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1 Introduction and main result
In this paper, we consider the following stochastic Cahn-Hilliard equation:

ou/ot=—-A[Au+f ()] +o@W, in[0,T]xD,

u(0) =1, (1.1)
du/on=0[Au]/dn=0, on [0,T] x 2D,

where A denotes the Laplace operator, the domain D = [0, n]d (d=1,2,3),and f :R—Risa
polynomial of degree 3 with positive dominant coefficient (which is due to the background of the
equation from material science). Assume that o : R — R is a bounded and Lipschitzian function and
W is a Gaussian space-time white noise on some complete probability space (£, &, P) satisfying

E [W(x, OW(y,5)] = 6(1t —sD5(Ix — yI), (£,%),(5,¥) €[0,T] x D.

Here 6(-) is the Dirac delta function concentrated at the point zero.

The (deterministic) Cahn-Hilliard equation (i.e., o =0 in (1.I)) has been extensively studied (see,
e.g., 125 35 4; 55 (105 (155 18]]) as a well-known model of the macro-phase separation that occurs in an
isothermal binary fluid, when a spatially uniform mixture is quenched below a critical temperature
at which it becomes unstable. A stochastic version of the Cahn-Hilliard equation (when o = 1
in (1.1)) was first proposed by Da Prato and Debussche [8], and the existence, uniqueness and
regularity of the global mild solution were explored. In Cardon-Weber [|6], the authors considered
this type of stochastic equation in a general case on o, which is equivalent to the following form:

u(t,x) = J Gt(x,y)w(y)dy+f f AG,_s(x,y)f (u(s, y))dyds
D 0JD

+J f Gt—s(x’ J’)O'(U(S’ .y))W(dy: d5)7 (12)
0JD

where G, (-, *) denotes the Green kernel corresponding to the operator 8 /8t + A? with the homo-
geneous Neumann’s boundary condition as in (1.1). Since Stroock and Varadhan [17] established
their famous support theorem for diffusion processes, there have been many research works on this
issue, for example, a variety of support theorems for 1-dimensional second-order parabolic and hy-
perbolic stochastic partial differential equations (abbr. SPDEs) have been discussed in the literature
(see, e.g., [} [7; [13; [14]). Millet and Sanz-Solé [[13]] characterized the support of the law of the
solution to a class of hyperbolic SPDEs, which simplified the proof in [17]. In Bally et al. [1]], the
authors proved a support theorem for a semi-linear parabolic SPDE. Moreover, a support result for
a generalized Burgers SPDE (containing a quadratic term) was established in Cardon-Weber and
Millet [[7]. Herein, we are attempting to establish a support theorem of the law corresponding to
the solution to Equation in C([0,T], LP([D])) for p > 4. The main strategy used in this paper
is an approximation procedure by using a space-time polygonal interpolation for the white noise,
and we particularly adopt a localization argument, which was used in [[7]] for studying a support
theorem of a Burgers-type equation. However here we need more technical estimates concerning
the high-order Green kernel G,(-,*), which sharp the estimates in [6] (see Appendix).
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In what follows, we introduce the main result of this paper. To do it, we define the following
Cameron-Martin space # by

e = {h(t,x) = f J h(s, y)dyds; (t,x)=(t,(xq,...,x4))€[0,T] x D,
0 l_[?=1[0,xi]
he L%([0,T] xD)},

and the corresponding norm by

T
Al 5 = \/f f |h(s, y)|?dyds, forall he .
0oJp

Let 54, represent the subset of 5, in which the first-order derivative h of h € »# is bounded. For
h € s, consider the following skeleton equation:

S(h)(t,x) = j Gt(x,y)w(y)dY+J f AG,_(x, y)f (S(h)(s, y))dyds
D 0JD

+J J Gi—s(x,y)o(S(h)(s, y))h(s, y)dyds. (1.3)
0JD

Recall Equations (1.1)) and (1.2). We make the following assumptions throughout the paper:

(H1). Assume that o : R — R is bounded and belongs to C3(R) with bounded first to third-order
partial derivatives, and
(H2). The initial function v € LP(D) for p > 4, and v is p €]0, 1]-Holder continuous.

Now we are at the position to state the main result of this paper.

Theorem 1.1. Under the assumptions (H1) and (H2), let u = (u(t,x))( x)e[0.r]xp be the unique
solution to Equation (1.2)) in C([0,T],LP(D)) with p > 4 and Pou~! denote the law (a probability
measure) of the solution u. Recall the skeleton equation (1.3)), and set S, = {S(h);h € 5#}. Then we
have

(@) Letp > 6. Then for a €]0, min{%(l — %), % [ and B €]0, min{2 — %, o}, the topological support
supp(Pou~1) in C*P([0,T] x D) of the law Pou~" is the closure of S .

(b) Let p > 4. Then for a €]0, min{%(l — %), €11, the topological support supp(P o u™') in
C%([0,T],LP(D)) of the law Pou~" is the closure of S .

The rest of this paper is organized as follows: In the coming section, we give a difference approxima-
tion to the (d + 1)-dimensional space-time white noise W (x, t) and study some concrete properties
of the approximating noises. In Section (3} we introduce a localization framework as in [[7], and
then switch to prove the support theorem by checking the conditions (C1) and (C2) below (see
Section . Sections |4| and |5| are devoted to checking the validity of the conditions (C1) and (C2),
respectively. In Section|6] we prove the continuity of the solution S(h) to the skeleton equation
in #4, and finally we complete the proof of Theorem 1.1
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2 Difference approximation to white noise

In this section, we give a difference approximation to the (d+1)-dimensional space-time white noise
W, which is a space-time polygonal interpolation for W.

LetneNandt €[0,T], set

t,= _max {jT27jTa " <e}, and t,=[1, -T2 vo.

Let k := (kq,...,kg) € Ii :={0,1,...,n — 1}¢. Define a partition (Ajx)j=o01 2n-1 ked of Op :=

[0,T] x D by

.....

A =Dyx]jT27",(j+1)T27"],

where Dy = nle]kjrcn_l,(kj + Drn '], For x; €lk;mnt, (k; + D)n~'] with j = 1,...,d, we
set D (x) = nle]kjnn_l,(kj + 1)mn~1]. Further, for each (t,x) € @, we define the following

difference approximation to W by

W(A; 1) . )
. ? X,f GA > :1"“’211_1’ kGI,
“n(x) t)= { [N ( ) ko J o

d
0, (x,t) € Aoy, KET,

(2.1)

where |Aj,k| = Trn?(n?2")~! is the volume of the partition Ajy for each j =0,1,...,2" — 1 and
d

kel.

Next we suppose that

(H3). the mappings F,H,K : R — R are bounded, globally Lipschitzian and H € C3(R) with
bounded first to third-order derivatives.

We now consider the following equations for h € 74,
Xu(t,x) = Grxp(x)

+J J G5, ) [F(Xn(s, yIW (dy, ds) + HX (5, y)IW,,(dy, ds) ]
0JD

+ f f Ge-s(, ¥) | KX, (s, Y D5, )
0JD

—HG (5, YD, Y IF (X5, ) + Buls, YIH(K, (5, )] | dyds

+J J Ayths(x: J’)f(Xn(S»J’))dJ’dS, (22)
0JD

and

X(t,x) = Gt*w(x)+JJ Ge—s(x, y)[F+H](X(s, y))W(dy,ds)
0JD
+f J G,—s(x,y)K(X (s, y))h(s, y)dyds
0JD
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t
+fJAyGt—s(x,y)f(X(s,y))dyds, (2.3)
0Jp
where

GexP(x) = J G¢(x, y)y(y)dy,

D

and for each n €N,
Ly
an(t,x) = nd2”(Tﬂd)‘1ff G _s(x,y)dyds,
tn Dk(x)
t
Bau(t,x) = ndZ”(Tﬂd)‘lff G—s(x,y)dyds.
t,9 Dy(x)

For a,(t,x) and f,(t, x), by virtue of (A.4) in Lemma A.1, we claim that

sup |a,(t,x)] < Cn?, and (2.4
(t,x)eor

sup |B,(t,x)| < Cnl. (2.5)
(t,x)eor

Indeed, using (A.4), we have for each t € [0, T],

L
suplay(t,x)] < Cnf2"max{ 1, (x) f f 1Gey(x, y)Idyds
x€D kEIg t, v Dy
< cn'2"¢, —t,|
< Cnd,

and

sup|B,(t,x)| < cni2"t —t | < Cnt,
x€D

follows from the equality (A.19)).

In the following, let F = (%, )<< be the natural filtration generated by W, i.e.,
F.,=0{W(B x[0,s]);s€[0,t], B AB(D)}.

Then for every t € [0,T] and n € N fixed, (W,(x,t)),cp given by (2.1) is Z,-adapted. More
precisely, it is ﬂgn-adapted and which is independent of the information &, .

Lemma 2.1. For each fixed n € N and p > 1, we have

. dp _np
sup E [IWn(x, t)Ip] <Cyn222.
(t,x)eor
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Proof. By virtue of the definition (2.1)),

sup E[|W,(x, )]

(t,x)eor
p
211
W(A;_1x)

= sup E ﬁlAj—l,k(x’ t)

(t,x)eor j=1 kerd j—1k

WA

< C,max{ E b ;j=1,...,2"—1, kel

p n

1Akl

Note that for each j =1,...,2" — 1 and kelg,

W(A_11)

m ~N(O, 141k ™.

For any random variable Z ~ N (0, 02), it holds that

1 1
E|Z|P = —V/ 2P0 T Pys ,
A/ TT

2 2

where I denotes the Gamma function. This yields that

sup E[|W,(x, 0] scpmax{\/mj_l,krp; i=1,...,2"—1, kelg},

(t,x)eor

and which proves the lemma. O

Let n € N be fixed. For a > 0 and t €]0, T], we now define an event Qg . by
Qg’tZ{wGQ; sup |W(y,s;co){ SandZE}. (2.6)
(s,y)€l0,t]1xD
For this event, we have

log2

T then

lim P ([Qgr] C) =0.

Proof. Let Z ~ N(0,1) be a standard normal random variable. Then according to the definition

for W, (x, t),

_ c WA _11) n
P([QZ‘T] ) = P max ZATmLk > and22
’ Gloefl,..,2n-13x1d | [Aj_qkl

< ni2"p (|z| > a/ Tndnd/z)
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4 = 4

don _a’Tn? |z
< n“2"exp 2 n® | E|exp 2 . 2.7)

Note that E [exp (%)] = /2. Then further yields that

Z12  a?Tnd
= niomp (u > nd)

_ c a?Tnd
OSP([Q%T]) < \/Endexp|:nlog2— n?

