
E l e c t r o n
i

c

J
o

u
r

n a l

o
f

P
r

o
b a b i l i t y

Vol. 14 (2009), Paper no. 78, pages 2287–2309.

Journal URL

http://www.math.washington.edu/~ejpecp/

Density formula and concentration inequalities with

Malliavin calculus

Ivan Nourdin∗

Université Paris 6

Frederi G. Viens†

Purdue University

Abstract

We show how to use the Malliavin calculus to obtain a new exact formula for the density ρ

of the law of any random variable Z which is measurable and differentiable with respect to a

given isonormal Gaussian process. The main advantage of this formula is that it does not re-

fer to the divergence operator δ (dual of the Malliavin derivative D). The formula is based

on an auxilliary random variable G := 〈DZ ,−DL−1Z〉H, where L is the generator of the so-

called Ornstein-Uhlenbeck semigroup. The use of G was first discovered by Nourdin and Peccati

(Probab. Theory Relat. Fields 145, 2009) in the context of rates of convergence in law. Here,

thanks to G, density lower bounds can be obtained in some instances. Among several examples,

we provide an application to the (centered) maximum of a general Gaussian process. We also

explain how to derive concentration inequalities for Z in our framework.
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1 Introduction

Let X = {X (h) : h ∈ H} be a centered isonormal Gaussian process defined on a real separable Hilbert

space H. This just means that X is a collection of centered and jointly Gaussian random variables

indexed by the elements of H, defined on some probability space (Ω,F , P), such that the covariance

of X is given by the inner product in H: for every h, g ∈ H,

E
�
X (h)X (g)

�
= 〈h, g〉H.

The process X has the interpretation of a Wiener (stochastic) integral. As usual in Malliavin calculus,

we use the following notation (see Section 2 for precise definitions):

• L2(Ω,F , P) is the space of square-integrable functionals of X ; this means in particular that F

is the σ-field generated by X ;

• D1,2 is the domain of the Malliavin derivative operator D with respect to X ; this implies that

the Malliavin derivative DZ of Z ∈ D1,2 is a random element with values in H, and that

E
�
‖DZ‖2

H

�
<∞.

• Domδ is the domain of the divergence operator δ. This operator will only play a marginal role

in our study; it is simply used in order to simplify some proof arguments, and for comparison

purposes.

From now on, Z will always denote a random variable in D1,2 with zero mean.

The following result on the density of a random variable is a well-known fact of the Malliavin

calculus: if DZ/‖DZ‖2
H

belongs to Domδ, then the law of Z has a continuous and bounded density

ρ given, for all z ∈ R, by

ρ(z) = E


1(z,+∞](Z)δ

 
DZ

‖DZ‖2
H

!
 . (1.1)

From this expression, it is sometimes possible to deduce upper bounds for ρ. Several examples are

detailed in Section 2.1.1 of Nualart’s book [16].

In the first main part of our paper (Section 3), we prove a new general formula for ρ, which does

not refer to δ. For Z a mean-zero r.v. in D1,2, define the function gZ : R→ R almost everywhere by

gZ(z) = E
�
〈DZ ,−DL−1Z〉H

�� Z = z
�

. (1.2)

The L appearing here is the so-called generator of the Ornstein-Uhlenbeck semigroup; it is defined,

as well as its pseudo-inverse L−1, in the next section. By [15, Proposition 3.9], we know that gZ is

non-negative on the support of the law of Z . Under some general conditions on Z (see Theorem 3.1

for a precise statement), the density ρ of the law of Z (provided it exists) is given by the following

new formula, valid for almost all z in the support of ρ:

P (Z ∈ dz) = ρ(z)dz =
E|Z |

2gZ(z)
exp

�
−

∫ z

0

x d x

gZ(x)

�
dz. (1.3)
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We also show that one simple condition under which ρ exists and is strictly positive on R

is that g (z) ¾ σ2
min hold almost everywhere for some constant σ2

min > 0 (see Corollary

3.3 for a precise statement). In this case, formula (1.3) immediately implies that ρ (z) ¾

E |Z |/
�
2gZ (z)

�
exp
�
−z2/

�
2σ2

min

��
, so that if some a-priori upper bound is known on g, then

ρ is, up to a constant, bounded below by a Gaussian density.

Another main point in our approach, also discussed in Section 3, is that it is often possible to express

gZ relatively explicitly, via the following formula (see Proposition 3.7):

gZ(z) =

∫ ∞

0

e−u E
�
〈ΦZ(X ),ΦZ(e

−uX +
p

1− e−2uX ′)〉H|Z = z
�
du. (1.4)

This is a consequence of the so-called Mehler formula of Malliavin calculus; here X ′, which stands

for an independent copy of X , is such that X and X ′ are defined on the product probability space

(Ω × Ω′,F ⊗ F ′, P × P ′); E denotes the mathematical expectation with respect to P × P ′; and

the mapping ΦZ : RH → H is defined P ◦ X−1-a.s. through the identity DZ = ΦZ(X ) (note that

e−uX +
p

1− e−2uX ′
L
= X for all u ¾ 0, so that ΦZ(e

−uX +
p

1− e−2uX ′) is well-defined for all

u¾ 0).

As an important motivational example of our density formula (1.3) combined with the explicit ex-

pression (1.4) for gZ , let X = (X t , t ∈ [0, T]) be a centered Gaussian process with continuous paths,

such that E(X t − Xs)
2 6= 0 for all s 6= t. Consider Z = sup[0,T] X − E

�
sup[0,T] X

�
. Understanding

the distribution of Z is a topic of great historical and current interest. For detailed accounts, one

may consult textbooks by Robert Adler et al., from 1990, 2007, and in preparation: [1], [2], [3].

Expressing the density of Z , even implicitly, is a subject of study in its own right; in the case of

differentiable random fields, geometric methods have been used by Azaïs and Wschebor, based on

the so-called Rice-Kac formula, to express the density of Z in a way which allows them to derive

sharp bounds on the tail of Z: see [4] and references therein.

Herein we will apply our density formula to Z , resulting in an expression which is not restricted to

differentiable fields, and is not related to the Azaïs-Wschebor formula. To achieve this, we will use

specific facts about Z (see explanations and references in Section 3.2.4). It is known that Z ∈ D1,2,

that, almost surely, the supremum of X on [0, T] is attained at a single point in I0 ∈ [0, T], and

that the law of Z has a density ρ. The underlying Wiener space can then be parametrized to

imply DZ = 1[0,I0]
. We note by R the covariance function of X , defined by R(s, t) = E(XsX t). Let

Iu := argmax[0,T]

�
e−uX +

p
1− e−2uX ′

�
where X ′ stands for an independent copy of X (as defined

above). Using the Mehler-type formula (1.4), we show

gZ (z) =

∫ ∞

0

e−u E
�
R(I0, Iu)|Z = z

�
du.

