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Abstract
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of a Bernoulli random matrix. It is done via an estimation of the log-Laplace transform and the
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1 Introduction

1.1 Subgraph-count statistics

Consider an Erdős-Rényi random graph with n vertices, where for all
� n

2

�

different pairs of vertices
the existence of an edge is decided by an independent Bernoulli experiment with probability p.
For each i ∈ {1, . . . ,

� n
2

�

}, let X i be the random variable determining if the edge ei is present, i.e.
P(X i = 1) = 1− P(X i = 0) = p(n) =: p. The following statistic counts the number of subgraphs
isomorphic to a fixed graph G with k edges and l vertices

W =
∑

1≤κ1<···<κk≤
� n

2

�

1{(eκ1
,...,eκk

)∼G}

 

k
∏

i=1

Xκi

!

.

Here (eκ1
, . . . , eκk

) denotes the graph with edges eκ1
, . . . , eκk

present and A ∼ G denotes the fact
that the subgraph A of the complete graph is isomorphic to G. We assume G to be a graph without
isolated vertices and to consist of l ≥ 3 vertices and k ≥ 2 edges. Let the constant a := aut(G)
denote the order of the automorphism group of G. The number of copies of G in Kn, the complete
graph with n vertices and

� n
2

�

edges, is given by
� n

l

�

l!/a and the expectation of W is equal to

E[W] =

� n
l

�

l!

a
pk = O (nl pk) .

It is easy to see that P(W > 0) = o(1) if p � n−l/k. Moreover, for the graph property that G is
a subgraph, the probability that a random graph possesses it jumps from 0 to 1 at the threshold
probability n−1/m(G), where

m(G) =max
�

eH

vH
: H ⊆ G, vH > 0

�

,

eH , vH denote the number of edges and vertices of H ⊆ G, respectively, see [JŁR00].

Limiting Poisson and normal distributions for subgraph counts were studied for probability functions
p = p(n). For G be an arbitrary graph, Ruciński proved in [Ruc88] that W is Poisson convergent if
and only if

npd(G) n→∞−→ 0 or nβ(G)p
n→∞−→ 0 .

Here d(G) denotes the density of the graph G and

β(G) :=max
�

vG − vH

eG − eH
: H ⊂ G

�

.

Consider

cn,p :=
�

n− 2

l − 2

�

2k

a
(l − 2)!

Ç

�n

2

�

p(1− p)pk−1 (1.1)

and

Z :=
W −E(W )

cn,p
=

∑

1≤κ1<···<κk≤
� n

2

� 1{(eκ1
,...,eκk

)∼G}

�

∏k
i=1 Xκi

− pk
�

�

n−2
l−2

�

2k
a
(l − 2)!

Æ

� n
2

�

p(1− p)pk−1
. (1.2)
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Z has asymptotic standard normal distribution, if npk−1 n→∞−→ ∞ and n2(1− p)
n→∞−→ ∞, see Nowicki,

Wierman, [NW88]. For G be an arbitrary graph with at least one edge, Ruciński proved in [Ruc88]
that W−E(W )p

V(W )
converges in distribution to a standard normal distribution if and only if

npm(G) n→∞−→ ∞ and n2(1− p)
n→∞−→ ∞ . (1.3)

Here and in the following V denotes the variance of the corresponding random variable. Ruciński
closed the book proving asymptotic normality in applying the method of moments. One may wonder
about the normalization (1.1) used in [NW88]. The subgraph count W is a sum of dependent
random variables, for which the exact calculation of the variance is tedious. In [NW88], the authors
approximated W by a projection of W , which is a sum of independent random variables. For this
sum the variance calculation is elementary, proving the denominator (1.1) in the definition of Z .
The asymptotic behaviour of the variance of W for any p = p(n) is summarized in Section 2 in
[Ruc88]. The method of martingale differences used by Catoni in [Cat03] enables on the conditions
np3(k− 1

2
) n→∞−→ ∞ and n2(1− p)

n→∞−→ ∞ to give an alternative proof of the central limit theorem, see
remark 4.2.

A common feature is to prove large and moderate deviations, namely, the asymptotic computation
of small probabilities on an exponential scale. Considering the moderate scale is the interest in the
transition from a result of convergence in distribution like a central limit theorem-scaling to the large
deviations scaling. Interesting enough proving that the subgraph count random variable W satisfies
a large or a moderate deviation principle is an unsolved problem up to now. In [CD09] Chatterjee
and Dey proved a large deviation principle for the triangle count statistic, but under the additional
assumption that p is fixed and p > 0.31, as well as similar results with fixed probability for general
subgraph counts. The main goal of this paper is to prove a moderate deviation principle for the
rescaled Z , filling a substantial gap in the literature on asymptotic subgraph count distributions, see
Theorem 1.1. Before we recall the definition of a moderate deviation principle and state our result,
let us remark, that exponentially small probabilities have been studied extensively in the literature.
A famous upper bound for lower tails was proven by Janson [Jan90], applying the FKG-inequality.
This inequality leads to good upper bounds for the probability of nonexistence W = 0. Upper bounds
for upper tails were derived by Vu [Vu01], Kim and Vu [KV04] and recently by Janson, Oleskiewicz
and Ruciński [JOR04] and in [JR04] by Janson and Ruciński. A comparison of seven techniques
proving bounds for the infamous upper tail can be found in [JR02]. In Theorem 1.3 we also obtain
upper bounds on the upper tail probabilities of W .

Let us recall the definition of the large deviation principle (LDP). A sequence of probability measures
{(µn), n ∈ N} on a topological space X equipped with a σ-field B is said to satisfy the LDP with
speed sn ↗ ∞ and good rate function I(·) if the level sets {x : I(x) ≤ α} are compact for all
α ∈ [0,∞) and for all Γ ∈B the lower bound

lim inf
n→∞

1

sn
logµn(Γ)≥− inf

x∈int(Γ)
I(x)

and the upper bound

limsup
n→∞

1

sn
logµn(Γ)≤− inf

x∈cl(Γ)
I(x)

hold. Here int(Γ) and cl(Γ) denote the interior and closure of Γ respectively. We say a sequence
of random variables satisfies the LDP when the sequence of measures induced by these variables
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satisfies the LDP. Formally the moderate deviation principle is nothing else but the LDP. However,
we will speak about the moderate deviation principle (MDP) for a sequence of random variables,
whenever the scaling of the corresponding random variables is between that of an ordinary Law of
Large Numbers and that of a Central Limit Theorem.