4
< Va2nlexp |:nd (logz - azznd ) :|
— 0, as n— oo, (2.8)
ifa>2 1;)%. Thus the proof of the lemma is complete. O

3 Localization framework

In this section, we adopt a localization method used in [7]] to deal with Equation (1.1)). In addition,
we will prove a key proposition, which is useful in the proof of Theorem (1.1

Proposition 3.1. Under the assumptions (H1) and (H2), let X = (X(t, X)) x)efo,r]xp (Tesp. X,) be
the unique solution to Equation (2.3) (resp. (2.2)) in C([0, T], LP(D)) with p > 4. Recall the skeleton
equation (1.3), and set S, = {S(h); h € 5#}. Then we have

(i) Let p > 6. Then for a e]O,min{%(l — %),Q}[ and f €]0,min{2 — %,Q}[, the sequence X,
converges in probability to X in C*P([0,T] x D).

(ii) Let p > 4. Then for a €]0, min{%(l — %), %}[, the sequence X, converges in probability to X in
C*([0,T],LP(D)).

Next we give a sketch for the proof of the conclusion (ii) in Proposition The similar argument
can also be used to prove the part (i). For (t,x) € Oy, set

Y, (t,x) =X, (t,x) —X(t,x).

From (2.2) and (2.3), it follows that

Yn(t,x)=23:r;'l(t,x)+/\n(t,x), (3.1)
i=1
where
M tx) = JJDGt_s(x,y) [(F + H)(X,(s,¥)) — (F + H)(X(s,¥))] W(dy, ds),
rat,x) = LYD G—s(x, ) [K(Xa(5,¥)) = K(X (s, y))] (s, y)dyds,
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r(t,x) := JJAyGt—s(X:y) [f Xals, ¥)) = fF(X(s,¥))] dyds,
0JD

and

An(t,X) = J J Gt—s(x: y)H(Xn(S) .Y)) [Wn(dy’ dS) - W(d.y’ dS)]
0JD

t
_f f Gt—s(x: }’)H(Xn(S, _)’))
0Jp
X [an(s, YIF(X (s, ¥)) + Buls, Y )HX (s, ¥))] dyds. (3.2)
Introduce an auxiliary &, -adapted process
X, (6,x) =Gy (x,X,(t,,7)), for (t,x)€ or. 3.3)

Recall the localization argument adopted in [[7]. For y € (0,1) and p > 4, define

1Y, (s, ) = Y (s”, )l
®2T(t):= sup ||¥,(t, )M, + sup — - £,
se[0,t] s#s'€[0,t] s —s'|"

where || - ||, corresponds to the norm of L?(D) and for 6 > 0,
w0 :=inf{t>0; ®2V(t) 2 5} AT.

For M > &, define the following events

A(M—-06) = {weﬂ; sup IIX(s,-)IlpSM—S}, (3.4)
s€[0,t]
Aﬁ‘f(t) = {weﬂ; sup [|X,(s,)ll, vV sup ||X(s,-)||p§M}. (3.5)
s€[0,t] s€[0,t]

Then for t €]0,T],
A (M= 38)n{t <72} cAM(p). (3.6)
In fact, from the inequality |y| < |x — y| + | x|, it follows that

AM-8)n{t <<%

IN

{ sup |IX(s,)ll, <M — 5} ﬂ{ sup |IX;(s,) =X (s,ll, < 5}

s€[0,t] s€[0,t]

N

{ sup [[X(s,-)ll, < M} N { sup [1X;(s, )l < M}

s€[0,t] s€[0,t]
— M
= A (t).

Recall the event Q% defined by Il in Sectionand that a > 2 1;%. For each fixed 6 > 0 and
V € CY([0,T]; LP(D)), set

IV(s,) = V(s
= sup |[V(s,)ll, + sup L

i i
s€[0,TAT?] s#s'€[0,TATe] |s — ']

&
Y>P>Th
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Then for g > 1,
P(@27(T) > 5)
- _ C
<P (@;;,Y(T) > 5, Ar(M —8)n Qg’T) +P (A5(M —5)) +P ([Qg’T] )
— _ C
= P(IVll, pco 2 8, Ap(M = 5)N Q2 ) +P (A5 (M = 6)) +P ( oz, ] )
—-q q c Sa ¢
< 579E [1AT(M_5)QQ;T ||Yn||%m§} +P (A5(M ~5)) +P ([QH’T] ) ,
However, Lemma [2.2] and Lemma [3.7] (the latter will be proved below) yield that
_ c
P(ACT(M—(S)) +P ([Qgr] ) — 0, as M — o0, n — o0.
Therefore, by Lemma A.1 in [[7] and (3.6), in order to prove
®P7(T) — 0, in probability, asn — oo, 3.7)

it suffices to check that there exist ¢ > p and 6 > qa (we have set y = &, where a is the exponent
presented in Proposition [3.1)) such that

(C1) ¥ e[0,T], lim E [ 1al%(e, )2 ] =0;
(€2) Vs <tel0,T], Lyt )~ %, )] < Cle—s['*°.
Here the event AY (t) is defined by
Al =AY ()N Qs , te[0,T], (3.8)

and which satisfies the order relation:
Aﬁ‘f(t) CAIXI(r), ifr<t.
Lemma 3.1. Let the event Ap(M) be defined by (3.4). Then
. ¢\ _
Jim P ([Ar(M)]) =o.

Proof. Note that for p >4, B € [p,oo[ and 3 €]p,6p/(6 —p)*[ (if d = 3),

P([Ar(M)]) =P( sup [1X(¢t, )l ZM) <M PE [ sup IIX(t,-)Ilf] :

t€[0,T] t€[0,T]

Therefore, it remains to prove

E( sup ||X(t,-)||§) < 0. (3.9)
te[0,T]
Define for (t,x) € Oy,

Lyw)(t,x) = JJ Ge—s(x, Y)IF + H](u(s, y))W(dy, ds);
0JD
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t
Ly(u)(t,x) := f J Ge—s(x, y)K(u(s, y))h(s, y)dyds,
0JD
and set Z =X — L(X) with L = L; + L,. Then

9+ N2Z - Af([Z+ LX) =0,
z(0)=1, (3.10)
0Z/dn=0[AZ]/dn=0, on dD.

Further, the Garsia-Rodemich-Rumsey lemma (see, e.g., Theorem B.1.1 and Theorem B.1.5 in [[9])
yields that, if for any q, 5 €]1, 0o[ and some y/,y” €]0,1],

(@) sup E[IL(u)(t,x)**] < oo,
(t,x)eor

(b) E[IL@)(t,x)—Lw)(t, )] <c[le—t" +1x—x"]", q¢>1,

then (3.9) holds. So we only need to prove (a) and (b). Note that K is bounded and d < 3. Then in
light of (A.4),

¢ 296
2q6
sup E | [L(u)(e,0[*7 ] < IKIE sup f G-, )h(s, yldyds
(t,x)e0r (t,x)eor |Jo Jb
< IKIZINGT 99 < oo,

If set t > t’, then by (A.7)-(A.9) in Lemma A.2, we have for y’ € [0,1—d/4[ and y” € [0,2A(4—d)],
E [|Lo(u)(t,x) — Ly(u)(t',x)P] < C[le—t|" +1x—x'"]".

The estimate of L is similar to that of L, (or see [[6]]). Thus the proof the lemma is complete. O

4 Auxiliary lemmas

In this section, we present a sequence of auxiliary lemmas for checking the conditions (C1) and
(C2) under (H1)-(H3) given in Section [I]and 2] Throughout Sections (H1)—(H3) are assumed
to be satisfied.

The following lemma tells us that, to check (C1), it suffices to show (C1) holds with A, (t, x) instead
of Y, (t, x).

Lemma 4.1. Assume p >4, and q > p ifd = 1,2, and q €]p,6p/(6 — p)*T[ if d = 3. Then for each
n €N,

sup E[lAy(t)llYn(tr)llg] <C sup E[lAy(t)llAn(tr)llf,}, 4.1
t€[0,T] te[0,T]

where A, (t,x) is defined by (3.2).
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Proof. Note that for each t € [0, T],

3
E [ 1%, )2 ] < CE {Z Lo 1T (N + Lo IAn (e I

i=1

i . . , 1_2_2
w{vhe; E](t,x) (i=1,2,3) are defined in || Therefore by (A.16) in Lemma A.3, for F =5 +
E 5 5

E 1o I3, )IE

c~f E [1A¥(ﬂ|r;(t,x)w} dx
D

t
CE "[.f G2 (5 ¥) Lo |Yals, y)Pdyds
0JD

IA

IA
N

q
2

q
rrt 2
CE (t—s%rzlw@ﬂY(S)”d{
O

< U (t—s)ir™ 2ds] U (t—s)ir~% sup E[lAM(r)HY(r )||Q] ]

rel0,s]

IA

Similarly, we have

E [ Laollr2(e, )12

q
2
< Clhl%E Gy X)L Yals, y)Pdyds
%
t % t
d_d d
< CU (t—s5)¥r 2ds] [ (=) sup B[ LalI¥a(r )¢ ] d ]
0 0 rel0,s]

As for l"f’l(t,x), using (A.13) with 1-_1_1 €[0,1],
rnoq P

E [1anolir3ce, e
[ q

IA

CE ]Ayu).f-f AyG(t =5, y)[f Xn(s,-)) = fF(X(s,-))]dyds
0oJp

q

t d d+2 q
= CE | 1lav f(t—s)‘”z_“||f(Xn(S,'))—f(X(S,'))llpdS} } (4.2)
0

Note that u(s, ), v(s,-) € LP(D), for each s € [0, T], we have for p = £,

lu(s, ) =v(s, M, < Cliuts, ) = v(s, Il
(s, ) =v*(s, Mo = Clluls, ) = v(s, )l [lluts, DI, + 1vGs, I, |
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26, )= v, < Clluts, ) = vGs, Il
x [ s, I+ (s, I + s, MplvGs, | -

Hence from (4.2)), it follows that

E [wmnr% e ]

IA

q
d _ d+2
CE[ (=) Ly IYGs, )||pds:|

U (t—s)is dizds} U (t—s)s % s%p]E[w(r)nY(r )||q] }

Note that the following equivalent relations holds:

IA

d d 4150 1 1 1
———+1>0 & —->-—-
4r 2 q p 6
d d+2 +1>0 1 1 + 1 2
— ——+1>0 & —->—+-——.
4r, 4 g p 2 d
Then the desired result follows from the Gronwall’s lemma. O

Recall the Z, -adapted process X, (t, x) defined by Il Then we have

Lemma 4.2. Let ¢ > p > 6. Then there exists a constant C := Cy; > 0 such that

sup B | L Xa(t, ) = X; (6,017 < €277, (4.3)
(t,x)eor

=1l _d
whereL.—z(l 4).

