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Abstract

In this paper, we will prove that the local time of a Lévy process is a rough path of roughness
p a.s. for any 2 < p < 3 under some condition for the Lévy measure. This is a new class of
rough path processes. Then for any function g of finite g-variation (1 < g < 3), we establish
the integral f:o g(x)dLY as a Young integral when 1 < g < 2 and a Lyons’ rough path integral
when 2 < g < 3. We therefore apply these path integrals to extend the Tanaka-Meyer formula
for a continuous function f if f’ exists and is of finite g-variation when 1 < q < 3, for both
continuous semi-martingales and a class of Lévy processes.
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1 Introduction

Integration of a stochastic process is a fundamentally important problem in probability theory. Dif-
ferent integration theory may result in completely different approach to a problem. Local time
is an important and useful stochastic process. The investigation of its variation and integration
has attracted attentions of many mathematicians. Similar to the case of the Brownian motion, the
variation of the local time of a semimartingale in the spatial variable is also fundamental in the con-
struction of an integral with respect to the local time. There have been many works on the quadratic
or p-variations (in the case of stable processes) of local times in the sense of probability. Bouleau and
Yor ([3]]), Perkins ([128]]), first proved that, for the Brownian local time, and a sequence of partitions

{D,} of an interval [a, b], with the mesh |D,| — 0 when n — oo, hm Z(Lxl+1 LX’)2 4f L¥dx

in probability. Subsequently, the process x — L} can be regarded as a semlmartlngale (with appro-
priate filtration). This result allowed one to construct various stochastic integrals of the Brownian
local time in the spatial variable. See also Rogers and Walsh [31]]. Numerous important extensions
on the variations, stochastic integrations of local times and Ité’s formula have been done, e.g. Mar-
cus and Rosen [24], [25], Eisenbaum [5]], [6], Eisenbaum and Kyprianou [[7]], Flandoli, Russo and
Wolf [11]], Follmer, Protter and Shiryayev [[12]], Féllmer and Protter [[13]], Moret and Nualart [27].
In their extensions of Ité’s formula, the integrals of the local time are given as stochastic integrals
in nature, for example as forward and backward stochastic integrals. In this paper, we study path
integration of the local time and prove that the local time is of classical p-variation and also can be
considered as a rough path (its meaning will be made precise later). We consider the local time of
the Lévy process which is represented by the following Lévy-Ité decomposition

X, = XO+O-Bt+bt+f f yl{‘y|21}Np(de_y)
R\{0}

0 JR\{0}

Recall that for a general semimartingale X,, L = {L};x € R} is defined from the following formula
(Meyer [26]):

t o0
J g(X,)d[X, X]{ =J g(x)Lidx, (1.2)
0

—00

where [X,X]° is the continuous part of the quadratic variation process [X,X] . There is a different
notion of local time defined as the Radon-Nikodym derivative of the occupation measure of X with
respect to the Lebesgue measure on R i.e.

t [ee]
J g(X,)ds = J g(xX)rrdx, (1.3)
0 —00

for every Borel function g : R — R*. For the Lévy process (1.1)), if o # 0, LY and y} are the same
(up to a multiple of a constant). In case o = 0 e.g. for a stable process, there is no diffusion part
so these two definitions are different. In fact, in this case LY = 0. The increment of y, for stable
processes was considered by Boylan [4]], Getoor and Kesten [[14] and Barlow [2], using potential
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theory approach, in order to establish the continuity of the local time in the space variable. Using
Theorem 0.2 in [2]], it’s easy to prove that when o # 0, and (2.2) is satisfied, for any p > 2 and
t > 0, the process x — L}, is of finite p-variation in the classical sense almost surely. As a direct

application, one can define the path integral f :: g(x)dLY as a Young integral for any g being of
bounded g-variation for a g € [1,2). But when q > 2, Young’s condition 11) + é > 1 is broken.

The main task of this paper is to construct a geometric rough path over the processes Z(x) =
(LY, g(x)), for a deterministic function g being of finite g-variation when q € [2,3). This implies
establishing the path integrals f L¥d,LY and f g(x)d, LY. For these two integrals, all classical
integration theories such as Rlemann Lebesgue and Young fa11 to work. To overcome the difficulty,
we use the rough path theory pioneered by Lyons, see [21]], [22]], [23]], also [19]. However, our
p-variation result of the local time does not automatically make the desired rough path exist or
the integral well defined, though it is a crucial step to study first. Actually further hard analysis
is needed to establish an iterated path integration theory for Z. First we introduce a piecewise
curve of bounded variation as a generalized Wong-Zakai approximation to the stochastic process Z .
Then we define a smooth rough path by defining the iterated integrals of the piecewise bounded
variation process. We need to prove the smooth rough path converges to a geometric rough path
Z=(1,Z',Z%) when 2 < q < 3. For this, an important step is to compute E(L* —LX¥)(L;"*' = L)),
and obtain the correct order in terms of the increments x;,; — x; and x4, — X}, especially in disjoint
intervals [x;,x;41] and [xj,x;41] when i # j. One can see the global aspects of Lévy processes
are captured in this estimate. Actually, this is a very challenging task. In this analysis, the main
difficulty is from dealing with jumps, especially the small jumps of the process. One can also see
that to construct the geometric rough path, a slightly stronger condition is needed here.
Using this key estimate, we can establish the geometric rough path Z = (1,Z!,Z2). Then from
Chen’s identity, we define the following two integrals

b
J LydLy = m(D%irbr]l)_)OZ(( oo 11 T Le(x)(L{™ = LE)) (1.4
a a,
and
b r—1
— : 2 X X;
f SOMET = Jim B, o + €GO~ 1)) (1.5)
a a i=

r—1 —
Note that the Riemann sum Y. L;*(L;™' — L;") and Y. g(x;)(L;*' — L;") themselves may not have
i=0 =
limits as the mesh m(D(q)) — 0. At least there are no integration theories, rather than Lyons’
rough path theory, to guarantee the convergence of the Riemann sums for almost all w. Here it is

essential to add Lévy areas to the Riemann sum. Furthermore, we can prove if a sequence of smooth
. . . . b
functions g] — g as j — 0o, then the Riemann integral f gj(x)dLy converges to the rough path

integral f g(x)dLy defined in . It is also noted that to establish , one only needs (3.24)).
This 1s true as long as the power of |y| in the condition of Lévy measure is anything less (better)
than 2 5+ The main technique here is the Tanaka formula. If we assume the processes is symmetric,
one can use estimates of Gaussian processes and Dynkin’s isomorphism theorem as our tool. This
idea is being developed by Wang ([133]]) for symmetric stable processes.
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Having established the path integration of local time and the corresponding convergence results, as
a simple application, we can easily prove a useful extension of It6’s formula for the Lévy process
when the function is less smooth: if f : R — R is an absolutely continuous function and has left
derivative f’(x) being left continuous and of bounded g-variation, where 1 < g < 3, then P-a.s.