In the following, we state one of our main results, the moderate deviation principle for the rescaled
subgraph count statistic W when p is fixed, and when the sequence p(n) converges to 0 or 1 suffi-
ciently slow.

THEOREM 1.1. Let G be a fixed graph without isolated vertices, consisting of k ≥ 2 edges and l ≥ 3
vertices. The sequence (βn)n is assumed to be increasing with

nl−1pk−1
p

p(1− p)� βn� nl
�

pk−1
p

p(1− p)
�4

. (1.4)

Then the sequence (Sn)n of subgraph count statistics

S := Sn :=
1

βn

∑

1≤κ1<···<κk≤
� n

2

�

1{(eκ1
,...,eκk

)∼G}

 

k
∏

i=1

Xκi
− pk

!

satisfies the moderate deviation principle with speed

sn =

�

2k
a
(l − 2)!

�2
β2

n

c2
n,p

=
1

�

n−2
l−2

�2 � n
2

�

1

p2k−1(1− p)
β2

n (1.5)

and rate function I defined by

I(x) =
x2

2
�2k

a
(l − 2)!

�2 . (1.6)

REMARKS 1.2. 1. Using
�

n−2
l−2

�2 � n
2

�

≤ n2(l−1), we obtain sn ≥
�

βn

nl−1pk−1
p

p(1−p)

�2
; therefore the

condition
nl−1pk−1

p

p(1− p)� βn

implies that sn is growing to infinity as n→∞ and hence is a speed.

2. If we choose βn such that βn � nl
�

pk−1
p

p(1− p)
�4

and using the fact that sn is a speed
implies that

n2p6k−3(1− p)3
n→∞−→ ∞ . (1.7)

This is a necessary but not a sufficient condition on (1.4).

Additionally the approach to prove Theorem 1.1 yields a central limit theorem for Z = W−EW
cn,p

, see

remark 4.2, and a concentration inequality for W −EW :

THEOREM 1.3. Let G be a fixed graph without isolated vertices, consisting of k ≥ 2 edges and l ≥ 3
vertices and let W be the number of copies of G. Then for every ε > 0

P(W −EW ≥ εEW )≤ exp

�

−
const.ε2n2l p2k

n2l−2p2k−1(1− p) + const.εn2l−2p1−k(1− p)−1

�

,

where const. denote constants depending on l and k only.
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We will give a proof of Theorem 1.1 and Theorem 1.3 in the end of section 4.

REMARK 1.4. Let us consider the example of counting triangles: l = k = 3, a = 6. The necessary
condition (1.7) of the moderate deviation principle turns to

n2p15 −→∞ and n2(1− p)3 −→∞ as n→∞ .

This can be compared to the expectedly weaker necessary and sufficient condition for the central
limit theorem for Z in [Ruc88]:

np −→∞ and n2(1− p)−→∞ as n→∞.

The concentration inequality in Theorem 1.3 for triangles turns to

P(W −EW ≥ εEW )≤ exp

�

−
const.ε2n6p6

n4p5(1− p) + const.εn4p−2(1− p)−1

�

∀ε > 0 .

Kim and Vu showed in [KV04] for all 0< ε ≤ 0.1 and for p ≥ 1
n

log n, that

P
�

W −EW
εp3n3 ≥ 1

�

≤ e−Θ(p
2n2) .

As we will see in the proof of Theorem 1.3, the bound for d(n) in (1.12) leads to an additional term
of order n2p8. Hence in general our bounds are not optimal. Optimal bounds were obtained only for
some subgraphs. Our concentration inequality can be compared with the bounds in [JR02], which
we leave to the reader.

1.2 Bernoulli random matrices

Theorem 1.1 can be reformulated as the moderate deviation principle for traces of a power of a
Bernoulli random matrix.

THEOREM 1.5. Let X = (X i j)i, j be a symmetric n× n-matrix of independent real-valued random vari-
ables, Bernoulli-distributed with probability

P(X i j = 1) = 1− P(X i j = 0) = p(n), i < j

and P(X ii = 0) = 1, i = 1, . . . , n. Consider for any fixed k ≥ 3 the trace of the matrix to the power k

Tr(X k) =
n
∑

i1,...,ik=1

X i1 i2 X i2 i3 · · ·X ik i1 . (1.8)

Note that Tr(X k) = 2 W, for W counting circles of length k in a random graph. We obtain that the
sequence (Tn)n with

Tn :=
Tr(X k)−E[Tr(X k)]

2βn
(1.9)

satisfies the moderate deviation principle for any βn satisfying (1.4) with l = k and with rate function
(1.6) with l = k and a = 2k:

I(x) =
x2

2 ((k− 2)!)2
. (1.10)
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REMARK 1.6. The following is a famous open problem in random matrix theory: Consider X to be a
symmetric n×n matrix with entries X i j (i ≤ j) being i.i.d., satisfying some exponential integrability.
The question is to prove for any fixed k ≥ 3 the LDP for

1

nk
Tr(X k)

and the MDP for
1

βn(k)
�

Tr(X k)−E[Tr(X k)]
�

(1.11)

for a properly chosen sequence βn(k). For k = 1 the LDP in question immediately follows from
Cramér’s theorem (see [DZ98, Theorem 2.2.3]), since

1

n
Tr(X ) =

1

n

n
∑

i=1

X ii .

For k = 2, notice that
1

n2 Tr(X 2) =
2

n2

∑

i< j

X 2
i j +

1

n2

n
∑

i=1

X 2
ii =: An+ Bn.

By Cramér’s theorem we know that (Ãn)n with Ãn := 1
(n2)
∑

i< j X 2
i j satisfies the LDP, and by Cheby-

chev’s inequality we obtain for any ε > 0

limsup
n→∞

1

n
log P(|Bn| ≥ ε) =−∞.