Therefore by (1.3), for almost all z in the support of ρ, we have

ρ(z) =
E|Z |

2
∫∞

0
e−u E

�
R(I0, Iu)|Z = z

�
du

exp


−

∫ z

0

xd x
∫∞

0
e−u E

�
R(I0, Iu)|Z = x

�
du


 . (1.5)

In particular, if R is bounded above and below on [0, T], we immediately get some Gaussian lower

and upper bounds for ρ over all of R. Moreover, now that we have a formula for ρ, it is not difficult
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to derive a formula for the variance of Z . We get

Var(Z) =

∫ ∞

0

e−uE
�
R(I0, Iu)

�
du. (1.6)

Our general density formula (1.3) has found additional applications reported in other publications.

In the context of Brownian directed polymers in Gaussian and non-Gaussian environments, this

paper’s second author obtained fully diffusive fluctuations for some polymer partition functions in

[20] using slightly different tools than we have here, but the techniques in this paper which lead to

(1.5) would yield the results in [20, Section 5] as well. In a direct application of (1.3) in the same

style as (1.5), Nualart and Quer-Sardanyons proved in the preprint [18] that the stochastic heat and

wave equations have solutions whose densities are bounded above and below by Gaussian densities

in many cases.

In the second main part of the paper (Section 4), we explain what can be done when one knows

that gZ is sub-affine. More precisely, if the law of Z has a density and if gZ verifies gZ(Z) ¶ αZ + β

P-a.s. for some α ¾ 0 and β > 0, we prove the following concentration inequalities (Theorem 4.1):

for all z > 0,

P(Z ¾ z)¶ exp

�
−

z2

2αz + 2β

�
and P(Z ¶−z)¶ exp

�
−

z2

2β

�
. (1.7)

As an application of (1.7), we prove the following result. Let B = (Bt , t ∈ [0,1]) be a fractional

Brownian motion with Hurst index H ∈ (0,1). Let Q : R → R be a C 1 function such that the

Lebesgue measure of the set {u ∈ R : Q′(u) = 0} is zero, and |Q′(u)|¶ C |u| and Q(u)¾ cu2 for some

positive constants c, C and all u ∈ R. The square function satisfies this assumption, but we may

also allow many perturbations of the square. Let Z =
∫ 1

0
Q
�
Bs

�
ds−µ where µ= E

h∫ 1

0
Q
�
Bs

�
ds
i

.

Then inequality (1.7) holds with

α=
C2

(2H + 1)c

�
1

2
+

1

2H + 1

Ç
π

8

�
and β =

C2

(2H + 1)c

�
µ

2
+

µ

2H + 1

Ç
π

8
+

c

4

Ç
π

8

�
. (1.8)

The interest of this result lies in the fact that the exact distribution of
∫ 1

0
Q
�
Bu

�
du is unknown; even

when Q (x) = x2, it is still an open problem for H 6= 1/2. Note also that classical results by Borell

[5] can only be applied when Q (x) = x2 (because then, Z is a second-chaos random variable) and

would give a bound like Aexp(−Cz). The behavior for large z is always of exponential type. The

proof of (1.7) with α and β as above for this class of examples is given at the end of Section 4.1.

A related application of relation (1.7) from our Theorem 4.1 is reported in [6], by this paper’s first

author, together with J.C. Breton and G. Peccati: they describe an application in statistics where

they build exact confidence intervals for the Hurst parameter associated with a one-dimensional

fractional Brownian motion.

Section 4 also contains a general lower bound result, Theorem 4.3, again based on the quan-

tity 〈DZ ,−DL−1Z〉H via the function gZ defined in (1.2). This quantity was introduced recently

in [15] for the purpose of using Stein’s method in order to show that the standard deviation of
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〈DZ ,−DL−1Z〉H provides an error bound of the normal approximation of Z , see also Remark 3.2

below for a precise statement. Here, in Theorem 4.3 and in Theorem 4.1 as a special case (α = 0

therein), gZ(Z) = E(〈DZ ,−DL−1Z〉H|Z) can be instead assumed to be bounded either above or

below almost surely by a constant; the role of this constant is to be a measure of the dispersion of

Z , and more specifically to ensure that the tail of Z is bounded either above or below by a normal

tail with that constant as its variance. Our Section 4 can thus be thought as a way to extend the

phenomena described in [15] when comparison with the normal distribution can only be expected

to go one way. Theorem 4.3 shows that we may have no control over how heavy the tail of Z may

be (beyond the existence of a second moment), but the condition gZ(Z) ¾ σ
2 > 0 P-a.s. essentially

guarantees that it has to be no less heavy than a Gaussian tail with variance σ2.

The rest of the paper is organized as follows. In Section 2, we recall the notions of Malliavin calculus

that we need in order to perform our proofs. In Section 3, we state and discuss our density estimates.

Section 4 deals with concentration inequalities, i.e. tail estimates.

2 Some elements of Malliavin calculus

Details of the exposition in this section are in Nualart’s book [16, Chapter 1]. As stated in the

introduction, we let X be a centered isonormal Gaussian process over a real separable Hilbert space

H. For any m ¾ 1, let H⊗m be the mth tensor product of H and H⊙m be the mth symmetric tensor

product. LetF be theσ-field generated by X . It is well-known that any random variable Z belonging

to L2(Ω,F , P) admits the following chaos expansion:

Z =

∞∑

m=0

Im( fm), (2.9)

where I0( f0) = E(Z), the series converges in L2(Ω) and the kernels fm ∈ H⊙m, m ¾ 1, are

uniquely determined by Z . In the particular case where H is equal to a separable space L2(A,A ,µ),

for (A,A ) a measurable space and µ a σ-finite and non-atomic measure, one has that H⊙m =

L2
s (A

m,A ⊗m,µ⊗m) is the space of symmetric and square integrable functions on Am and, for every

f ∈ H⊙m, Im( f ) coincides with the multiple Wiener-Itô integral of order m of f with respect to X .

For every m ¾ 0, we write Jm to indicate the orthogonal projection operator on the mth Wiener

chaos associated with X . That is, if Z ∈ L2(Ω,F , P) is as in (2.9), then JmF = Im( fm) for every

m¾ 0.

Let S be the set of all smooth cylindrical random variables of the form

Z = g
�
X (φ1), . . . , X (φn)

�

where n ¾ 1, g : Rn → R belongs to C∞
b

(the set of bounded and infinitely differentiable functions

g with bounded partial derivatives), and φi ∈ H, i = 1, . . . , n. The Malliavin derivative of Z with

respect to X is the element of L2(Ω,H) defined as

DZ =

n∑

i=1

∂ g

∂ x i

�
X (φ1), . . . , X (φn)

�
φi .
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In particular, DX (h) = h for every h ∈ H. By iteration, one can define the mth derivative DmZ (which

is an element of L2(Ω,H⊙m)) for every m¾ 2. For m¾ 1, Dm,2 denotes the closure of S with respect

to the norm ‖ · ‖m,2, defined by the relation

‖Z‖2m,2 = E(Z2) +

m∑

i=1

E
�
‖Di Z‖2

H⊗i

�
.