Proof. Recall (2.2) and (3.3), and we get

4
X, (£,3) =X, (£,) = D TX(t, %),
k=1

where

ref

T (t,x) := Gi—s(x, y)F (X (s, y))W(dy, ds),
JthD

2 ((

T (t,x) := Ge—s(x, Y ) H(X (s, y)I)W,(dy, ds),
JthD
ref

T3(t,x) = AL G_(x,y)f (Xu(s, ¥))dyds,
JthD
o

THt,x) = Go_s(x, y)K,(s, y)dyds,
JthD
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and

K,(s,y) = K(X,(s,y)h(s,y)
—(FH)(X,(s, y)an(s, y) — (HH)(X,(s, ¥))Bals, ).

From (2.4) and (2.5), it follows that for h € 4,

sup |K,(s,y)| <Cn?. (4.4)

(s,y)e0r
On the other hand, using (A.4) and the boundedness of F,

q:|
q/2

E[IT\(t,x)?] = E {

f J Gt—s(X,)’)F(Xn(S,)’))W(dy’ds)
t,y D

IA

CE

J J G?_ (x, y)F*(X,(s, y))dyds
t D

M o~ q/2
J f Gtz_s(x,y)dyds]
| Jt,J/ D
T ~t q/2
C J (t —s)_ids:|
tn

d
< ¢ 2na-9), (4.5)

IA
a

IA

Further, the Holder inequality, Lemma and the boundedness of H jointly imply that
t
ff Gr—s(x, Y)H(X,, (s, y ) )W, (dy, ds)
tp) D

E[IT2(t, %))
T
]

[ t t q
CE UJ IGt—s(x,y)IIWn(y,S)qude] . UJ IGt-s(x,y)Idde]
tp D o))

CE
t q
< c U f |Gt_s(x,y)|dyds} sup E [ W, (x, 0]
t D

(t,x)eor

IA

t
JJ |G, YW, (y,5)Idyds
ty D

-1

IA

dq _nq
Cn222|t—t,|?
dg —nq

< Cnz227. (4.6)

IA

Note that f is a polynomial of degree 3. Then by virtue of (A.13) with k =

- +1=1—§e [0,1],

1_3
0 p

E [ Lo 736, 0)1]
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q

t q
f (r—s)ik—dflgy(s)||f(xn(s,~))ngds] }

f f AyG(x, y)f (Xn(s, y))dyds
t D

A
]

IA
e

t doq_3y_d+2 q
J (6= )77 10 [, Iy + 1. 2+ s, M ds]

- o[ [mrna]
< 2GR, 4.7)

Thanks to (4.4), we conclude that

E[|T/(t,x)1] = E|:

t D
t q
cn' UJ IGf—s(x,y)Idde}
t D

Gt—s(xa y)Kn(S: J’)d)’ds

q]

<
< cnY|t —¢t,|1
< ¢n%27m, (4.8)
Thus the estimate (4.3) follows from (4.5)-(4.8). O
Remark 4.1. We can easily check that there exists a constant Cy; > 0 such that for ¢ > p > 4,
sup E [ 1o lIXa(t,) = X5 (6, )18] < G2, 4.9)
te[0,T]

where | = 21(1 — g) In fact, for the proof of , the only estimate that needs to be checked is that of
4 1_ _2 4
T,. Apply (A.13) with k = > —l— 1=1 e [O 1] to T, and we can get Ii

Next we prove a useful lemma, which will be used frequently later. For (¢, x),(s,y) € Or, set

[n(tas, X, .y)] (', *) = 1[0,[’](')Gt—~(x) *) - 1[0,5](')Gs—-(y: *)5 (4.10)

[ﬁ(t,s, X, J’)] (') *) = 1[0,[](')AGt—-(x: *) - 1[0,5](')AG5—-(.)/, *) (4.11)

Let V be an F = (%, )o<.<r-predictable process. For 0 <s <t < T and x,y € D, define

(k+1)T

At
lk(V)(t $,X,Y) —J J [n(t,s,x,y)] (r,2)V(r,z2)W,(dz,dr), (4.12)
LI
with k=0,1,...,2" — 1. Then we have
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Lemma 4.3. Let V : Q X @p — R be an F-predictable process. If for each p € [1, 00, there exist some
constants @ > 0, a > 0 and C > 0 such that

<C27™pd Y ry>2. (4.13)

su
b Lne(Q)

te[0,T]

IVt ey

Then for 6 < 1-4 0’ <4—d and 6’ < 2, there exists C > 0 such thatfor0<s <t <Tandx,y €D,

[2"t/T]-1

Sk ]| < en@r02mm [l — s 4 - y|7'], (4.14)
k=0 LP(Q)
where a’=2d—2+%+% > 0 with vy, > 1 such that 1 <yf3 < 2.
Proof. Asin (4.10), define
(k+1)T
2n
Akt x,y) = i [Ge_(%,2) — Go_ (3,2)] V(r, 2)W,(dz, dr). (4.15)
27 D
Applying Hoélder inequality thrice with the respective exponents (2p&, ), (5,6") and (3, ZpTal). Then

by and Lemma [2.1]
E [ |25 x| ]

I (k1) 2P
= E f f[Gf_r(x,Z)—Gf_r(y,Z)]V(r,Z)Wn(z,r)dzdr
I D
2Tl

1
o (k+1) 5
< E|: f [V (r,2)|?P%dzdr

sk D

o (k+1) v
X f |Wn(Z> r)|Y|Gt_r(X,Z)—Gt_r(y,Z)P,dZdr ]

i (k+1) i (k+1)
< EJ J IV (r,2)|%° dzdr [EU W, (2, )|
Tk D

o ik D

&

28 5
let—r(x;Z)_Gt—r(y)z)ldedr] ! :|

o (k+1) 5 I (kt1)
< EJ J |V(r,z)|2p6dzdr |:E f f |Wn(z,r)|2p5 dzdr

2p5/
1

ax(k+1) G
X J J |Gt_r(X,Z)—Gt_r(y,Z)|Y,3dZdr ]
D

T
27](
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i (k+1)
< Cnipt2appnp=2npa-n J J|Gt_r(x,z)—Gt_r(y,z)vﬁdzdr
Lk D

on

In light of (A.24) in Lemma A.4, there exists a 6’ €]0,4 — d[ and 6’ < 2 such that

[2"t/T]-1
> kx| < Cni+2agTnREZHEED), 16
k=0 LP(Q)
Next we turn to the time increment. Set
(k;r#/\t
Alfl(V)(t,s,x) = . (G (x,2) — G, (x,2)]V(r,2)W,(dz,dr).
KT As D

2!

Thenfor0<s<t<Tand x €D,

|k, 5, %))

IA

zln(k+1)/\s

f f [Gi_r(x,2) = G,_.(x,2)]V (r,2)W,(z, r)dzdr
I D
2!

k
A

(kDAL
+ J J G,_,(x,2)V(r,2)W,(z,r)dzdr
I D

Txvs

AL (V)(E,5,%) + A5 (V)(t,s, %),
with the definition

Aé,n(V)(t,s, x) =0, whenever [(k+1)T2 ™" At] <[kT27"Vs].

2p
B

(4.16)

(4.17)

(4.18)

(4.19)

By the similar proof to that of the space increment, there exists a 8 €]0,1 — %] such that

[2"t/T]-1 9 sizelyd
DAk vEsx) < Cpd+2ag a2t 4500 g6,
k=0 LP(€2)

Using the proof of (4.15), we have for each k =0,1,...,[2"t/T],

E [ 145, (V)(t,s5, )1 |

2p
s (k+1)AL i

4141
< Cn(d+2a)p2—np(2a—1+p) f |Gt_r(x,z)|7”ﬁdzdr
T

Z—,Ist D

Then from (A.4) and the Holder inequality, it follows that

[2"¢/T]-1

2

k=0

2
A (V)(E,5,%)

LP(Q)
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) g (k+1)AL iz
< cpit2agnasity) J (t — ) s0B-Dgp
g—,’fVS
t
< cpd+aag Tty oD U (t— r)‘i(Yﬁ—l)dr}
S
O B A TR R i (4.22)

Thus from (4.17), (4.20) and (4.22), we get (4.14). Hence the proof of the lemma is complete. [J

Remark 4.2. From the proof of Lemma the conclusion of the lemma still holds if we replace
PECV)(E5,%,5) by B | 2A5V)(E,5,3, )| Fcpe |-

Lemma 4.4. For (s,y) € Or, it holds that
S
E [Wn(y,S)JJ G (v, 2)F (X, (r,2))W(dz,dr)|Z,
spv D
Sp
= (Tﬂ:d)_lndZ”J f Gs—r(y,2)F (X, (r,2))dzdr.
Sn Dk(.y)
Proof. Foru >s,, set

Ny(s,y) = (Tt 'ni2"W(Dy(y)xIsn,ul),

M, (s,y) := JJGs_r(y,z)F(X;(r,z))W(dz,dr).
spd D

Then the martingale property of {M,(s, y);u > s,} and It6 formula jointly imply that

E |:Wn(.y:5)f F Gs—r (¥, 2)F (X (r,2))W(dz,dr)|.Z;,
anD

= (TrY) 2 [N, (5, MG I, |
= (1) 2" [E [N, (5, 0MG )1, | 7, ]

= (1) 'nt2E [N, (5, Y EIMGs, )| 7, 12, |

= (1) i 2E [N, (5,M, (5, )1, |

Sn
= (Tﬂ'd)‘lndZ"ff G, (¥, 2)F (X (r,2))dzdr,
Sn Dk(.y)

follows from the fact that F(X, (r,2)) is #; -measurable when r <s. This proves the lemma. O

The following lemma shows the local Holder continuity of F-adapted process X,(t,x) defined by
(2.2). Recall the assumption (H2), in which the initial function 1) is p-Hoélder continuous (p €
10,1D.
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Lemma 4.5. Let ¢ > p > 6. Then for a E]O,min{%(l — % ,%}[ and 8 €]0,min{2 — %,Q}[, there
exists a C > 0 such that