Hence (An)n and ( 1
n2 Tr(X 2))n are exponentially equivalent (see [DZ98, Definition 4.2.10]). More-

over (An)n and (Ãn)n are exponentially equivalent, since Chebychev’s inequality leads to

limsup
n→∞

1

n
log P(|An− Ãn|> ε) = limsup

n→∞

1

n
log P

�

|
∑

i< j

X 2
i j| ≥ ε

n2(n− 1)
2

�

=−∞.

Applying Theorem 4.2.13 in [DZ98], we obtain the LDP for (1/n2Tr(X 2))n under exponential in-
tegrability. For k ≥ 3, proving the LDP for (1/nkTr(X k))n is open, even in the Bernoulli case. For
Gaussian entries X i j with mean 0 and variance 1/n, the LDP for the sequence of empirical measures
of the corresponding eigenvalues λ1, . . . ,λn, e.g.

1

n

n
∑

i=1

δλi
,

has been established by Ben Arous and Guionnet in [BAG97]. Although one has the representation

1

nk
Tr(X k) =

1

nk/2
Tr
�

X
p

n

�k

=
1

nk/2

n
∑

i=1

λk
i ,

the LDP cannot be deduced from the LDP of the empirical measure by the contraction principle
[DZ98, Theorem 4.2.1], because x → xk is not bounded in this case.
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REMARK 1.7. Theorem 1.5 told us that in the case of Bernoulli random variables X i j , the MDP for
(1.11) holds for any k ≥ 3. For k = 1 and k = 2, the MDP for (1.11) holds for arbitrary i.i.d. entries
X i j satisfying some exponential integrability: For k = 1 we choose βn(1) := an with an any sequence

with limn→∞

p
n

an
= 0 and limn→∞

n
an
=∞. For

1

an

n
∑

i=1

(X ii −E(X ii))

the MDP holds with rate x2/(2V(X11)) and speed a2
n/n, see Theorem 3.7.1 in [DZ98]. In the case

of Bernoulli random variables, we choose βn(1) = an with (an)n any sequence with

lim
n→∞

p

np(1− p)

an
= 0 and lim

n→∞

n
p

p(1− p)

an
=∞

and p = p(n). Now ( 1
an

∑n
i=1(X ii −E(X ii)))n satisfies the MDP with rate function x2/2 and speed

a2
n

np(n)(1− p(n))
.

Hence, in this case p(n) has to fulfill the condition n2p(n)(1− p(n))→∞.

For k = 2, we choose βn(2) = an with an being any sequence with limn→∞
n
an
= 0 and limn→∞

n2

an
=

∞. Applying Chebychev’s inequality and exponential equivalence arguments similar as in Remark
1.6, we obtain the MDP for

1

an

n
∑

i, j=1

(X 2
i j −E(X

2
i j))

with rate x2/(2V(X11)) and speed a2
n/n

2.The case of Bernoulli random variables can be obtained in
a similar way.

REMARK 1.8. For k ≥ 3 we obtain the MDP with βn = βn(k) such that

nk−1 p(n)k−1
p

p(n)(1− p(n))� βn� nk�p(n)k−1
p

p(n)(1− p(n))
�4.

Considering a fixed p, the range of βn is what we should expect: nk−1 � βn � nk. But we also
obtain the MDP for functions p(n). In random matrix theory, Wigner 1959 analysed Bernoulli
random matrices in Nuclear Physics. Interestingly enough, the moderate deviation principle for
the empirical mean of the eigenvalues of a random matrix is known only for symmetric matrices
with Gaussian entries and for non-centered Gaussian entries, respectively, see [DGZ03]. The proofs
depend on the existence of an explicit formula for the joint distribution of the eigenvalues or on
corresponding matrix-valued stochastic processes.

1.3 Symmetric Statistics

On the way of proving Theorem 1.1, we will apply a nice result of Catoni [Cat03, Theorem 1.1].
Doing so, we recognized, that Catoni’s approach lead us to a general approach proving the moderate
deviation principle for a rich class of statistics, which -without loss of generality- can be assumed
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to be symmetric statistics. Let us make this more precise. In [Cat03], non-asymptotic bounds of
the log-Laplace transform of a function f of k(n) random variables X := (X1, . . . , Xk(n)) lead to
concentration inequalities. These inequalities can be obtained for independent random variables or
for Markov chains. It is assumed in [Cat03] that the partial finite differences of order one and two of
f are suitably bounded. The line of proof is a combination of a martingale difference approach and
a Gibbs measure philosophy.

Let (Ω,A ) be the product of measurable spaces ⊗k(n)
i=1 (Xi ,Bi) and P = ⊗k(n)

i=1 µi be a product proba-
bility measure on (Ω,A ). Let X1, . . . , Xk(n) take its values in (Ω,A ) and assume that (X1, . . . , Xk(n))
is the canonical process. Let (Y1, . . . , Yk(n)) be an independent copy of X := (X1, . . . , Xk(n)) such that
Yi is distributed according to µi , i = 1, . . . , k(n). The function f : Ω→ R is assumed to be bounded
and measurable.

Let ∆i f (xk(n)
1 ; yi) denote the partial difference of order one of f defined by

∆i f (xk(n)
1 ; yi) := f (x1, . . . , xk(n))− f (x1, . . . , x i−1, yi , x i+1, . . . , xk(n)) ,

where xk(n)
1 := (x1, . . . , xk(n)) ∈ Ω and yi ∈ Xi . Analogously we define for j < i and y j ∈ X j the

partial difference of order two

∆i∆ j f (xk(n)
1 ; y j , yi) :=∆i f (xk(n)

1 ; yi)− f (x1, . . . , x j−1, y j , x j+1, . . . , xk(n))

+ f (x1, . . . , x j−1, y j , x j+1, . . . , x i−1, yi , x i+1, . . . , xk(n)) .

Now we can state our main theorem. If the random variables are independent and if the partial
finite differences of the first and second order of f are suitably bounded, then f , properly rescaled,
satisfies the MDP:

THEOREM 1.9. In the above setting assume that the random variables in X are independent. Define
d(n) by

d(n) :=
k(n)
∑

i=1

|∆i f (X k(n)
1 ; Yi)|2







1

3
|∆i f (X k(n)

1 ; Yi)|+
1

4

i−1
∑

j=1

|∆i∆ j f (X k(n)
1 ; Yj , Yi)|






. (1.12)

Note that here and in the following | · | of a random term denotes the maximal value of the term for all
ω ∈ Ω. Moreover let there exist two sequences (sn)n and (tn)n such that

1.
s2
n

t3
n

d(n)
n→∞−→ 0 and

2.
sn

t2
n
V f (X )

n→∞−→ C > 0 for the variance of f .

