ǫ2 > 0 is sufficiently small, this is bounded by c19(r + ǫ
3
2).

(iii) We will restart numbering of constants, i.e., we will use c6, c7, . . . , for constants unrelated to

those with the same index in the earlier part of the proof.

Recall that j1 is the largest integer such that 2− j1+1 ≥ d(YT k−1
5

,∂ D). Let j2 be the largest integer such

that 2− j2+1 ≥ r. By (3.33) and (3.38) we have for j ≤ j1, on the event {T k−1
5 < τ+(ǫ2)},

P


 sup

t∈[T k−1
5 ,T k

5 ]

|X t − XT k
4
| ∈ [2− j−1, 2− j] | FT k−1

5




≤ P


 sup

t∈[T k−1
5 ,T k

4 ]

|X t − XT k−1
5
|+ sup

t∈[T k
4 ,T k

5 ]

|X t − XT k
4
| ∈ [2− j−1, 2− j] | FT k−1

5




≤ P


c1d(YT k−1

5
,∂ D) + sup

t∈[T k
4 ,T k

5 ]

|X t − XT k
4
| ∈ [2− j−1, 2− j] | FT k−1

5




≤ c6d(YT k−1
5

,∂ D)/2− j .
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We will also use the trivial estimate

P


 sup

t∈[T k−1
5 ,T k

5 ]

|X t − XT k
4
| ≤ r | FT k−1

5


 ≤ 1.

We use the last two estimates, (3.42) and (3.43) to obtain

E

 
sup

0≤t≤S1∧τ
+(ǫ2)

|X t − X0|

!
= E

 
sup

0≤t≤S∗
1

|X t − X0|

!

=

∞∑

k=0

E

 
sup

0≤t≤S∗1

|X t − X0|1{S∗1∈(T
k
5 ,T k+1

5 ]}

!

≤
∞∑

k=0

E


1{S∗1∈(T

k
5 ,T k+1

5 ]}

k∑

j=0

1
{T j

5<τ
+(ǫ2)}

sup
T j

5≤t≤T j+1
5

|X t − X0|




≤
∞∑

k=0

E


1{S∗

1
∈(T k

5 ,T k+1
5 ]}

k∑

j=0

E


1
{T j

5<τ
+(ǫ2)}

sup
T j

5≤t≤T j+1
5

|X t − X0| | FT k−1
5







≤
∞∑

k=0

E


1{S∗1∈(T

k
5 ,T k+1

5 ]}

k∑

j=0


r +

∑

j0≤i≤ j2

2−i1
{T j−1

5 <τ+(ǫ2)}
c6d(YT j−1

5
,∂ D)/2−i







≤
∞∑

k=0

E


1{S∗1∈(T

k
5 ,T k+1

5 ]}

k∑

j=0

�
r + c7| log r|1

{T j−1
5 <τ+(ǫ2)}

d(YT j−1
5

,∂ D)
�



= E



∞∑

k=0

k∑

j=0

1{S∗
1
∈(T k

5 ,T k+1
5 ]}

�
r + c7| log r|1

{T j−1
5 <τ+(ǫ2)}

d(YT j−1
5

,∂ D)
�



= E



∞∑

j=0

∞∑

k= j

1{S∗1∈(T
k
5 ,T k+1

5 ]}

�
r + c7| log r|1

{T j−1
5 <τ+(ǫ2)}

d(YT j−1
5

,∂ D)
�



=

∞∑

j=0

E
�

1
{S∗1>T j

5}

�
r + c7| log r|1

{T j−1
5 <τ+(ǫ2)}

d(YT j−1
5

,∂ D)
��

= r
∞∑

j=0

P(S∗1 > T j
5) + c7| log r|

∞∑

j=0

E
�

1
{S∗

1
>T j

5}
1
{T j−1

5 <τ+(ǫ2)}
d(YT j−1

5
,∂ D)

�

≤ r
∞∑

j=0

c8pk
0 + c9| log r|

∞∑

j=0

(1+ c10ǫ2| logǫ2|)
j(1− p0)

j(r + ǫ3
2).

If we assume that ǫ2 > 0 is sufficiently small, this is bounded by c11| log r|(r + ǫ3
2).

(iv) Once again, we will restart numbering of constants, i.e., we will use c6, c7, . . . , for constants

unrelated to those with the same index in the earlier part of the proof.

Recall that j0 is the smallest integer such that 2− j0 ≥ diam(D). Let j3 be the smallest j with the

property that 2− j ≤ d(YT k
5
,∂ D). It follows from (3.38) that for any β2 < 1, on the event {T k

5 <
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τ+(ǫ2)},

E


 sup

T k
5≤t≤T k+1

5

|XT k
5
− X t | | FT k

5




≤ E


 sup

T k
5≤t≤T k+1

4

|XT k
5
− X t | | FT k

5


+ E


 sup

T k+1
4 ≤t≤T k+1

5

|XT k+1
4
− X t | | FT k

5




≤ c1d(YT k
5
,∂ D) + E


 sup

T k+1
4 ≤t≤T k+1

5

|XT k+1
4
− X t | | FT k

5




≤ c1d(YT k
5
,∂ D) +

j3∑

j= j0

c62− jd(YT k
5
,∂ D)/2− j

≤ c7d(YT k
5
,∂ D)(1+ | logd(YT k

5
,∂ D)|)

≤ c8d(YT k
5
,∂ D)β2 ≤ c9ǫ

β2

2 .

This and (3.43) imply that

E


d(YT k

5
,∂ D)1{S∗

1
>T k

5 }
1{T k−1

5 <τ+(ǫ2)}
sup

T k
5≤t≤T k+1

5

|XT k
5
− X t |


 (3.45)

= E


d(YT k

5
,∂ D)1{S∗

1
>T k

5 }
1{T k−1

5 <τ+(ǫ2)}
E


 sup

T k
5≤t≤T k+1

5

|XT k
5
− X t | | FT k

5







≤ c9ǫ
β2

2 E
�

d(YT k
5
,∂ D)1{S∗

1
>T k

5 }
1{T k−1

5 <τ+(ǫ2)}

�

≤ c10ǫ
β2

2 (1+ c11ǫ2| logǫ2|)
k(1− p0)

k(r + ǫ3
2).

It follows from the definition of S1 that |Π(XS∗
1
)− XS∗

1
| ≤ c11ǫ

2
2 if S1 < σ∗∧τ

+(ǫ2). In the case when

S∗1 = σ∗ ∧ τ
+(ǫ2), the distance between X and Y is increasing at this instance, so it is easy to see

that the vector XS∗1
− YS∗1

must also have a position such that

|Π(XS∗
1
)− XS∗

1
| ≤ c11ǫ

2
2 . (3.46)

Recall that we assume that X0 ∈ ∂ D, |X0 − Y0| = ǫ1, d(Y0,∂ D) = r. Recall also that ǫ∗ is the

parameter used in the definition of ξ j and x∗j at the beginning of this section. It follows from

(3.33)-(3.37) that if ǫ∗ ≥ c1ǫ2 then at most one ξi may belong to any given interval (T k−1
5 , T k

5 ] and,

moreover, if for some ξi we have ξi ∈ (T
k−1
5 , T k

5 ] then ξi = T k
5 . This, (3.43), (3.44), (3.45) and
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(3.46) imply that,

E




∑

0≤ξi≤S∗1

(LS∗1
− Lξi

)|x∗i −Π(XS∗1
)|




=

∞∑

k=0

E




∑

0≤ξi≤S∗
1

(LS∗1
− Lξi

)|x∗i −Π(XS∗1
)|1{S∗

1
∈(T k

5 ,T k+1
5 ]}




≤
∞∑

k=0

E


1{S∗1∈(T

k
5 ,T k+1

5 ]}

k∑

j=0

1
{T j

5<τ
+(ǫ0)}

1
{T j

5≤ξi≤S∗1}
(LT j+1

5
− LT j

5
)|x∗i −Π(XS∗

1
)|




≤
∞∑

k=0

E
�

1{S∗
1
∈(T k

5 ,T k+1
5 ]}

×
k∑

j=0

1
{T j

5<τ
+(ǫ0)}

1
{T j

5≤ξi≤S∗
1
}
(LT j+1

5
− LT j

5
)
�
|XS∗1
−Π(XS∗1

)|+ |x∗i − XS∗1
|
��

≤
∞∑

k=0

E
�

1{S∗1∈(T
k
5 ,T k+1

5 ]}

×
� k∑

j=0

( j + 1)1
{T j

5<τ
+(ǫ0)}

(LT j+1
5
− LT j

5
)
�

c11ǫ
2
2 + sup

T j
5≤t≤T j+1

5

|XT j
5
− X t |

���

≤
∞∑

k=0

E
�

1{S∗
1
∈(T k

5 ,T k+1
5 ]}

×
� k∑

j=0

( j + 1)1
{T j

5<τ
+(ǫ0)}

c2d(YT j
5
,∂ D)

�
c11ǫ

2
2 + sup

T j
5≤t≤T j+1

5

|XT j
5
− X t |

���

= E



∞∑

k=0

k∑

j=0

1{S∗1∈(T
k
5 ,T k+1

5 ]}( j + 1)1
{T j

5<τ
+(ǫ0)}

c2d(YT j
5
,∂ D)

�
c11ǫ

2
2 + sup

T j
5≤t≤T j+1

5

|XT j
5
− X t |

�



= E



∞∑

j=0

∞∑

k= j

1{S∗
1
∈(T k

5 ,T k+1
5 ]}( j + 1)1

{T j
5<τ

+(ǫ0)}
c2d(YT j

5
,∂ D)

�
c11ǫ

2
2 + sup

T j
5≤t≤T j+1

5

|XT j
5
− X t |

�



=

∞∑

j=0

E


1
{S∗1>T j

5}
( j + 1)1

{T j
5<τ

+(ǫ0)}
c2d(YT j

5
,∂ D)

�
c11ǫ

2
2 + sup

T j
5≤t≤T j+1

5

|XT j
5
− X t |

�



≤
∞∑

j=0

c12( j + 1)(1+ c12ǫ2| logǫ2|)
j(1− p0)

j(ǫ2
2 + ǫ

β2

2 )(r + ǫ
3
2).

If we assume that ǫ2 > 0 is sufficiently small, this is bounded by c13ǫ
β2

2 (r + ǫ
3
2).

Recall definitions of σ∗ and S1, and Lemma 3.4. There exists c14 such that if ǫ1 ≤ c14ǫ2 then

2204



σ∗ < τ
+(ǫ2). Hence, if ǫ1 ≤ c14ǫ2 then

E




∑

0≤ξi≤S1

(LS1
− Lξi

)|x∗i −Π(XS1
)|


 ≤ c13ǫ

β2

2 (r + ǫ
3
2). (3.47)

Let bSk = inf{t ≥ Sk : X t ∈ ∂ D} ∧σ∗. The following estimate can be proved just like (3.39),

E
�

d(YbSk
,∂ D) | FSk

�
≤ (1+ c14ǫ2| logǫ2|)d(YSk

,∂ D).

We use this estimate, (3.47), the strong Markov property at bSk, and the definition of Sk to see that

E




∑

Sk≤ξ j≤Sk+1

(LSk+1
− Lξ j

)|x∗j −Π(XSk+1
)| | FSk




= E




∑

bSk≤ξ j≤Sk+1

(LSk+1
− Lξ j

)|x∗j −Π(XSk+1
)| | FSk




= E


E




∑

bSk≤ξ j≤Sk+1

(LSk+1
− Lξ j

)|x∗j −Π(XSk+1
)| | FbSk


 | FSk




≤ E
�

c13|XbSk
− YbSk
|β2(d(YbSk

,∂ D) + |XbSk
− YbSk
|3) | FSk

�

≤ E
�

c15|XSk
− YSk
|β2(d(YbSk

,∂ D) + |XSk
− YSk
|3) | FSk

�

≤ c15|XSk
− YSk
|β2

�
(1+ c14ǫ2| logǫ2|)d(YSk

,∂ D)
�
+ |XSk

− YSk
|3)

≤ c15|XSk
− YSk
|β2

�
(1+ c14ǫ2| logǫ2|)|XSk

− YSk
|2
�
+ |XSk

− YSk
|3)

≤ c16|XSk
− YSk
|2+β2 .

Lemma 3.10. There exist c1 and a0 > 0 such that for a1, a2 < a0, if |X0 − Y0| = ǫ then a.s., for every
k ≥ 1, on the event Uk < σ∗,

�����

®
n(Π(XUk

)),
YUk
− XUk

|YUk
− XUk

|

¸�����≤ c1ǫ.

Proof. First we will show that one can choose c1, a0 > 0 and ǫ0 > 0 so that for a1 < a0, ǫ ≤ ǫ0,

x ∈ ∂ D, y ∈ D, |x − y | ≤ ǫ, z ∈ ∂ D, |x − z| ≤ 2a1ǫ and |y − z| ≤ 2a1ǫ, we have

�
n(z),

y − x

|y − x |

�
≥ −c1ǫ/4. (3.48)

First suppose that y ∈ ∂ D. The assumptions that x , y ∈ ∂ D, |x − y | ≤ ǫ, and ∂ D is C2 imply that

the angle between n(x) and y− x is in the range [π/2− c2ǫ,π/2+ c2ǫ] for some c2 <∞. It follows

from the assumptions that x , z ∈ ∂ D, |x − z| ≤ 2a1ǫ, and ∂ D is C2 that the angle between n(x) and
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n(z) is less than c3ǫ for some c3 <∞. Therefore, the angle between n(z) and y − x is in the range

[π/2− c1ǫ/4,π/2+ c1ǫ/4], where c1 = 4(c2+ c3). This implies that
��〈n(z), y − x〉

��≤ |y − x | sin(c1ǫ/4)≤ c1|y − x |ǫ/4.

Thus
����
�

n(z),
y − x

|y − x |

�����≤ c1ǫ/4,

and, therefore,
�

n(z),
y − x

|y − x |

�
≥ −c1ǫ/4.