Note that a random variable Z as in (2.9) is in D1,2 if and only if

∞∑

m=1

m m!‖ fm‖
2
H⊗m <∞,

and, in this case, E
�
‖DZ‖2

H

�
=
∑

m¾1 m m!‖ fm‖
2
H⊗m . If H = L2(A,A ,µ) (with µ non-atomic), then

the derivative of a random variable Z as in (2.9) can be identified with the element of L2(A× Ω)

given by

DaZ =

∞∑

m=1

mIm−1

�
fm(·, a)

�
, a ∈ A.

The Malliavin derivative D satisfies the following chain rule. If ϕ : Rn → R is of class C 1 with

bounded derivatives, and if {Zi}i=1,...,n is a vector of elements of D1,2, then ϕ(Z1, . . . , Zn) ∈ D
1,2 and

Dϕ(Z1, . . . , Zn) =

n∑

i=1

∂ ϕ

∂ x i

(Z1, . . . , Zn)DZi . (2.10)

Formula (2.10) still holds when ϕ is only Lipschitz but the law of (Z1, . . . , Zn) has a density with

respect to the Lebesgue measure on Rn (see e.g. Proposition 1.2.3 in [16]).

We denote by δ the adjoint of the operator D, also called the divergence operator. A random element

u ∈ L2(Ω,H) belongs to the domain of δ, denoted by Domδ, if and only if it satisfies

��E〈DZ ,u〉H
��¶ cu E(Z2)1/2 for any Z ∈ S ,

where cu is a constant depending only on u. If u ∈ Domδ, then the random variable δ(u) is uniquely

defined by the duality relationship

E(Zδ(u)) = E〈DZ ,u〉H, (2.11)

which holds for every Z ∈ D1,2. Notice that all chaos variables Im( fm) are in Domδ.

The operator L is defined through the projection operators as L =
∑∞

m=0−mJm, and is called the

generator of the Ornstein-Uhlenbeck semigroup. It satisfies the following crucial property. A random

variable Z is an element of Dom L (= D2,2) if and only if Z ∈ DomδD (i.e. Z ∈ D1,2 and DZ ∈

Domδ), and in this case:

δDZ =−LZ . (2.12)

We also define the operator L−1, which is the pseudo-inverse of L, as follows. For every Z ∈

L2(Ω,F , P), we set L−1Z =
∑

m¾1−
1

m
Jm(Z). Note that L−1 is an operator with values in D2,2, and

that LL−1Z = Z − E(Z) for any Z ∈ L2(Ω,F , P), so that L−1 does act as L’s inverse for centered

r.v.’s.
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The family (Tu, u ¾ 0) of operators is defined as Tu =
∑∞

m=0 e−muJm, and is called the Orstein-

Uhlenbeck semigroup. Assume that the process X ′, which stands for an independent copy of X , is

such that X and X ′ are defined on the product probability space (Ω×Ω′,F ⊗F ′, P × P ′). Given a

random variable Z ∈ D1,2, we can write DZ = ΦZ(X ), where ΦZ is a measurable mapping from RH

to H, determined P ◦ X−1-almost surely. Then, for any u¾ 0, we have the so-called Mehler formula:

Tu(DZ) = E′
�
ΦZ(e

−uX +
p

1− e−2uX ′)
�
, (2.13)

where E′ denotes the mathematical expectation with respect to the probability P ′.

3 Formula for the density

As said in the introduction, we consider a random variable Z ∈ D1,2 with zero mean. Recall the

function gZ introduced in (1.2):

gZ(z) = E(〈DZ ,−DL−1Z〉H|Z = z).

It is useful to keep in mind throughout this paper that, by [15, Proposition 3.9], gZ(z)¾ 0 for almost

all z in the support of the law of Z .

3.1 General formulae

We begin with the following theorem.

Theorem 3.1. The law of Z has a density ρ if and only if the random variable gZ(Z) is strictly positive

almost surely. In this case, the support of ρ, denoted by suppρ, is a closed interval of R containing zero

and we have, for almost all z ∈ suppρ:

ρ(z) =
E |Z |

2gZ(z)
exp

�
−

∫ z

0

x d x

gZ(x)

�
. (3.14)

Proof. Let us first prove a useful identity. For any f : R→ R of class C 1 with bounded derivative,

we have

E
�

Z f (Z)
�
= E
�

L(L−1Z)× f (Z)
�
= E
�
δ(D(−L−1Z))× f (Z)

�
by (2.12)

= E
�
〈D f (Z),−DL−1Z〉H

�
by (2.11)

= E
�

f ′(Z)〈DZ ,−DL−1Z〉H
�

by (2.10)

= E
�

f ′(Z)gZ(Z)
�
. (3.15)

Now, assume that the random variable gZ(Z) is strictly positive almost surely. Combining (3.15)

with an approximation argument, we get, for any Borel set B ∈B(R), that

E
�

Z

∫ Z

−∞

1B(y)d y
�
= E
�
1B(Z)gZ(Z)

�
. (3.16)
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Suppose that the Lebesgue measure of B ∈ B(R) is zero. Then E
�
1B(Z)gZ(Z)

�
= 0 by (3.16).

Consequently, since gZ(Z) > 0 a.s. by assumption, we have P(Z ∈ B) = 0. Therefore, the Radon-

Nikodym criterion implies that the law of Z has a density.

Conversely, assume that the law of Z has a density, say ρ. Let f : R→ R be a continuous function

with compact support, and let F denote any antiderivative of f . Note that F is necessarily bounded.

Following Stein himself (see [19, Lemma 3, p. 61]), we can write:

E
�

f (Z)gZ(Z)
�
= E
�

F(Z)Z
�

by (3.15)

=

∫

R

F(z) zρ(z)dz =
(∗)

∫

R

f (z)

�∫ ∞

z

yρ(y)d y

�
dz

= E


 f (Z)

∫∞
Z

yρ(y)d y

ρ(Z)


 .

Equality (*) was obtained by integrating by parts, after observing that

∫ ∞

z

yρ(y)d y −→ 0 as |z| →∞

(for z→ +∞, this is because Z ∈ L1(Ω); for z→−∞, this is because Z has mean zero). Therefore,

we have shown

gZ(Z) =

∫∞
Z

yρ(y)d y

ρ(Z)
, P-a.s.. (3.17)

Since Z ∈ D1,2, it is known (see e.g. [16, Proposition 2.1.7]) that suppρ = [α,β] with −∞ ¶ α <

β ¶+∞. Since Z has zero mean, note that α < 0 and β > 0 necessarily. For every z ∈ (α,β), define

ϕ (z) =

∫ ∞

z

yρ
�

y
�

d y. (3.18)

The function ϕ is differentiable almost everywhere on (α,β), and its derivative is −zρ (z). In

particular, since ϕ(α) = ϕ(β) = 0 and ϕ is strictly increasing before 0 and strictly decreasing

afterwards, we have ϕ(z) > 0 for all z ∈ (α,β). Hence, (3.17) implies that gZ(Z) is strictly positive

almost surely.