f&X) = f(Xo)‘i‘f f:(Xs)dXs_f fL0)d, LY
0 —00

+ ) — f(XD) = AXf/(X,2)], 0t <o, (1.6)

0<s<t

Here the path integral f fooo f/(x)d, LY is a Lebesgue-Stieltjes integral when q = 1, a Young integral
when 1 < g < 2 and a Lyons’ rough path integral when 2 < g < 3 respectively. Needless to say that
Tanaka’s formula ([32]]) and Meyer’s formula ([26]], [|34]) are special cases of our formula when
g = 1. The investigation of Ité’s formula to less smooth functions is crucial and useful in many
problems e.g. studying partial differential equations with singularities, the free boundary problem
in American options, and certain stochastic differential equations. Time dependent cases for a con-
tinuous semimartingale X, were investigated recently by Elworthy, Truman and Zhao ([8]]), Feng
and Zhao ([9]), where two-parameter Lebesgue-Stieltjes integrals and two-parameter Young inte-
gral were used respectively. We would like to point out that a two-parameter rough path integration
theory, which is important to the study of local times, and some other problems such as SPDEs, still
remains open.

A part of the results about the rough path integral of local time for a continuous semimartingale
was announced without including proofs in Feng and Zhao [[10]]. In this paper, we will give a full
construction of the local time rough path, and obtain complete results for any continuous semi-
martingales and a class of Lévy processes satisfying and o # 0. Our proofs are given in the
context of Lévy processes. For continuous semimartingales, we believe the reader can see easily that
the proof is essentially included in this paper, noticing the idea of decomposing the local time to
continuous and discontinuous parts in [[9] and the key estimate (8) in [10]].

2 The variation of local time

We see soon that the variation of local time follows immediately from Barlow’s celebrated result
of modulus of continuity of local time (Theorem 0.2, [2]]). Let X, be a one dimensional time ho-
mogeneous Lévy process, and (Z,),>o be generated by the sample paths X,, p(-) be a stationary
(Z,)-Poisson process on R\ {0}. From the well-known Lévy-Ité decomposition theorem, we can
write X, as follows:

X, = Xo+0B,+V,+M,, 2.1)
where
t+
Vt = bt+f J yl{lylzl}Np(de.y):
0 JR\{0}
t+
Mt = J J y1{|y|<l}Np(d5dy)'
0 R\{0}
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Here, N, is the Poisson random measure of p, the compensator of p is of the form N(dsdy) =
dsn(dy), where n(dy) is the Lévy measure of process X. The compensated random measure
N,(t,U) =N, (t,U) — N,(t,U) is an (%,)-martingale.

Proposition 2.1. If o # 0, the Lévy measure n satisfies

J (Iy> A)n(dy) < oo, (2.2)
R\{0}

then the local time L{ of time homogeneous Lévy process X, given by (|1.1) is of bounded p-variation in
a for any t > 0, for any p > 2, almost surely, i.e.

a; a;
sup E L, —L,/'|P <00 as.,

D(—o00,00)

where the supremum is taken over all finite partition on R, D(—00,00) := {—00 < qy < a; < :+- <
a, < oo}.

Proof: Let y(0) be the exponent of Lévy process X, i.e.

i0X, _ ,—tx(6
Eel [_e X( )’

where
x(0)=—ib6 + o262 — f [l —1— 10y 1y <13)n(dy). (2.3)
Recall from [2]],
B0 = = | (1= cos 6x)Re(———)d0
x)=— cos Ox 61"‘)((9)

If o2 > 0, it is easy to check that

Re(;) <c(o,0)1+6%)7!
1+y(0) ~ ’

and ¢(x) < c|x|%. So using Theorem 0.2 in [2]], one obtains that if p(x) = (xlog(%))%

sup IL‘t‘—LfI Scp(lb—al)(supo)%. (2.4)

_ 1 X
|b—al<s

Now we use Proposition 4.1.1 in [23]] (i =1,y > p — 1), for any finite partition {a;} of [a, b]

00 2n
n n
SUPZ L = L < c(p, Y)Z nYZ L —LiPP,
b n=1 k=1

where

k
aZ=a+§(b—a), k=0,1,---,2".
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The key point here is that the right hand side does not depend on the partition D. Using (2.4]), we
know that

00 2" 00 b

a? at —a..r
DL L < e i (p(—5):
n=1 k=1 n=1
X b—a
< &y i X Y2178 < o0,
n=1

as p > 2, where ¢ < 15) — 1. Therefore for any interval [a, b] CR
supZ |Lt — L{P < o0 as. (2.5)
b

But we know L has a compact support [-K,K] in a. So for the partition D :=D_y x = {—K = a( <
a; < ---<a, =K}, we obtain

a; .
supZ |L;* — L{P < 00 a.s. o
D
[

The p-variation (p > 2) result of the local time enables one to use Young’s integration theory to
o0
define f oo 8(x)d, L{ for g being of bounded g-variation when 1 < g < 2. This is because in this

case, for any q € [1,2), one can always find a constant p > 2 such that the condition 117 + é > 1 for

the existence of the Young integral is satisfied. However, when q > 2, Young integral is no longer
well defined. We have to use a new integration theory. In the following, we only consider the case
that 2 < q < 3. We obtain the existence of the geometric rough path Z = (1, Z!, Z2) associated to Z..
Lyons’ integration of rough path provides a way to push the result further. This will be studied in
the rest of this paper.