. 514
E [ Lasomayo [Xa(60) = X,(5,0)|*] = Cnfe [1e =57+ x - y 1],

with (t,x),(s,y) € Or. In addition, if ¢ > p > 4, then for a €]0, min{%(l — %),% [, there exists a
C > 0 such that

E [1A¢,4(t)mA¢f(s) X (2, ) —Xn(S,')HZ] < cnie|t —s|%.
Proof. Recall (2.2), (4.11) and (4.12)). We have for (¢, x),(s,y) € Or,

5
Xy (t,%) = Xo(s, ) = Y L Ji(s, £, ),
i=1

where
I(ts,%,y) = Gexp(x) = Goxp(y),
Jt,s,x,y) = f [n(t,5,%, Y))(1,2) | F(Xa(r, 2))W (dz, dr)
+11(?<;(r,z))wn(dz,dr)],
Ja(t,s,x,y) = f [0(t,5,%, Y)1(1,2) | (H(X(r, 2)) = HOG, (1,2)))Wy (dz, dr)
08,2 [an(r, 2)F (X (1, 20) + B (1 2)H (X, (1,2))] dzdr |,

Ju(t,s,x,y) = f [n(t,s,x,y)](r,z)K(Xn(r,z))h(r,z)dzdr,
0JD

Js(t,SaX,)’) = fJ [ﬁ(f,&x’)’)] (T,Z)f(Xn(T',Z))dZdT.
0JD

Note that the initial function 1(x) is p-Holder continuous in x € RY. Then by Lemma 2.2 in [6],
E[|716s, 6., 0[] <€ [le—sl2/* +1x —yle]". (4.23)

Since F, H are bounded, by Burkhélder’s inequality and Lemma A.2, there exist Y/ €]0,4—d[, v’ <2
and y” €]0,1 — d/4[ such that

/ 1 ﬂ
E [15(t,5,%,0)19] < C [Ic = y[" + e =" ] 2. (4.24)

On the other hand, since K is bounded, the Schwarz’s inequality yields that for h € 54,

/ 1 ﬂ
E [14(t,5,,0)19] < C [l = yI" + e =" ]2, (4.25)

where y/,v” are presented in (4.24). Similar as in the proof of (4.7), by (A.14) and (A.15) with
1-1_ [3—) +1€<[0,1], we have for a €]0,1/2 — %[ and  €]0, min{2 — 3d 2937,

r 00 p’E’

E [ngmy(s)le(t,s,x,y)lq] <C [Ix —ylP+1t —SI“]q- (4.26)
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and using (A.14) with k =

_3 =1_2 _4d
p+1 1 pe[O,l],forae]O,l/Z 2p[,

bR

E [y olWs(6,s, 2| < C e =517, (4.27)

In the following, we are going to estimate J5(t,s,x,y). Using the Taylor expansion of H at point
X, (t,x),
n

H(X,(t,x)) = HX;, (t,%)) = HX;, (¢, %)) [ X, (6, 0) = X;, (£,%) ] + pa(t, ), (4.28)
and
pn(t,x) < CIX,(t,x) = X, (£, %)%

Recall the above J;, and we have

5

J3(t,S,X,y) = ZJ;(LS, X:.Y))
i=1

where
Btsxy) = f J [n(t,5,%, Y)1(1,2) | T30, )X (1, 2)Wa (5, 1)
—OH(ifn(r,z))an(r,z)F(Xn(r,z))]dzdr,
Btsx,y) = L | L[n(r,s,x,yn(r,z)[T,%(r,z)H(x;(r,z))Wn(z,r)

—~H (X, (1, 2B, 2)F (X (1, 2)) | ddlr,

rt

J3(t,s,x,y) = ] J[n(t,s,x,}’)](T,Z)H(X;(F,Z))Tf(r,Z)Wn(z,r)dzdr,
0JD
rt

J3(t,s,x,y) = ) f[n(t,s,x,y)](r,Z)H(X;(r,Z))T,f(r,Z)Wn(z,r)dzdr,
0JD
(‘t

J3(t,s,x,y) = ) f[n(t,s,x,y)](r,Z)pn(r,Z)Wn(z,r)dzdr-
0JD

Next we decompose J;(t,s, x,y) as follows:

5
g
J3(t5,%,5) = > 37 (8,5, %, ¥),

j=1

with

Jpts,x,y) = f [n(t,s,x,y)1(r,2)HX, (1, 2))W,(z,7)
0JD
x U J Gyu(2,v) [F(X,(u,v)) = F(X;, (u,v)) | W(dv, du) | dzdr,
rpd D
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I3 (ts,x,y) = fo D[n(t,s,x,y)](r,z)H(X,:(r,z))
X { J rf G,_(z,v)F(X (r,2))W(dv, du)W,(z,T)
rdD
—E Ur J G,_u(z,V)F(X (u, v))W (dv, dw)W,(z, r)|9'rn:| ]dzdr
rdD
I3 (s, x,y) = LtL[n(as,x,y)](r,z)H(x,:(r,z))
X {E Ur f G,_u(z,V)F(X (u, v)I)W(dv, du)W,(z, r)L%H]
rJp
—onpdp-lg—d ff . G, (z,VIF(X (4, v))dvdu} dzdr,
r I Dy
I3t x,y) = 2"T‘1n‘dn‘thJ [n(t,s,, y)1(r,2)H(X,, (r,2))
0JD
y U f ( )Gr_u(z,v)F(X;(u,v))dvdu - an(r,z)F(Xn(r,z))} dzdr,
e

t
J3o(ts,x,y) = f [n(t,s,x,)](r,%) [H(X, (r,2)) = HX,,(r, x))]
0JD
X a,(r,2)F (X, (r,2))dzdr.
We first estimate the term J; 1 Define

V(r,z) = lAy(r)H(X;(r,z))
X f f G,_u(2,v) [F(Xn(u,v))—p(x,;(u,v))] W(dv, dw). (4.29)
)]
Then

Jg’l(t,s,x,y) = f f [n(t,s,x,)](r,2)V(r,2)W,(dz,dr)
0Jp

[27t/T]-1

= > AWtsxy), (4.30)

k=0

where A’fl(V)(t,s,x, y) is defined by |l By virtue of the Burkholder inequality, ll with
K=2—2+1=13ndLemma
a q

T —nq(1-%) . Y= X (r. )
E[IV(5)lE] < 27075 res[tclfT]E[lAy(r)lan(r,) X, (9]

d
< (27050, (4.31)
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Then using Lemma there exist 0’ <4—dand 6’ <2,0 <1— % such that

1,1 q
E |1z (onan () |37 (6:8,%,))

[2"¢/T]-1 2
nq
< 22E | Liy (ondy ) { )3 |7Lﬁ(f’5axay)|2]
k=0
n d / 1
< Cn%2—§(1+20—5+§+%) [lx 1 e —s|9] 2 (4.32)

Next we turn to estimate the term Jg’z(t,s, x,y). If we set

V(rz)= lgy(r)H(X;(r,z))f f Gyl VIF (X (VW (v, du), (4.33)
rpY D
then
[2¢/T]—1
Besxn= Y, [A0Osx ) -B[ AW s P || @s
k=0 z

Applying the discrete Burkhélder inequality and Jensen’s inequality to conclude that

E [173(t,s,%,¥)1]
q
2:| 2

[2"t/T]-1
q
2 2
:| . (4.35)

CE| >,
According to a similar proof to that of (4.31)), for V(r,2) defined by (4.33), one gets

IA

AV (6,5, x,y) —E [Aﬁ(vxt,s,x,yww}
2”.

k=0

IA

C[2e/T]—1 , 3
CE| > )/l’fl(V)(t,s,x,y)@

k=0
[27¢/T]-1
+CE { Z

k=0

B [ 20305, %, )P |

sup E [V(r,)ll1] < carmaa-a/4),

re(0,T]
Also using Lemma |4.3]
1,2 1 dg _ngs’ o’ 014
E [lAnM(t)nAnM(s) Jy (t,s,x,y). ] <Cn22 " [Ix—yI + |t —s] ] , (4.36)
where 6’ = -4 + 1+ 2 > 0. On the other hand, Lemma yields that
2 q 7B

E |:Wn(z,r)J J Gr—y(2,V)F(X, (u,v))W(dv,du)|Z,,
rp,Yy D
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= "7 Ipdpd f f G,_u(z,vV)F(X, (u,v))dvdu.
T,

n Dk(z)

This implies that
J?}’B(t,s,x,y) =0.

Since H and F are bounded, from (2.4), (A.4) and —, it follows that

1,4 1 d t !
Jg’ (t,s,x,y). < Cn™ |[n(t,s,x,)1(r,2)| dzdr
0JD

T d
x | 2" sup f f |G,_,(z,v)|dvdu
(r2)€or Jr, JDy(z)

< cn [It—slyu+|x—y|7’/:|q, (4.37)

where 0 < y/ <2 — ‘2—1 and 0 < y” < %(1 — %). From , Lemmaand — with

K= i — 117 +1=1¢€][0,1], we conclude that there exist a €]0,1 — %[ and 8 €]0, 1[ such that

1,5 q
E [1Afy(f)mA¢f(s) Jg (t,s,x,y)‘ }

q _
< Cnfe [le—s1%+1x = y1P]* sup E [ LannlIXa(r) = X; (0512
rel0,T]
< Cn%277 [|e— s+ |x — y[F]". (4.38)
From the above estimations, it follows that there exist & €]0, min{% — %, %(1 — %), Bl and B €
10, min{2 — ‘%d, 2— %, %,p}[ such that for (t,x),(s,y) € Oy,

. 514
E [ Ly (oo 3065 00| < €nfe [Je—s)+1x - y 1], (439)
Now we turn to estimate the term J%(t,s,x, y). The procedure is similar to that of J;(t,s,x, ¥).
Replace F(X,(r,z)) by H(X,(r,2)), F(X,(r,z)) by HX, (r,2)), W(dz,dr) by W,(dz,dr), and
a,(r,2,X,(1,2)) by B,(r,2,X,(r,2)), respectively. Then there exist a, 3 presented in (4.39) such
that