Finally, let us prove (3.14). Let ϕ still be defined by (3.18). On the one hand, we have ϕ′(z) =

−zρ(z) for almost all z ∈ suppρ. On the other hand, by (3.17), we have, for almost all z ∈ suppρ,

ϕ(z) = ρ(z)gZ(z). (3.19)

By putting these two facts together, we get the following ordinary differential equation satisfied by

ϕ:
ϕ′(z)

ϕ(z)
=−

z

gZ(z)
for almost all z ∈ suppρ.

Integrating this relation over the interval [0, z] yields

logϕ(z) = logϕ(0)−

∫ z

0

x d x

gZ(x)
.
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Taking the exponential and using 0 = E(Z) = E(Z+) − E(Z−) so that E|Z | = E(Z+) + E(Z−) =

2E(Z+) = 2ϕ(0), we get

ϕ(z) =
1

2
E|Z |exp

�
−

∫ z

0

x d x

gZ(x)

�
.

Finally, the desired conclusion comes from (3.19).
�

Remark 3.2. The ‘integration by parts formula’ (3.15) was proved and used for the first time by

Nourdin and Peccati in [15], in order to perform error bounds in the normal approximation of Z .

Specifically, [15] shows, by combining Stein’s method with (3.15), that, if Var(Z)> 0, then

sup
z∈R

��P(Z ¶ z)− P(N ¶ z)
��¶
p

Var
�

gZ(Z)
�

Var(Z)
, (3.20)

where N ∼N (0,VarZ). In reality, the inequality stated in [15] is with Var
�
〈DZ ,−DL−1Z〉H

�
instead

of Var
�

gZ(Z)
�

on the right-hand side; but the same proof allows to write this slight improvement;

it was not stated or used in [15] because it did not improve the applications therein.

As a corollary of Theorem 3.1, we can state the following.

Corollary 3.3. Assume that there exists σ2
min > 0 such that

gZ(Z)¾ σ
2
min, P-a.s. (3.21)

Then the law of Z, which has a density ρ by Theorem 3.1, has R for support and (3.14) holds a.e. in

R.

Proof. It is an immediate consequence of Theorem 3.1, except the fact that suppρ = R. For the

moment, we just know that suppρ = [α,β] with −∞ ¶ α < 0< β ¶+∞. Identity (3.17) yields

∫ ∞

z

yρ
�

y
�

d y ¾ σ2
minρ (z) for almost all z ∈ (α,β). (3.22)

Let ϕ be defined by (3.18), and recall that ϕ(z)> 0 for all z ∈ (α,β). When multiplied by z ∈ [0,β),

the inequality (3.22) gives
ϕ′(z)

ϕ(z)
¾ − z

σ2
min

. Integrating this relation over the interval [0, z] yields

logϕ (z)− logϕ (0)¾ − z2

2σ2
min

, i.e., since ϕ(0) = 1

2
E|Z |,

ϕ (z) =

∫ ∞

z

yρ
�

y
�

d y ¾
1

2
E|Z |e

− z2

2σ2
min . (3.23)

Similarly, when multiplied by z ∈ (α, 0], inequality (3.22) gives
ϕ′(z)

ϕ(z)
¶ − z

σ2
min

. Integrating this

relation over the interval [z, 0] yields logϕ (0)−logϕ (z)¶ z2

2σ2
min

, i.e. (3.23) still holds for z ∈ (α, 0].

Now, let us prove that β = +∞. If this were not the case, by definition, we would have ϕ
�
β
�
= 0;

on the other hand, by letting z tend to β in the above inequality, because ϕ is continuous, we would

have ϕ
�
β
�
¾

1

2
E|Z |e

−
β2

2σ2
min > 0, which contradicts β < +∞. The proof of α = −∞ is similar. In

conclusion, we have shown that suppρ = R.
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�

Using Corollary 3.3, we can deduce the following interesting criterion for normality, which one will

compare with (3.20).

Corollary 3.4. Assume that Z is not identically zero. Then Z is Gaussian if and only if Var(gZ(Z)) = 0.

Proof : By (3.15) (choose f (z) = z), we have

E(〈DZ ,−DL−1Z〉H) = E(Z2) = VarZ .

Therefore, the condition Var(gZ(Z)) = 0 is equivalent to

gZ(Z) = VarZ , P-a.s.

Let Z ∼ N (0,σ2) with σ > 0. Using (3.17), we immediately check that gZ(Z) = σ
2, P-a.s. Con-

versely, if gZ(Z) = σ
2 > 0 P-a.s., then Corollary 3.3 implies that the law of Z has a density ρ, given

by ρ(z) =
E|Z |

2σ2 e
− z2

2σ2 for almost all z ∈ R, from which we immediately deduce that Z ∼N (0,σ2).
�

Observe that if Z ∼ N (0,σ2) with σ > 0, then E|Z | =
p

2/πσ, so that the formula (3.14) for ρ

agrees, of course, with the usual one in this case.

When gZ can be bounded above and away from zero, we get the following density estimates:

Corollary 3.5. If there exists σmin,σmax > 0 such that

σ2
min ¶ gZ(Z)¶ σ

2
max P-a.s.,

then the law of Z has a density ρ satisfying, for almost all z ∈ R,

E|Z |

2σ2
max

exp

�
−

z2

2σ2
min

�
¶ ρ(z)¶

E|Z |

2σ2
min

exp

�
−

z2

2σ2
max

�
.

Proof : One only needs to apply Corollary 3.3.
�

Remark 3.6. General lower bound results on densities are few and far between. The case of uni-

formly elliptic diffusions was treated in a series of papers by Kusuoka and Stroock: see [14]. This

was generalized by Kohatsu-Higa [13] in Wiener space via the concept of uniformly elliptic random

variables; these random variables proved to be well-adapted to studying diffusion equations. E.

Nualart [17] showed that fractional exponential moments for a divergence-integral quantity known

to be useful for bounding densities from above (see formula (1.1) above), can also be useful for de-

riving a scale of exponential lower bounds on densities; the scale includes Gaussian lower bounds.

However, in all these works, the applications are largely restricted to diffusions.
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3.2 Computations and examples

We now show how to ‘compute’ gZ(Z) = E(〈DZ ,−DL−1Z〉H|Z) in practice. We then provide several

examples using this computation.

Proposition 3.7. Write DZ = ΦZ(X ) with a measurable function ΦZ : RH→ H. We have

〈DZ ,−DL−1Z〉H=

∫ ∞

0

e−u 〈ΦZ(X ), E′
�
ΦZ(e

−uX +
p

1− e−2uX ′)
�
〉Hdu,

so that

gZ(Z) =

∫ ∞

0

e−u E
�
〈ΦZ(X ),ΦZ(e

−uX +
p

1− e−2uX ′)〉H|Z
�
du,

where X ′ stands for an independent copy of X , and is such that X and X ′ are defined on the product

probability space (Ω×Ω′,F ⊗F ′, P × P ′). Here E denotes the mathematical expectation with respect

to P × P ′, while E′ is the mathematical expectation with respect to P ′.