3 The local time rough path

To establish the rough path integral of local time, we need to estimate the p-th moment of the in-
crement of local time over a space interval and the covariance of the increments over two nonover-
lapping intervals. First, we give a general p-moment estimate formula. This will be used in later
proofs.

Lemma 3.1. We have the p-moment estimate formula: for any p > 1,

p
5( 3 Gp@.0)

0<s<t

n ‘ Zk 2% ‘ 2m+1 Zm%
< ) E F Gy, )*n(dy)ds | +c,| E| | If(s,y, @) nldy)ds |,

k=0 0 JR 0 JR

for a constant c, > 0. Here m is the smallest integer such that 2mtl > g,
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Proof: From the definition of N, Np, the Burkholder-Davis-Gundy inequality and Jensen’s inequal-
ity, we can have the p-moment estimation:

P
B( 3 Gp@0)

0<s<t

t+ p
_ E( J J |f(s,y,w)|Np(dsdy))
0 R\{0}
t t+ p
_ E( J J £ (s, y, @)n(dy)ds + f J |f(s,y,w)|(Np(dsdy)—n(dy)ds))
0 JR 0 R\{0}
t p t+ . p
pEU f|f(s,y,w>|n(dy)ds) +pE( J J |f(s,y,w)|Np(dsdy))
0 JR 0 R\{0}
t p t g
pEU flf(s,y,w)ln(dy)ds) +cpE( f f If(s,y,w)lzn(dy)ds)
0 R 0 R
+cpE(f f |f(s,y,w)|2Np(dsdy))2
0 JR\{0}
t p t %
pEU flf(s,y,w)ln(dy)ds) +cpE( f f If(s,y,w)lzn(dy)ds) L.
0 R 0 R
t o t o 2\ it
+cpE(f flf(s,y,w)lzmn(dy)ds) e, (E( J J £y, ) Np(dsdy)))
0 JR 0 JR\{0}
t p t g
- pEU flf(s,y,w)ln(dy)ds) +cpE( f J If(s,y,w)lzn(dy)ds) ;.
0 R 0 R

. U f Gy, w)|2’”n(dy)ds) T, (Ef f £y, @) n(dy)ds) -
0 JR 0 JR

where m is the smallest integer such that 2™*! > p. o

IA

IA

IA

Recall the Tanaka formula for the Lévy process X, (c.f. [1]]), we have

t

L = (X, —a)+—(X0—a)+—f lix, >apdX;
0

+ e — @) = (X — )+ 1y, s AX]. 3.1

0<s<t

Since

t+
D lix, A Ljax e =J J Lix,_>apy 1yjylz1Np(dsdy),
o Jr\o}

0<s<t

the following alternative form is often convenient

L = ¢,(a) = bI,(a) — 0B} + Ky (t,a) + Ky(t,a) + K;(t, a), (3.2)
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where

t t

¢ la) = X, —a)"—(Xp—a)", I(a) ::f lix,_sads, Bf ¢=f lix, >q3dBs;,

0 0
Ki(ta) = Y [Xe-—a)" = (X~ a) gax s
0<s<t

t
Ky(t,a) = f f [ =y — )" = (%, — ) 11y N, (dyds),

0 JR\{0}

t
Ki(t,a) = f f[(Xs_y_a)+_(Xs_a)++1{Xs—y>a}y]1{|y|<1}n(dy)d5-

0 JR

For the convenience in what follows in later part, we denote
Ji(s,a) = X;_ —a)" = (X, — )T, Jo(s,a) :=1x - AX,.
Note we have the following important decompositions that we will use often: for any a; < a;;1,

J*(Xs:Xs—aai:ai+1)
= Ji(s,ai41) — J1(5,a;)

—(Xs- — ai)]'{XsSai}1{ai<Xs—Sai+1} - (ai"rl - ai)l{XsSai}l{Xs—>ai+l}

(X5 = a)ljg<x,<a; 1 x_<ap — (@1 = X)L ax, <03 1 X, _>ai)
Hai11 = ) x>a,031 <oy T (@1 = X )l sa,0 3 Ha<x,_<aiy}

1

+(X; _Xs—)l{ai<X5§ai+1}1{ai<X5_<al-+1}’ (3.3)

and

J*(XS’XS—)ai’ai-‘rl)
= [J1(s,ai41) = J1(s, )] + [a(s, ai41) — Jo(s,a;)]

—(Xs = a)lx,<a3 Lo, <x, <} — (@1 = @) x <o} ix, >}

1

+(XS - ai)l{aidssai+1}1{xs—§ai} - (ai+1 _Xs)l{ai<X5§ai+1}1{X5_>ai+1}
+(ai+1 - ai)l{X5>ai+1}1{Xs_§ai} + (ai+1 - Xs)l{X5>ai+1}1{ai<X5_§ai+1}- (3.4)

We will use the above decomposition and probabilistic tools to prove the following lemma. The

proof includes many technically rather hard calculations. However, they are key to get the desired
estimates and crucial in our analysis.

Lemma 3.2. Assume the Lévy measure n(dy) satisfies

f (Iy|2 A Dn(dy) < oo, (3.5)
R\{0}

then for any p > 2, there exists a constant ¢ > 0 such that

E[L¥ — LY < clag — . (3.6)
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Proof: We will estimate every term in (3.2). First note that the function ¢.(a) := (X, —a)* —
(Xo —a)™ is Lipschitz continuous in a with Lipschitz constant 2. This implies that for any p > 2 and
a; <Qjt1,

lpe(air1) — @c(a)lP < 2P(aj4q —a;)P. 3.7

Secondly, for the second term, by the occupation times formula, Jensen’s inequality and Fubini
theorem,

1 1 i+1
. — MNP = — (1. —a.VYr( —0—Mm X P
Ellt(al+1) It(al)l O'2p (a1+1 al) E(ai+1 —q Jal Lt dX)
1
< — (a1 — )P supE(Ly)P. (3.8)
o“P X