In other words, we proved that (3.48) in the special case when y ∈ ∂ D. If a1 > 0 and ǫ0 > 0 are

sufficiently small then D∩B(z, 2a1ǫ) lies above ∂ D∩B(z, 2a1ǫ) in the coordinate system with the

origin at z = 0 and the vertical axis containing n(z). This observation proves that (3.48) applies to

all y ∈ D (satisfying all the remaining assumptions).

An argument based on similar ideas shows that if x , y ∈ D, w ∈ ∂ D, |w − z| ≤ 2a1ǫ and
����
�

n(z),
y − x

|y − x |

�����≤ c1ǫ/2,

then
����
�

n(w),
y − x

|y − x |

�����≤ c1ǫ. (3.49)

If |X0 − Y0| = ǫ then |X t − Yt | ≤ c4ǫ for all t ≤ σ∗, by Lemma 3.4. It follows easily from (3.1) that

we can adjust the values of c1 and ǫ0 and choose a2 > 0 so that if |X0 − Y0| = ǫ ≤ ǫ0 then on the

event Sk < σ∗,
�����

®
n(Π(XSk

)),
YSk
− XSk

|YSk
− XSk
|

¸�����≤ c1ǫ/2.

Let

A=

¨
t ∈ [Sk, Uk] :

����
�

n(Π(XSk
)),

Yt − X t

|Yt − X t |

�����> c1ǫ/2

«
.

We will show that A= ∅. Suppose otherwise and let T1 = inf A. Then
�����

®
n(Π(XSk

)),
YT1
− XT1

|YT1
− XT1
|

¸�����= c1ǫ/2.

We must have either XT1
∈ ∂ D or YT1

∈ ∂ D. It follows from (3.48) that either XT1
/∈ ∂ D or YT1

/∈ ∂ D.

Suppose without loss of generality that XT1
∈ ∂ D and YT1

/∈ ∂ D. Then by (3.48),

®
n(Π(XSk

)),
YT1
− XT1

|YT1
− XT1
|

¸
= c1ǫ/2.
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By the definition of T1, for every δ > 0, Lt must increase on the interval [T1, T1 + δ]. It is easy to

see that this implies that the function

t →

�
n(Π(XSk

)),
Yt − X t

|Yt − X t |

�

is decreasing on the interval [T1, T1 + δ1], for some δ1 > 0. This contradicts the definition of T1.

Hence, for all t ∈ [Sk, Uk],

����
�

n(Π(XSk
)),

Yt − X t

|Yt − X t |

�����≤ c1ǫ/2.

In particular,

�����

®
n(Π(XSk

)),
YUk
− XUk

|YUk
− XUk

|

¸�����≤ c1ǫ/2.

The lemma follows from the above estimate and (3.49).

Lemma 3.11. There exists c1 such that if |X0− Y0| ≤ ǫ then for every k,

E
∑

Uk≤σ∗∧τ
+(ǫ)

(LSk+1
− LUk

)≤ c1ǫ| logǫ|.

Proof. We use the strong Markov property at the hitting time of ∂ D by X and Lemma 3.8 (ii) to see

that

E(LS1∧τ
+(ǫ)− LU0

)≤ c2ǫ. (3.50)

We will estimate (LSk+1
− LUk

)1{Uk<τ
+(ǫ)} for k ≥ 1. Fix some k ≥ 1 and assume that Uk < τ

+(ǫ).

Note that d(XUk
,∂ D) ≤ c3|XUk

− YUk
|. Let T1 = inf{t ≥ Uk : X t ∈ ∂ D} ∧σ∗ ∧ τ

+(ǫ). Let j0 be the

greatest integer such that 2− j0 is greater than the diameter of D and let j1 be the least integer such

that 2− j1 ≤ |XUk
− YUk
|. By Lemma 3.5, for j0 ≤ j ≤ j1,

P
�
|XUk
− XT1
| ∈ [2− j , 2− j+1] | FUk

�
≤ c42 j |XUk

− YUk
|. (3.51)

Next we will estimate d(YT1
,∂ D). Between times Uk and T1, the process X t does not hit ∂ D. If Yt

does not hit the boundary on the same interval, it is elementary to see from Lemma 3.10 that for

j0 ≤ j ≤ j1,

d(YT1
,∂ D)≤ c5|XUk

− YUk
|2+ c6|XUk

− YUk
|2− j ≤ c7|XUk

− YUk
|2− j .

Suppose that for some t∗ ∈ [Uk, T1] we have Yt∗ ∈ ∂ D, and assume that t∗ is the largest time with

this property. If t∗ = T1 then d(YT1
,∂ D) = 0. Otherwise we must have τ+(ǫ) > t∗, XT1

∈ ∂ D, and

XT1
− YT1

= X t∗ − Yt∗ . Since both Yt∗ and XT1
belong to ∂ D, easy geometry shows that in this case

d(YT1
,∂ D) ≤ c8|XUk

− YUk
|2− j . We conclude that d(YT1

,∂ D) ≤ c9|XUk
− YUk
|2− j , a.s. By Lemma 3.8

(ii) and the strong Markov property applied at Uk,

E
�

LSk+1
− LUk

| Uk < τ
+(ǫ),FT1

�
≤ c10(|XUk

− YUk
|2− j + |XUk

− YUk
|3)≤ c11|XUk

− YUk
|2− j .
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Hence, using (3.51),

E
�

LSk+1
− LUk

| Uk < τ
+(ǫ),FUk

�
= E

�
E
�

LSk+1
− LUk

| Uk < τ
+(ǫ),FT1

�
FUk

�

≤
∑

j0≤ j≤ j1

c4|XUk
− YUk
|2 jc11|XUk

− YUk
|2− j

≤ c12|XUk
− YUk
|2 | log |XUk

− YUk
||.

It is elementary to check that

E
�

LUk
− LSk

| Sk < τ
+(ǫ),FSk

�
≥ c13|XSk

− YSk
|,

and the conditional distribution of LUk
− LSk

given {Sk < τ
+(ǫ)} is stochastically bounded by an

exponential random variable with mean c14|XSk
− YSk
|. Note that |XUk

− YUk
| ≤ c15|XSk

− YSk
|. Thus,

E
�

LSk+1
− LUk

| Uk < τ
+(ǫ),FUk

�

≤ c16|XUk
− YUk
| | log |XUk

− YUk
||E
�

LUk
− LSk

| Sk < τ
+(ǫ),FSk

�

≤ c17ǫ| logǫ|E
�

LUk
− LSk

| Sk < τ
+(ǫ),FSk

�
.

It follows that

Nm :=

m∑

k=1

c18ǫ| logǫ|(LUk
− LSk

)1{Sk<τ
+(ǫ)}− (LSk+1

− LUk
)1{Uk<τ

+(ǫ)}

is a submartingale with respect to the filtration F ∗m =F
X ,Y
Sm+1

. If

M = inf{m :

m∑

k=1

(LUk
− LSk

)≥ 1}

and Mi = M ∧ i then

E

Mi∑

k=1

�
c18ǫ| logǫ|(LUk

− LSk
)1{Sk<τ

+(ǫ)}− (LSk+1
− LUk

)1{Uk<τ
+(ǫ)}

�
≥ 0,

and

E

Mi∑

k=1

(LSk+1
− LUk

)1{Uk<τ
+(ǫ)} ≤ E

Mi∑

k=1

c18ǫ| logǫ|(LUk
− LSk

)1{Sk<τ
+(ǫ)}.

We let i→∞ and obtain by the monotone convergence

E

M∑

k=1

(LSk+1
− LUk

)1{Uk<τ
+(ǫ)} ≤ E

M∑

k=1

c18ǫ| logǫ|(LUk
− LSk

)1{Sk<τ
+(ǫ)}

≤ c19ǫ| logǫ|.

Hence,

E
∑

k≥1,Uk≤σ∗∧τ
+(ǫ)

(LSk+1
− LUk

)≤ E

M∑

k=1

(LSk+1
− LUk

)1{Uk<τ
+(ǫ)} ≤ c19ǫ| logǫ|.

This and (3.50) imply the lemma.
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Recall parameters a1 and a2 and operator Gk defined in (3.2).

Lemma 3.12. For any c1 there exist a0,ǫ0 > 0 such that if a1, a2 ∈ (0, a0) and |X0− Y0|= ǫ ≤ ǫ0 then
a.s., the following holds for all k ≥ 1. Let

Θ =

 ∫ Uk

Sk

n(Yt)d L y
t −

∫ Uk

Sk

n(Π(YSk
))d L y

t

!�
|XSk
− YSk
| · |L y

Uk
− L y

Sk
|
�−1

,

with the convention that b/0= 0. Then |Θ| ≤ c1 and
���Gk(YSk

− XSk
)− (YUk

− XUk
) +
�

n(Π(YSk
)) +Θ|XSk

− YSk
|
��
(L y

Uk
− L y

Sk
)− (LUk

− LSk
)
�

+πΠ(XSk
)(YSk
− XSk

)− (YSk
− XSk

)

���≤ c1|LUk
− LSk
| · |YSk

− XSk
|.

Proof. By (2.2), for any c2, we can find ǫ1 > 0 so small that for any x , y ∈ ∂ D with |x − y | ≤ 2ǫ1,

|S (x)πx(x − y)− (n(y)− n(x))| ≤ (c2/2)|y − x |. (3.52)

By Lemma 3.4, if we choose a sufficiently small ǫ > 0 then |Yt − X t | ≤ 2ǫ1 for all t ≤ σ∗.

Estimate (3.52) and C2-smoothness of ∂ D can be used to show that for any c2 one can choose small

a1, a2 > 0 and ǫ0 > 0 so that for every k ≥ 1 and all t ∈ [Sk, Uk] such that X t ∈ ∂ D,

|S (Π(XSk
))πΠ(XSk

)(XSk
− YSk

)− (n(Π(YSk
))− n(X t))| ≤ c2|YSk

− XSk
|. (3.53)

We obtain from (2.14) and the triangle inequality,

���(YUk
− XUk

)− (YSk
− XSk

)−S (Π(XSk
))πΠ(XSk

)(XSk
− YSk

)|LUk
− LSk
|

−
�

n(Π(YSk
)) +Θ|XSk

− YSk
|
��
(L y

Uk
− L y

Sk
)− (LUk

− LSk
)
����

=

���
∫ Uk

Sk

n(Yt)d L y
t −

∫ Uk

Sk

n(X t)d Lt −S (Π(XSk
))πΠ(XSk

)(XSk
− YSk

)|LUk
− LSk
|

−
�

n(Π(YSk
)) +Θ|XSk

− YSk
|
��
(L y

Uk
− L y

Sk
)− (LUk

− LSk
)
����

≤

�����

∫ Uk

Sk

n(Yt)d L y
t −

∫ Uk

Sk

n(Π(YSk
))d L y

t −Θ|XSk
− YSk
|(L y

Uk
− L y

Sk
)

�����
+ |Θ| |XSk

− YSk
|(LUk
− LSk

)

+

�����

∫ Uk

Sk

(n(Π(YSk
))− n(X t))d Lt −S (Π(XSk

))πΠ(XSk
)(XSk
− YSk

)|LUk
− LSk
|

�����

+

���
∫ Uk

Sk

n(Π(YSk
))d L y

t −

∫ Uk

Sk

n(Π(YSk
))d Lt − n(Π(YSk

))
�
(L y

Uk
− L y

Sk
)− (LUk

− LSk
)
����.
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The expression on the last line is equal to zero for elementary reasons, so

���(YUk
− XUk

)− (YSk
− XSk

)−S (Π(XSk
))πΠ(XSk

)(XSk
− YSk

)|LUk
− LSk
|

−
�

n(Π(YSk
)) +Θ|XSk

− YSk
|
��
(L y

Uk
− L y

Sk
)− (LUk

− LSk
)
����

≤

�����

∫ Uk

Sk

n(Yt)d L y
t −

∫ Uk

Sk

n(Π(YSk
))d L y

t −Θ|XSk
− YSk
|(L y

Uk
− L y

Sk
)

�����
+ |Θ| |XSk

− YSk
|(LUk
− LSk

)

+

�����

∫ Uk

Sk

(n(Π(YSk
))− n(X t))d Lt −S (Π(XSk

))πΠ(XSk
)(XSk
− YSk

)|LUk
− LSk
|

����� .

The first term on the right hand side is equal to 0 by the definition of Θ. It is easy to see that this

claim holds even if the definition of Θ involves the division by 0. We have obtained

���(YUk
− XUk

)− (YSk
− XSk

)−S (Π(XSk
))πΠ(XSk

)(XSk
− YSk

)|LUk
− LSk
| (3.54)

−
�

n(Π(YSk
)) +Θ|XSk

− YSk
|
��
(L y

Uk
− L y

Sk
)− (LUk

− LSk
)
����

≤ |Θ| |XSk
− YSk
|(LUk
− LSk

)

+

�����

∫ Uk

Sk

(n(Π(YSk
))− n(X t))d Lt −S (Π(XSk

))πΠ(XSk
)(XSk
− YSk

)|LUk
− LSk
|

����� .

It follows from the definitions of Sk, Uk and Πx that for sufficiently small a1 and a2, we have for

t ∈ [Sk, Uk],

|Yt −Π(YSk
)| ≤ 2a1|XSk

− YSk
|,

and a similar formula holds for X in place of Y on the left hand side. Hence, by (2.7), for some c3,

�����

∫ Uk

Sk

n(Yt)d L y
t −

∫ Uk

Sk

n(Π(YSk
))d L y

t

�����≤
∫ Uk

Sk

|n(Yt)− n(Π(YSk
))|d L y

t

≤

∫ Uk

Sk

c3|Yt −Π(YSk
)|d L y

t

≤

∫ Uk

Sk

c3 · 2a1|XSk
− YSk
|d L y

t

≤ 2a1c3|XSk
− YSk
| · |L y

Uk
− L y

Sk
|.

This shows that if we take a1 sufficiently small then |Θ| ≤ c1.