. 274
E [lgy(t)mgy(s) |J§(t,s,x,y)|q] < Cnt [It —s|*+|x —y|ﬁ] . (4.40)
As for the term J3(t,s, x, y), we have
E [lAfy(t)nAgf(s) |J§(I>S,X,y)|q]
t q
= E |:1A¥(t)ﬂﬁlr'{1(s) f J [n(t,s,x,y)1(r,2)HX, (r,2))T(r,2)W,(z, r)dzdr }
0JD
_ pl 2
- Bn(t,S,X,Y)+Bn(t,5,X;Y): (441)
where
t
B,]I-(t;sa X,.)’) = E |:1A¥(t)ﬂAlr\l/I(s) f J [n(t,S, X, J’)](r:z)H(Xn_(r,Z))Wn(Z, r)
0Jp
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X {f f AvGr_u(z,v)[f(Xn(u,v))—f(X;(u,v))]dvdu] dzdr
rpv D

q}
t

J J [n(t,s,x, y)](r,2)H(X, (r,2))W,(z,7)

0 JD

q}

By virtue of (A.11) and (A.12) with k = i—%+1=1—%€ [0,1], (A.13) with :}17—}1)+1: 1

and || we have for a €]0,1 — %[ and 8 €]0,1[,

B,Zl(t,s,x,J’) = E [1/31;1@)@14(5)

X |:J J AvGr_u(z,v)f(X;(u,v))dvdu:| dzdr
rpv D

Brll(t,s,x,y)
< Cnda2:m4 [lt —s|*+|x —ylﬁ]q
r p
xXE J J |AvGr—u('aV)|1A1,\{1(u)|Xn(u,v)_Xn_(u’v)ldVdu
rpd D q
< Cnt123™ [|e—s|*+x - y[P]* 273" sup E [IX,(r,) = X; (1)l ]
rel0,T]
< Cn®a27 [|e—s|* + [x — y|f]". (4.42)
Forr <t, set
.
V(r,z):= f J AvGr_u(z,v)lAzy(u)f(X;(u,v))dvdu. (4.43)
rpd D
Using the B-D-G inequality
q
[27¢/T]-1 .1
ﬁUJJJOSE{ D1 RWs || (4.44)
k=0

Since X (u,v) = Gy, (v, X;,(up, ), it is obvious that
1%, (w, )l < ClIXR(u, llg-
By virtue of (4.7)),

—na(i-3d
sup E [V, llf] < 276w, (4.45)
rel0,T]

Again by Lemma there exist 6’ <4—dand 0’ <2,0 <1— % such that
Brzl(t,s,x,y) < Cnadag—nae’ [lt —sl? +|x — ylgl]q s (4.46)

/1341, 2 1qp_d _
where a’ = —1 2q+q+yﬁ.Sothatfora€]0,2(1 4)[and/3€]0,(2 d/2)A1][,

E [1149{10)”1“%(5) {Jg(t,s,x,y)|q] < Cndq2_”q5/ I:lt —Sla + |X —y|ﬁ:|q . (4.47)
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with 6’ =t A %/ Finally we consider J;(t,s,x,y) and J:;f’(t,s,x,y). From dA.llI) and dA.lZI) with
—1_1 ; _d
K== +1€[0,1] and li it follows that for a €]0, 1 4p[ and 8 €]0,1[,

q
E [lAfy(t)nAff(s) |J§(t,s,x,y)| }

< cntt2i [le—sl+ -y )" sup B[ Lyl Tl
rel0,T
< Cn2d49-3ma [|t—s|“+|x—y|/3]q. (4.48)

5 : 12 q._7_2
As for J3(t,s,x,y), using (A.11) and (A.12) with k := s +1:=1 5 € [0,1] and Lemma
we get for a €]0,1 — %[ and 8 €]0,min{4 — 24, 1}[,
q:|

P
t

E | Lav(pnav(s) J J [n(t,s,x, )](r,2)|X,(r,2) — X (r,2)|*W,(z, r)dzdr
0Jp

q
E [1Ay(tmy(s) \Jg’f(t,s,x,y)| ]

t
= E | Lavnav(s) JJ [n(t,s,x,Y)1(r,2)p,(r,2)W,(z,r)dzdr
0JD

IA

T

When d = 3, we can obtain a more precise estimate than the cases of d = 1,2, which will be
concluded in Lemma [6.1] of Section [6] Thus we complete the proof of the lemma. O

d d
< cn72GTIM [|e—s|*+ x - yIF]".

5 The proof of (C1)

The condition (C1) presented by Section [3]shall be verified in this section. By Lemma to check
(C1), we only need to prove the right hand side of (4.1)) approaches 0, when n — co. Note that for
each fixed n €N,

1a. (x,t)
——;j=0,1,...,2" -1, kel
Ty

forms a CONS of L2([0,T] x D). Let r, be the orthogonal projection of above basis and for any
mapping g : R — R, define

7,8(8)=¢ ((s + T2 A T) , s€[0,T].

Then for each t € [0, T] and F-predictable process (1(t,x); x € D)o<;<7>

t T
f f w(s,y)wn(dy,dw:f f 7 [Ta (Lo,g (W () | G5, 7IW(dy, ds).
0JD 0 JD
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Recall A,(t,x) defined by and we have

where

3
An(t) X) = Z;\:—l(t} X),
i=1

rt

At x) = ] JGt—s(x,y)H(X;(s,y))[Wn(dy,dS)—W(dy,dS)],
0JD
('t

A2(t,x) = ) fGt_s(x,y)[H(X,f(s,y))—H(Xn(s,y))]W(dy,dS),
0JD
rt

A(t,x) = ) JGt_s(x,y)[H(Xn(s,y))—H(X;(s,y))]Wn(dy,dS)
0JD

_f f Gt—s(X,J’)H(Xn(S;}’))
0JD
x [an(s, YIF(Xn(s, ¥)) + Br(s, yIH(X (s, ¥))] dyds.

We begin with the estimation of the term f\l(t, x). Note that

Alt,x) = f f (110 ()Ge e, IHEG () ] (5,3
10,9 ()Ge—. (6, IHOG ()] (5, ) | W(dy, ds),
+ f f 110,1()Ge—.(x, H(X, ()] (5, ¥)

~110,9(5)Ge-s (6, YIH (X (5,) | W(dy, ds)
=: /N\};l(t, x)+ /~\711,2(t, x).

Then by the Holder inequality and Burkholder’s inequality, and note that 7, is an orthogonal pro-
jection of L2([0,t] x D), we have for ¢ > p,

IA

IA

e

—l[o,t](S)Gt—s(x,y)H(Xn_(s,y))} W(dy,ds)

Al

J J 1o, t](s)Gt s (%, J’)H(X (s, }’))]

q
}dx

f J 110, (8)Ge (%, YIH(X, (5, 3))]

T
f J [1[0,t] (s+T27) Gr_gerram(® ) H (X, (s +T27",¥))
0JD

CE |:1AM([)

—110,11(s)G—s(®, Y JH(X, (s, y))} 2dyds
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2
—1;0,1()G—s(®, Y JH(X, (s, y))} dyds

xH? (X;(s + T27”,y)) dyds

x [HOG (s + T2, y)) ~ H(X; (s, ¥)) ] " dyds

< CE|:].AM(t)
+CE|:1A¥(L‘)
+CE lgzr\l/l(t)
< CE

+CE|:

q
2
q
2

(t=T27™™)* )
J J I:Gt—(s+T2’”)(‘; y)— Gt—s(‘:.y)]
0 D

q
2
q

2

(t—T2~")* ,
f J |Gt—s(.: }’)|
0 D

t
J f G2_,(o, )H* (X, (5,¥)) dyds
(t—=T2=M)*JD

(t=T27™™)"* )
J f [Gesrr2m)(®Y) = Ge_y(o,¥)] " dyds
0 D

— (t—TZ‘")+ )
+CE H J J |Ge—s(o, )]
LI1Jo D

X1 u () [Xn_ (s + TZ_”,y) —Xn_(s,y)]zdyds

t
U JGE_S(%J’)HZ (X, (s,5)) dyds
(t=T2=")*JD

3
= C Y ALM(0).
i=1

Take the boundedness of the mapping H into account, from and in Lemma A.2, it follows

that fory” <1 — %,

q

]

2

q

|

2

q
2

q
2

q
2
q

2

q
2
q
2

~ ~ 1.7
sup [IALP(O]+|AYA(0l] < c2727 ™. (5.1)
te[0,T]

On the other hand, applying

A.16

with k = i + 1 =1, the Holder inequality, Lemma and

Lemma [6.1] (in Section [6)) to conclude that

|/~\,11’1’2(t){ < C sup E

s€[0,T]

IA

C

(s,y)e0r

+C sup E[lAy(s)nAff(erT/zn)
(s.y)eor

sup E [1Afy(s+T/2")

_ _ _ q
|:1A1r\1/[(s)m1r\l4(s+7~/2n) Xn (S+T2 n,') _Xn (S,')Hqi|

q
Xy (s+T27"y) =X, (s + T2_”,y). }

X, (s + T2_",y) —Xn(s,y)‘q}

509



+C sup E[lAM(S) \X (s,y) =X (s, y)| ]
(s,y)eor

< C[2m427tmaq 27,

Therefore forq > p > = 3d

sup E|:1AM(t)||A1 I(t, )H ] n— oo.
te[0,T

As for the term /1,11’2(1‘_, x), note that

J f T [l[o,t](-)ct_.(x,*)H(X,:(-,*))] (s, )W (dy, ds)
0JD

znt] lAJk(% ~
Ge_(x,2)H(X (r,2))dzdr | W(dy,ds).
Jj= 0 keId 0JD Ajk

Then the B-D-G inequality yields that for g > p,

o 2l

e lA]k(y,S)
efef 185
D j= 0 keId
X [J [Gf—r(x,Z)H(X;(T‘,Z))—Gt-s(x,y)H(Xn_(S,y))]dzdr}
Ajx
q

xW(dy,ds) dx}

<

CE [1AM(t)

2] lA (s8)
[NPews
D j= 0 keld k|
2
X [J [Gi_.(9,2)— G, _ (o, ¥)] H(X;(r,z))dzdr] dyds
Ajx

T 0 [2"t 1 Jk(y’s)
JJZZA
0JD

J=0 kerd ]k|

(ST )
I |

+CE {1 A

2
X [ f Ge—s(e,y) [H(X; (r,2)) = HX; (5, ¥))] dzdr} dyds
Ajk

= C[HM)O)+HXD)].