We now estimate sup, E(L¥)?. By 1} and noting that »; [(X;_ —a)" —(X;—a)" +15x_.AX,]
0<s<t
is a decreasing process in t, we have

t

L? < (Xt - a)+ - (XO - a)+ _f 1{XS_>a}dXs-
0

Now using the Burkholder-Davis-Gundy inequality, we have
t
E(LEP < p[EIX, —Xolf +E| f 01, >qdBil?
0

t t
+E|f 1{x5>a}st|p+E|f 1{x5,>a}d1\7[s|p]
0 0

P
, t m+1 t " 2k
< coPtz +cE(| [dV,|)P +c, Z ly1% 1gy<yn(dy)ds
0 0o Jr

k=1
S C(p) b: g, t):

where m > 0 is the smallest integer such that 2! > p, ¢(p, b, 0, t) is a universal constant depend-
ing on p, b, 0, and t. By Jensen’s inequality, we also have

E(L‘t‘)g <c(p,b,o,t). (3.9)

This inequality will be used later. So
Ell(aj+1) — I(a)P < c(p, b, 0, t) (a1 — a;)P. (3.10)
Thirdly, for the term Bf, by the Burkholder-Davis-Gundy inequality and a similar argument in deriv-

ing (3.10), we have
: :
ElB?iH _B?i|p S Gk (J 1{ai<Xs§ai+1}ds)
0
p

< C(t,p,O')(aH_l —al-)2. (3.11)
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About K;(t,a), it is easy to see that

K1 (t,ai41) — Ki(t,a;)] < 2(a;41 — a;) Z Lyjax,|>13-

0<s<t

So
E|Ky(t,a;41) —Ki(t,a)|P < Claj41 — a;)P. (3.12)

About K,(t,a), with the decomposition (3.3]), we will estimate the sum of each term for jumps
|AX,| < 1. There are seven such terms.

For the first term in (3.3), by the p-moment estimate formula and occupation times formula, we
have

t p
E (J J X, — ai|1{X55ai}1{ai<xs_5ai+1}1{AX5|<1}Np(dyd5))
o Jr\{0}

m t rXs—aq; 2%
k
¢ ) E (J f X, =y —ail® 1{x55ai}1{|y|<1}n(d3’)ds)
k 0

Xs_ai+1

IA

p

—}
t rXs—a; om+1
m+1
+cp (EJ X, —y —a;? 1{X55ai}1{|y|<1}n(dy)d5)
0

Xs_ai+1

m a; X—a; .
= c(p,0)D E U Lff x — y — a2 1{|y|<1}n(dy)dx)
k=1 —00

X—=ait1

P
ok

a; x—a; ol
m+1
+c(p, o) (Ef Lff x—y—al 1{|y|<1}n(dy)dx) , (3.13)
—00 X—aj4q

where m is the smallest integer such that 2™+ > p. In the following we will often use the following
type of method to estimate integrals with respect to the Lévy measure: let

0 a;
Q = J J (x =y — a))dx1gy<yn(dy)
a;—a;y1 Y y+a;

0
1 2
= EJ ly1*1gy1<3n(dy).
a

i~ Ai+1

Then, 1{|y|<1}é(x — ¥ —a;)dxn(dy) is a probability measure on {(x,y):y+a; < x < a;,(-1)A
(a; —a;41) <y < 0}. So by Jensen’s inequality, we have that

0 a;
E (J J Li(ajy1 —a))(x —y — ai)dX1{|y|<1}Tl(d}’))
a;—aiy1 Y y+a;

0 a;
P 1 Y P
< QgE (aj J (L} )Z(ai+1 - ai)g(x i ai)dX1{|y|<1}n(dy))
a;—a;+1 Jy+a;

P
2

0

IA

2
P D
c(o,t,plla;4; —a;|2 supE(L})z2 (J |y|21{|y|<1}n(dy)> . (3.14)
x a

i~ Ai+1
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Similarly one can estimate

Aip1 (Y taip
f J LYdx|y[* 1y <yn(dy)
y+a;

a;—aj41

N

p
2

P P
< c(o,t,pllag;1 —a;|2 sup E(Ly)> (J |J’|21{|y|<1}n(d}’)) . (3.15)
X

—00

Then we can estimate each term in (3.13). When k = 1, we change the orders of the integration
and use Jensen’s inequality to have

a; x—a; %
E (J Lff |x —y — ai|21{|y|<1}n(dy)dx>
X =it

a; =i y+a1+1
= (J J LY(x —y — a;)* 1y <ydxn(dy)

p

2
f f Li(x—y —a)(x - ai)1{|y|<1}dxn(dy))
a;i—aj4+1 y+az

a;—ai4 y+a1+1
< (J J LYdx|y[* 1y <yn(dy)
y+a;
a; 2
+J f Ly(ajp1 —a)(x—y — ai)dX]-{|y|<l}n(d.y))
a;—a;41 Y y+a;
D
< c(o,t,pllag —ail>. (3.16)

For the term when 2 < k < m, it is easy to see that

a; x—a; ) zlk
E (J‘ Lff |X A ai|2 1{|y|<1}n(dy)dx)
—00 X—ajt1
a; X—a;
k-1 k—1
E (j Lff x—y —a* |y 1{|y|<1}n(dy)dX)
- X—=dit1
. a; x—a; ) 2%
1 -1
< (a1 —@)?PE U Lff lyI? 1{|y|<1}n(d3’)d’f)
—0 X—0it+1

p
< c(t,plag; —a;l2.

IA
e

xX—a;

Actually we can see that f f 21 {lyl<13n(dy)dx < oo by using the same method as in
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(3.16). For the last term in (3.13)), similarly, we have

a; x—a; zm%
m+1

(Ef LfJ lx —y —a;]? 1{|y|<1}n(dy)dx)

—00 X—ajt+1

i

a; xX—a; 2m+1
(Ef LfJ lais1 —ail* Iyl 1{|y|<1}”(d3’)dx)

- X—=Ajyq

a; x—a; 2"1%
p m
lajy —a;]2 (EJ Lff lyI? 1{|y|<1}n(dy)dx)
—00 X =iy

P
< c(t,plag; —ayl2.