We use (3.53) to derive the following estimate,

�����

∫ Uk

Sk

(n(Π(YSk
))− n(X t))d Lt −S (Π(XSk

))πΠ(XSk
)(XSk
− YSk

)|LUk
− LSk
|

����� (3.55)

≤ c2|XSk
− YSk
| · |LUk

− LSk
|.
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We combine (3.54)-(3.55) to see that
���(YUk
− XUk

)− (YSk
− XSk

)−S (Π(XSk
))πΠ(XSk

)(XSk
− YSk

)|LUk
− LSk
| (3.56)

−
�

n(Π(YSk
)) +Θ|XSk

− YSk
|
��
(L y

Uk
− L y

Sk
)− (LUk

− LSk
)
����

≤ (c1/2+ c2)|XSk
− YSk
| · |LUk

− LSk
|.

For any c2, we can choose small ǫ0 so that
���πΠ(XSk

)(YSk
− XSk

) +S (Π(XSk
))πΠ(XSk

)(XSk
− YSk

)|LUk
− LSk
|

− exp((LUk
− LSk

)S (Π(XSk
)))πΠ(XSk

)(YSk
− XSk

)

���
≤ c2|XSk

− YSk
| · |LUk

− LSk
|.

This and (3.56) imply that
���YUk
− XUk

−Gk(YSk
− XSk

)−
�

n(Π(YSk
)) +Θ|XSk

− YSk
|
��
(L y

Uk
− L y

Sk
)− (LUk

− LSk
)
�

+πΠ(XSk
)(YSk
− XSk

)− (YSk
− XSk

)

���

=

���YUk
− XUk

− exp((LUk
− LSk

)S (Π(XSk
)))πΠ(XSk

)(YSk
− XSk

)

−
�

n(Π(YSk
)) +Θ|XSk

− YSk
|
��
(L y

Uk
− L y

Sk
)− (LUk

− LSk
)
�

+πΠ(XSk
)(YSk
− XSk

)− (YSk
− XSk

)

���
≤ (c1/2+ 2c2)|XSk

− YSk
| · |LUk

− LSk
|.

We obtain the lemma by choosing sufficiently small c2.

Lemma 3.13. If a1 is sufficiently small then for some c1,ǫ0 > 0 and all ǫ < ǫ0, if |X0 − Y0| = ǫ then
a.s., for all k ≥ 1,

|(L y
Uk
− L y

Sk
)− (LUk

− LSk
)| ≤ c1|YSk

− XSk
|2.

Proof. Let w= n(Π(XSk
)). It follows from the definition of Uk that

|Π(XSk
)− X t | ∨ |Π(XSk

)− Yt | ≤ c2|YSk
− XSk
|,

for t ∈ [Sk, Uk]. This and (2.8) imply that for some c3 and t ∈ [Sk, Uk],

1− c3|YSk
− XSk
|2 ≤



n(X t),w

�
≤ 1, for t such that X t ∈ ∂ D, (3.57)

1− c3|YSk
− XSk
|2 ≤



n(Yt),w

�
≤ 1, for t such that Yt ∈ ∂ D. (3.58)

We appeal to (2.13) to see that if a1 is sufficiently small and y ∈ ∂ D and z ∈ D are such that

max(|z − XSk
|, |y − YSk

|)≤ a1|XSk
− YSk
|

then for some c4,

|



y − z,w
�
| ≤ c4|YSk

− XSk
|2, (3.59)
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and

|
¬

YSk
− XSk

,w
¶
| ≤ c4|YSk

− XSk
|2. (3.60)

Let I = {t ∈ [Sk, Uk] :


Yt − X t ,w

�
≥ 2c4|YSk

− XSk
|2}. We claim that I = ∅. Suppose otherwise and

let t1 = inf I and t2 = sup{t ∈ [Sk, t1] : Yt ∈ ∂ D}, with the convention that sup∅ = Sk. By (3.57),

(3.59) and (3.60),

¬
Yt1
− X t1

,w
¶
=
¬

Yt2
− X t2

,w
¶
+

*∫ t1

t2

n(Ys)d L y
s ,w

+
−

*∫ t1

t2

n(Xs)d Ls,w

+

≤
¬

Yt2
− X t2

,w
¶
+

*∫ t1

t2

n(Ys)d L y
s ,w

+

=
¬

Yt2
− X t2

,w
¶
≤ c4|YSk

− XSk
|2.

This contradicts the definition of t1, so we see that I =∅. Similarly, one can prove that

{t ∈ [Sk, Uk] :


X t − Yt ,w

�
≥ 2c4|YSk

− XSk
|2} =∅.

Hence

{t ∈ [Sk, Uk] : |


X t − Yt ,w

�
| ≥ 2c4|YSk

− XSk
|2}=∅.

This and (3.57)-(3.58) yield,

(1+ c3|YSk
− XSk
|2)(L y

Uk
− L y

Sk
)− (LUk

− LSk
)

≤

*∫ Uk

Sk

n(Ys)d L y
s ,w

+
−

*∫ Uk

Sk

n(Xs)d Ls,w

+

=
¬
(YUk
− YSk

)− (XUk
− XSk

),w
¶

≤ 4c4|YSk
− XSk
|2.

By the definition of σ∗, L y
Uk
− L y

Sk
≤ c5, so the above estimate implies

(L y
Uk
− L y

Sk
)− (LUk

− LSk
)≤ 4c4|YSk

− XSk
|2+ c3|YSk

− XSk
|2(L y

Uk
− L y

Sk
)≤ c6|YSk

− XSk
|2.

An analogous argument gives

(LUk
− LSk

)− (L y
Uk
− L y

Sk
)≤ c7|YSk

− XSk
|2.

The lemma follows from the last two estimates.

Lemma 3.14. For some c1 there exist a0,ǫ0 > 0 such that if a1, a2 ∈ (0, a0), ǫ ≤ ǫ0 and |X0 − Y0| = ǫ
then for all k ≥ 1,

E

����πΠ(XSk+1
)

�
πΠ(XSk

)(YSk
− XSk

)− (YSk
− XSk

)
���� | FSk

�
≤ c1ǫ| logǫ|2|YSk

− XSk
|2.
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Proof. The vector wk := πΠ(XSk
)(YSk
− XSk

)− (YSk
− XSk

) is parallel to n(Π(XSk
)). It is easy to check

from the definition of Sk that |wk| ≤ c2|YSk
− XSk
|2.

Let T1 = inf{t ≥ Uk : X t ∈ ∂ D}. It follows from Lemma 3.4 and definition of Uk that d(XUk
,∂ D) ≤

c3ǫ. Let j0 be the smallest integer such that ǫ2 j0 is greater than the diameter of D. Lemma 3.5 (i)

shows that for some c4 and all j = 1,2, . . . , j0,

P(|XT1
− XUk

| ≥ ǫ2 j | FUk
)≤ c42− j .

By Lemma 3.8 (iii), the strong Markov property applied at T1, and Chebyshev’s inequality,

P(|XT1
− XSk+1

| ≥ ǫ2 j | FT1
)≤ c5ǫ| logǫ|/(ǫ2 j) = c52− j | logǫ|.

The fact that |XSk
− XUk

| ≤ c6ǫ and the last two estimates show that

P(|XSk
− XSk+1

| ≥ ǫ2 j | FSk
)≤ c62− j | logǫ|.

It is easy to see that |πΠ(XSk+1
)wk| ≤ c7ǫ2

j |wk| if |XSk
− XSk+1

| ≤ ǫ2 j . It follows that

E

����πΠ(XSk+1
)

�
πΠ(XSk

)(YSk
− XSk

)− (YSk
− XSk

)
���� | FSk

�

≤ c7ǫ|wk|+

j0∑

j=1

c7ǫ2
j+1|wk|P(|XSk

− XSk+1
| ∈ [ǫ2 j ,ǫ2 j+1] | FSk

)

≤ c7ǫc2|YSk
− XSk
|2+

j0∑

j=1

c7ǫ2
j+1c2|YSk

− XSk
|2c62− j | logǫ|

≤ c8ǫ| logǫ|2 |YSk
− XSk
|2.

Lemma 3.15. For some c1 there exist a0,ǫ0 > 0 such that if a1, a2 ∈ (0, a0), ǫ ≤ ǫ0 and |X0 − Y0| = ǫ
then for all k ≥ 1,

E

����πΠ(XSk+1
)

�
(YUk
− XUk

)− (YSk+1
− XSk+1

)
���� | FUk

�
≤ c1|YUk

− XUk
|3| log |YUk

− XUk
||2.

Proof. Fix some k and let

T1 = inf{t ≥ Uk : X t ∈ ∂ D or Yt ∈ ∂ D}

and ǫ1 = |XUk
− YUk
|. We will assume from now on that XT1

∈ ∂ D. The rest of the argument is

similar if YT1
∈ ∂ D.

It follows from Lemma 3.4 and definition of Uk that d(XUk
,∂ D) ≤ c2ǫ1. Let j0 be the smallest

integer such that ǫ12 j0 is greater than the diameter of D. Lemma 3.5 shows that for some c3 and all

j = 1,2, . . . , j0,

P(|XT1
− XUk

| ≥ ǫ12 j)≤ c32− j . (3.61)

By (2.9), we can choose c4 so small that for x ∈ ∂ D ∩B(XT1
, 5c4ǫ1),

|〈x − XT1
,n(XT1

)〉| ≤ a2ǫ
2
1/800. (3.62)
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By the definition of σ∗, |Yt −X t | ≤ c5ǫ1 for t ≤ σ∗. We make c4 smaller, if necessary, so that, in view

of (2.11),

|〈y − x ,n(z)〉| ≤ a2ǫ
2
1/400, (3.63)

assuming that x , y, z ∈ ∂ D, |y − z| ≤ (c5+ 5c4)ǫ1 and |x − y | ≤ 10c4ǫ1.

The following definitions contain a parameter c6, the value of which will be chosen later. Let

J = inf{ j ≥ 1 : |XT1
− XUk

| ≤ ǫ12 j},

T2 = inf{t ≥ T1 : |Bt − BT1
| ≥ c4ǫ1},

T3 = inf{t ≥ T1 : 〈n(XT1
), Bt − BT1

〉 ≤ −c6ǫ
2
12J},

A1 = {T3 ≤ T2}.

Note that neither X nor Y touches the boundary of D between times Uk and T1, so YT1
− XT1

=

YUk
− XUk

. Hence, by Lemma 3.10 and the strong Markov property applied at Sk,

�����

®
n(Π(XUk

)),
YT1
− XT1

|YT1
− XT1
|

¸�����≤ c7ǫ1. (3.64)

The angle between n(Π(XUk
)) and n(XT1

) is bounded by c8ǫ12J because ∂ D is C2. This and (3.64)

imply that �����

®
n(XT1

),
YT1
− XT1

|YT1
− XT1
|

¸�����≤ c9ǫ12J . (3.65)

Let k1 be such that c9ǫ12J ≤ 1/10 if J ≤ k1, and let F1 = {J ≤ k1}. If F1 holds then (3.65) implies

that, �����πXT1

�
YT1
− XT1

|YT1
− XT1
|

������≥ 1/10. (3.66)

Case(i). This case is devoted to an estimate of the random variable in the statement of the lemma

assuming that A1 ∩ F1 holds. Since |YT1
− XT1
|= ǫ1, (3.65) implies that

d(YT1
,∂ D)≤ c10ǫ

2
12J . (3.67)

Let c11 = 5c4 and

T4 = inf{t ≥ T1 : |X t − XT1
| ≥ c11ǫ1} ∧ T2 ∧ T3,

T5 = sup{t ≤ T4 : X t ∈ ∂ D}.

We will show that T4 = T2 ∧ T3, if ǫ (and, therefore, ǫ1) is sufficiently small. By (2.11),

〈x − y,n(XT1
)〉 ≤ c12ǫ

2
1 (3.68)

for all x , y ∈B(XT1
, c11ǫ1) such that x ∈ ∂ D and y ∈ D. Since T5 ≤ T3, we have

〈(BT5
− BT1

),n(XT1
)〉 ≥ −c6ǫ

2
12J . (3.69)

2214



This and (3.68) imply that

*∫ T5

T1

n(Xs)d Ls,n(XT1
)

+
=
¬
(XT5
− XT1

)− (BT5
− BT1

),n(XT1
)
¶
≤ c13ǫ

2
12J . (3.70)

For x ∈ ∂ D ∩B(XT1
, c11ǫ1) we have by (2.8), for small ǫ1,

〈n(x),n(XT1
)〉 ≥ 1− c14ǫ

2
1 ≥ 1/2. (3.71)

This and (3.70) show that

LT5
− LT1

≤ 2

*∫ T5

T1

n(Xs)d Ls,n(XT1
)

+
≤ c15ǫ

2
12J . (3.72)

For x ∈ ∂ D ∩B(XT1
, c11ǫ1),

���πXT1
(n(x))

���≤ c16ǫ1. (3.73)

It follows from this and (3.72) that

�����πXT1

 ∫ T5

T1

n(Xs)d Ls

!�����≤ c17ǫ
3
12J ≤ c18ǫ

2
1 . (3.74)

We can assume that ǫ1 is so small that for x ∈ ∂ D ∩B(XT1
, c11ǫ1),

|x − XT1
| ≤ 2|πXT1

(x − XT1
)|. (3.75)

Since T4 ≤ T2 ∧ T3, we can use (3.74) and (3.75) to obtain,

���XT4
− XT1

���≤
���XT4
− XT5

���+
��XT5
− XT1

��≤
���XT4
− XT5

���+ 2|πXT1
(XT5
− XT1

)| (3.76)

≤
���BT4
− BT5

���+ 2

���πXT1
(BT5
− BT1

)

���+ 2

�����πXT1

 ∫ T5

T1

n(Xs)d Ls

!�����

≤
���BT4
− BT1

���+
��BT1
− BT5

��+ 2

���πXT1
(BT5
− BT1

)

���+ 2

�����πXT1

 ∫ T5

T1

n(Xs)d Ls

!�����

≤ 4c4ǫ1+ 2c18ǫ
2
1 .

Recall that c11 = 5c4. Hence, the last estimate and the definition of T4 show that T4 = T2 ∧ T3, if ǫ1
is sufficiently small.

Next we will estimate d(XT3
,∂ D). Let R1 = sup{t ≤ T3 : X t ∈ ∂ D}. By the definition of T3,

〈BT3
− BR1

,n(XT1
)〉 ≤ 0.