Then the sequence of random variables
�

f (X )−E
�

f (X )
�

tn

�

n

satisfies the moderate deviation principle with speed sn and rate function x2

2C
.
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In Section 2 we are going to prove Theorem 1.9 via the Gärtner-Ellis theorem. In [Cat03] an
inequality has been proved which allows to relate the logarithm of a Laplace transform with the
expectation and the variance of the observed random variable. Catoni proves a similar result for the
logarithm of a Laplace transform of random variables with Markovian dependence. One can find a
different d(n) in [Cat03, Theorem 3.1]. To simplify notations we did not generalize Theorem 1.9,
but the proof can be adopted immediately. In Section 3 we obtain moderate deviations for several
symmetric statistics, including the sample mean and U-statistics with independent and Markovian
entries. In Section 4 we proof Theorem 1.1 and 1.3.

2 Moderate Deviations via Laplace Transforms

Theorem 1.9 is an application of the following theorem:

THEOREM 2.1. (Catoni, 2003)
In the setting of Theorem 1.9, assuming that the random variables in X are independent, one obtains
for all s ∈ R+,

�

�

�logEexp
�

s f (X )
�

− sE
�

f (X )
�

−
s2

2
V f (X )

�

�

�≤ s3d(n) (2.13)

=
k(n)
∑

i=1

s3

3
|∆i f (X k(n)

1 ; Yi)|3+
k(n)
∑

i=1

i−1
∑

j=1

s3

4
|∆i f (X k(n)

1 ; Yi)|2|∆i∆ j f (X k(n)
1 ; Yj , Yi)| .

Proof of Theorem 2.1. We decompose f (X ) into martingale differences

Fi( f (X )) = E
�

f (X )
�

�X1, . . . , X i
�

−E
�

f (X )
�

�X1, . . . , X i−1
�

, for all i ∈ {1, . . . , k(n)} .

The variance can be represented by V f (X ) =
k(n)
∑

i=1

E
h

�

Fi( f (X ))
�2
i

.

Catoni uses the triangle inequality and compares the two terms logEes f (X )−sE[ f (X )] and s2

2
V f (X ) to

the above representation of the variance with respect to the Gibbs measure with density

dPW :=
eW

E[eW ]
dP,

where W is a bounded measurable function of (X1, . . . , Xk(n)). We denote an expectation due to this
Gibbs measure by EW , e.g.

EW [X ] :=
E[X exp (W )]
E[exp (W )]

.

On the one hand Catoni bounds the difference

�

�

�logEes f (X )−sE[ f (X )]−
s2

2

k(n)
∑

i=1

E
sE
�

f (X )−E[ f (X )]
�

�X1,...,X i−1

�

��

Fi
�

f (X )
��2�

�

�

�
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via partial integration:

�

�

�logEes
�

f (X )−E[ f (X )]
�

−
s2

2

k(n)
∑

i=1

E
sE
�

f (X )−E[ f (X )]
�

�X1,...,X i−1

�

�

F2
i ( f (X ))

�

�

�

�

=
�

�

�

k(n)
∑

i=1

∫ s

0

(s−α)2

2
M3

sE
�

f (X )−E[ f (X )]
�

�X1,...,X i−1

�

+αFi( f (X ))
[Fi( f (X ))]dα

�

�

� ,

whereM3
U[X ] := EU

��

X−EU[X ]
�3� for a bounded measurable function U of (X1, . . . , Xk(n)). More-

over

�

�

�

k(n)
∑

i=1

∫ s

0

(s−α)2

2
M3

sE
�

f (X )−E[ f (X )]
�

�X1,...,X i−1

�

+αFi( f (X ))
[Fi( f (X ))]dα

�

�

�

≤
�

�

�

k(n)
∑

i=1

||Fi( f (X ))||3∞

∫ s

0

(s−α)2dα
�

�

�≤
k(n)
∑

i=1

s3

3
|∆i f (X k(n)

1 ; Yi)|3 .

On the other hand he uses the following calculation:

�

�

�

s2

2

k(n)
∑

i=1

E
sE
�

f (X )−E[ f (X )]
�

�X1,...,X i−1

�

��

Fi( f (X ))
�2�−

s2

2
V f (X )

�

�

�

=
�

�

�

s2

2

k(n)
∑

i=1

E
sE
�

f (X )−E[ f (X )]
�

�X1,...,X i−1

�

��

Fi( f (X ))
�2�−

s2

2

k(n)
∑

i=1

E
��

Fi( f (X ))
�2�
�

�

�

=
s2

2

k(n)
∑

i=1

i−1
∑

j=1

E
sE
�

f (X )−E[ f (X )]
�

�X1,...,X i−1

�

h

F j

�

�

Fi( f (X ))
�2
�i

≤
s2

2

k(n)
∑

i=1

i−1
∑

j=1

∫ s

0

q

EG j

αG j,i−1
[F j
�

F2
i ( f (X ))

�2] EG j

αG j,i−1
[W 2]dα

applying the Cauchy-Schwartz inequality and the notation

EG j[·] := E[·|X1, . . . , X j−1, X j+1, . . . , Xk(n)] and

W = G j,i−1−E
G j

αG j,i−1
[G j,i−1],

where G j,i−1 = E
�

f (X )
�

�X1, . . . , X i−1
�

−EG j

h

E
�

f (X )
�

�X1, . . . , X i−1
�

i

.