IA

IA

We can see that the key point is to estimate the term when k = 1 because the higher order term can
always be dealt by the above method easily. We can use the similar method to deal with other terms
and derive that

p
Ele(t, ai+1) — Kz(t, Cll')|P S C(t, O',p)|ai+1 — al'|2 . (317)

About K3(t,a), with the decomposition (3.4), we will estimate the sum of each term for jumps
|AX,| < 1. There are six such terms.

For the first term in (3.4)), by the p-moment estimate formula and occupation times formula, chang-
ing orders of integration and using Jensen’s inequality, we have

t [e's) p
E U f 1Xs = ail1x,<a3 Lay<x,—y<aiy 3 Liyl<py(dy )ds)
0 J—oo

1 a; x—a; p
= _ZpE (f LfJ |X - ai|1{|y|<1}n(dy)dx)
o — X0y

1 ai—Qiy1 (YT
= EE(J‘ J Lf(ai — x)1{|y|<1}dxn(dy)
—00 y+a;

0 a; p
1 1
T J J L (e —x)(a; - x)21{|y|<1}dxn(dy))
a;—a;y1 Y y+a;

1 ;=1 Y taig
= ﬁE(f J Lidx|y|1yy1<13n(dy)
—00 y+a;
0 i 1 1 P
‘|‘J J Ly (ajp1 —a;)>(q; —x)de1{|y|<1}n(dy))
a;—ai+1 Jy+a;
1 a;i—ai+1 3 p
< c(o)laj41 —a;|2P sup E(LY)” (J IJ/|21{|y|<1}Tl(dy))
X —00
0 p
1 3
+c(o)lajyr — a;|2P sup E(LY ) (f lyl2 1{|y|<1}n(dJ’)>
X 4i—dit1
< c(t,o,p)laj4 — aiI%p. (3.18)
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We can use the similar method to deal with other terms. In the following, we will only sketch the
estimate without giving great details.
2) For the second term, we have

t [e'e] p
E (J f I ai)l{XSSai}1{Xs—y>ai+1}1{|y|<1}”(d3’)d5)
0 J—o0

1 a; X—a;41 p
= ﬁ(awl —a;PE (J Lff 1{|y|<1}n(dy)dx>
—0Q0 —00

a;—ai+1 a; p
= c(o)aj1 —a;)PE (f (J Lfdx) 1{|y|<1}n(d}’))
~00 Ytain

1 a;—di+1
c(o)la;41 — a;|2P sup E(LY)P (J
X

—00

IA

p
3
|J’|21{|y|<1}n(dJ’))
1
< c(t,o,p)lag —a;|2P.

3) For the third term, we have

t 00 p
E U f X5 — ai|1{ai<X35ai+1}1{x5—y5ai}1{|y|<1}n(dﬂd$)
0 —00

1 Qi+1 00 p
= _ZpE f Lff |X - ai|1{|y|<1}n(dy)dx
o a; X—a;

1 aiy1—0q; [a+y L )
ﬁE(L f Ly(ajy1 —a;)2(x — a;)2dx1gy<yn(dy)
a;

IA

00 Qi1 p
Ai+1—a; Y q;
o]

p
1 3
< c(o,pllaj1 —a;|2P sup E(LY)? (J |y|21{|y|<1}n(dy))
x 0

1
< c(t,o,pla;4, —a;|2P.

The fourth, fifth and the last terms are symmetric to the third, second and first terms respectively.
In summary, we have

1
E|K5(t,a;11) — K3(t,a)lP < c(t,0,p)la;4q — a;]2P. (3.20)

So we proved the result. S

Remark 3.1. From (3.18) and (3.19), we can see easily that if we require the following slightly stronger
condition on the Lévy measure

f (Iyl2~¢ A Dn(dy) < oo, (3.21)
R\{0}
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fora & € (0, %], then for any p > 1,

1
E|K3(t, a;4q) — Ks(t, a)lP < c(t,0,p)lagq — a;| 2P (3.22)

This estimate will be used in the construction of the geometric rough path where (3.20) is not adequate.
In particular; this plays an essential role in obtaining (3.42) and (3.47), from which one can calculate
(Z(m)?),,en is a Cauchy sequence in the O-variation distance.

Now, define Z, := (L}, g(x)) as a process of variable x in R?. Here g is of bounded g-variation,
2 < q < 3. Then it’s easy to know that Z, is of bounded §-variation in x, where § = g, if ¢ > 2, and
G > 2 can be taken any number when g = 2. We assume a sightly stronger condition than for
the Lévy measure: there exists a constant £ > 0 such that

l— — £
f (a7 A Dn(dy) < . (3.23)
R\ {0}

We will prove with this condition, the desired geometric rough path Z = (1, Z!,Z2) is well defined.
We need to point out that in the following when we consider the control function and the conver-
gence of the first level path, condition is still adequate. But we need in the convergence
of the second level path. Denote § = * — (3 — q)e. Note when g =2, § = % — ¢£. So condition ([3.23

q
becomes: there exists € > 0 such that

f (ly]2¢ A Dn(dy) < co. (3.24)
R\{0}

Later in this section, we will see under this condition, the integral fjooo L¥dLy can be well-defined
as a rough path integral. Also note ) <inf 5 6(q,e) = % So under the condition
=q<

f (Iyl3 A Dn(dy) < oo, (3.25)
R\{0}

(3.23) is satisfied for any 2 < g < 3. In this case, our results imply that we can construct the
geometric rough path for any g being of finite g-variation, where 2 < q < 3 can be arbitrary.

Recall the 0-variation metric dg on Cj o(4A, T(9D(R2)) defined in [23],

1<i<[0] p

é
— i iy — g
d@(Z,Y) B 1;13;15(9]di’9(z Y) = max sup (Zl XX xz 1 Xz| ' ) ’
Assume condition (3.5) through to Proposition[3.1] Let [x’, x”'] be any interval in R. From the proof
of Theorem [2.1] for any p > 2, we know there exists a constant ¢ > 0 such that
E|LY — L9P < c|b — a3, (3.26)

i.e. Ly satisfies Holder condition in [23]] with exponent % First we consider the case when g is
continuous. Recall in [23]], a control w is a continuous super-additive function on A := {(a, b) :
x’ <a < b < x”} with values in [0, c0) such that w(a,a) = 0. Therefore

w(a,b) +w(b,c) <w(a,c), forany (a,b),(b,c)€A.
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If g(x) is of bounded g-variation, we can find a control w s.t.