This and the fact that XT3
− XR1

= BT3
− BR1

imply that,

〈XT3
− XR1

,n(XT1
)〉 ≤ 0. (3.77)
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Since XR1
∈ ∂ D ∩B(XT1

, c11ǫ1), it follows from (3.62) and (3.77) that

〈XT3
− XT1

,n(XT1
)〉= 〈XT3

− XR1
,n(XT1

)〉+ 〈XR1
− XT1

,n(XT1
)〉 ≤ a2ǫ

2
1/800.

This and (3.62) imply that

d(XT3
,∂ D)≤ 2a2ǫ

2
1/800= a2ǫ

2
1/400. (3.78)

Our next goal is to estimate d(YT3
,∂ D). Recall that |Yt − X t | ≤ c5ǫ1 for t ≤ σ∗. Since T4 = T2 ∧ T3,

the definition of T4 implies that for t ∈ [T1, T2 ∧ T3],

|Yt − XT1
| ≤ |Yt − X t |+ |X t − XT1

| ≤ c5ǫ1+ c11ǫ1 = c19ǫ1. (3.79)

Let c20 = 5c4 and

T6 = inf{t ≥ T1 : |Yt − YT1
| ≥ c20ǫ1} ∧ T2 ∧ T3.

If Yt /∈ ∂ D for t ∈ [T1, T6] then L y
T6
− L y

T1
= 0. Suppose that Yt ∈ ∂ D for some t ∈ [T1, T6] and let

T7 = sup{t ≤ T6 : Yt ∈ ∂ D}.

We will show that T6 = T2 ∧ T3, if ǫ (and, therefore, ǫ1) is sufficiently small. By (2.11),

〈x − y,n(XT1
)〉 ≤ c21ǫ

2
1 (3.80)

for all x , y ∈B(XT1
, c19ǫ1) such that x ∈ ∂ D and y ∈ D. Since T7 ≤ T3, we have

〈(BT7
− BT1

),n(XT1
)〉 ≥ −c6ǫ

2
12J .

Since T7 ≤ T2 ∧ T3, we can use (3.80) and the last estimate to see that

*∫ T7

T1

n(Ys)d L y
s ,n(XT1

)

+
=
¬
(YT7
− YT1

)− (BT7
− BT1

),n(XT1
)
¶
≤ c22ǫ

2
12J . (3.81)

The above estimate is also valid in the case when Yt /∈ ∂ D for t ∈ [T1, T6] because in this case

L y
T6
− L y

T1
= 0.

For x ∈ ∂ D ∩B(XT1
, c19ǫ1) we have by (2.8), for small ǫ1,

〈n(x),n(XT1
)〉 ≥ 1− c23ǫ

2
1 ≥ 1/2.

This and (3.81) show that

L y
T7
− L y

T1
≤ 2

*∫ T7

T1

n(Ys)d L y
s ,n(XT1

)

+
≤ c24ǫ

2
12J . (3.82)

For x ∈ ∂ D ∩B(XT1
, c19ǫ1), we have

���πXT1
(n(x))

���≤ c25ǫ1. It follows from this and (3.82) that

�����πXT1

 ∫ T7

T1

n(Ys)d L y
s

!�����≤ c26ǫ
3
12J ≤ c27ǫ

2
1 . (3.83)
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We can assume that ǫ1 is so small that for x ∈ ∂ D ∩B(XT1
, c19ǫ1),

|x − XT1
| ≤ 2|πXT1

(x − XT1
)|. (3.84)

Since T6 ≤ T2 ∧ T3, (3.83) and (3.84) imply that

��YT6
− YT1

��≤
���YT6
− YT7

���+
���YT7
− YT1

���≤
���YT6
− YT7

���+ 2|πXT1
(YT7
− YT1

)| (3.85)

≤
���BT6
− BT7

���+ 2

���πXT1
(BT7
− BT1

)

���+ 2

�����πXT1

 ∫ T7

T1

n(Ys)d L y
s

!�����

≤
��BT6
− BT1

��+
���BT1
− BT7

���+ 2

���πXT1
(BT7
− BT1

)

���+ 2

�����πXT1

 ∫ T7

T1

n(Ys)d L y
s

!�����

≤ 4c4ǫ1+ 2c27ǫ
2
1 .

Recall that c20 = 5c4. The last estimate and the definition of T6 show that T6 = T2 ∧ T3, if ǫ1 is

sufficiently small.

If ǫ1 is small then, by (3.79), for t ∈ [T1, T2 ∧ T3],

|Π(Yt)− XT1
| ≤ 2|Yt − XT1

| ≤ 2c19ǫ1.

For x ∈ ∂ D ∩B(XT1
, 2c19ǫ1), by (2.9),

|〈x − XT1
,n(XT1

)〉| ≤ c28ǫ
2
1 , (3.86)

so, in particular,

|〈Π(YT1
)− XT1

,n(XT1
)〉| ≤ c28ǫ

2
1 .

This and (3.67) imply that

|〈YT1
− XT1

,n(XT1
)〉| ≤ |〈Π(YT1

)− XT1
,n(XT1

)〉|+ |〈Π(YT1
)− YT1

,n(XT1
)〉| (3.87)

≤ c28ǫ
2
1 + c10ǫ

2
12J ≤ c29ǫ

2
12J .

Recall that we assume that A1 holds so that T3 ≤ T2. By (2.10), for x ∈ D ∩B(XT1
, c19ǫ1),

〈x − XT1
,n(XT1

)〉 ≥ −c30ǫ
2
1 ,

so, in view of (3.79),

〈YT3
− XT1

,n(XT1
)〉 ≥ −c30ǫ

2
1 . (3.88)

We now choose the parameter c6 in the definition of T3 so that −c6+ c29 ≤ −2c30. We will show that

given this choice of c6, we must have Yt ∈ ∂ D for t ∈ [T1, T3]. Suppose that Yt /∈ ∂ D for t ∈ [T1, T3].

Then Yt − YT1
= Bt − BT1

for the same range of t ’s. It follows from (3.87) and from the definition of

T3 that

〈YT3
− XT1

,n(XT1
)〉= 〈YT3

− YT1
,n(XT1

)〉+ 〈YT1
− XT1

,n(XT1
)〉

= 〈BT3
− BT1

,n(XT1
)〉+ 〈YT1

− XT1
,n(XT1

)〉

≤ −c6ǫ
2
12J + c29ǫ

2
12J ≤ −2c30ǫ

2
1 .
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This contradicts (3.88), so we conclude that Y must cross ∂ D between times T1 and T3. Hence, T7

is well defined. Since we are assuming that A1 holds, T7 ≤ T3 = T6. Therefore,

|YT7
− YT3
| ≤ |YT7

− YT1
|+ |YT1

− YT3
| ≤ 2c20ǫ1 = 10c4ǫ1. (3.89)

By (3.79), |YT7
− XT1
| ≤ (c5 + 5c4)ǫ1. This and (3.89) imply that the following can be derived as a

special case of (3.63),

|〈YT7
− x ,n(XT1

)〉| ≤ a2ǫ
2
1/400, (3.90)

for x ∈ ∂ D ∩B(YT7
, 2c20ǫ1). By the definition of T3,

〈BT3
− BT7

,n(XT1
)〉 ≤ 0.

This and the fact that YT3
− YT7

= BT3
− BT7

imply that,

〈YT3
− YT7

,n(XT1
)〉 ≤ 0.

We use this estimate and (3.90) to conclude that

d(YT3
,∂ D)≤ a2ǫ

2
1/400. (3.91)

Recall that we are assuming that F1 holds. It follows from (3.66) that

�����πXT1

�
YT1
− XT1

|YT1
− XT1
|

������≥ 1/10,

and, therefore, ���πXT1

�
YT1
− XT1

����≥ ǫ1/10.

By (3.74) and (3.83)

���πXT1

�
YT3
− XT3

����≥
���πXT1

�
YT1
− XT1

����−
�����πXT1

 ∫ T3

T1

n(Xs)d Ls

!�����−
�����πXT1

 ∫ T3

T1

n(Ys)d L y
s

!�����

=

���πXT1

�
YT1
− XT1

����−
�����πXT1

 ∫ T5

T1

n(Xs)d Ls

!�����−
�����πXT1

 ∫ T7

T1

n(Ys)d L y
s

!�����

≥ ǫ1/10− c18ǫ
2
1 − c27ǫ

2
1 .

For small ǫ1, this is bounded below by ǫ1/20. Hence,

|YT3
− XT3
| ≥
���πXT1

�
YT3
− XT3

����≥ ǫ1/20.

This, (3.78) and (3.91) imply that Sk+1 ≤ T3, assuming A1 ∩ F1 holds.

It follows from the definition of T4 and the fact that Sk+1 ≤ T3 = T4 that |XSk+1
− XT1
| ≤ c11ǫ1. This

implies that |Π(XSk+1
)− XT1

| ≤ 2c11ǫ1, assuming that ǫ1 is sufficiently small. Let

T8 = sup{t ∈ [T1,Sk+1] : X t ∈ ∂ D}.
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It is routine to check that (3.68)-(3.73) hold with XT1
replaced with Π(XSk+1

), and T5 replaced with

T8 (the values of the constants may have to be adjusted). Hence, we obtain as in (3.74) that

�����πΠ(XSk+1
)

 ∫ Sk+1

T1

n(Xs)d Ls

!�����=
�����πΠ(XSk+1

)

 ∫ T8

T1

n(Xs)d Ls

!�����≤ c31ǫ
3
12J . (3.92)

Similarly, an argument analogous to that in (3.80)-(3.83) yields

�����πΠ(XSk+1
)

 ∫ Sk+1

T1

n(Ys)d L y
s

!�����≤ c32ǫ
3
12J .

This and (3.92) imply that

���πΠ(XSk+1
)

�
(YUk
− XUk

)− (YSk+1
− XSk+1

)
���� (3.93)

=

���πΠ(XSk+1
)

�
(YT1
− XT1

)− (YSk+1
− XSk+1

)
���� (3.94)

=

�����πΠ(XSk+1
)

 ∫ Sk+1

T1

n(Xs)d Ls −

∫ Sk+1

T1

n(Ys)d L y
s

!�����

≤ c33ǫ
3
12J .

We obtain from this and (3.61),

E

����πΠ(XSk+1
)

�
(YUk
− XUk

)− (YSk+1
− XSk+1

)
����1A1∩F1

| FUk

�
(3.95)

≤

j0∑

j=1

c34ǫ
3
12 j2− j ≤ c35ǫ

3
1 | logǫ1|= c35ǫ

2
1 | logǫ| |YUk

− XUk
|.

Case (ii). We will now analyze the case when A1 does not occur. The rest of the proof is an outline

only. Most steps are very similar to those in Case (i), so we omit details to save space.

Standard estimates show that

P(Ac
1 | FT1

)≤ c36ǫ12J . (3.96)

Recall that we have assumed that XT1
∈ ∂ D. Let

T9 = inf{t ≥ T2 : Yt ∈ ∂ D}.

For some c37 and c38, we let

K = inf{ j ≥ 1 : sup
t∈[T2,T9]

|Yt − YT2
| ≤ ǫ12 j},

T8 = inf{t ≥ T7 : |Bt − BT7
| ≥ c37ǫ1},

T9 = inf{t ≥ T7 : 〈n(YT7
), Bt − BT7

〉 ≤ −c38ǫ
2
12K},

A2 = {T9 ≤ T8}.
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Let T10 = sup{t ≤ T9 : X t ∈ ∂ D} and note that XT9
− YT9

= XT10
− YT10

. Using the fact that XT1
∈ ∂ D

and definitions of T1, T2 and K , one can show that

�����

®
n(YT9

),
YT9
− XT9

|YT9
− XT9
|

¸�����=
�����

®
n(YT9

),
YT10
− XT10

|YT10
− XT10

|

¸�����≤ c39ǫ12K . (3.97)

This implies that d(XT9
,∂ D) ≤ c40ǫ

2
12K . We can repeat the argument proving (3.94), with the roles

of X and Y interchanged and T1 replaced by T9, to see that if A2 holds then Sk+1 ≤ T9 and

���πΠ(XSk+1
)

�
(YT9
− XT9

)− (YSk+1
− XSk+1

)
����≤ c41ǫ

3
12K . (3.98)

The angle between n(YT9
) and n(Π(XSk+1

)) is less than c42ǫ1. We know from (3.67) that d(YT1
,∂ D)≤

c43ǫ
2
12J . These facts and (3.97) imply that

�����

*
n(Π(XSk+1

)),

∫ T9

T2

n(Xs)d Ls

+�����=
���
¬

n(Π(XSk+1
)), (YT9

− XT9
)− (YT2

− XT2
)
¶���≤ c44ǫ

2
12J∨K .

Let k2 be the largest integer such that if K ≤ k2 then for x ∈ ∂ D ∩ B(YT2
, 2ǫ12K) we have

〈n(x),n(Π(XSk+1
))〉 ≥ 1/2. Assume that F2 := {K ≤ k2} holds. It follows that

LT9
− LT2

≤ 2

*∫ T9

T2

n(Xs)d Ls,n(Π(XSk+1
))

+
≤ c45ǫ

2
12J∨K .

We also have LT2
− LT1

≤ c46ǫ
2
12J by (3.72). Hence, LT9

− LT1
≤ c47ǫ

2
12J∨K .

For x ∈ ∂ D ∩B(YT2
, 2ǫ12K), we have |πΠ(XSk+1

)(n(x))| ≤ c48ǫ12K , so

�����πΠ(XSk+1
)

 ∫ T9

T1

n(Xs)d Ls

!�����≤ c49ǫ
3
12(J∨K)+K .

By (3.82), L y
T2
− L y

T1
≤ c50ǫ

2
12J , so

�����πΠ(XSk+1
)

 ∫ T9

T1

n(Ys)d L y
s

!�����=
�����πΠ(XSk+1

)

 ∫ T2

T1

n(Ys)d L y
s

!�����≤ c51ǫ
3
12J+K .