By the boundedness of H and Dini’s theorem, we have for t € [0, T],

J f lA (558)
A 12
0 JD j=0 kerd k)
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2
X J [Gi—r(9,2) = Gi_s(,¥)] dZdr:| dyds
Ajx

N

(SIS

q
‘ 3
2
= C J J )ﬂfn [Gt—‘(.: *)] (S,J’) - Gt—s(.: y)| dde
0JD q
q
t ) 3
= Csup J |7Tn|:Gt—~(xa*):|(5:.Y) - Gt—s(x,Y)| dyds
xeD oJD

— 0, n— oo,
follows from the fact that when n — oo, it holds that
”nn [Gt—'(x’*)] a Gt_‘(x’*)”Lz([O,T]xD) -0,

for all (t,x) € Oy (a compact set in R9™1). Because H is Lipschitzian continuous, using the Holder

inequality
[Znt] IA 7))
k™ 2
f f e — J G (e, y)dzdr
D j=0 kerd k| Ajx
q
2
q}
2
[2”t] ]'A]k(y’ ) )
—_— G;_ (e, y)dzdr
D j= 0 keld k| Ajk
q
2
qi|
2
[2"t]

C sup ZZ sup E[IAM(r)mAM(S) {X (r,2)) =X, (s, y)|]
(s,y)eor =0 keId (z,1)EA x

xlAj,k(y,s). (5.5)

H2(¢)

IA

CE [wm

X |:f |HX, (r,2)) —HX, (s, y))|2dzdr:| dyds
Ay

IA

CE [1AM(t)

x [ f H(X(r,2)) — H(X (s, y))lzdzdr:| dyds
Ajx

IA

Note that
X, (nz) =X, (s, ¥)l < X, (rz) =X, (r,2)| + X, (r,2) — X,(s, y)
+1Xn(s, ) — X, (s, ¥)I.
Then from Lemma and Lemmal [6.1] (in Section[6), it follows that
H2(t) < C[27M4275M427M] <27, (5.6)

where A = min{t, £}. This further implies that for ¢ > p > 34,

sup E|:1AM(t)||A12(t )H ] n— oo,
te[0,T]
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3d

and hence for g = p > <7,

sup E [ Lo [|AL(e,)[|0] =0, n— o 5.7)
0,T]

tel

Finally, we turn to the estimation of the term Afl(t, x). In light of the B-D-G inequality and |l
withK=§—I%+1=1,

E [ Laeo |32,

t 3
= CE | L, [J JGtz_s(',y)lH(Xn(S,y))—H(X{(S,y))lzd)’ds}
0 JD P
— t . 2
< CE J(t—5)_4||Xn(5,-)—X{(s,-)IIZdS}
< CZ_Z”q. (5.8)

Observe that
A3(t,x) =J5(t,0,x,0), (5.9)

for the term J5(t,s, x, y) defined in Lemma Then there exists a A > 0 such that forqg > p > %,

sup E [1@3(0 1R3¢, )HZ] < 27, (5.10)
te[0,T]
Thus we prove that the condition (C1) holds. O

6 The proof of (C2)

The aim of this section is to check the validity of the condition (C2) presented in Section [3| Note

that for all s < t € [0, T], we have for g > p > 3d

q
E [Ty conao [[¥a(t:) = Yals, ||
< CE [ anonare [Xa(t:) = Xu(, |5 ] + CE [ Lascoymameo 1K (e, ) = X (s, 11|
Observe the forms of Equations (2.2) and (2.3)), X is a particular case of X,,. Hence in order to prove

that (C2) holds, it suffices to check that forall 0 <s < t < T, there exist ¢ > p and 8 > qa (a is
presented in Theorem such that for each n €N,

(G2 B[ Lawonar [Xalt,) = Xu(s, [} ] = Cle =517
From (2.2)), it follows that for (s, y), (t,x) € Oy,
Xn(t’x) —Xn(S,)’)
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= Grxp(x) =G+ yY(y)

T
+J J [n(s, t,x, Y)1(r,2) [F(X,(r,2))W(dz, dr) + H(X,(r,2)W,(dz,dr))]
oJp

T
T f f s, £, Y)](1,2) [K(Xn(r,z))h(r,z)
0 JD
()X (,2)) + B 2K, (1, )] }dzdr

T
+J J [1(s, £, x, ¥)](r,2) f (X, (1, 2))dzdr. (6.1)
0oJp

To prove (C2)’, we will sharp the estimations in Lemma by the following lemma.

Lemma 6.1. It holds that

(i) Letq = p > 6. Then for a G]O,min{%(l — % ,%}[ and 3 €]0,min{2 — d o}, there exists a

2 b
constant C > 0 such that

q _ - 714
E [ Ly onay (o [Xa(t: ) = X, (5, )] | < On927 e — )% 4 = y [P |, 6.2)

el ool q_3d L1 230 g
for some & €]0,min{=, o, =(—1 2q+c1—|-m,)[Wll‘.h 0,7, B defined lnLemmaandLemma

respectively.
(ii) Letq=>p > 4. Then for a €]0, min{%(l — %), €1 there exists a C > 0 such that

E | Ty oy o [Xa(t, ) = Xo(s, )3 | < onfoama)e — s, 6.3)
where & is the same as in (i).

Proof. Recall the entire proof of Lemma We only need to re-estimate J;(t, $,%,¥), J?f(t,s, x,¥)
and J??(t,s, x,y) given in Lemma To improve the estimation of J?}(t,s,x, y), we only need to

estimate the term J§’4(t,s,x,y). Note that, for (s, y),(t,x) € Oy,

Ja(t,s,x,y)

IA

ngndJ f [7](8, t, X,y)](r,z)H(X;(r’z))
0JD
‘ [ f f G2, ) [FOX; (1, ) = FOX, (1, )] dvdu] dzdr
¥ Di(2)
"'ngndj1 J [n(s, t,X,y)](r,Z)H(X;(r,z))
0JD

X [JJ Gr_u(z,v) [F(X,(w,v)) — F(X,(r,2))] dvdu:| dzdr
rn J Di(2)

=: Ki(t,s,x,y)-l—Kg(t,s,x,y). (6.4)
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Using a similar argument to that of (4.42]), we get for a, 8 € (0,1),
E [lgzrxf(t)mlgzr\l/[(s) |Ki(t,s,x,y)|q] < Cndag—na(;+0) [It —s|%*+|x— yIﬁJ 1 (6.5)

In order to estimate Kﬁ(t,s,x,y), we apply the Holder inequality w.r.t the measures dy and
G,_,(2,v)dvdu, respectively. Then (A.11)), (A.12) and Lemma[4.5|jointly imply that, for a, § €]0, 1[,

q
E [lAfxf(r)nAy(s) |K2(t,5,%, )] }

t r
ngq q -
< €22n% [It—s|“+|x—y|ﬁ] E|:1A1r\{1(t)nglr\l/l(s)f f f Gr_u(-V)
0 ¢ Dy(4)
q
X [F(X,(u,v)) — F(X,(r,-))] dvdu dri|
q
< (2% n2ag=(g-Dn [It =5+ Ix —ylﬁ]q
F e g .
X f J Gr_,(2,v) [lr—u|“+|z—v|ﬁ] dvdu] dr}
L LJr, JD(z)
< (C2"Ma/2p2da [It—s|“+|x—y|ﬂ]q

t
X J
LJO

+271%4G _ (2, v)] dvdu} dr]

t
< (C2nn/2p2dq [It—sl“—i—lx—ylﬁ]qf [J
0 r

< Cz—nq(%-i-a’)nqu [lt—s|“+|x—y|ﬁ]q, (6.6)

T
tnf d v[4/3
[Ir—u|_4|v|ﬁqexp —Cll—1
LJr JRd |r_u| /3

n

.
[ s )
|r — uIquu + 2_”_"“1”] dr

n

where a’ = min{a, E}. The estimation of J32(t,s,x,y) is similar to that of J;(t,s, x,¥).

Finally, we improve the estimation of the term J:f(t,s,x, y). Using the decomposition of X,(r,z) —

X (r,2),
|

REI(t,s5,%,¥), (6.7)
1

E

| —

q
Lav(rynam(s) Jgs(t,s,x,y)| ]

Lav (eynam (s)

IA
o]
1

J J (n(t,s,x, y)(r,2)|X,(r,2) —X;(r,z)lzwn(z, r)dzdr
0Jp

i
M-

4

1

J

Il
—

where

RY(t,s,x,y)

f J [n(t,s,x,y)](r,z)Tri(r,z)Tr{(r,z)Wn(z, r)dzdr
0JD

|

= E [Uyumws)
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Using (A.11) and (A.12) with x := i - 1% +1=1 —}% € [0,1], we get for a €]0,1 — %[, B e
e, 2d 1 1 1
10, min{4 o 1}[, and v > max{1+j(;<—1)—a’ -0 11 },

1
.. d n . -
Rbi(t,s,x,y) < Cn222 [le s+ |x - yIF]* SFP]E[1Ay(rm;y(s)llT,§(n-)IIZY]Y
rel0,t
1

x sup E [Uyumy(s)llﬂ(n -)II?,Y] "
re[0,t]
Thanks to (4.5)-(4.8)), we deduce that there exists & > 0 such that for all (i, j) with either i or j not
belonging to {1, 4},
R;’j(t,s,x,y)sCZ_”q‘S [It—s|“+|x—y|ﬁJq. (6.8)

Next we improve the estimate of R% when i, € {1,4}. We first deal with R:*. By the Holder
inequality with % + % =1, for p > 6,

1
R;{](f,S,X:J’) S Cn22>2 |:|t_5|a+|x_y|/5] Sl[lp]E[lAﬁd(t)ﬂAﬁl(s)”Té(r,)|g;j|y
relo,t
1

X sup E [IA],‘f(t)ﬂAf’(s)HTr{(r")“gg] T
re[0,t]
—na(l_3d
< ¢276G 4p)[|t—s|°‘+|x—y|/5]q. (6.9)

The estimation of the term R** is similar to that of R>*. To improve the estimation of R:!(t,s, x, y),
we introduce the process

Tnl_(r,z) = f f G,_y(z,V)F(X, (u,v))W(dv,du). (6.10)
rpY D

Then
R:rll,l(tﬂs)xiy)
f J [n(t,s,%,)1(r,2) [(T1(r,2))* = (T}~ (1,2))*] W, (2, r)dzdr
0JD

]|
|

o plll 1,1,2
= RV (t,s,x,y)+RV(t,s,x,y). (6.11)

< E {1&?@)@&%(5)

J f [n(t,s,x,y)](r,z)(TT}_(r,z))ZWn(z, r)dzdr
0Jp

+E {lAf:’ (6)NAY (5)

Similarly to the proof of the term J5!(t,s,x,y) in (4.32), we conclude that there exists a &’ :=