1g(b) — g(a)I* <w(a,b),

for any (a,b) € A :={(a,b) : x’ <a < b < x”}. It is obvious that wy(a, b) := w(a,b) + (b — a) is

also a control of g. Set h = %, it is trivial to see for any 6 > g (so hf > 1) we have,

1g(b) — g(a)|? <wy(a, b)), for any (a,b) € A. (3.27)

Considering (3.26)), we can see Z, satisfies, for such h = é, and any 6 > q, there exists a constant ¢
such that

E|Zy — Za|9 <cw(a, b, for any (a,b) € A. (3.28)

For any m € N, define a continuous and bounded variation path Z(m) by

i) Zwa(qt) (3.:29)

Z(m), :=2Zm
( )x X, Wl(xlm)_wl(xlnil) l

: _ _ oy —
if x", <x<x",forl =1,---,2™, and A"Z = Zyn — Zyn . Here D, := X =xg<xf'<---<
xJ, = x"} is a partition of [x’, x”] such that

1
W) = wi (1) = s (', x ),

where w1 (x) := w;(x’, x). It is obvious that x]" — x* | < zimwl(x’, x"") and by the superadditivity of
the control function w,

1
Wil (") S wi(a) = wa(xy) = Smw (0, x ).

The corresponding smooth rough path Z(m) is built by taking its iterated path integrals, i.e. for any
(a,b) €A,

Z(m) , = f dzZ(m),, ® -+ ®dZ(m)y,. (3.30)
’ a<xp<--<x;<b

In the following, we will prove {Z(m)},,cy converges to a geometric rough path Z in the 6-variation
topology when 2 < g < 3. We call Z the canonical geometric rough path associated to Z.

Remark 3.2. The bounded variation process Z(m), is a generalized Wong-Zakai approximation to the
process Z of bounded g-variation. Here we divide [x’,x""] by equally partitioning the range of w,. We
then use to form the piecewise curved approximation to Z. Note here Wong-Zakai’s standard
piecewise linear approximation does not work immediately.

Remark 3.3. It is noted here that there is no unique way to construct rough path. The approach we
present in this paper is one construction that makes the Lévy area convergent. More importantly, we
will see later the integral constructed coincides with the Lebesgue-Stieltjes integral when g is of bounded
variation. And the convergence theorem of the integral (Propostion guarantees that the integral
we constructed in this paper is the limit of the Lebesgue-Stieltjes integrals in 6-variation topology. This
shows that the rough path integral defined by is the correct integral in our formula (.7).
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Let’s first look at the first level path Z(m)cll »- The method is similar to Chapter 4 in [23]] for Brownian
2”

motion. Similar to Proposition 4.2.1 in [23]], we can prove that foralln € N, m+— »_ IZ(m)l L K
k=1 k
is increasing and for m > n,
1 _ 1 _ _ )
Z(m)x,ﬁ,l,x;: =Z(m+ 1)x271,x£ =Zun = Zy . (3.31)

Let Z = Zb — Z,. Then ll implies E|Z1 |® < cw;(a, b)". For such points {xgh k=1,---,27,
n= 1 2 , defined above we still have the 1nequa11ty in Proposition 4.1.1 in [23]],

Esupzlle 1xl 9 = C(G }/)EZHYZMXI( 1xk 9

o0
1
SO UCHATICIE S (3.32)
n=1
for constant C; = C(6,y)c. Since h6 — 1 > 0, the series on the right-hand side of (3.32) is conver-
gent, so that supp ), |Z1 |® < 0o almost surely. This shows that Z' has finite 8-variation almost

X1-1,X]
surely. Moreover, for any y > 6 — 1, there exists a constant C;(6,y,c) > 0 such that

0 2"
EsupsupZ |Z(m)xl N XII < C(6,y)E SUPZ ”YZ |Z(m):1<,:‘_1,x£|9

M h=1 k=1

00 2"
CONEQT DTy ol

<
< G, y,c)ZnY( ) s (X ) (3.33)
< o0.
So
supsuleZ(m) | <00 a.s. (3.34)

This means that Z(m)(l1 , have finite 6-variation uniformly in m. And furthermore, from Il and
some standard arguments,

00 2
1 _ne1
1 1 0 -
Ezl:nykznz(m)xz_l’xg—ng_l)xl,:l <Cl5) 7, (3.35)
n= =1

where C depends on 6, h, wi(x’,x”), and ¢ in (3.28). By Proposition 4.1.2 in [23]], Jensen’s
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inequality and (3.35)),

o0
EZS%P(le( )xl I xl 1xl|6)

EY
IA
|-

00 2n
EY (Z 'y’ Z(m)}y .~ z}(z_l’x,;ﬁ)
=1 k=

o0
m=1 m=1 \n 1
00 00 2" %
Y 1 _ 71 0
<SS Simm, -7 )
=1 n=1 k=1
1 hGl
= C Z(z—m
< o, (3.36)

for h6 > 1. So we obtain

Theorem 3.1. Let LY be the local time of the time homogeneous Lévy process X, given by , and g
be a continuous function of bounded g-variation. Assume q > 1, ¢ # 0 and the Lévy measure n(dy)
satisfies . Then for any 6 > q, the continuous process Z, = (Ly, g(x)) satisfying , we have

Z sup (Z IZ(m)xl o Ly 1XIIQ) < 00 a.s. (3.37)

m=1

D=

In particular, (Z(m)(ll ,) converges to (chl ,) in the O-variation distance a.s. for any (a,b) € A.
We next consider the second level path Z(m)i »- As in [23], we can also see that if m < n,

Z(m)?, . =22mm=l(Amz)®2 (3.38)

Xp_1 Xk
where [ is chosen such that x" | < x;_ | <x; <x/";if m>n,

2m—nk
1 1
2 —
Zm)y =5 AZONZ+ > (AMZQAMZ-AT'Z®ATZ),

rl=2M"1(k—1)+1

r<l
SO
2 _ 2
2mA 1 o =2y o
1 2k
= - ) (Artlzeantlz-AntizeAntlz), (3.39)

=21 (k—=1)+1
k=1,---,2". Similar to the proof of Proposition 4.3.3 in [23]], we have

Proposition 3.1. Assume g is a continuous function of finite q-variation with a real number q > 2,
and the Lévy measure satisfies (3.5). Let 6 > q. Then for m <n,

D EZm+ 12 —Zm), (3.40)

where C depends on 6, h(:= é), wy(x’,x”), and c in (3.28).