Combining the last two estimates with (3.98), we obtain,

���πΠ(XSk+1
)

�
(YSk+1

− XSk+1
)− (YT1

− XT1
)
���� (3.99)

=

���πΠ(XSk+1
)

�
(YSk+1

− XSk+1
)− (YT9

− XT9
)
����+

���πΠ(XSk+1
)

�
(YT9
− XT9

)− (YT1
− XT1

)
����

≤ c41ǫ
3
12K +

�����πΠ(XSk+1
)

 ∫ T9

T1

n(Xs)d Ls

!�����+
�����πΠ(XSk+1

)

 ∫ T2

T1

n(Ys)d L y
s

!�����≤ c52ǫ
3
12(J∨K)+K .
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This implies that

E

����πΠ(XSk+1
)

�
(YUk
− XUk

)− (YSk+1
− XSk+1

)
����1Ac

1∩A2∩F2
| FUk

�
(3.100)

=

j0∑

j=1

j0∑

k=1

E

����πΠ(XSk+1
)

�
(YUk
− XUk

)− (YSk+1
− XSk+1

)
����1Ac

1
∩A2∩F2

| J = j, K = k,FUk

�

× P
�

J = j, K = k | FUk

�
.

By (3.67) and an estimate similar to that in Lemma 3.5 (i),

P
�

K = k | FT1

�
≤ c53ǫ

2
12Jǫ−1

1 2−k = c53ǫ12J−k.

This, (3.61) an the strong Markov property applied at T1 yield,

P
�

J = j, K = k | FUk

�
≤ c542− jǫ12 j−k = c54ǫ12−k. (3.101)

For K ≥ J we have 2(J∨K)+K = 22K so the the right hand side of (3.99) is bounded by c55ǫ
3
122K . This

and (3.101) imply that the corresponding contribution to the expectation in (3.100) is bounded by

j0∑

j=1

j0∑

k= j

c54ǫ12−kc55ǫ
3
122k ≤ c56ǫ

3
1 | logǫ1|. (3.102)

For K < J we have 2(J∨K)+K = 2J+K so the corresponding contribution to the expectation in (3.100)

is bounded by

j0∑

j=1

j∑

k=1

c54ǫ12−kc55ǫ
3
12 j+k ≤ c57ǫ

3
1 | logǫ1|.

Combining this with (3.102) yields

E

����πΠ(XSk+1
)

�
(YUk
− XUk

)− (YSk+1
− XSk+1

)
����1Ac

1∩A2∩F2
| FUk

�
≤ c58ǫ

3
1 | logǫ1|. (3.103)

The probability that A2 does not occur, conditional on J and K , is bounded above by c59ǫ
2
12K/ǫ1 =

c59ǫ12K . If Ac
1 ∩ Ac

2 holds, we use the following crude estimate,

���πΠ(XSk+1
)

�
(YUk
− XUk

)− (YSk+1
− XSk+1

)
����≤ c5ǫ1.

Therefore, using (3.101),

E

����πΠ(XSk+1
)

�
(YUk
− XUk

)− (YSk+1
− XSk+1

)
����1Ac

1
∩Ac

2
| FUk

�
(3.104)

≤

j0∑

j=1

j0∑

k=1

c54ǫ12−kc59ǫ12kc5ǫ1 ≤ c60ǫ
3
1 | logǫ1|

2.
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It remains to address the cases when F1 or F2 fail. The probability of F c
1 ∩ F c

2 is bounded by c61ǫ
2
1 .

Hence,

E

����πΠ(XSk+1
)

�
(YUk
− XUk

)− (YSk+1
− XSk+1

)
����1F c

1∩F c
2
| FUk

�
≤ c61ǫ

2
1c5ǫ1 = c62ǫ

3
1 . (3.105)

If F1 fails but F2 does not. we can repeat the analysis presented in Case (ii). Hence, (3.103) holds

with 1Ac
1
∩A2∩F2

replaced with 1F c
1
∩A2∩F2

. The lemma follows from these remarks, (3.95), (3.103),

(3.104) and (3.105).

Lemma 3.16. We have for some c1,

E




m′∑

k=0

|YSk
− XSk
|


 ≤ c1.

Proof. We will use modified versions of stopping times Sk and Uk by dropping σ∗ from the definition

(3.1). Let S∗0 = U∗0 = inf{t ≥ 0 : X t ∈ ∂ D} and for k ≥ 1 define

S∗k = inf
¦

t ≥ U∗k−1 : d(X t ,∂ D)∨ d(Yt ,∂ D)≤ a2|X t − Yt |
2
©

,

U∗k = inf
n

t ≥ S∗k : |X t − XS∗k
| ∨ |Yt − YS∗k

| ≥ a1|XS∗k
− YS∗k
|
o

.

Fix some k and let

T1 = inf
n

t ≥ S∗k :
D

Bt − BS∗k
,n(Π(XS∗k

))
E
≤−(a1/2)|XS∗k

− YS∗k
|
o

,

T2 = inf
n

t ≥ S∗k :
D

Bt − BS∗k
,n(Π(XS∗k

))
E
≥ (a1/4)|XS∗k

− YS∗k
|
o

,

T3 = inf

¨
t ≥ S∗k :

����πΠ(XS∗
k
)

�
Bt − BS∗k

�����≥ (a1/10)|XS∗k
− YS∗k
|

«
,

A= {T1 ≤ T2 ≤ T3},

F ∗k = σ{Bt , t ≤ S∗k}.

Let ǫ = |X0 − Y0| and recall that |X t − Yt | < c2ǫ for t ≤ σ∗. By Brownian scaling and the strong

Markov property, P(A | F ∗k ) ≥ p1 on {S∗k ≤ σ
∗}, for some p1 > 0 that does not depend on ǫ or k. An

argument similar to that in the proof of Lemma 3.8 (i) can be used to show that if ǫ, a1 and a2 are

small and A holds then T1 < U∗k and LT1
−LS∗k

> (a1/4)|XS∗k
−YS∗k
|. Then LU∗k

−LS∗k
> (a1/4)|XS∗k

−YS∗k
|,

so

E(LU∗k
− LS∗k

| F ∗k )> p1(a1/4)|XS∗k
− YS∗k
|.
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We use this estimate to see that

E




m′∑

k=0

|YSk
− XSk
|


 = E




m′∑

k=0

|YS∗k
− XS∗k
|


 (3.106)

= E




m′−1∑

k=0

|YS∗k
− XS∗k
|


+ |YS∗

m′
− XS∗

m′
|

≤ E




m′−1∑

k=0

c3E
�

LU∗k
− LS∗k

| F ∗k

�
+ |YS∗

m′
− XS∗

m′
|

≤ c3E




m′−1∑

k=0

�
LU∗k
− LS∗k

�
+ |YS∗

m′
− XS∗

m′
|

≤ c3Eσ∗+ |YS∗
m′
− XS∗

m′
|.

It is elementary to check that for all j,

P(L j+1− L j > 1 | σ{Bt , t ≤ j})≥ p2 > 0.

Hence, σ∗ ≤ σ1 is stochastically majorized by a geometric random variable with mean depending

only on D, so

Eσ∗ < c4 <∞. (3.107)

We have |XS∗
m′
− YS∗

m′
| < c2ǫ because S∗m′ ≤ σ∗. We combine this, (3.106) and (3.107) to complete

the proof.

Lemma 3.17. For some c1 there exists a0 > 0 such that if a1, a2 ∈ (0, a0) and |X0− Y0|= ǫ then,

E




m′∑

k=0

|XSk
− YSk
|
�
(L y

Uk
− L y

Sk
)− (LUk

− LSk
)
�
 ≤ c1ǫ

2.

Proof. We have by Lemmas 3.13 and 3.16,

E




m′∑

k=0

|XSk
− YSk
|
�
(L y

Uk
− L y

Sk
)− (LUk

− LSk
)
�
 ≤ c2ǫ

2E




m′∑

k=0

|XSk
− YSk
|


 ≤ c3ǫ

2.

Lemma 3.18. For some c1 there exists a0 > 0 such that if a1, a2 ∈ (0, a0) and |X0− Y0|= ǫ then,

E




m′∑

k=0

���πΠ(XSk+1
)

�
n(Π(YSk

))
�
(L y

Uk
− L y

Sk
)− (LUk

− LSk
)
�����

 ≤ c1ǫ

2| logǫ|.

Proof. First, we will show that

E

����πΠ(XSk+1
)(n(Π(YSk

))

��� | FUk

�
≤ c2|YSk

− XSk
| | log |YSk

− XSk
||. (3.108)
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Recall the notation from the proof of Lemma 3.15, in particular, ǫ1 = |YUk
− XUk

|, and note that by

Lemma 3.4, ǫ1 ≤ c3|YSk
− XSk
|. If A1 occurs then Sk+1 ≤ T3 ≤ T2. This and definitions of Sk, Uk, T2,

T3 and T4 imply that

|YSk
− XSk+1

| ≤ |YSk
− XSk
|+ |XSk

− XUk
|+ |XUk

− XT1
|+ |XT1

− XSk+1
|

≤ c4|YSk
− XSk
|2J .

Therefore, (2.12) shows that

���πΠ(XSk+1
)(n(Π(YSk

))

���≤ c5ǫ12J . We calculate as in (3.95),

E

����πΠ(XSk+1
)(n(Π(YSk

))

���1A1
| FUk

�
≤

j0∑

j=1

c6ǫ12 j2− j ≤ c7ǫ1| logǫ1|. (3.109)

We obtain from (3.96),

E

����πΠ(XSk+1
)(n(Π(YSk

))

���1Ac
1
| FUk

�
≤ E

�
1Ac

1
| FUk

�
≤

j0∑

j=1

c8ǫ12 j2− j ≤ c9ǫ1| logǫ1|.

This and (3.109) prove (3.108). By (3.108) and Lemma 3.13,

E

����n(Π(YSk
))
�
(L y

Uk
− L y

Sk
)− (LUk

− LSk
)
���� | FUk

�
≤ c10|YSk

− XSk
|3| log |YSk

− XSk
||.

We use this estimate and Lemma 3.16 to conclude that

E




m′∑

k=0

���n(Π(YSk
))
�
(L y

Uk
− L y

Sk
)− (LUk

− LSk
)
����



≤ E




m′∑

k=0

c11ǫ
2| logǫ||YSk

− XSk
|


 ≤ c12ǫ

2| logǫ|.

Lemma 3.19. For some c1 there exist a0,ǫ0 > 0 such that if a1, a2 ∈ (0, a0), ǫ ≤ ǫ0 and |X0 − Y0| = ǫ
then,

E




m′∑

k=0

���πΠ(XSk+1
)

�
πΠ(XSk

)(YSk
− XSk

)− (YSk
− XSk

)
����

 ≤ c1ǫ

2| logǫ|2.

Proof. Lemmas 3.14 and 3.16 imply that

E




m′∑

k=0

���πΠ(XSk+1
)

�
πΠ(XSk

)(YSk
− XSk

)− (YSk
− XSk

)
����



≤ E




m′∑

k=0

E

����πΠ(XSk+1
)

�
πΠ(XSk

)(YSk
− XSk

)− (YSk
− XSk

)
���� | FSk

�


≤ E




m′∑

k=0

c2ǫ| logǫ|2|YSk
− XSk
|2


 ≤ E




m′∑

k=0

c3ǫ
2| logǫ|2|YSk

− XSk
|


 ≤ c4ǫ

2| logǫ|2.
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Lemma 3.20. For any c1,ǫ0 > 0 there exist a0 > 0, a random variable Λ and c2 such that if ǫ ∈ (0,ǫ0),
a1, a2 < a0 and |X0− Y0|= ǫ then |Λ| ≤ c1ǫ, a.s., and

E

���
��(Yσ∗ − Xσ∗)−Gm′ ◦ · · · ◦ G0(Y0− X0)

��−Λ
���≤ c2ǫ

2| logǫ|2.

Proof. Note that Sm′+1 = σ∗. We have

Gm′ ◦ · · · ◦ G0(Y0− X0)− (Yσ∗ − Xσ∗) (3.110)

=

m′∑

k=0

Gm′ ◦ · · · ◦ Gk+1

�
Gk(YSk

− XSk
)− (YSk+1

− XSk+1
)
�

=

m′∑

k=0

Gm′ ◦ · · · ◦ Gk+1

�
Gk(YSk

− XSk
)− (YUk

− XUk
)
�

(3.111)

+

m′∑

k=0

Gm′ ◦ · · · ◦ Gk+1

�
(YUk
− XUk

)− (YSk+1
− XSk+1

)
�

.