2—d+§+% > 0 with v €]1,2[ such that

REV(t,s,x,y) < €272 [|e —s|* +|x — y[P]". (6.12)

515



1,1,2
As for the term R)*“(t,s, x, y ), we have

RIA(t,s,x,y)
t
= E[lAfy(t)mAIy(s) J f [n(t,s,x, y)](r,2)
0Jp
. . q
x [(T1™(r,2))*W,(2,7) — E[(T,~ (r,2))*W,(2,7)|#,, 1] dzdr }
t q
+E |:1A1,‘{’(t)mA]){’(s) f f [n(t,s,x,y)1(r,2)E[(T,(1,2))*W,(z, )|, 1dzdr ]
0Jp
= Zi(t,s,x,y)+Z§(t,s,x,y). (6.13)
Similarly to the proof ofJ,;’z(t,s,x,y) in (4.36), there existsa 6 := —%+$—I— # >0 with aff €]1,2]
such that
Zi(t,s,x,y)SCZ_%“(ﬁ [|t—s|a+|x—y|ﬂ]q. (6.14)

Since W, (z,r) is &, -measurable and we have
n

2
E | W,(z,1) ‘9},1

f J Gr_u(z,V)F(X, (u,v))W(dv,du)
r,JD

ﬂrn:| Ig'.rn:| =0,

E|:Wn(z,r) U J Gr_u(z,v)F(X;(u,v))W(dv,du):|
.Yy D

= E|W,(z,r)E [J JGf_u(z,v)Fz(Xn_(u,v))dvdu
L r,JD

and

x U J Gr_u(z,v)F(X;(u,v))W(dv,du):| |9rn} —0.
rm D
Applying It6 rule to conclude that

E (T, (n2)*W,(z,1)|Z, ]

< cnédzénE[ f - U J Gr_u(z,v)F(Xn_(u,v))W(dv,du)]
T'n r, vD

-
)

X {j Gr_u(z,v)F(X;(u,v))dv] dw
Dy(2)
+Cn292:"E U W(Dy(2) X (ry, w])

X |:J Gf_u(z,v)Fz(Xn_(u,v))dv] dw
D
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— 721 2,2
T Zn (tisixiy)—l_zn (t,5:x>y)- (6~15)
However the Fubini’s theorem yields that

E[|22'(s 0,00

Iy w q
E |: f |:f f Gr_u(z,v)F(Xn_(u,v))W(dv,du)] dw :|
Tn rpJ D

< c2mG=9), (6.16)

IA

Note that the integral fD Grz_u(z, V)F2(X . (W, v))dv is Z, -measurable. Hence

2,2 _
Z:(t,s,x,y)=0.

From (A.11) and (A.12) with k :=
2d
4 131,

L1
00

— % + 1, it follows that for a €]0,1 — %[ and 8 €]0, min{4 —

Zf(t,s,x,y) < CZ_”q(l_%) [|t —s|*+|x — ylﬁ]q. (6.17)

Using the estimations (6.11)-(6.14) and (6.17)), we conclude that there exists a 6 > 0 such that

er;l(t,s,x,y) <Cc2 M0 [lt —s|*+|x— yIﬁ]q. (6.18)

Thus we complete the proof of the lemma. O

Now we prove the skeleton process S(h) to Equation (1.3) is continuous for all h € .

Lemma 6.2. Let a €]0,1[ and q = 4. Then for each a > 0, there exists a C > 0 such that when
11l VIRl < a,

IS(h) = S(ho)| ,y < C [ =

a,q — ||}f :
Proof. A similar proof to that of Theorem 1.4 in [6] yields that, for g > 4,

sup sup [|S(h)(t,-)lly = Cq < oo0.
he{hesZ;||h|| y<a} t€[0,T]

Recall the skeleton equation (1.3]) and we have
S(ho)(t,x) = S(hy)(t, x)

= JJAGH(XJ) [f(S(hy)(s,¥)) — f(S(h1)(s, ¥))] dyds
0JD
+J f Gi—s(x, ¥)o(S(hy)(s, ¥)) [ha(s, y) — hy(s, y)] dyds
0JD
+J f Gi—s(x,¥) [0(S(ha)(s, ¥)) — o (S(h1)(s, ¥))] hy s, y)dyds
0JD
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=: ZBJRi(t,x)
i=1

Note that u(s, -), v(s,-) € LY(D) for each s € [0, T], we have for p =q/3,
luGs,) =v(s,l, < Clluls,-) = v(s,llg
(s, ) =v2(s, M < Clluls, ) = vis, g [1us, g + v, g |
(s, ) = v3(s, )l Cllus,-) —v(s,llg
x [ luCs, M2+ 1vGs, N2 + s, g v, Mg | -

A

IA

Then by virtue of (A.13) with k = é — 3 +1=1- § e[0,1],

R, )], < f (¢ =72 3 1IS(h)(s, ¥) — SChy (s, Y )llgds.
0

On the other hand, under (H1), the Schwarz’s inequality implies that

t
JOJD

Again by the Schwarz’s inequality and (A.10) with k = é - clz +1=1€[0,1],

B

Ra(t, )], < € [Pz =By [Ge—s( )]Pdyds|| < Cllhy — hylle-

e

q

t

IR3(t,)llg < CJ (t—S)_%Ils(hz)(s,y)—S(h1)(s,y)llqd5-
0

Hence the Gronwall’s lemma yields that
1S(ha) = S(hy)llg < Cllhy = hyll s
While for (t,x) € 0y and t' € [0, T],
S(ha)(t,x) = S(hy)(t, x) — S(h)(t', x) + S(hy)(t', x)

= J J [7(t, ¢/, x,2)1(5, ¥) [f (S(ha)(s, ¥)) — f(S(hy)(s, ¥))] dyds
0JD
+f [n(t,t',,%)(s, y)o (SCha)(s, ¥)) [hals, ¥) —hy(s, ¥)] dyds
0JD

+j [n(e,t",x,5)1(s, ) [0(S(ha)(s, ¥)) = 0(S(h1)(s, ¥)) ] hy (s, y)dyds,
0JD

and then by qA.11|) and qA.14|) with p =qgand p = %, we get for a €]0, %[,

[S(h2)(¢, ) = S(h)(E, ) = S(h)(E', )+ S )(E', )|, 4 < Cllhg =R ll el e = 1%,

where the Hélder norm || - [|o 4 := || - |l,q,00- Which is defined in Section [3 Thus we complete the
proof of the lemma. O
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Now we are at the position to prove Theorem|[I.1

Proof of Theorem We adopt the method used in Theorem 2.1 of [[I]]. We only provide a
sketch for this proof. For parsimony, we only prove the part (b) of Theorem [1.1} since the proof of
the part (a) is similar. Given h € 54, let X 1}11 be the solution to Equation ith h=F=K=0
and H = 0. Define H, : Q — 54, by

H,(s,y) = Wo(,5) — 6(Xa(s, ¥))Brls, ¥).

By virtue of the uniqueness of the solution to (2.2]), we have X, = S(H,,). Moreover, Proposition (3.1
yields that X,, — u in probability in C*°([0, T], LP(D)). Using Proposition 2.1-(i) in [[13], it holds
that

supp (Pou™1) C S(4).

On the other hand, we fix h € 54, and let X, be the solution to (2.2) with F = o, H = —0 and
K =o0. Set

Ky(s,y) :=h(s, ) = (Xy(s, y))(an(s, ¥) = Buls, YD),
where a,, B, are defined in || Let I"Z : Q—Qand
Mw)=w—w, +Ky(w).

Then the Girsanov’s theorem implies that P o (I"Z)_1 < P. Note that X, =uo FZ and X = S(h) and
then Proposition concludes that u o FZ converges in probability to S(h) in C*°([0, T]; LP(D)).
By Proposition 2.2-(ii) in [[13],

S(#5,) C supp (Pou™1).

Next we have to check that S(#4,) = S(¢). Since 54, is dense in 52, it suffices to check that for any
0< M < o0 and a €]0, min{%(l — %), % [, there exists a C > 0 such that

1S(h2) = S(h)lla,p < Clihy — hallse, (6.19)

when ||hy ]l V |yl < M. Hence the desired result follows from Lemma [6.2] Thus we finish the
entire proof of Theorem|1.1 O
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Appendix

In this section, we present some new estimates on the Green kernel G, (-, *) corresponding to the operator 8 /8 t + A2 with
the homogeneous Neumann’s boundary condition in (1.1). As in Da Prato and Debussche [8], the Green kernel admits
the following expansion.
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Let A= —A be defined on 9(A) = {u € H?(D); du/dn =0, on 8D} and {©,},cn be the basis of eigenfunctions of A in
L?(D), which can be written as

d
e, =] [, (), A1)
i=1
where k = (ky,...,k;) €N¢, x =(xy,...,x;) €D and

{ 6y, (x)) = \/E cos(k;x;), k; #0, (A.2)

0o(x;) = JL;’ k; =0,

. d . . . .
fori =1,...,d. Here {1, = Zi:l kl-z}keNd are the eigenvalues corresponding to the eigenfunctions. Hence the Green

kernel G on [0,00) X D can be expressed as

G(x,y) = D e 0 (x)8y(y), (A3)
keNd
with (t,x,y) € [0,00) x D%

The following estimates concerning the Green kernel G are quoted from [6].

Lemma A.1 There exist C,K > 0 such that for t €]0,T] and x,y € D,

K x = yI3
|Gt(x,y)| < —exp|-C——— |, (A4)
te t]3
K x = I8
|AyGt(x,y)| < Zexp| —-C——— |, (A.5)
t 4 [t]3
4
3G, (x,y) K lx —yl|3
'ta—t < td?exp —CW . (A6)

LemmaA.2 Fory <4—dandy <2,y <1-— %, there exists C > 0 such that for 0 <s <t < T and x,z €D,

t

j f G,—u(x,¥) = G,_y(z,y)Pdydu < Clx—3z|", (A7)

0JD
J J G0, ¥) = G (x,y)Pdydu < Clt—s]", (A.8)

0JD

t
J f G, (e, y)Pdydu < Cle—s|". (A.9)
s JD

The proofs of the following lemma are similar to that of Lemma 3.1 in Gyongy [[11]], which further improve the estimates
in [6].

Lemma A.3 Assume that p € [1,00[, p € [p,o0[, v > 1 and k :=
0<ty,<t=<Tandx €D, define

i i+ 1 € [0,1]. For v € L7([0,T],LP(D)),

J(v)(ty, t,x) := J J H(t—r,x,y)v(r,y)dydr.