468



The main step to establish the geometric rough path integral over Z is the following estimate.
Delicate and correct power in (3.42]) must be obtained to prove the convergence of the approximated
Lévy area. We will use Lemma about the correlation of Ky(t,a;41) — Ky(t,a;) and Ky(t,aj41) —

K,(t,a;), and (3.22) for the term K3, for § = % +(B—q)e.

Lemma 3.3. Assume the Lévy measure satisfies ! with0 < & < %, then for any ap < a; <--- <
Ay

’E(Kz(t, ai+1) - Kz(t, al')) (Kz(t, aj+1) - Kz(t, a]))

{ c(t,0)(ait1 — a;), when 0 <i=j<m,

c(t,0)(air1 — )™ + (a4 — aj)”zg], when0<i#j<m. (3.41)

Proof: When i = j, (3.41) follows from (3.17) directly. Here we only need Lévy measure satisfies
(2.2). Now we consider the case when i # j. Without losing generality, we assume i < j. From
(13.3), it is easy to see that

E(Ky(t,a41) —Ky(t, a;)) - (Ka(t, a41) — Ky(t,a;))

t+ o
= E [J f J*(Xs;Xs —-Y.q;, ai+1)Np(dyd5) f f J*(X.DXS -y, aj)aj-l—l)Np(dde)
0 R 0 R

t
= EJ j J*(Xs:Xs — Y, 4, ai+1)J*(X5)Xs - Y, aj, aj+1)n(d}’)d5
0 JR

= A +A,+As+A,
where
t
A = f f [ —(aj41 —a;)(a; — X, + }’)] Lix,<a} a;<x,—y=aj L iyi<1p(dy)ds
o
+f J- [(ai+1 —a;)(aj41 — aj)] Lix, a3 Lix,—y>a; 1 Lilyl<1pn(dy)ds,
Jo Jr
Ay = f f [ —(aj41 —X,)(a; — X +J’)] Lig;<x,<ai1} Lia;<X,—y=<aj, 3 Llyl<1y(dy )ds
e
+J j (ait1 = X)(@j1 = @) g, <x,<a, 1L x,—y>a;,03 Hiyl<p(dy ds,
Jo Jr
Ay = J f [(aiH —a;)(X, — aj)] 1{Xs—y§al-}1{aj<XS§aj+1}1{|y|<1}n(d.y)ds
e
+f f (@it1 —ai)(aj41 — @) lix —y<a}lix,>a;, 3 Lilyl<p(dy )ds,
Jo Jr
Ay = L JR [ = (X5 =y = 4K — a) g, <x,—y <a1} o <x,<a;, 3 Hiyl<1pn(dy dds

t
+f J |: - (XS -y ai+1)(af+1 - aj)] 1{ai<Xs_.ySai+1}1{Xs>aj+1}] 1{|J’|<1}n(dy)ds'
0 JR
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For convenience, we denote the two integrals in A; by A;; and A;, respectively. To estimate |EA,|,
first by the occupation times formula, Fubini theorem, Jensen’s inequality, similar as before, we have

1 a; X*aj
|[EA;;| < —ZEJ LfJ (@i+1 — a)(x —a; — ¥y)1yy<yn(dy)dx
g —00 X=0j4q
1 . a;—aj+1 . yt+aj
< (a1 — )™ E [J |)’|2_€J L¥|y[1gy<13dxn(dy)
o -0 y+aq;
al-—aj 1 a;
+J |J’|2_€f Lf|y|1{|y|<1}dxn(dy)}
(li—llj+1 y+ClJ

1 i o [ e
< o_z(ai+1_ai)2 (aj41 —a;)(supELy) |27 1y 1<13n(dy)
X —00

l+€
< c(t,o)aip —a;)2 (a1 —aj).

In the same way, we can have

1 1 a;i—0qj+1 3
|EA;5| < ;(am—ai)z*g(am—aj)supE(Li‘)f ¥12 751yl gy<yyn(dy)
X —0

l+€
< c(t,o)aip —a)2 (a4 — a)).
Therefore, we get
|EA;| < c(t,0) (@i — @)™ + (aj41 — ;) *%).

Using the same method, we can have the similar estimations for |EA,|, |[EA;| and |EA,|. It follows
that when i # j,

|E(Ky(t,a;41) — Ka(t,a;)) (Ka(t,aj41) — Ko(t,a)) | < c(t,0)((ai41 — ;)2 + (@41 — aj)1+2€)~
Therefore we proved (3.41). o

Proposition 3.2. Assume g is a continuous function of finite q-variation with a real number q € [2, 3),
and the Lévy measure satisfies (3.23). Let ¢ < 6 < 3. Then for m > n, we have

2 2 g 1o T 149 Lo 1 34,
ElZ(m+ 1% o —2m, 7 <C| (G + (G 2, (342)

where C is a generic constant and also depends on 6, h(:= %), w1 (x’,x”"), and c in (3.28).
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Proof: For m > n, it is easy to see that

2 _ 2 2
E|Z(m + l)xz'f-px:f Z(m)xl,:_l’le
1 2m g )
- —E‘ > (artlzeAntlz-Antlze Antlz)
1=2m1(k—1)+1
1 2 2M "k

I m+1l i am+leoj _ amtloi amtloj
- ZE Z (AZZ—IZ A21 z A21 ZAZl—lz)
L=l Lr=2"""(k—-1)+1
i#j
+1 i +1j +1 i +1 j
(AP ZIATN 2] - AT ZEATH, 20)