Recall Θ from Lemma 3.12. By (2.3), Lemma 3.4 and the triangle inequality, we have the following

estimate for the first sum in (3.111),

�����

m′∑

k=0

Gm′ ◦ · · · ◦ Gk+1

�
Gk(YSk

− XSk
)− (YUk

− XUk
)
�
�����

≤ c3

m′∑

k=0

���Gk+1

�
Gk(YSk

− XSk
)− (YUk

− XUk
)
����

≤ c3

m′∑

k=0

���Gk+1

�
Gk(YSk

− XSk
)− (YUk

− XUk
)

+
�

n(Π(YSk
)) +Θ|XSk

− YSk
|
��
(L y

Uk
− L y

Sk
)− (LUk

− LSk
)
�

+πΠ(XSk
)(YSk
− XSk

)− (YSk
− XSk

)
����

+ c3

m′∑

k=0

���Gk+1

�
n(Π(YSk

))
�
(L y

Uk
− L y

Sk
)− (LUk

− LSk
)
�����

+ c3

m′∑

k=0

���Gk+1

�
Θ|XSk

− YSk
|
�
(L y

Uk
− L y

Sk
)− (LUk

− LSk
)
�����

+ c3

m′∑

k=0

���Gk+1

�
πΠ(XSk

)(YSk
− XSk

)− (YSk
− XSk

)
���� .
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We combine this with (3.110) to obtain
��Gm′ ◦ · · · ◦ G0(Y0− X0)− (Yσ∗ − Xσ∗)

�� (3.112)

≤ c3

m′∑

k=0

���Gk+1

�
Gk(YSk

− XSk
)− (YUk

− XUk
) (3.113)

+
�

n(Π(YSk
)) +Θ|XSk

− YSk
|
��
(L y

Uk
− L y

Sk
)− (LUk

− LSk
)
�

(3.114)

+πΠ(XSk
)(YSk
− XSk

)− (YSk
− XSk

)
���� (3.115)

+ c3

m′∑

k=0

���Gk+1

�
n(Π(YSk

))
�
(L y

Uk
− L y

Sk
)− (LUk

− LSk
)
����� (3.116)

+ c3

m′∑

k=0

���Gk+1

�
Θ|XSk

− YSk
|
�
(L y

Uk
− L y

Sk
)− (LUk

− LSk
)
����� (3.117)

+ c3

m′∑

k=0

���Gk+1

�
πΠ(XSk

)(YSk
− XSk

)− (YSk
− XSk

)
���� (3.118)

+

m′∑

k=0

���Gm′ ◦ · · · ◦ Gk+1

�
(YUk
− XUk

)− (YSk+1
− XSk+1

)
���� . (3.119)

We need the following elementary fact about any non-negative real numbers b1, b2 and b3. Suppose

that b1 ≤ b2 + b3. Let Λ = max(0, b1 − b2). Then |Λ| ≤ b3. Moreover, |b1 − Λ| ≤ b2. To see this,

suppose that b1 ≥ b2. Then Λ = b1− b2 and |b1−Λ|= |b1− (b1− b2)|= b2. If b1 < b2 then Λ = 0

and |b1 −Λ| = |b1| < b2. We apply these observations to b1 equal to (3.112), b2 equal to the sum

of the terms (3.116)-(3.119), and b3 equal to (3.113)-(3.115). To finish the proof of the lemma, it

will suffice to prove that

b3 ≤ c1ǫ, a.s., (3.120)

and

Eb2 ≤ c2ǫ
2| logǫ|2. (3.121)

Fix an arbitrarily small c1 > 0. By Lemma 3.4, |YSk
− XSk
| ≤ c4ǫ, for all k, a.s. By Lemma 3.12, if a1

and a2 are sufficiently small then with probability 1,

b3 ≤ (c1/c4)

m′∑

k=0

|LUk
− LSk
| · |YSk

− XSk
| ≤ c1ǫ

m′∑

k=0

|LUk
− LSk
|.

We have
∑m′

k=0 |LUk
− LSk
| ≤ 1, so a.s., b3 ≤ c1ǫ, that is, (3.120) holds true.

We estimate (3.116) using (2.3) and Lemma 3.18,

E




m′∑

k=0

���Gk+1

�
n(Π(YSk

))
�
(L y

Uk
− L y

Sk
)− (LUk

− LSk
)
�����

 (3.122)

≤ c5E




m′∑

k=0

���πΠ(XSk+1
)

�
n(Π(YSk

))
�
(L y

Uk
− L y

Sk
)− (LUk

− LSk
)
�����

 ≤ c6ǫ

2| logǫ|.
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Similarly, (2.3) and Lemma 3.19 yield the following estimate for (3.118),

E




m′∑

k=0

���Gk+1

�
πΠ(XSk

)(YSk
− XSk

)− (YSk
− XSk

)
����

 (3.123)

≤ c5E




m′∑

k=0

���πΠ(XSk+1
)

�
πΠ(XSk

)(YSk
− XSk

)− (YSk
− XSk

)
����

 ≤ c7ǫ

2| logǫ|2.

Recall from Lemma 3.12 that |Θ| ≤ c8. By (2.3) and Lemmas 3.13 and 3.16,

E




m′∑

k=0

���Gk+1

�
Θ|XSk

− YSk
|
�
(L y

Uk
− L y

Sk
)− (LUk

− LSk
)
�����

 (3.124)

≤ c9E




m′∑

k=0

���|XSk
− YSk
|
�
(L y

Uk
− L y

Sk
)− (LUk

− LSk
)
����



≤ c10E




m′∑

k=0

|XSk
− YSk
|3


 ≤ c11ǫ

2E




m′∑

k=0

|XSk
− YSk
|


 ≤ c12ǫ

2.

By Lemma 3.15,

E

����πΠ(XSk+1
)

�
(YUk
− XUk

)− (YSk+1
− XSk+1

)
���� | FUk

�
≤ c13|YUk

− XUk
|3| log |YUk

− XUk
||2.

Hence, using (2.3) and Lemmas 3.4 and 3.16,

E



�����

m′∑

k=0

Gm′ ◦ · · · ◦ Gk+1

�
(YUk
− XUk

)− (YSk+1
− XSk+1

)
�
�����


 (3.125)

≤ c14E




m′∑

k=0

���πΠ(XSk+1
)

�
(YUk
− XUk

)− (YSk+1
− XSk+1

)
����



≤ c15E




m′∑

k=0

|YUk
− XUk

|3| log |YUk
− XUk

||2




≤ c16ǫ
2| logǫ|2E




m′∑

k=0

|YUk
− XUk

|


 ≤ c17ǫ

2| logǫ|2.

The inequality in (3.121) follows from (3.122)-(3.125). This completes the proof of the lemma.

Recall operatorHk defined in (3.2).

Lemma 3.21. For any c1,ǫ0 > 0 there exists a0 > 0 such that if a1, a2 < a0 and |X0− Y0|= ǫ then,

E|Gm′ ◦ · · · ◦ G0(Y0− X0)−Hm′ ◦ · · · ◦H0(Y0− X0)| ≤ c1ǫ
2| logǫ|.
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Proof. We have

Gm′ ◦ · · · ◦ G0(Y0− X0)−Hm′ ◦ · · · ◦H0(Y0− X0) (3.126)

=

m′∑

k=0

Gm′ ◦ · · · ◦ Gk+1

�
exp((LUk

− LSk
)S (Π(XSk

)))− exp((LSk+1
− LSk

)S (Π(XSk
)))
�

◦πΠ(XSk
)Hk−1 ◦ · · · ◦H0(Y0− X0).

By (2.6),

‖exp((LUk
− LSk

)S (Π(XSk
)))− exp((LSk+1

− LSk
)S (Π(XSk

)))‖ ≤ c2|LUk
− LSk+1

|.

This, (2.3) and (3.126) imply that

|Gm′ ◦ · · · ◦ G0(Y0− X0)−Hm′ ◦ · · · ◦H0(Y0− X0)| ≤ c3|(Y0− X0)|
m′∑

k=0

|LUk
− LSk+1

|.

By Lemma 3.11, E
∑m′

k=0 |LUk
− LSk+1

| ≤ c4ǫ| logǫ|. Hence,

E|Gm′ ◦ · · · ◦ G0(Y0− X0)−Hm′ ◦ · · · ◦H0(Y0− X0)| ≤ c4ǫ
2| logǫ|.

Recall notation from the beginning of this section.

Lemma 3.22. We have for any β1 < 1 and some c0 and c1, assuming that |X0− Y0|= ǫ and ǫ∗ ≥ c0ǫ,

E




m′∑

k=0

∑

Uk≤ξ j≤Sk+1

(LSk+1
− Lξ j

)|x∗j −Π(XSk+1
)|


 ≤ c1ǫ

1+β1 .

Proof. By Lemma 3.8 (iv), for every k,

E




∑

Sk≤ξ j≤Sk+1

(LSk+1
− Lξ j

)|x∗j −Π(XSk+1
)| | FSk


 ≤ c2|XSk

− YSk
|2+β1 .

This and Lemma 3.16 imply that

E




m′∑

k=0

∑

Uk≤ξ j≤Sk+1

(LSk+1
− Lξ j

)|x∗j −Π(XSk+1
)|




≤ E




m′∑

k=0

E




∑

Uk≤ξ j≤Sk+1

(LSk+1
− Lξ j

)|x∗j −Π(XSk+1
)| | FSk







≤ E




m′∑

k=0

c2|XSk
− YSk
|2+β1




≤ E




m′∑

k=0

c3|XUk
− YUk
|ǫ1+β1


 ≤ c4ǫ

1+β1 .
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For the notation used in the following lemma and its proof, see the beginning of this section.

Lemma 3.23. We have for any β < 1, some c0 and c1, assuming that |X0− Y0|= ǫ and ǫ∗ ≥ c0ǫ,

E
��Im∗ ◦ · · · ◦ I0(Y0− X0)−Jm′′ ◦ · · · ◦ J0(Y0− X0)

��≤ c1ǫ
1+β .

Proof. We will follow closely the proof of Lemma 2.13 in [BL]. We will write Si = S (x
′′
i ) = S (x

∗
i ),

πi = πx ′′i
= πx∗i

. Recall that m′′ = m∗. We have

��Jm′′ ◦ · · · ◦ J0(Y0− X0)−Im∗ ◦ · · · ◦ I0(Y0− X0)
��

=
�

e∆ℓ
∗
m∗
Sm∗ − e(ℓ

∗
m∗+1
−ℓ′′

m∗
)Sm∗
�
πm∗ ◦Jm′′−1 ◦ · · · ◦ J0(Y0− X0)

+

m∗∑

i=1

e∆ℓ
∗
m∗
Sm∗πm∗ · · · e

∆ℓ∗i+1Si+1πi+1◦

�
e(ℓ
∗
i+1−ℓ

′′
i )Siπie

∆ℓ′′i−1Si−1 − e∆ℓ
∗
iSiπie

(ℓ∗i−ℓ
′′
i−1)Si−1

�
◦ (3.127)

πi−1e∆ℓ
′′
i−2Si−2 · · · e∆ℓ

′′
1S1π1e∆ℓ

′′
0S0π0(Y0− X0)

+Im∗ ◦ · · · ◦ I1

�
e(ℓ
∗
1−ℓ
′′
0 )S0 − e∆ℓ

′′
0S0

�
π0(Y0− X0).

By virtue of (2.3) and (2.4), the last term is bounded by a constant multiple of |ℓ∗1 − ℓ
′′
1 | |Y0 − X0|.

Since ℓ′′1 ≥ ℓ
∗
1, E|ℓ∗1 − ℓ

′′
1 | |Y0 − X0| = ǫE(ℓ

′′
1 − ℓ

∗
1). By the strong Markov property applied at ξ1 and

Lemma 3.8 (ii), E(ℓ′′1 − ℓ
∗
1)≤ c2ǫ. Hence

E
�
Im∗ ◦ · · · ◦ I1

�
e(ℓ
∗
1−ℓ
′′
0 )S0 − e∆ℓ

′′
0S0

�
π0(Y0− X0)

�
≤ c3E|ℓ∗1− ℓ

′′
1 | |Y0− X0| ≤ c4ǫ

2. (3.128)

We have ℓ′′m∗+1
= ℓ∗m∗+1

= 1, so by (2.3) and (2.4), the first term on the right hand side of (3.127) is

bounded by a constant multiple of |ℓ∗m∗−ℓ
′′
m∗ | |Y0−X0|. We have ℓ′′m∗ ≥ ℓ

∗
m∗ so E|ℓ∗m∗−ℓ

′′
m∗ | |Y0−X0| ≤

ǫE(1− ℓ∗m∗). The following estimate can be proved just like (3.10). We have for every x ∈ ∂ D and

b > 0,

c5/b ≤ H x (|e(0)− e(ζ)| ≥ b)≤ c6/b. (3.129)

This and the exit system formula (2.16) imply that 1−ℓ∗1 is stochastically majorized by an exponen-

tial random variable with mean c7ǫ, so E(1− ℓ∗1)≤ c7ǫ. Hence

E
��

e∆ℓ
∗
m∗
Sm∗ − e(ℓ

∗
m∗+1
−ℓ′′

m∗
)Sm∗
�
πm∗ ◦Jm′′−1 ◦ · · · ◦ J0(Y0− X0)

�
(3.130)

≤ c8E|ℓ∗m∗ − ℓ
′′
m∗ | |Y0− X0| ≤ c9ǫ

2.

The compositions before and after the parentheses in (3.127) in the summation are uniformly

bounded in operator norm by (2.3), so we need only estimate the sum

m∗∑

i=0




e(ℓ
∗
i+1−ℓ

′′
i )Siπie

∆ℓ′′i−1Si−1 − e∆ℓ
∗
iSiπie

(ℓ∗i−ℓ
′′
i−1)Si−1




 .
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Using the fact that πi commutes with Si, we can rewrite the i-th term in this sum as




e∆ℓ
∗
iSi ◦πi ◦

�
e(ℓ
∗
i−ℓ
′′
i )Si − e(ℓ

∗
i−ℓ
′′
i )Si−1

�
e∆ℓ

′′
i−1Si−1






≤



e∆ℓ

∗
iSi








e(ℓ

∗
i−ℓ
′′
i )Si − e(ℓ

∗
i−ℓ
′′
i )Si−1








e∆ℓ

′′
i−1Si−1




 .

From (2.3) and (2.5), this last expression is bounded by c10

��ℓ∗i − ℓ′′i
�� ��x ′′i − x ′′i−1

��. By Lemma 3.22,

for any β < 1,

E

m∗∑

i=1

��ℓ∗i − ℓ′′i
�� ��x ′′i − x ′′i−1

��≤ c11ǫ
1+β .

This combined with (3.128) and (3.130) yields the lemma.

Once again, we ask the reader to consult the beginning of this section concerning notation used in

the next lemma and its proof.

Lemma 3.24. Suppose that ǫ∗ = c0ǫ, where c0 is as in Lemma 3.23. For some c1, if we assume that
|X0− Y0|= ǫ then,

E
��Hm′ ◦ · · · ◦H0(Y0− X0)−Jm′′ ◦ · · · ◦ J0(Y0− X0)

��≤ c1ǫ
4/3| logǫ|.

Proof. Note that

Hk = exp(∆ℓ′k)S (x
′
k))πx ′k

.

Let {(ℓk, xk)}0≤k≤m+1 be the sequence containing all the distinct elements of the union of

{(ℓ′k, x ′k)}0≤k≤m′+1 and {(ℓ′′k , x ′′k )}0≤k≤m′′+1. We will explain how the sequence {(ℓk, xk)}0≤k≤m+1

is ordered but first we note that ℓ′k ’s need not be distinct, and neither do ℓ′′k ’s, and, moreover, some

ℓ′k ’s may be equal to some ℓ′′k ’s. We order the sequence {(ℓk, xk)}0≤k≤m+1 in such a way that

(i) ℓk ≤ ℓk+1 for all k.