Proof : We follow the arguments contained in Nourdin and Peccati [15, Remark 3.6]. Without loss

of generality, we can assume that H is equal to L2(A,A ,µ), where (A,A ) is a measurable space

and µ is a σ-finite measure without atoms. Let us consider the chaos expansion of Z , given by

Z =
∑∞

m=1 Im( fm), with fm ∈ H⊙m. Therefore −L−1Z =
∑∞

m=1
1

m
Im( fm) and

−Da L−1Z =

∞∑

m=1

Im−1( fm(·, a)), a ∈ A.

On the other hand, we have DaZ =
∑∞

m=1 mIm−1( fm(·, a)). Thus

∫ ∞

0

e−uTu(DaZ)du=

∫ ∞

0

e−u

 
∞∑

m=1

me−(m−1)u Im−1( fm(·, a))

!
du

=

∞∑

m=1

Im−1( fm(·, a)).

Consequently,

−DL−1Z =

∫ ∞

0

e−uTu(DZ)du.

By Mehler’s formula (2.13), and since DZ = ΦZ(X ) by assumption, we deduce that

−DL−1Z =

∫ ∞

0

e−uE′
�
ΦZ(e

−uX +
p

1− e−2uX ′)
�
du,

so that the formula for 〈DZ ,−DL−1Z〉H follows. Using E(E′(. . .)|Z) = E(. . . |Z), the formula for

gZ(Z) holds.
�

By combining Theorem 3.1 with Proposition 3.7, we get the following formula:
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Corollary 3.8. Let the assumptions of Theorem 3.1 prevail. Let ΦZ : RH→ H be measurable and such

that DZ = ΦZ(X ). Then, for almost all z in suppρ, the density ρ of the law of Z is given by

ρ(z) =
E|Z |

2
∫∞

0
e−u E

�
〈ΦZ(X ),ΦZ(e

−uX +
p

1− e−2uX ′)〉H|Z = z
�
du

× exp


−

∫ z

0

x d x
∫∞

0
e−v E

�
〈ΦZ(X ),ΦZ(e

−vX +
p

1− e−2vX ′)〉H|Z = x
�
dv


 .

Now, we give several examples of application of this corollary.

3.2.1 First example: monotone Gaussian functional, finite case.

Let N ∼ Nn(0, K) with K positive definite, and f : Rn → R be a C 1 function having bounded

derivatives. Consider an isonormal Gaussian process X over the Euclidean space H = Rn, endowed

with the inner product 〈hi,h j〉H = E(NiN j) = Ki j . Here, {hi}1¶i¶n stands for the canonical basis

of H = Rn. Without loss of generality, we can identify Ni with X (hi) for any i = 1, . . . , n. Set Z =

f (N)−E( f (N)). The chain rule (2.10) implies that Z ∈ D1,2 and that DZ = ΦZ(N) =
∑n

i=1
∂ f

∂ x i
(N)hi.

Therefore

〈ΦZ(X ),ΦZ(e
−uX +

p
1− e−2uX ′)〉H=

n∑

i, j=1

Ki j

∂ f

∂ x i

(N)
∂ f

∂ x j

(e−uN +
p

1− e−2uN ′),

for N ′i = X ′(hi), i = 1, . . . , n. In particular, Corollary 3.5 combined with Proposition 3.7 yields the

following.

Proposition 3.9. Let N ∼ Nn(0, K) with K positive definite, and f : Rn → R be a C 1 function with

bounded derivatives. If there exist αi ,βi ¾ 0 such that αi ¶
∂ f

∂ x i
(x) ¶ βi for any i ∈ {1, . . . , n} and x ∈

R
n, if Ki j ¾ 0 for any i, j ∈ {1, . . . , n} and if

∑n

i, j=1αiα jKi j > 0, then the law of Z = f (N)− E( f (N))

admits a density ρ which satisfies, for almost all z ∈ R,

E|Z |

2
∑n

i, j=1 βiβ jKi j

exp

 
−

z2

2
∑n

i, j=1αiα jKi j

!

¶ ρ(z)¶
E|Z |

2
∑n

i, j=1αiα jKi j

exp

 
−

z2

2
∑n

i, j=1 βiβ jKi j

!
.

3.2.2 Second example: monotone Gaussian functional, continuous case.

Assume that X = (X t , t ∈ [0, T]) is a centered Gaussian process with continuous paths, and that

f : R→ R is C 1 with a bounded derivative. The Gaussian space generated by X can be identified

with an isonormal Gaussian process of the type X = {X (h) : h ∈ H}, where the real and separable
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Hilbert space H is defined as follows: (i) denote by E the set of all R-valued step functions on [0, T],

(ii) define H as the Hilbert space obtained by closing E with respect to the scalar product

〈1[0,t],1[0,s]〉H= E(XsX t).

In particular, with such a notation, we identify X t with X (1[0,t]). Now, let Z =
∫ T

0
f (X v)dv −

E
�∫ T

0
f (X v)dv

�
. Then Z ∈ D1,2 and we have DZ = ΦZ(X ) =

∫ T

0
f ′(X v)1[0,v]dv. Therefore

〈ΦZ(X ),ΦZ(e
−uX +

p
1− e−2uX ′)〉H

=

∫∫

[0,T]2
f ′(X v) f

′(e−uXw +
p

1− e−2uX ′w)E(X vXw)dvdw.

Using Corollary 3.5 combined with Proposition 3.7, we get the following.

Proposition 3.10. Assume that X = (X t , t ∈ [0, T]) is a centered Gaussian process with continuous

paths, and that f : R → R is C 1. If there exists α,β ,σmin,σmax > 0 such that α ¶ f ′(x) ¶ β for

all x ∈ R and σ2
min ¶ E(X vXw) ¶ σ

2
max for all v, w ∈ [0, T], then the law of Z =

∫ T

0
f (X v)dv −

E
�∫ T

0
f (X v)dv

�
has a density ρ satisfying, for almost all z ∈ R,

E|Z |

2β2σ2
max T2

e
− z2

2α2 σ2
min

T2
¶ ρ(z)¶

E|Z |

2α2σ2
min

T2
e
− z2

2β2 σ2
maxT2

.

3.2.3 Third example: maximum of a Gaussian vector.

Let N ∼Nn(0, K) with K positive definite. Once again, we assume that N can be written Ni = X (hi),

for X and hi , i = 1, . . . , n, defined as in the section 3.2.1. Since K is positive definite, note that the

members h1, . . . ,hn are necessarily different in pairs. Let Z =max N − E(max N), and set

Iu = argmax1¶i¶n(e
−uX (hi) +

p
1− e−2uX ′(hi)) for u¾ 0.

Lemma 3.11. For any u ¾ 0, Iu is a well-defined random element of {1, . . . , n}. Moreover, Z ∈ D1,2

and we have DZ = ΦZ(N) = hI0
.