As you can see in [Cat03] F j
�

F2
i ( f (X ))

�2 and W can be estimated in terms of ∆i f (X ) and
∆i∆ j f (X ), independently of the variable of integration α. This leads to the inequality stated in
Theorem 2.1. �

Proof of Theorem 1.9. To use the Gärtner-Ellis theorem (see [DZ98, Theorem2.3.6]) we have to
calculate the limit of

1

sn
logEexp

�

λsn
f (X )−E[ f (X )]

tn

�

=
1

sn

�

logEexp
�

λsn

tn
f (X )

�

−
λsn

tn
E[ f (X )]

�

(2.14)
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for λ ∈ R. We apply Theorem 2.1 for s =
λsn

tn
and λ > 0. The right hand side of the inequality

(2.13) converges to zero for large n:

1

sn
s3d(n) = λ3 s2

n

t3
n

d(n)
n→∞−→ 0 (2.15)

as assumed in condition (1). Applying (2.13) this leads to the limit

Λ(λ) := lim
n→∞

1

sn
logEexp

�

λsn
f (X )−E[ f (X )]

tn

�

= lim
n→∞

1

sn

λ2s2
n

2t2
n
V f (X ) =

λ2

2
C , (2.16)

where the last equality follows from condition (2). Λ is finite and differentiable. The same calcu-
lation is true for − f and consequently (2.16) holds for all λ ∈ R. Hence we are able to apply the

Gärtner-Ellis theorem. This proves the moderate deviation principle of
�

f (X )−E[ f (X )]
tn

�

n
with speed

sn and rate function

I(x) = sup
λ∈R

¨

λx −
λ2

2
C

«

=
x2

2C
.

�

3 Moderate Deviations for Non-degenerate U-statistics

In this section we show three applications of Theorem 1.9. We start with the simplest case:

3.1 sample mean

Let X1, . . . , Xn be independent and identically distributed random variables with values in a compact
set [−r, r], r > 0 fix, and positive variance as well as Y1, . . . , Yn independent copies. To apply
Theorem 1.9 for f (X ) = 1p

n

∑n
m=1 Xm the partial differences of f have to tend to zero fast enough

for n to infinity:

|∆i f (X n
1 ; Yi)|=

1
p

n
|X i − Yi| ≤

2r
p

n
(3.17)

∆i∆ j f (X n
1 ; Yj , Yi) = 0 (3.18)

Let an be a sequence with limn→∞

p
n

an
= 0 and limn→∞

n
an
= ∞. For tn =

anp
n

and sn =
a2

n
n

the
conditions of Theorem 1.9 are satisfied:

1.
s2
n

t3
n

d(n)≤
anp

n

4r2

n

n
∑

m=1

2r

3
p

n
=

an

n

8r3

3
. Because d(n) is positive this implies lim

n→∞

s2
n

t3
n

d(n) = 0.

2.
sn

t2
n
V f (X ) = V

 

1
p

n

n
∑

m=1

Xm

!

= V(X1).
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The application of Theorem 1.9 proves the MDP for
1

an

 

n
∑

m=1

Xm− nEX1

!

n

with speed sn and rate

function I(x) = x2

2VX1
. This result is well known, see for example [DZ98], Theorem 3.7.1, and

references therein. The MDP can be proved under local exponential moment conditions on X1:
E(exp(λX1)) < ∞ for a λ > 0. In [Cat03], the bounds of the log-Laplace transformation are
obtained under exponential moment conditions. Applying this result, we would be able to obtain
the MDP under exponential moment conditions, but this is not the focus of this paper.

3.2 non-degenerate U-statistics with independent entries

Let X1, . . . , Xn be independent and identically distributed random variables with values in a measur-
able space X . For a measurable and symmetric function h :X m→ R we define

Un(h) :=
1
� n

m

�

∑

1≤i1<···<im≤n

h(X i1 , . . . , X im) ,

where symmetric means invariant under all permutation of its arguments. Un(h) is called a U-
statistic with kernel h and degree m.

Define the conditional expectation for c = 1, . . . , m by

hc(x1, . . . , xc) := E
�

h(x1, . . . , xc , X c+1, . . . , Xm)
�

= E
�

h(X1, . . . , Xm)
�

�X1 = x1, . . . , X c = xc
�

and the variances by σ2
c := V

�

hc(X1, . . . , X c)
�

. A U-statistic is called non-degenerate if σ2
1 > 0.

By the Hoeffding-decomposition (see for example [Lee90]), we know that for every symmetric
function h, the U-statistic can be decomposed into a sum of degenerate U-statistics of different
orders. In the degenerate case the linear term of this decomposition disappears. Eichelsbacher and
Schmock showed the MDP for non-degenerate U-statistics in [ES03]; the proof used the fact that
the linear term in the Hoeffding-decomposition is leading in the non-degenerate case. In this article
the observed U-statistic is assumed to be of the latter case.

We show the MDP for appropriate scaled U-statistics without applying Hoeffding’s decomposition.
The scaled U-statistic f :=

p
nUn(h) with bounded kernel h and degree 2 fulfils the inequality:

∆k f (xn
1 ; yk) =

2
p

n

n(n− 1)

�
∑

1≤i< j≤n

h(x i , x j)−
∑

1≤i< j≤n
i, j 6=k

h(x i , x j)−
k−1
∑

i=1

h(x i , yk)

−
n
∑

j=k+1

h(yk, x j)
�

=
2

p
n(n− 1)







k−1
∑

i=1

h(x i , xk) +
n
∑

j=k+1

h(xk, x j)−
k−1
∑

i=1

h(x i , yk)−
n
∑

j=k+1

h(yk, x j)







≤
4||h||∞p

n

2647



for k = 1, . . . , n. Analogously one can write down all summations of the kernel h for
∆m∆k f (xn

1 ; yk, ym). Most terms add up to zero and we get:

∆m∆k f (xn
1 ; yk, ym) =

2
�

h(xk, xm)− h(yk, xm)− h(xk, ym) + h(yk, ym)
�

p
n(n− 1)

≤
2

p
n(n− 1)

4||h||∞ ≤
16||h||∞

n3/2
.

Let an be a sequence with limn→∞

p
n

an
= 0 and limn→∞

n
an
=∞. The aim is the MDP for a real random

variable of the kind n
an

Un(h) and the speed sn := a2
n

n
. To apply Theorem 1.9 for f (X ) =

p
nUn(h)(X ),

sn as above and tn := anp
n
, we obtain

1.
s2
n

t3
n

d(n) ≤
anp

n

�

4||h||3∞
3
p

n
+

n− 1

n3/2
8||h||3∞

�

. The right hand side converges to 0, because

limn→∞ an/n= 0.