(ii) If ℓk1
= ℓ′j1

, ℓk2
= ℓ′j2

, ℓ′j1
= LS j1

, ℓ′j2
= LS j2

, and S j1 < S j2 then k1 < k2.

(iii) If ℓk1
= ℓ′′j1

, ℓk2
= ℓ′′j2

, ℓ′′j1
= λ(ℓ∗j3

), ℓ′′j2
= λ(ℓ∗j4

), and ℓ∗j3
< ℓ∗j4

then k1 < k2.

(iv) If (ℓk1
, xk1
) = (ℓ′j1

, x ′j1), (ℓk2
, xk2
) = (ℓ′′j2

, x ′′j2) and ℓ′j1
= ℓ′′j2

then k1 < k2.

It is easy to check that the above conditions define one and only one ordering of {(ℓk, xk)}0≤k≤m+1.

We introduce the following shorthand notations, ∆i = ℓi+1− ℓi ,

x i = γ
′(ℓi), ex i = γ

′′(ℓi),

S i = S (x i), fSi = S (ex i),

πi = πx i
, eπi = πex i

.

Observing that π0 eπ0 = π0 and eπm+1Jm′′ ◦ · · · ◦ J0(Y0− X0) = Jm′′ ◦ · · · ◦ J0(Y0− X0), we have,

Hm′ ◦ · · · ◦H0(Y0− X0)−Jm′′ ◦ · · · ◦ J0(Y0− X0)

=

m∑

i=0

e∆mS mπm · · · e
∆i+1S i+1πi+1

�
e∆iS iπi − eπi+1e∆i fSi

�
eπi · · · e

∆1
fS1 eπ1e∆0

fS0 eπ0(Y0− X0).
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By (2.3), the compositions of operators before and after the parentheses in the summation above

are uniformly bounded in operator norm by a constant. Therefore,

|Hm′ ◦ · · · ◦H0(Y0− X0)−Jm′′ ◦ · · · ◦ J0(Y0− X0)| (3.131)

≤ c2

m∑

i=0




πi+1 ◦
�

e∆iS i ◦πi − eπi+1 ◦ e∆i fSi

�
◦ eπi




 |Y0− X0|.

Using the fact that S i and πi commute, as do fSi and eπi , we obtain,

πi+1 ◦
�

e∆iS i ◦πi − eπi+1 ◦ e∆i fSi

�
◦ eπi (3.132)

= πi+1 ◦πi ◦
�

e∆iS i − e∆i fSi

�
◦ eπi +πi+1 ◦

�
πi − eπi+1

�
◦ eπi ◦ e∆i fSi .

We will deal with each of these terms separately.

For the first term, we have by (2.5),




πi+1 ◦πi ◦
�

e∆iS i − e∆i fSi

�
◦ eπi




≤



e∆iS i − e∆i fSi




≤ c3∆i |x i − ex i |. (3.133)

For the second term on the right hand side of (3.132), Lemma 2.2 and (2.3) allow us to conclude

that




πi+1◦

�
πi − eπi+1

�
◦ eπi ◦ e∆i fSi





≤ c4

���x i+1− x i

�� ��x i − ex i

��+
��x i+1− ex i+1

�� ��ex i+1− ex i

���



e∆i fSi






≤ c5

���x i+1− x i

�� ��x i − ex i

��+
��x i+1− ex i+1

�� ��ex i+1− ex i

��� . (3.134)

We will now analyze (3.133). Suppose that∆i > 0 and x i 6= ex i . Let j and k be defined by x i = γ
′(ℓ′j)

and ex i = γ
′′(ℓ′′k ).

Suppose that ℓi = ℓ
′
j = ℓ

′′
k+1

. Then, by our ordering of ℓr ’s, ℓi+1 = ℓ
′′
k+1
= ℓi , so∆i = 0. For the same

reason, we have ∆i = 0 if any of the following conditions holds: ℓ′′k = ℓi = ℓ
′
j or ℓi = ℓ

′′
k = ℓ

′
j+1.

For this reason we consider only sharp versions of the corresponding inequalities in (3.135)-(3.138)

below.

We have assumed that x i 6= ex i so one of the following four events holds,

F1
i = {ℓ

′′
k < ℓi = ℓ

′
j < ℓ

′′
k+1, ξk < S j ≤ t ′′k+1}, (3.135)

F2
i = {ℓ

′′
k < ℓi = ℓ

′
j < ℓ

′′
k+1, t ′′k+1 < S j ≤ ξk+1}, (3.136)

F3
i = {ℓ

′
j < ℓi = ℓ

′′
k < ℓ

′
j+1, S j < ξk ≤ U j ≤ S j+1}, (3.137)

F4
i = {ℓ

′
j < ℓi = ℓ

′′
k < ℓ

′
j+1, S j < U j ≤ ξk ≤ S j+1}. (3.138)

If F1
i holds then,

{ξk ≤ S j ≤ t ′′k+1} ∩ {|x i − ex i |> a} ⊂
⋃

1≤r≤m

(
sup

ξr<t<t ′′r+1

|x ′′r − X t |> a

)
. (3.139)
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This and Lemma 3.6 yield,

E

 
m∑

i=0

∆i |x i − ex i |1F1
i

!
≤ E

  
max

0≤k≤m∗
sup

ξk<t<t∗k+1

|x∗k − X t |

!
m∑

i=0

∆i

!
(3.140)

= E

 
max

0≤k≤m∗
sup

ξk<t<t∗k+1

|x∗k − X t |

!
≤ c6ǫ

1/3 = c7ǫ
1/3.

If F2
i holds then ∆i = 0, because X does not hit ∂ D in the interval (t ′′k+1

,ξk+1), and, therefore, the

local time Lt does not increase on this time interval. Hence,

m∑

i=0

∆i |x i − ex i |1F2
i
= 0. (3.141)

If F3
i holds, the definition of U j implies that |x i − ex i | ≤ c8ǫ. Thus

m∑

i=0

∆i |x i − ex i |1F3
i
≤

m∑

i=0

c8∆iǫ = c8ǫ. (3.142)

Suppose that F4
i occurred. It follows from the condition U j ≤ ξk ≤ S j+1 and the definition of ℓ′′k that

ℓ′′k = ℓ
′
j+1. We have already shown that in this case, ∆i = 0. Hence,

m∑

i=0

∆i |x i − ex i |1F4
i
= 0. (3.143)

Next we will consider the right hand side of (3.134). We start our discussion with the terms of the

form
��x i+1− x i

�� ��x i − ex i

��. Recall that we have defined j and k by x i = γ
′(ℓ′j) and ex i = γ

′′(ℓ′′k ). We

will consider all possibilities listed in (3.135)-(3.138). If ∆i = 0 then ℓi = ℓi+1 and x i = γ
′(ℓi) =

γ′(ℓi+1) = x i+1. It follows that in this case,
��x i+1− x i

�� ��x i − ex i

�� = 0. Hence, we can limit ourselves

to (3.135)-(3.138), with sharp inequalities in the definitions.

Suppose that F1
i ∪ F2

i occurred. Then ξk < S j , x i = XS j
and ex i = Xξk

. By Lemma 3.8 (iii) and the

strong Markov property applied at ξk,

E
���x i − ex i

��1F1
i ∪F2

i
| Fξk

�
= E

����XS j
− Xξk

���1F1
i ∪F2

i
| Fξk

�
(3.144)

≤ c9| logd(Yξk
, D)|(d(Yξk

, D) + ǫ3)≤ c10ǫ| logǫ|.

We have x i+1 = X t for some t ∈ (S j ,S j+1]. By Lemma 3.5 (ii), the strong Markov property applied

at the stopping time R1 = inf{t ≥ S j : X t ∈ ∂ D} and Lemma 3.8 (iii),

E
���x i+1− x i

��1F1
i ∪F2

i
| FS j

�
≤ E

 
sup

S j≤t≤S j+1

���X t − XS j

���1F1
i ∪F2

i
| FS j

!
(3.145)

≤ E

 
sup

S j≤t≤R1

���X t − XS j

���1F1
i ∪F2

i
| FS j

!
+ E

 
sup

R1≤t≤S j+1

��X t − XR1

��1F1
i ∪F2

i
| FS j

!

≤ c11ǫ| logǫ|.
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It follows from this and (3.144) that

E
���x i+1− x i

�� ��x i − ex i

��1F1
i ∪F2

i
| Fξk

�
(3.146)

= E
���x i − ex i

��E
���x i+1− x i

��1F1
i ∪F2

i
| FS j

�
| Fξk

�
≤ c12ǫ

2| logǫ|2.

By (3.129) and the exit system formula (2.16), the expected value of m∗ is bounded by c13/ǫ. It

follows from this estimate and (3.146) that

E

 
m∑

k=0

��x i+1− x i

�� ��x i − ex i

��1F1
i ∪F2

i

!
≤ E

 
m∗∑

k=1

E
���x i+1− x i

�� ��x i − ex i

��1F1
i ∪F2

i
| Fξk

�!

≤ c14ǫ| logǫ|2. (3.147)

Next suppose that F3
i occurred. Then x i = XS j

and ex i = Xξk
. Since ξk ≤ U j , we have

��x i − ex i

��≤ c15ǫ.

As in the previous case, we have x i+1 = X t for some t ∈ (S j ,S j+1], so we can use estimate (3.145).

It follows that

E
���x i+1− x i

�� ��x i − ex i

��1F3
i
| Fξk

�
≤ c16ǫ

2| logǫ|.

The following estimate is analogous to (3.147),

E

 
m∑

k=0

��x i+1− x i

�� ��x i − ex i

��1F3
i

!
≤ E

 
m∗∑

k=1

E
���x i+1− x i

�� ��x i − ex i

��1F3
i
| Fξk

�!

≤ c17ǫ| logǫ|. (3.148)

We have already shown that if F4
i holds then ∆i = 0 and, therefore,

��x i+1− x i

�� ��x i − ex i

��= 0. Hence

E

 
m∑

k=0

��x i+1− x i

�� ��x i − ex i

��1F4
i

!
= 0. (3.149)

We continue our discussion of the right hand side of (3.134). We now consider the terms of the form��x i+1− ex i+1

�� ��ex i+1− ex i

��. The overall structure of our argument is similar to that used to analyze the

terms of the form
��x i+1− x i

�� ��x i − ex i

��.
Suppose that x i+1 6= ex i+1. Let j and k be defined by x i+1 = γ

′(ℓ′j) and ex i+1 = γ
′′(ℓ′′k ). We have

assumed that x i+1 6= ex i+1 so one of the following four events holds,

F5
i = {ℓ

′′
k < ℓi+1 = ℓ

′
j < ℓ

′′
k+1, ξk < S j ≤ t ′′k+1}, (3.150)

F6
i = {ℓ

′′
k < ℓi+1 = ℓ

′
j < ℓ

′′
k+1, t ′′k+1 < S j ≤ ξk+1}, (3.151)

F7
i = {ℓ

′
j < ℓi+1 = ℓ

′′
k < ℓ

′
j+1, S j < ξk ≤ U j ≤ S j+1}, (3.152)

F8
i = {ℓ

′
j < ℓi+1 = ℓ

′′
k < ℓ

′
j+1, S j < U j ≤ ξk ≤ S j+1}. (3.153)

Suppose that ℓi+1 = ℓ
′
j = ℓ

′′
k . Then because of the way we ordered (ℓi, x i), we have (ℓi, x i) = (ℓ

′
j , x ′j)

and (ℓi+1, x i+1) = (ℓ
′′
k , x ′′k ). Therefore ℓi = ℓi+1. It follows that ex i = γ

′′(ℓi) = γ
′′(ℓi+1) = ex i+1. In

this case,
��x i+1− ex i+1

�� ��ex i+1− ex i

�� = 0. We can reach the same conclusion in the same way in case
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we have ℓ′′k+1
= ℓi+1 = ℓ

′
j or ℓi+1 = ℓ

′′
k = ℓ

′
j+1. Hence, we can limit ourselves to (3.150)-(3.153),

with sharp inequalities in the definitions.

Suppose that F5
i ∪ F6

i occurred. Then x i+1 = XS j
and ex i+1 = Xξk

. The following is a version of

(3.144),

E
���x i+1− ex i+1

��1F5
i ∪F6

i
| Fξk

�
≤ c18ǫ| logǫ|. (3.154)

We have ex i = X t for some t ∈ [ξk−1,ξk), so by Lemma 3.7 and the strong Markov property applied

at ξk−1,

E
���ex i+1− ex i

��1F5
i ∪F6

i
| Fξk−1

�
≤ E

�
sup

ξk−1≤t≤ξk

���X t − Xξk−1

��� | Fξk−1

�
≤ c19ǫ

1/3
∗ = c19c1/3

0 ǫ1/3.

(3.155)

It follows from this and (3.154) that

E
���x i+1− ex i+1

�� ��ex i+1− ex i

��1F5
i ∪F6

i
| Fξk−1

�
(3.156)

= E
���ex i+1− ex i

��E
���x i+1− ex i+1

��1F5
i ∪F6

i
| Fξk

�
| Fξk−1

�
≤ c20ǫ

4/3| logǫ|.

Recall that the expected value of m∗ is bounded by c13/ǫ. It follows from this and (3.156) that

E

 
m∑

k=0

��x i+1− ex i+1

�� ��ex i+1− ex i

��1F5
i ∪F6

i

!

≤ E

 
m∗∑

k=1

E
���x i+1− ex i+1

�� ��ex i+1− ex i

��1F5
i ∪F6

i
| Fξk−1

�!
≤ c21ǫ

1/3| logǫ|. (3.157)

Next suppose that F7
i occurred. Then x i+1 = XS j

and ex i+1 = Xξk
. Since ξk ≤ U j , we have��x i+1− ex i+1

�� ≤ c22ǫ. As in the previous case, we have ex i = X t for some t ∈ [ξk−1,ξk], so we

can use estimate (3.155). It follows that

E
���x i+1− ex i+1

�� ��ex i+1− ex i

��1F7
i
| Fξk−1

�
≤ c23ǫ

4/3.