Proof : Fix u¾ 0. Since, for any i 6= j, we have

P
�
e−uX (hi) +

p
1− e−2uX ′(hi) = e−uX (h j) +

p
1− e−2uX ′(h j)

�

= P
�
X (hi) = X (h j)

�
= 0,

the random variable Iu is a well-defined element of {1, . . . , n}. Now, if ∆i denotes the set {x ∈

R
n : x j ¶ x i for all j}, observe that ∂

∂ x i
max(x1, . . . , xn) = 1∆i

(x1, . . . , xn) almost everywhere. The

desired conclusion follows from the Lipschitz version of the chain rule (2.10), and the following

Lipschitz property of the max function, which is easily proved by induction (on n¾ 1):

��max(y1, . . . , yn)−max(x1, . . . , xn)
��¶

n∑

i=1

|yi − x i | for any x , y ∈ Rn. (3.24)
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�

In particular, we deduce from Lemma 3.11 that

〈ΦZ(X ),ΦZ(e
−uX +

p
1− e−2uX ′)〉H= KI0,Iu

. (3.25)

so that, by Corollary 3.8, the density ρ of the law of Z is given, for almost all z in suppρ, by:

ρ(z) =
E|Z |

2
∫∞

0
e−uE

�
KI0,Iu
|Z = z

�
du

exp


−

∫ z

0

xd x
∫∞

0
e−vE

�
KI0,Iv
|Z = x

�
dv


 .

As a by-product (see also Corollary 3.5), we get the density estimates in the next proposition, and a

variance formula.

Proposition 3.12. Let N ∼Nn(0, K) with K positive definite.

• If there exists σmin,σmax > 0 such that σ2
min ¶ Ki j ¶ σ

2
max for any i, j ∈ {1, . . . , n}, then the law

of Z =max N − E(max N) has a density ρ satisfying

E|Z |

2σ2
max

exp

�
−

z2

2σ2
min

�
¶ ρ(z)¶

E|Z |

2σ2
min

exp

�
−

z2

2σ2
max

�

for almost all z ∈ R.

• With N ′ an independent copy of N and Iu := argmax(e−uN +
p

1− e−2uN ′), we have

Var(max N) =

∫ ∞

0

e−uE
�
KI0,Iu

�
du.

The variance formula above is a discrete analogue of formula (1.6): the reader can check that it is

established identically to the proof of (1.6) found in the next section (Proposition 3.13), by using

formula (3.25) instead of formula (3.26) therein. It appears that this discrete-case variance formula

was established recently using non-Malliavin-calculus tools in the preprint [8, Lemma 3.1].

3.2.4 Fourth example: supremum of a Gaussian process.

Assume that X = (X t , t ∈ [0, T]) is a centered Gaussian process with continuous paths. Fer-

nique’s theorem [12] implies that E(sup[0,T] X 2) < ∞ . Assume E(X t − Xs)
2 6= 0 for all s 6= t.

As in the section above, we can see X as an isonormal Gaussian process (over H). Set Z =

sup[0,T] X − E(sup[0,T] X ), and let Iu be the (unique) random point where e−uX +
p

1− e−2uX ′

attains its maximum on [0, T]. Note that Iu is well-defined, see e.g. Lemma 2.6 in [11]. More-

over, we have that Z ∈ D1,2 and the law of Z has a density, see Proposition 2.1.11 in [16], and

DZ = ΦZ(X ) = 1[0,I0]
, see Lemma 3.1 in [9]. Therefore

〈ΦZ(X ),ΦZ(e
−uX +

p
1− e−2uX ′)〉H= R(I0, Iu) (3.26)

where R(s, t) = E(XsX t) is the covariance function of X . Hence, (1.5) is a direct application of

Corollary 3.8. The first statement in the next proposition now follows straight from Corollary 3.5.

The proposition’s second statement is the variance formula (1.6), and its proof is given below.
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Proposition 3.13. Let X = (X t , t ∈ [0, T]) be a centered Gaussian process with continuous paths, and

E(X t − Xs)
2 6= 0 for all s 6= t.

• Assume that, for some real σmin,σmax > 0, we have σ2
min ¶ E(XsX t)¶ σ

2
max for any s, t ∈ [0, T].

Then, Z = sup[0,T] X − E(sup[0,T] X ) has a density ρ satisfying, for almost all z ∈ R,

E|Z |

2σ2
max

e
− z2

2σ2
min ¶ ρ(z)¶

E|Z |

2σ2
min

e
− z2

2σ2
max . (3.27)

• Let R (s, t) = E(XsX t), let X ′ be an independent copy of X , and let

Iu = argmax[0,T](e
−uX +

p
1− e−2uX ′), u¾ 0.

Then Var(sup X ) =
∫∞

0
e−uE

�
R
�

I0, Iu

��
du.

Proof : The first bullet comes immediately from Corollary 3.5. For the variance formula of the

second bullet, with Z = sup[0,T] X − E(sup[0,T] X ), using (3.15) with f (z) = z, we get E(Z2) =

E(〈DZ ,−DL−1Z〉H), so that the desired conclusion is obtained immediately by combining (3.26)

with Proposition 3.7.
�

When applied to the case of fractional Brownian motion, we get the following.

Corollary 3.14. Let b > a > 0, and B = (Bt , t ¾ 0) be a fractional Brownian motion with Hurst index

H ∈ [1/2,1). Then the random variable Z = sup[a,b] B − E
�

sup[a,b] B
�

has a density ρ satisfying

(3.27) with σmin = aH and σmax = bH .

Proof : The desired conclusion is a direct application of Proposition 3.13 since, for all a ¶ s < t ¶ b,

E(BsBt)¶
Æ

E(B2
s )
Æ

E(B2
t ) = (st)H ¶ b2H

and

E(BsBt) =
1

2

�
t2H + s2H − (t − s)2H

�
= H(2H − 1)

∫∫

[0,s]×[0,t]

|v − u|2H−2dudv

¾ H(2H − 1)

∫∫

[0,a]×[0,a]

|v − u|2H−2dudv = E(B2
a) = a2H .

�
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4 Concentration inequalities

In this whole section, we continue to assume that Z ∈ D1,2 has zero mean, and to work with gZ

defined by (1.2).

Now, we investigate what can be said when gZ(Z) just admits a lower (resp. upper) bound. Results

under such hypotheses are more difficult to obtain than in the previous section, since there we

could use bounds on gZ(Z) in both directions to good effect; this is apparent, for instance, in the

appearance of both the lower and upper bounding values σmin and σmax in each of the two bounds

in (3.27), or more generally in Corollary 3.5. However, given our previous work, tails bounds can

be readily obtained: most of the analysis of the role of gZ(Z) in tail estimates is already contained

in the proof of Corollary 3.3.

Before stating our own results, let us cite a work which is closely related to ours, insofar as some

of the preoccupations and techniques are similar. In [10], Houdré and Privault prove concentration

inequalities for functionals of Wiener and Poisson spaces: they have discovered almost-sure condi-

tions on expressions involving Malliavin derivatives which guarantee upper bounds on the tails of

their functionals. This is similar to the upper bound portion of our work (Section 4.1), and closer

yet to the first-chaos portion of the work in [21]; they do not, however, address lower bound issues.