2.
sn

t2
n
V f (X ) =

a2
n

n

n

a2
n
V
�p

nUn(h)(X )
� n→∞−→ 4σ2

1, see Theorem 3 in [Lee90, chapter 1.3].

The non-degeneracy of Un(h) implies that 4σ2
1 > 0.

The application of Theorem 1.9 proves:

THEOREM 3.1. Let (an)n ∈ (0,∞)N be a sequence with limn→∞

p
n

an
= 0 and limn→∞

n
an
= ∞. Then

the sequence of non-degenerate and centered U-statistics
� n

an
Un(h)

�

n with a real-valued, symmetric and

bounded kernel function h satisfies the MDP with speed sn := a2
n

n
and good rate function

I(x) = sup
λ∈R
{λx − 2λ2σ2

1}=
x2

8σ2
1

.

REMARK 3.2. Theorem 3.1 holds, if the kernel function h depends on i and j, e.g. the U-statistic is
of the form 1

� n
2

�

∑

1≤i< j≤n hi, j(X i , X j). One can see this in the estimation of ∆i f (X ) and ∆i∆ j f (X ).

This is an improvement of the result in [ES03].

REMARK 3.3. We considered U-statistics with degree 2. For degree m > 2 we get the following
estimation for the partial differences of

f (X ) :=
1

p
n
� n

m

�

∑

1≤i1<···<im≤n

h(X i1 , . . . , X im) :

∆i f (X )≤
p

n
1
� n

m

�

�

n− 1

m− 1

�

2||h||∞ =
2m
p

n
||h||∞

∆i∆ j f (X )≤
p

n
1
� n

m

�

�

n− 2

m− 2

�

4||h||∞ =
4m(m− 1)
p

n(n− 1)
||h||∞

and Theorem 1.9 can be applied as before.
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Theorem 3.1 is proved in [ES03] in a more general context. Eichelsbacher and Schmock showed the
moderate deviation principle for degenerate and non-degenerate U-statistics with a kernel function
h, which is bounded or satisfies exponential moment conditions (see also [Eic98; Eic01]).

Example 1: Consider the sample variance UVn , which is a U-statistic of degree 2 with kernel
h(x1, x2) =

1
2
(x1 − x2)2. Let the random variables X i , i = 1, . . . , n, be restricted to take values in

a compact interval. A simple calculation shows

σ2
1 = V

�

h1(X1)
�

=
1

4
V
�

(X1−EX1)
2�=

1

4

�

E[(X1−EX1)
4]− (VX1)

2
�

.

The U-statistic is non-degenerate, if the condition E[(X1 − EX1)4] > (VX1)2 is satisfied. Then
�

n
an(n−1)

∑n
i=1(X i − X̄ )2

�

n
satisfies the MDP with speed

a2
n

n
and good rate function

IV(x) =
x2

8σ2
1

=
x2

2
�

E[(X1−EX1)4]− (VX1)2
� .

In the case of independent Bernoulli random variables with P(X1 = 1) = 1 − P(X1 = 0) = p,
0< p < 1, UVn is a non-degenerate U-statistic for p 6= 1

2
and the corresponding rate function is given

by:

IVbernoulli(x) =
x2

2p(1− p)
�

1− 4p(1− p)
� .

Example 2: The sample second moment is defined by the kernel function h(x1, x2) = x1 x2. This leads
to

σ2
1 = V

�

h1(X1)
�

= V
�

X1EX1
�

=
�

EX1
�2VX1 .

The condition σ2
1 > 0 is satisfied, if the expectation and the variance of the observed random

variables are unequal to zero. The values of the random variables have to be in a compact interval

as in the example above. Under this conditions n
an

∑

1≤i< j≤n X iX j satisfies the MDP with speed
a2

n
n

and good rate function

I sec(x) =
x2

8σ2
1

=
x2

8
�

EX1
�2VX1

.

For independent Bernoulli random variables the rate function for all 0< p < 1 is:

I sec
bernoulli(x) =

x2

8p3(1− p)
.

Example 3: Wilcoxon one sample statistic Let X1, . . . , Xn be real valued, independent and identically
distributed random variables with absolute continuous distribution function symmetric in zero. We
prove the MDP for -properly rescaled-

Wn =
∑

1≤i< j≤n

1{X i+X j>0} =
�n

2

�

Un(h)

defining h(x1, x2) := 1{x1+x2>0} for all x1, x2 ∈ R. Under these assumptions one can calculate
σ2

1 = Cov
�

h(X1, X2), h(X2, X3)
�

= 1
12

. Applying Theorem 3.1 as before we proved the MDP for the

Wilcoxon one sample statistic 1
(n−1)an

�

Wn−
1
2

� n
2

��

with speed
a2

n
n

and good rate function IW (x) =
3
2

x2.
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3.3 non-degenerate U-statistics with Markovian entries

The moderate deviation principle in Theorem 1.9 is stated for independent random variables. Catoni
showed in [Cat03], that the estimation of the logarithm of the Laplace transform can be generalized
for Markov chains via a coupled process. In the following one can see, that analogously to the proof
of Theorem 1.9 these results yield the moderate deviation principle.

In this section we use the notation introduced in [Cat03], Chapter 3.

Let us assume that (Xk)k∈N is a Markov chain such that for X := (X1, . . . , Xn) the following inequali-
ties hold

P
�

τi > i+ k
�

�Gi , X i
�

≤ Aρk ∀k ∈ N a.s. (3.19)

P
�

τi > i+ k
�

�Fn,
i

Y i
�

≤ Aρk ∀k ∈ N a.s. (3.20)

for some positive constants A and ρ < 1. Here
i

Y := (
i

Y 1, . . . ,
i

Y n), i = 1, . . . , n, are n coupled

stochastic processes satisfying for any i that
i

Y is equal in distribution to X . For the list of the
properties of these coupled processes, see page 14 in [Cat03]. Moreover, the σ-algebra Gi in (3.19)

is generated by
i

Y , the σ-algebra Fn in (3.20) is generated by (X1, . . . , Xn). Finally the coupling
stopping times τi are defined as

τi = inf{k ≥ i|
i

Y k = Xk }.