Then J is a bounded operator from LY([0, T], L?(D)) into L*([0, T], L?(D)) such that the following conclusions hold.
(@) Let H(t,x,y) = G.(x,y). Then there exists C > 0 such that
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(1) Forally> 1

d B
1+Z(K—1)

t

d
[T 9], < ¢ f (t = r)sE D)l dr
to

1+4-1)-1
< Co ATy VG M Lr(reg, r1,00 (D)) -

@) Letae]O,l—}-%(K—l)[. Forall y > 1

1+%(K—1)—a’
”J(V)(O: t, *) - J(V)(O,S, *)”p < C|t - S|a ||V(': >|<)“LY([O,T],LP(D)) >
with0<s<t<T.

(3) Let €]0,min{4— (1 —x)d,1}[. Forally>max{+ L },

e w-1-271-4p

()0, t,%) = J(W)(O, t, % +2)ll, < Clal? V(- Ol o,r3.0 01 »
with t € [0, T], where we set J(v)(t,y) := 0 when y € D°.
(b) IfH(t,x,y)=A,G.(x,y) (if d = 3, we also need k1 <3;ifd =2, k! # 00), there exists C > 0 such that
(1) Forally> 1

1.,.d. B
3+ =1)

t
IOt 9, < € f (t =) 25D ()| dr
to

lidg-1)-1
< Ct2m T WC Ol e e o) -

1y dee —
(2) Leta€]0,;+4(x— D[ Forally > T TG a

I7(v)(0, £,%) = J(v)(0,s,9)ll, < Clt =s|* [[V(, v (reg, 11,00 00 >
with0<s<t<T.

(3) Let f €]0,min{2 — (1 —«)d, 5,1}[. For all y > max{; ;4/3}’
4

14 Fo I
zta(-D-3 " 2

“J(V)(O; t, *) - J(V)(O’ t,* +Z)”p < C|Z|ﬁ ||V(‘, *)”LV([tO,T],LP(D)) >

with t € [0, T], where we set J(v)(t,y) :=0 when y € D°.

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(o). IfH(t,x,y) = G*(t,x,y) (if d = 3, we also need k! < %; ifd =2, k7! # 0), there is a constant C > 0 such that

1
(1) For all Y > m,

t
d
T()(to, 5, < CJ(f—r)“(Kz)IIV(r,*)Ilpdr
to

d 1
145 (k=2)-2

< Ct TV (e,m1,00 ) -

(2) Let a €]0,1 + %(K —2)[, forally >

R S
1+%(K72)7¢1’
l7(v)(0,¢,-) =J(v)(O,s,)ll, < Clt = s|* V(v (e, 11.000)) »

foral0<s<t<T.

(3) Let B €10, min{4 — (2 — k)d, =4, 1}[, for all y > max{ 1 1 },

d 14902~ £ 1-4(8+1)

7 (v)(0, £,) = I (W)(O, &, +2)l, < Clzl® IV Ol e, 71,20 0

forall t € [0, T], where we set J(v)(t,y) := 0 when y € D°.
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Proof. We only prove the case (a), since the proofs of the cases (b) and (c) are similar. We first treat (A.10). By @)
and the Minkowski’s inequality

7O, £, 0, < J||G(t—r,*,y)v(r,y)dy”pdr

4/3
J [t — |4/ |:exp( T A |1/3) *|V(T,')|i| )

+1 € [0,1]. From the Young’s inequality and Holder’s inequality, it follows that, for y >

IA

p

1+7 (K 1)’

t ¢ 1/r
de,. d(e—1)=1
IIJ(v)(to,t,*)llpSCJ It — r|5*Dllv(r, 0|, dr < ce* 307y U ||v(r,*)||;dr:| ,
to to

N .
exp | —C—— |dx=Kt=4, (A.19)
Rl t3

for some constant K > 0. This proves (A.10)). Next we turn to the proof of (A.11). Forany0 <s <t < T,

where we have used the equality

7 (v)(O, t,%) = J(v)(0,s, %), SA; +A,,

where

Ay

>

f (G, (+,¥) = G, (%, ) v(r, y)dydr

p

A,

G (x, yIv(r, y)dydr

Note that for a €]0,1[ and h,, h, €R, it holds that
|hy —hy| < [Ihy —hyl%] [Ihlll’“ + |h2|1*“} .

Then by the Mean-Value theorem, for 6 € [s, t],

A dr

J |Gt—r(*7 y) - Gs—r(*’ }’)|V(r,.}’)d}’
b p

s 4
1 *—y|3 v(r,
< Clt—sl"‘J J—dexp —CI y|1 (3/) dy
o ||Jp (6 —r)tathe 6—rl3 ) (s—r)st®

For any £ € R* and € > 0, we have exp{—(} < (%)6 Then

s 1 6 —r|3€
|t—s|“J J | & v(r,y)dy
o D(S )a(1+ )+ (1- at)l>k y|3
e 1 1
¢ =] " v(r,y)dy
o ||Jp (s = r)*+a-3¢ [ —y|5°

+1 €[0,1] to conclude that

dr.

p

I\

Ay dr

p

I\

dr.

p

Apply the Young’s inequality for k = 117 - ;l)

A1§|t—8|aj —,,, [J lyI™ 3“€d}’} [lv(r, )|, dr.
o (s—r)*ta
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3xd - 3kd d 1
Let € €]0, T[ be sufficiently close to = Fora €]0,1+ Z(K —1)[and y > pre g we have

T

S 1 S
A <t —5|af — v, dr <Clt —s|* [J ||v(r,>k)||:)dr] . (A.20)
o (s—r)*ta 3¢ 0

As for A,, if y > , then

1
d
2(K71)+1

t
AZSJ
S

t
dee_q)-1 v
< Cle—sTEE U ||v(r,*)||;dr} : (A21)
0

t
dr < CJ |6 = |3, 0]l dr
P S

J Ge_ (x5, yIv(r, y)dy

The estimates (A.20) and (A.21) imply (A.11). Finally we prove (A.12). Note that
lT(v)(E, %) —=J(v)(t, % +2)ll, <By + B, +R,

where R admits the similar expression as that on the right hand side of (A.10) and

1

t P
Bl = j |:J 1{x+z€D} (J 1{|xfy|5|z|}|Gt7r(x + z, }') - thr(z’y)h}(r) y)dy) dx:| dr,
0 D D

1/p

t P
B2 = J [J 1{x+z€D} (J 1{|x7y|>|z|}|Gt7r(x +z, J’) - thr(Z,.Y)W(r, }’)d}’) dxi| dr.
0 D D

B < CJ‘[J (f 1 1 [exp CIx—yI%
1 = T Adj4 Hix—yI<sl} T T
0 D D(t_r)d/4 A |t—r|%

1/p

4
+z— 3 p
+exp (—Cu) ] |v(r,y)|dy) dx} dr.

It —r|3

By (A4),

The Young’s inequality for xk = % — [l) + 1 € [0,1] further yields that

¢ l2] 4 4 ol K
1 x—yl|3 x+z—yl3
B, < CJ S [J [exp el y|1 +exp olrEm R }1/| } dy} v, )l dr.
o (t=r)s LJo [t —r|3 [t —r|3

Let ry,ry > 1 satisfy ri + rl =1landsetf = ‘i—’c. Then
1 2 1

¢ J2] 4 4 r &£
1 x—yl|3 x+z—y|3 x r2
B, < CJ —_— |z|f5|:f [exp —C—| y|l + exp —C—| }1,| ] dy} lv(r, Il dr
o (t—r)4 0 [t —rl3 |t —r|3

t

t

1 deq_ 1

< C|Z|’5j — |t —r|s¢ ﬁ)||V(r,*)||pdrSC|Z|ﬁJ —v(r#ll,dr
o (t—r)4 o(t—riﬁ

< Claf U Iv(r, *)n;dr} , (A22)
0

fory > ﬁ Using the Mean-Value theorem, for <1 and ¢ € [x,x + 2],
4

t
B, = j |:J 1{x+zeD}(J Lieey oyl Geor (X +2,y) =G, (z,)If
0 D D

p p
X|G,,(x +z,y)—thr(z,y)ll‘ﬁIV(r,y)ldy) dX} dr
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IA

t
1 lp — y|*?
CJ [J (J Lifemy s —parmy €XP (—C—|t_r|1/3 lz1”
0 p \Jp [t —r| 4

d 4 E
x|t — r|z<1*f3>|v(r,y)|dy) dx| dr
1

‘ 4
_ ¢ —yl3 Pk
C|Z|f5f . B |:J (J Loy i5(z €XP (—C—l |V(r,y)|d_y) de | dr
0 |t—r|4+4 D D |t—r|3

Note that if |x — y| > |z| and |x| < |¢| < |x + 2|, then

I\

1 1
¢ =yl < Elx—z+yl, or [¢p—y|=< Elxﬂ'ﬂ/l-

Hence for f§ € in{4 — (1 —x)d,1}[ and y > —_—t
ence for f €]0,min{4 — (1 — x)d,1}[ and y max{l%(k‘_l)_g,li%ﬂ},
t 1 t Y
stc|z|ﬁf ———— (N, dr < Clzlf J [lv(r,=)lTdr | . (A.23)
o |t —r|3st+3 0 g
This further yields (A.12). O

Lemma A.4 Let 1 <y < 2 and £ denote the positive integer such that £2™" < t < (£ +1)27". Then for 68’ < 4 —d and
/<2 60<1-— %, there exists C > 0 such that for 0 <s <t < T and x,z €D,

¢ (k+1)T %
2. |G,_.(x,2) = G,_,(y,2)["dzdr | <C27" V|x -y (A24)
k=0 \ J &% D

and
¢ (k+D)T %
21 2

> |G,_,(x,2) = G,_, (x,2)|"dzdr | <C27"V|e —s|°. (A.25)
k=0 \ J &% D

Proof. We only prove (A.24), since the proof of (A.25) is very similar. By (A.8), and the Hoélder inequality, we
have for 6’ <4 —d and 6’ <2,

=

(k+1)T
T

¢ 2!
> G- (,2) = Gy (3,2) " dzdr
k=0 L D
¢ (k+1D)T
2 2"
< 2"V Y |G, (x,2) = G,_, (y,2)dzdr
k=0J & D

t
—n(%-1) _ 2
< c2"r |G,_.(x,2) — G,_.(y,2)|*dzdr
0JD

2 /
< 2" P —yl?. (A.26)

Thus we finish the proof of the lemma. O
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