4.1 Upper bounds

The next result allows comparisons both to the Gaussian and exponential tails.

Theorem 4.1. Fix α¾ 0 and β > 0. Assume that

(i) gZ(Z)¶ αZ + β , P-a.s.;

(ii) the law of Z has a density ρ.

Then, for all z > 0, we have

P(Z ¾ z)¶ exp

�
−

z2

2αz + 2β

�
and P(Z ¶−z)¶ exp

�
−

z2

2β

�
.

Proof : We follow the same line of reasoning as in [7, Theorem 1.5]. For any A > 0, define mA :

[0,+∞)→ R by mA(θ ) = E
�
eθ Z1{Z¶A}

�
. By Lebesgue differentiation theorem, we have

m′A(θ ) = E(Zeθ Z1{Z¶A}) for all θ ¾ 0.
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Therefore, we can write

m′A(θ ) =

∫ A

−∞

z eθz ρ(z)dz

= −eθA

∫ ∞

A

yρ(y)d y + θ

∫ A

−∞

eθz

�∫ ∞

z

yρ(y)d y

�
dz by integration by parts

¶ θ

∫ A

−∞

eθz

�∫ ∞

z

yρ(y)d y

�
dz since

∫∞
A

yρ(y)d y ¾ 0

= θ E
�

gZ(Z) e
θ Z 1{Z¶A}

�
,

where the last line follows from identity (3.17). Due to the assumption (i), we get

m′A(θ )¶ θ αm′A(θ ) + θ β mA(θ ),

that is, for any θ ∈ (0,1/α):

m′A(θ )¶
θβ

1− θα
mA(θ ). (4.28)

By integration and since mA(0) = P(Z ¶ A)¶ 1, this gives, for any θ ∈ (0,1/α):

mA(θ )¶ exp

 ∫ θ

0

βu

1−αu
du

!
¶ exp

�
βθ2

2(1− θα)

�
.

Using Fatou’s lemma (as A→∞) in the previous relation implies

E
�
eθ Z
�
¶ exp

�
βθ2

2(1− θα)

�

for all θ ∈ (0,1/α). Therefore, for all θ ∈ (0,1/α), we have

P(Z ¾ z) = P(eθ Z
¾ eθz)¶ e−θz E

�
eθ Z
�
¶ exp

�
βθ2

2(1− θα)
− θz

�
.

Choosing θ = z

αz+β
∈ (0,1/α) gives the desired bound for P(Z ¾ z).

Now, let us focus on the lower tail. Set Y =−Z . Observe that assumptions (i) and (ii) imply that Y

has a density and satisfies gY (Y )¶ −αY +β , P-a.s. For A> 0, define emA : [0,+∞)→ R by emA(θ ) =

E
�
eθY 1{Y¶A}

�
. Here, instead of (4.28), we get similarly that em′A(θ ) ¶

θβ

1+θα
emA(θ ) ¶ θβ emA(θ ) for

all θ ¾ 0. Therefore, we can use the same arguments as above in order to obtain, this time, firstly

that E
�
eθY
�
¶ e

βθ2

2 for all θ ¾ 0 and secondly that P(Y ¾ z) ¶ exp
�
− z2

2β

�
(choosing θ = z/β),

which is the desired bound for P(Z ¶ −z).
�

Remark 4.2. In Theorem 4.1, when α > 0, by the non-negativity of gZ (Z) , (i) automatically implies

that Z is bounded below by the non-random constant −β/α, and therefore the left hand tail P(Z ¶

−z) is zero for z ¶ −β/α. Therefore the upper bound on this tail in the above theorem is only

asymptotically of interest in the “sub-Gaussian” case where α= 0.
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We will now give an example of application of Theorem 4.1. Assume that B = (Bt , t ∈ [0, T]) is

a fractional Brownian motion with Hurst index H ∈ (0,1). For any choice of the parameter H, as

already mentioned in section 3.2.2, the Gaussian space generated by B can be identified with an

isonormal Gaussian process of the type X = {X (h) : h ∈ H}, where the real and separable Hilbert

space H is defined as follows: (i) denote by E the set of all R-valued step functions on [0, T], (ii)

define H as the Hilbert space obtained by closing E with respect to the scalar product

¬
1[0,t],1[0,s]

¶
H
= E(Bt Bs) =

1

2

�
t2H + s2H − |t − s|2H

�
.

In particular, with such a notation one has that Bt = X (1[0,t]).

Now, let Q be a C 1 function such that the Lebesgue measure of the set {u ∈ R : Q′(u) = 0} is zero,

and
��Q′ (u)

��¶ C |u| and Q (u)¾ cu2 for some positive constants c, C and all u ∈ R. Let

Z =

∫ 1

0

Q
�
Bs

�
ds− E



∫ 1

0

Q
�
Bs

�
ds


 .

Observe that Z ∈ D1,2, with DZ =
∫ 1

0
Q′(Bs)1[0,s]ds. Denoting B(u) = e−uB +

p
1− e−2uB′, and

Z (u) =
∫ 1

0
Q(B(u)s )ds − E

h∫ 1

0
Q(B(u)s )ds

i
, we first note that the Malliavin derivative of Z easily ac-

commodates the transformation from Z to Z (u). In the notation of formula (1.4), we simply have

ΦZ(Z
(u)) =

∫ 1

0

Q′(B(u)s )1[0,s]ds.

Thus, by Proposition 3.7, we calculate

〈DZ ,−DL−1Z〉H

=

∫ ∞

0

due−u

*∫ 1

0

Q′(Bs)1[0,s]ds; E′

 ∫ 1

0

Q′(B
(u)
t )1[0,t]d t

!+

H

=

∫ ∞

0

due−u

∫

[0,1]2
dsd tQ′(Bs)E

′
�

Q′(B
(u)
t )
�¬

1[0,s],1[0,t]

¶
H

=

∫ ∞

0

due−u

∫

[0,1]2
dsd tQ′(Bs)E

′
�

Q′(B
(u)
t )
�

E(BsBt).

We now estimate this expression from above using the fact that
��E
�
BsBt

��� ¶ sH tH and the upper
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bound on
��Q′
��:
〈DZ ,−DL−1Z〉H

¶ C2

∫ ∞

0

due−u

∫

[0,1]2
dsd tsH tH |Bs|E

′
�
|B
(u)
t |
�

= C2

∫ ∞

0

due−u

∫

[0,1]2
dsd tsH tH |Bs|E

′
�
|e−uBt +

p
1− e−2uB′t |

�

¶ C2

∫ ∞

0

due−u

∫

[0,1]2
dsd tsH tH |Bs|


e−u|Bt |+

r
2(1− e−2u)

π
tH




= C2

∫ ∞

0

due−u


e−u

 ∫ 1

0

|Bs|s
H ds

!2

+
1

2H + 1

r
2(1− e−2u)

π

∫ 1

0

|Bs|s
H ds




=
C2

2

 ∫ 1

0

|Bs|s
H ds

!2

+
C2

2H + 1

Ç
π

8

∫ 1

0

|Bs|s
H ds.