Now we can state our result:

THEOREM 3.4. Let us assume that (Xk)k∈N is a Markov chain such that for X := (X1, . . . , Xn) (3.19)
and (3.20) hold true. Let Un(h)(X ) be a non-degenerate U-statistic with bounded kernel function h and
limn→∞V

�p
nUn(h)(X )

�

<∞. Then for every sequence an, where

lim
n→∞

an

n
= 0 and lim

n→∞

n

a2
n
= 0 ,

the sequence
� n

an
Un(h)(X )

�

n satisfies the moderate deviation principle with speed sn =
a2

n
n

and rate
function I given by

I(x) := sup
λ∈R

¨

λx −
λ2

2
lim

n→∞
V
�p

nUn(h)(X )
�

«

.

Proof. As for the independent case we define f (X ) :=
p

nUn(h)(X1, . . . , Xn). Corollary 3.1 of [Cat03]
states, that in the above situation the inequality

�

�

�logEexp
�

s f (X )
�

− sE
�

f (X )
�

−
s2

2
V f (X )

�

�

�

≤
s3

p
n

BCA3

(1−ρ)3

�

ρ log (ρ−1)
2AB

−
s
p

n

�−1

+

+
s3

p
n

 

B3A3

3(1−ρ)3
+

4B2A3

(1−ρ)3

�

ρ log (ρ−1)
2AB

−
s
p

n

�−1

+

!
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holds for some constants B and C. This is the situation of Theorem 1.9 except that in this case d(n)
is defined by

1
p

n

BCA3

(1−ρ)3

�

ρ log (ρ−1)
2AB

−
s
p

n

�−1

+

+
1
p

n

 

B3A3

3(1−ρ)3
+

4B2A3

(1−ρ)3

�

ρ log (ρ−1)
2AB

−
s
p

n

�−1

+

!

.

This expression depends on s. We apply the adapted Theorem 1.9 for sn =
a2

n
n

, tn := anp
n

and s := λ anp
n

as before.

Because of sp
n
= λ an

n

n→∞−→ 0, the assumptions of Theorem 1.9 are satisfied:

1.

s2
n

t3
n

d(n) =
an

n

BCA3

(1−ρ)3

�

ρ log (ρ−1)
2AB

−
s
p

n

�−1

+

+
an

n

 

B3A3

3(1−ρ)3
+

4B2A3

(1−ρ)3

�

ρ log (ρ−1)
2AB

−
s
p

n

�−1

+

!

n→∞−→ 0 .

2. sn
t2
n
V f (X ) = V

�p
nUn(h)(X )

�

<∞ as assumed.

Therefore we can use the Gärtner-Ellis theorem to prove the moderate deviation principle for
( n

an
Un(h)(X ))n. �

COROLLARY 3.5. Let (Xk)k∈N be a strictly stationary, aperiodic and irreducible Markov chain with finite
state space and Un(h)(X ) be a non-degenerate U-statistic based on a bounded kernel h of degree two.
Then ( n

an
Un(h)(X ))n satisfies the MDP with speed and rate function as in Theorem 3.4.

Proof. The Markov chain is strong mixing and the absolute regularity coefficient β(n) converges to
0 at least exponentially fast as n tends to infinity, see [Bra05], Theorem 3.7(c). Hence the equations
(3.19) and (3.20) are satisfied and Theorem 3.4 can be applied. The limit of the variance of

p
nUn(h)

is bounded, see [Lee90], 2.4.2 Theorem 1, which proves the MDP for this example. �

For Doeblin recurrent and aperiodic Markov chains the MDP for additive functionals of a Markov
process is proved in [Wu95]. In fact Wu proves the MDP under the condition that 1 is an isolated
and simple eigenvalue of the transition probability kernel satisfying that it is the only eigenvalue
with modulus 1. For a continuous spectrum of the transition probability kernel Delyon, Juditsky and
Lipster present in [DJL06] a method for objects of the form

1

nα

n
∑

i=1

H(X i−1),
1

2
< α < 1, n≥ 1,

where (X i)i≥0 is a homogeneous ergodic Markov chain and the vector-valued function H satisfies a
Lipschitz continuity. To the best of our knowledge, we proved the first MDP for a U-statistic with
Markovian entries.
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4 Proof of Theorem 1.1 and 1.3

LEMMA 4.1. The standardized subgraph count statistic Z satisfies the inequalities

∆i Z ≤
1

Æ

� n
2

�

p(1−p)pk−1
(4.21)

∑

� n
2

�

i=1

∑i−1
j=1∆i∆ j Z ≤

1
cn,p

� n
2

�

�

n−2
l−2

�

(l − 2)2(l − 2)! (4.22)

Proof of Lemma 4.1. As the first step we will find an upper bound for

∆i Z = Z −
1

cn,p

∑

1≤κ1<···<κk≤
� n

2

�

1{(eκ1
,...,eκk

)∼G}







k
∏

j=1

X i,κ j
− pk






,

where (X i,1, X i,2, . . . , X i,
� n

2

�) = (X1, . . . , X i−1, Yi , X i+1, . . . , X� n
2

�) and Yi is an independent copy of X i ,

i ∈ {1, . . . ,
� n

2

�

}. The difference consists only of those summands which contain the random variable
X i or Yi . The number of subgraphs isomorphic to G and containing a fixed edge, is given by

�

n− 2

l − 2

�

2k

a
(l − 2)! ,

see [NW88], p.307. Therefore we can estimate

�

�∆i Z
�

�≤
1

Æ

� n
2

�

p(1− p)pk−1
. (4.23)

For the second step we have to bound the partial difference of order two of the subgraph count
statistic.

∆i∆ j Z

=
1

cn,p

∑

1≤κ1<···<κk−2
κ1,...,κk−2 6=i, j

1{(ei ,e j ,eκ1
,...,eκk−2

)∼G}

k−2
∏

m=1

Xκm
X j(X i − Yi)

−
1

cn,p

∑

1≤κ1<···<κk−2
κ1,...,κk−2 6=i, j

1{(ei ,e j ,eκ1
,...,eκk−2

)∼G}

k−2
∏

m=1

Xκm
Yj(X i − Yi)

=
1

cn,p

∑

1≤κ1<···<κk−2
κ1,...,κk−2 6=i, j

1{(ei ,e j ,eκ1
,...,eκk−2

)∼G}

k−2
∏

m=1

Xκm
(X j − Yj)(X i − Yi)

Instead of directly bounding the random variables we first care on cancellations due to the indicator
function. We use the information about the fixed graph G. To do this we should distinguish the case,
whether ei and e j have a common vertex.