The following estimate is analogous to (3.157)

E

 
m∑

k=0

��x i+1− ex i+1

�� ��ex i+1− ex i

��1F7
i

!

≤ E

 
m∗∑

k=1

E
���x i+1− ex i+1

�� ��ex i+1− ex i

��1F7
i
| Fξk−1

�!
≤ c24ǫ

1/3. (3.158)

Suppose that F8
i occurred. It follows from the condition U j ≤ ξk ≤ S j+1 and the definition of ℓ′′k that

ℓ′′k = ℓ
′
j+1. We have already argued that in this case,

��x i+1− ex i+1

�� ��ex i+1− ex i

��= 0. Hence,

m∑

k=0

��x i+1− ex i+1

�� ��ex i+1− ex i

��1F8
i
= 0. (3.159)
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Recall that |X0 − Y0| = ǫ. The estimates in (3.140), (3.141), (3.142), (3.143), (3.147), (3.148),

(3.149), (3.157), (3.158) and (3.159) are all less than or equal to c25ǫ
1/3| logǫ|. We combine these

remarks with (3.131)-(3.134) to conclude that,

E|Hm′ ◦ · · · ◦H0(Y0− X0)−Jm′′ ◦ · · · ◦ J0(Y0− X0)| ≤ c26ǫ
4/3| logǫ|.

Proof of Theorem 3.1. Suppose that |Y0 − X0| = ǫ and ǫ∗ = c0ǫ, where c0 is as in Lemma 3.23.

Consider an arbitrarily small c1 > 0 let Λ be the random variable in the statement of Lemma 3.20.

According to that lemma, for all sufficiently small ǫ > 0, we have a.s.,

|Λ|< c1ǫ. (3.160)

By the triangle inequality,

|(Yσ∗ − Xσ∗)−Im∗ ◦ · · · ◦ I0(Y0− X0)| (3.161)

≤ |Λ|+
���|(Yσ1

− Xσ1
)−Gm′ ◦ · · · ◦ G0(Y0− X0)| −Λ

���
+ |Gm′ ◦ · · · ◦ G0(Y0− X0)−Hm′ ◦ · · · ◦H0(Y0− X0)|

+ |Hm′ ◦ · · · ◦H0(Y0− X0)−Jm′′ ◦ · · · ◦ J0(Y0− X0)|

+
��Jm′′ ◦ · · · ◦ J0(Y0− X0)−Im∗ ◦ · · · ◦ I0(Y0− X0)

��
:= |Λ|+Ξ.

By Lemma 3.20,

E

���
��(Yσ∗ − Xσ∗)−Gm′ ◦ · · · ◦ G0(Y0− X0)

��−Λ
���≤ c2ǫ

2| logǫ|2. (3.162)

By Lemma 3.21,

E|Gm′ ◦ · · · ◦ G0(Y0− X0)−Hm′ ◦ · · · ◦H0(Y0− X0)| ≤ c3ǫ
2| logǫ|. (3.163)

Lemma 3.24 implies that

E
��Hm′ ◦ · · · ◦H0(Y0− X0)−Jm′′ ◦ · · · ◦ J0(Y0− X0)

��≤ c4ǫ
4/3| logǫ|. (3.164)

Lemma 3.23 yields for any β < 1,

E
��Jm′′ ◦ · · · ◦ J0(Y0− X0)−Im∗ ◦ · · · ◦ I0(Y0− X0)

��≤ c5ǫ
1+β . (3.165)

Combining (3.162)-(3.165), and using the definition of Ξ in (3.161), we see that

EΞ ≤ c6ǫ
4/3| logǫ|. (3.166)

Fix some β1 ∈ (1,4/3) and β2 ∈ (0,4/3− β1). By (3.166) and Chebyshev’s inequality,

P(Ξ> c7ǫ
β1)≤ c8ǫ

β2 . (3.167)
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Fix an arbitrary b > 1 and v ∈ Rn with |v|= 1. We apply the last estimate to a sequence of processes

Y = X z0+ǫv with ǫ = b−k, k ≥ k0, for some fixed large k0. We obtain

P(Ξ> c7 b−kβ1)≤ c8 b−kβ2 , k ≥ k0.

Since
∑

k≥k0
c8 b−kβ2 <∞, the Borel-Cantelli Lemma shows that only a finite number of events {Ξ >

c7 b−kβ1} occur. This is the same as saying that only a finite number of events {Ξ/b−k > c7 b−k(β1−1)}
occur. We combine this fact with (3.160) and (3.161) to see that for any c1 > 0, a.s.,

lim sup
k→∞

������
X z0+b−kv
σ∗

− Xσ∗
b−k

−Im∗ ◦ · · · ◦ I0(v)

������
≤ c1.

Since c1 is arbitrarily small, we have in fact, a.s.,

lim
k→∞

������
X z0+b−kv
σ∗

− Xσ∗
b−k

−Im∗ ◦ · · · ◦ I0(v)

������
= 0. (3.168)

It is easy to see that the last formula holds for all v ∈ Rn, not only those with |v|= 1.

Consider an arbitrary compact set K ⊂ Rn. Let c9 be the same constant as c1 in the statement of

Lemma 3.4. It follows easily from (2.3) that ‖Im∗ ◦ · · · ◦ I0‖ ≤ c10, a.s. Fix any c11 > 0 and find

w1, . . . ,w j1 ∈ Rn such that for every v ∈ K there exists j = j(v) such that |v−w j|< c11/(2(c9+ c10)).

Note that |(z0+ b−kv)− (z0+ b−kw j(v))|< b−kc11/(2c9) and, in view of (3.168),

lim
k→∞

sup
1≤ j≤ j1

������
X

z0+b−kw j
σ∗

− Xσ∗
b−k

−Im∗ ◦ · · · ◦ I0(w j)

������
= 0. (3.169)

By Lemma 3.4, for v ∈ K and j = j(v), a.s.,

������
X

z0+b−kw j
σ∗

− Xσ∗
b−k

−
X z0+b−kv
σ∗

− Xσ∗
b−k

������
≤ c9|(z0+ b−kv)− (z0+ b−kw j)|/b

−k ≤ c11/2. (3.170)

Since |v−w j|< c11/(2c10),

|Im∗ ◦ · · · ◦ I0(w j(v))−Im∗ ◦ · · · ◦ I0(v)| ≤ c11/2. (3.171)

Combining (3.169)-(3.171) yields a.s.,

lim
k→∞

sup
v∈K

������
X z0+b−kv
σ∗

− Xσ∗
b−k

−Im∗ ◦ · · · ◦ I0(v)

������
≤ c11.

Since c11 > 0 is arbitrarily small, we have a.s.,

lim
k→∞

sup
v∈K

������
X z0+b−kv
σ∗

− Xσ∗
b−k

−Im∗ ◦ · · · ◦ I0(v)

������
= 0. (3.172)
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Let c12 = sup{|v| ∈ K}. For ǫ ∈ [b−k, b−k+1), we have,

|(z0+ b−kv)− (z0+ ǫv)|/ǫ ≤ c12(1− 1/b).

Hence, by Lemma 3.4, a.s.,

������
X z0+b−kv
σ∗

− Xσ∗
b−k

−
X z0+ǫv
σ∗
− Xσ∗
ǫ

������

≤

������
X z0+b−kv
σ∗

− Xσ∗
b−k

−
X z0+b−kv
σ∗

− Xσ∗
ǫ

������
+

������
X z0+b−kv
σ∗

− Xσ∗
ǫ

−
X z0+ǫv
σ∗
− Xσ∗
ǫ

������

≤ (1− 1/b)

������
X z0+b−kv
σ∗

− Xσ∗
b−k

������
+ c9|(z0+ ǫv)− (z0+ b−kv)|/ǫ

≤ (1− 1/b)

������
X z0+b−kv
σ∗

− Xσ∗
b−k

������
+ c9c12(1− 1/b).

Let ǫ∗ = c0 b−k, where k is defined by ǫ ∈ [b−k, b−k+1). The last formula and (3.172) yield,

lim
ǫ→0

sup
v∈K

�����
X z0+ǫv
σ∗
− Xσ∗
ǫ

−Im∗ ◦ · · · ◦ I0(v)

�����

≤ (1− 1/b) lim sup
k→∞

sup
v∈K

������
X z0+b−kv
σ∗

− Xσ∗
b−k

������
+ c9c12(1− 1/b).

Let ǫ∗ = c0ǫ. We can take b > 1 arbitrarily close to 1, so, a.s.,

lim
ǫ→0

sup
v∈K

�����
X z0+ǫv
σ∗
− Xσ∗
ǫ

−Im∗ ◦ · · · ◦ I0(v)

�����= 0.

Recall the definition of σ∗ from the beginning of this section. We let k∗→∞ to see that, a.s.,

lim
ǫ→0

sup
v∈K

�����
X z0+ǫv
σ1
− Xσ1

ǫ
−Im∗ ◦ · · · ◦ I0(v)

�����= 0.

We combine this with Theorem 2.5 to complete the proof of the theorem.

Proof of Corollary 3.2. According to Theorem 3.1, for every r > 0 and compact set K ⊂ Rn, we

have limǫ→0 supv∈K

���(X z0+ǫv
σr
− X z0

σr
)/ǫ−Arv

��� = 0, a.s. By Fubini’s Theorem, with probability 1, for

almost all r > 0, we have

lim
ǫ→0

sup
v∈K

���(X z0+ǫv
σr
− X z0

σr
)/ǫ−Arv

���= 0. (3.173)
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Recall the definitions of Er , vr and Ar from Section 2.3. Let Er1,r2
= {es : σr1

≤ s < σr2
} and define

vr1,r2
andAr1,r2

relative to Er1,r2
in the same way asAr was defined relative to Er and vr .

Fix any t > 0 and let y0 = X z0
t and Y x

s = X x
t+s for s ≥ 0. Let w be defined relative to v by

y0+ ǫw = X z0+ǫv
t . By the Markov property applied at time t, Theorem 3.1 and (3.173) hold for the

flow {Y ·s , s ≥ 0} in place of the flow {X ·s, s ≥ 0}. In other words, ifA ′r =ALt ,Lt+r and σ′r = σLt+r− t
then with probability 1, for almost all r > 0, we have

lim
ǫ→0

sup
v∈K

���(Y y0+ǫw

σ′r
− Y y0

σ′r
)/ǫ−A ′r w

���= 0. (3.174)

Note that for any sequence vn ∈ K , n≥ 1, there exists v∗ ∈ K such that a subsequence of vn converges

to v∗, by compactness of K .

Suppose that it is not true that limǫ→0 supv∈K

���(X z0+ǫv
t − X z0

t )/ǫ−ALt
v

��� = 0 with probability

1. It will suffice to show that this assumption leads to a contradiction. The assumption im-

plies that we can find c1, p1 > 0, ǫn > 0 for n ≥ 1, v∗ ∈ K , and vn ∈ K for n ≥ 1,

such that limn→∞ ǫn = 0, limn→∞ vn = v∗, and with probability greater than p1 we have

lim infn

���(X z0+ǫnvn
t − X z0

t )/ǫn−ALt
vn

���> c1. Let A1 be the event defined by the last formula.

Let πH denote the orthogonal projection on an (n − 1)-dimensional hyperplane H. We

can choose H so that for some c2 > 0 and subsequence nk, we have on the event A1,���πH
�
(X

z0+ǫnk
vnk

t − X z0

t )/ǫnk

�
−πH ◦ALt

vnk

��� > c2. Let wk = (X
z0+ǫnk

vnk
t − X z0

t )/ǫnk
so that the last

formula can be written as
��πH(wk)−πH ◦ALt

vnk

�� > c2. Since D is a bounded domain with C2

boundary, there exists x ∈ ∂ D such that the tangent hyperplane at x is parallel to H, so we can

assume that πH = πx . There exist r1 > 0 and c3 ∈ (0, c2) such that for y ∈ M := ∂ D ∩B(x , r1), we

have on the event A1,
��πy(wk)−πy ◦ALt

vnk

��> c3.

Let T = inf{s > t : X z0
s ∈ ∂ D} and A2 = A1 ∩ {X

z0

T ∈ M}. By the support theorem for Brownian

motion and the Markov property at time t, there exists p2 > 0 such that P(A2)> p2. If A2 holds then

���πX
z0
T
(wk)−πX

z0
T
◦ALt

vnk

���> c3. (3.175)

It follows from the definition ofAr andA ′r that limr↓0 ‖A
′
r −πX

z0
T
‖= 0 and limr↓0 ‖ALt+r −πX

z0
T
◦

ALt
‖ = 0. The rate of convergence to 0 may depend on the trajectory of the flow X . Let r2 > 0 and

p3 > 0 be so small that with probability greater than p3 the event A2 holds and

|A ′r wk −πX
z0
T
(wk)| ≤ c3/4, (3.176)

|πX
z0
T
◦ALt

vnk
−ALt+rvnk

| ≤ c3/4,

for r ∈ (0, r2) and k ≥ 1. Let A3 be the event that the last inequalities in (3.176) hold and A2 holds.

Combining (3.175) and (3.176), we see that on the event A3 we have |A ′r wk−ALt+rvnk
| ≥ c3/2 for

r ∈ (0, r2) and k ≥ 1.

By (3.173) and (3.174), with probability 1, there exist some r ∈ (0, r2) such that,

lim
k→∞

���(X
z0+ǫnk

vnk
σLt+r

− X z0
σLt+r

)/ǫnk
−ALt+rvnk

���= 0
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and

lim
k→∞

���(X
z0+ǫnk

vnk
σLt+r

− X z0
σLt+r

)/ǫnk
−A ′r wnk

���= lim
k→∞

���(Y
y0+ǫnk

wnk

σ′r
− Y y0

σ′r
)/ǫnk
−A ′r wnk

���= 0.

Since |A ′r wk −ALt+rvnk
| ≥ c3/2 on the event A3 of positive probability, the last two formulas form

a contradiction and this completes the proof.
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