Now we wish to make Z appear inside the right-hand side above. Note first that, using Cauchy-

Schwarz’s inequality and thanks to the lower bound on Q,
 ∫ 1

0

|Bs|s
H ds

!2

¶
1

2H + 1

∫ 1

0

B2
s ds ¶

1

(2H + 1)c

∫ 1

0

Q(Bs)ds =
Z +µ

(2H + 1)c
,

where µ= E
h∫ 1

0
Q(Bs)ds

i
. By using |x |¶ x2+ 1

4
in order to bound

∫ 1

0
|Bs|s

H ds, we finally get that

〈DZ ,−DL−1Z〉H is less than

C2

(2H + 1)c

��
1

2
+

1

2H + 1

Ç
π

8

�
(Z +µ) +

c

4

Ç
π

8

�
,

so that gZ(Z) ¶ αZ + β , with α,β defined as in (1.8). Therefore, due to Theorem 4.1, the desired

conclusion (1.7) is proved, once we show that the law of Z has a density.

For that purpose, recall the so-called Bouleau-Hirsch criterion from [16, Theorem 2.1.3]: if Z ∈ D1,2

is such that ‖DZ‖H> 0 P-a.s., then the law of Z has a density. Here, we have

‖DZ‖2
H
=

∫

[0,1]2
Q′(Bs)Q

′(Bt)E(BsBt)dsd t,

from the computations performed above. We can express it as

‖DZ‖2
H
=

∫

[0,1]2
Q′(Bs)Q

′(Bt)Ê(B̂s B̂t)dsd t,= Ê

 ∫ 1

0

Q′(Bs)B̂sds

!2

,

where B̂ is a fractional Brownian motion of Hurst index H, independent of B, and Ê denotes the

expectation with respect to B̂. Then, ‖DZ‖2
H
= 0 implies that

∫ 1

0
Q′(Bs)B̂sds = 0 for almost all

the trajectories B̂, which implies that Q′(Bs) = 0 for all s ∈ [0,1], so that Q′(u) = 0 for all u in

the interval [mins∈[0,1] Bs,maxs∈[0,1] Bs], which is a contradiction with the fact that the Lebesgue

measure of the set {u ∈ R : Q′(u) = 0} is zero. Therefore, ‖DZ‖H> 0 P-a.s., and the law of Z has a

density according to the Bouleau-Hirsch criterion. The proof of (1.7) is concluded.
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4.2 Lower bounds

We now investigate a lower bound analogue of Theorem 4.1. Recall we still use the function gZ

defined by (1.2), for Z ∈ D1,2 with zero mean.

Theorem 4.3. Fix σmin,α > 0 and β > 1. Assume that

(i) gZ(Z)¾ σ
2
min, P-a.s.

The existence of the density ρ of the law of Z is thus ensured by Corollary 3.3. Also assume that

(ii) the function h(x) = x1+βρ (x) is decreasing on [α,+∞).

Then, for all z ¾ α, we have

P(Z ¾ z)¾
1

2

�
1−

1

β

�
E|Z |

1

z
exp

�
−

z2

2σ2
min

�
.

Alternately, instead of (ii), assume that there exists 0< α < 2 such that

(ii)’ lim supz→∞ z−α log gZ(z)<∞.

Then, for any 0< ǫ < 2, there exist K , z0 > 0 such that, for all z > z0,

P(Z ¾ z)¾ K exp

�
−

z2

(2− ǫ)σ2
min

�
.

Proof : First, let us relate the function ϕ(z) =
∫∞

z
yρ(y)d y to the tail of Z . By integration by parts,

we get

ϕ (z) = z P(Z ¾ z) +

∫ ∞

z

P(Z ¾ y)d y. (4.29)

If we assume (ii), since h is decreasing, for any y > z ¾ α we have
yρ(y)
zρ(z)
¶

�
z

y

�β
. Then we have,

for any z ¾ α (observe that ρ(z)> 0):

P(Z ¾ z) = zρ (z)

∫ ∞

z

1

y

yρ
�

y
�

zρ (z)
d y ¶ zρ (z) zβ

∫ ∞

z

d y

y1+β
=

zρ (z)

β
.

By putting that inequality into (4.29), we get

ϕ(z)¶ z P(Z ¾ z) +
1

β

∫ ∞

z

yρ(y)d y = z P(Z ¾ z) +
1

β
ϕ(z)

so that P(Z ¾ z)¾
�

1− 1

β

�
ϕ(z)

z
. Combined with (3.23), this gives the desired conclusion.
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Now assume (ii)′ instead. Here the proof needs to be modified. From the result of Corollary 3.3

and condition (i), we have

ρ(z)¾
E|Z |

2 gZ(z)
exp

�
−

z2

2σ2
min

�
.

Let Ψ(z) denote the unnormalized Gaussian tail
∫∞

z
exp

�
−

y2

2σ2
min

�
d y . We can write, using the

Cauchy-Schwarz inequality,

Ψ2(z) =



∫ ∞

z

exp

�
−

y2

2σ2
min

�p
gZ(y)

1
p

gZ(y)
d y




2

¶

∫ ∞

z

exp

�
−

y2

2σ2
min

�
gZ(y) d y ×

∫ ∞

z

exp

�
−

y2

2σ2
min

�
1

gZ(y)
d y

so that

P(Z ¾ z) =

∫ ∞

z

ρ
�

y
�

d y

¾
E |Z |

2

∫ ∞

z

e−y2/(2σ2
min)

1

gZ(y)
d y

¾
E |Z |

2

Ψ2 (z)
∫∞

z
e−y2/(2σ2

min)gZ

�
y
�

d y
.

Using the classical inequality
∫∞

z
e−y2/2d y ¾ z

1+z2 e−z2/2, we get

P(Z ¾ z)¾
E|Z |

2

σ4
min

z2

�
σ2

min
+ z2

�2

exp

�
− z2

σ2
min

�

∫∞
z

exp

�
−

y2

2σ2
min

�
gZ(y)d y

. (4.30)

Under condition (ii)′, we have that there exists c > 0 such that, for y large enough, gZ(y) ¶ ec yα

with 0< α < 2. We leave it to the reader to check that the conclusion now follows by an elementary

calculation from (4.30).
�

Remark 4.4. 1. Inequality (4.30) itself may be of independent interest, when the growth of gZ

can be controlled, but not as efficiently as in (ii)′.

2. Condition (ii) implies that Z has a moment of order greater than β . Therefore it can be

considered as a technical regularity and integrability condition. Condition (ii)′ may be easier

to satisfy in cases where a good handle on gZ exists. Yet the use of the Cauchy-Schwarz

inequality in the above proof means that conditions (ii)′ is presumably stronger than it needs

to be.

3. In general, one can see that deriving lower bounds on tails of random variables with little

upper bound control is a difficult task, deserving of further study.
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