• ei and e j have a common vertex:

Because G contains l vertices, we have
�

n−3
l−3

�

possibilities to fix all vertices of the subgraph
isomorph to G and including the edges ei and e j . The order of the vertices is important and
so we have to take the factor 2(l − 2)! into account.
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• ei and e j have four different vertices:

Four fixed vertices allow us to choose only
�

n−4
l−4

�

more. The order of the vertices and the
relative position of ei and e j are relevant. So as before the factor is given by 2(l − 2)!.

Bounding the random variables X i , Yi , i ∈ {1, . . . ,
� n

2

�

} by 1, we achieve the following estimation:

� n
2

�

∑

i=1

i−1
∑

j=1

∆i∆ j Z (4.24)

≤

� n
2

�

cn,p

�

4(n− 2)
�

n− 3

l − 3

�

+ (n− 2)(n− 3)
�

n− 4

l − 4

��

(l − 2)! (4.25)

=
1

cn,p

�n

2

�

�

n− 2

l − 2

�

(l − 2)2(l − 2)! . (4.26)

To bound
∑i−1

j=1∆i∆ j Z for i fixed in (4.24) one has to observe that there are at most 2(n−2) indices

j < i, such that ei and e j have a common vertex, and 1
2
(n− 2)(n− 3) =

� n
2

�

− 2(n− 2)− 1 indices
j, such that ei and e j have no common vertex. This proves the inequality (4.25) and hence (4.26)
follows. �

To apply Theorem 1.9 we choose sn =
�

2k
a (l−2)!

�2
β2

n

c2
n,p

and tn =
βn
cn,p

.

sn

t2
n
VZ =

�

2k

a
(l − 2)!

�2

VZ
n→∞−→

�

2k

a
(l − 2)!

�2

,

because limn→∞VZ = 1, see [NW88]. We need Lemma 4.1 to bound d(n):

d(n)
(4.21)
≤

1
� n

2

�

p2k−1(1− p)

� n
2

�

∑

i=1







1

3
Æ

� n
2

�

pk−1/2(1− p)1/2
+

i−1
∑

j=1

∆i∆ j Z







(4.22)
≤

1
� n

2

�

p2k−1(1− p)







Æ

� n
2

�

3pk−1/2(1− p)1/2
+

� n
2

�

�

n−2
l−2

�

(l − 2)2(l − 2)!

cn,p







=
1

Æ

� n
2

�

1

p3(k−1/2)(1− p)3/2

�

1

3
+
(l − 2)2a

2k

�

(4.27)

And condition 2 of Theorem 1.9 follows from

s2
n

t3
n

d(n)≤ βn
1

�

n−2
l−2

�

� n
2

�

1

p4k−2(1− p)2

�

1

3
+
(l − 2)2a

2k

�

�

2k

a
(l − 2)!

�3

n→∞−→ 0 , if βn� nl p4k−2(1− p)2 as assumed.

s2
n

t3
n
d(n) is positive and therefore the limit of n to infinity is zero, too. With Theorem 1.9 we proved

Theorem 1.1.
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REMARK 4.2. The estimation by Catoni, see Theorem 2.1, and Lemma 4.1 allow us to give an alter-
native proof for the central limit theorem of the subgraph count statistic Z , if np3(k− 1

2
) n→∞−→ ∞ and

n2(1− p)3/2
n→∞−→ ∞. On these conditions it follows, that d(n)

n→∞−→ 0, and it is easy to calculate the
following limits:

lim
n→∞
EeλZ = e

λ2

2
limn→∞VZ = e

λ2

2 <∞ for allλ > 0

and additionally lim
λ↗0

lim
n→∞
EeλZ = 1 .

Hence the central limit theorem results from the continuity theorem. Both conditions are stronger
than the one in [NW88].

Proof of Theorem 1.3. We apply Theorem 2.1 and the Chebychev inequality to get

P(Z ≥ ε)≤ exp

�

−sε+
s2

2
VZ + s3d(n)

�

for all s > 0 and all ε > 0. Choosing s = ε

VZ+ 2d(n)ε
VZ

implies

P(Z ≥ ε)≤ exp



−
ε2

2
�

VZ + 2d(n)ε
VZ

�



 . (4.28)

Applying Theorem 2.1 to −Z gives

P(Z ≤−ε)≤ exp



−
ε2

2
�

VZ + 2d(n)ε
VZ

�



 .

Now we consider an upper bound for the upper tail P(W − EW ≥ εEW ) = P
�

Z ≥ εEW
cn,p

�

. Using

VZ = c−2
n,pVW , inequality (4.28) leads to

P(W −EW ≥ εEW )≤ exp
�

−
ε2(EW )2

2VW + 4εd(n)EW c3
n,p(VW )−1

�

.

Indeed, this concentration inequality holds for f (X )−E f (X ) in Theorem 1.9 with d(n) given as in
(1.12). We restrict our calculations to the subgraph-counting statistic W . We will use the following
bounds for EW , VW and cn,p: there are constants, depending only on l and k, such that

const. nl pk ≤ EW ≤ const. nl pk,

const. n2l−2p2k−1(1− p)≤ VW ≤ const. n2l−2p2k−1(1− p)

(see [Ruc88, 2nd section]), and

const. nl−1pk−1/2(1− p)1/2 ≤ cn,p ≤ const. nl−1pk−1/2(1− p)1/2.

Using the upper bound (4.27) for d(n), we obtain

P(W −EW ≥ εEW )≤ exp
�

−
const.ε2n2l p2k

n2l−2p2k−1(1− p) + const.εn2l−2p−k+1(1− p)−1

�

,

which proves Theorem 1.3. �
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[JŁR90] S. Janson, T. Łuczak, and T. Ruciński. An exponential bound for the probability of nonex-
istence of a specified subgraph in a random graph. In Random graphs ’87 (Poznań, 1987),
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[JOR04] S. Janson, K. Oleszkiewicz, and A. Ruciński. Upper tails for subgraph counts in random
graphs. Israel J. Math., 142:61–92, 2004. MR2085711
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