1
= 2 Z [E(AZQL;CA;": LLO(AFT g ()AL g (x))
Lr

(AL (AL g(NE(AR T LY ALY

r—

1
- | E(ARFL LY AR L)AL g ()AL, g(x))
Lr
H(AR L (DA g()E(AR LT AR 1Y)
_1 Z [E(Am+1LxAm+1 Lx)(Am+1 (X)Am+1 (X))
4 o1 L Bor by 21-18 a7 8
Lr
HAR (AR g()E(AL T LY ARFILY) |
1
+5 >, [E(Ag“Lf AT (AT ¢ () AT, g(x))
Lr
HARH (AR GBI LT AT L)), (3.43)

The main difficulty is to estimate the following expectation which can be derived from Tanaka’s
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formula:
+1 +1
E[aptiraniny]
= E[ (L) ~ LG (LGt - Lot |
t
= E [Sot(xg::tll) - Sot(xg;—tlz) — bJ 1{xm+1 <X,_ <xm+1}ds
0
t
—UJ 1{xm+1 <X,_ <xm+1 }dB + (K]_(t Xg;l:tll) — K]_(t, Xg;—tlz))
H(K, (8, x50 = Ko (8, x55)) + (Ka (¢, x50+)) — Ks(t,xglrflz))}
t
' [(Pt(xg;ti) - %(X;T_r;) - bf 1{xm+1<X <xm+1}d5
0
t
- f 1{x£’}f;<XS_§x£”lﬂ}st + (Kq (¢, X;’}ﬂ) — Ky (¢, Xg;té))
0
(It x5 8) = Ky, X)) + (Ko, x5 1) — Ko, 15571 ]

Firstly, from (3.7), (3.10), (3.11), the Cauchy-Schwarz inequality and the quadratic variation of
stochastic integrals, we have

t t
‘E((pt(xg;tll) - (Pt(Xg;tlz) - bj 1{Xm+1 <X <xm+1}d5 - f 1{x1271r-t12<x <X2 m+1 }dB )
0 0

t t
(e (D) — @, () — bf Lyt ox,_<qmjds — 0 J Lt oy, <snt13dB;)
0

2 m+1 m+1 m+1 m+1 m+1 m+1 m+1 m+1
< C[(1+2b+b Mgy = x5, ) 0eq 1y = x )+ o (ag ™y —xg 7)oy 1y —xp T 2)2
m+1 _ m+1 m+1 m+1 1
+0 (o Ty —xg p)(xg, 0y — x5, 2]
2
+o E|f 1{er+12§X <x£nr+11}1{x;}+éﬁx <x121;+i}d3|
<

]. 3 3
¢ [(2m+1) wy (X, x//)z + (2m+1 2wy (X, x//)z]

+O-2E|J 1{xm+1 <X <xm+1} {Xm+1<X <xm+1}d5|

2r—2— 2r—1 21-2— 20-1

5 {C(Zmﬂ)z, ifr £1, (3.44)

Cypm,  ifr=L

Here C is a generic constant and may depend on t, b, o, w;(x’,x”"). Secondly, recall the fact that
E(PM ) =0, if P is a process of bounded variation and M is a martingale with mean 0 and at least
one of M and P is continuous. Note here K; is a process of bounded variation. Recall also that the

cross-variation of fot 1liq;<x, <a;,,3dB; and the jump parts such as (K(t, aj1) — Ky(t, a;)) are zero.
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So we have
t
EJ Liq,<x, <a;,3dBs - (Kq(t,a;11) —K4(t,a;)) =0, d =1,2,3,
0

E J(: Lig,<x, <a;,3ds - (Ko(t,aj11) —Ky(t,a;)) =0,
E(Ky(t,a;41) — Ka(t, @) - (Ks(t,a;41) — Ks(t,a;)) =0.
Thirdly, by Lemma we can see that when 0 < & < %, i#]

‘E(Kz(f, a;41) — Ko(t,a;)) (Ka(t, aj41) — Ka(t, a~))‘ < Cllaj+1 —a)"™ + (aj41— aj)1+2§]‘
For other terms, by the Cauchy-Schwarz inequality, and (3.41), it is easy to see that
E(¢e(air1) — ¢.(a) (Ka(t,ajq) — Kd(t,a'))’ <C[(ajy1 —a)laj; —a;)*],d =1,2,3;
EJ(: Lig<x, <a;,345 (Kq(t,aj11) —Kd(t,a~))’ < Cl(aj41 —a;)(aj41 —a;)*],d =1,3;

E(Ky(t,a;41) —Ky(t,a;)) (Kd(t,ajﬂ) —Kd(t,a‘))‘ < Cl(aj+1 —a;)(aj;q —a;)*],
d=1,2,3;

E(K3(t,a;41) — K3(t, ;) (K3(t,aj41) —K3(t,a~))‘ <C[(aj1— ai)%—i_g(aj-i-l - aj)%Jrg]-

Here a; =1, a2=%and a3:%+§. Thus

C(=25)72, ifr #1
+1 +1 m+1 ) )
‘E AR LE ALY ]| < { Cz%’ P (3.45)
The other terms in (3.43) can be treated similarly. Therefore
EIZ(m + 1);252_1,;(]': _ Z(m)JZC |2 <C |:2m n(2m+1 )1+2h + 22(m n)(2m+1 )1+2§+2h] .
Hence, for 2 < 6 < 3, by Jensen’s inequality,
E|Z(m + 1) Z(m?, 2 < (ElZm+12, . —2(m)> |2%
(m+ )xz_l’xlrg - (m)xlr:_l’xz = (m+ ) noxn (m) noxn
[}
1+2h 2(m—n) 1428420 | 4
< c[am "<2m+1> + 22y
1
< C 2(m—n)%(2 )§+%he +2(m—n)§( m+1)¥9+%h9]
1 1 L
< c[GRGRM + iG],
where C is a generic constant and also depends on 6, h, w;(x’,x”), and c. Note & = qz— +(3—q)s,
so we get (3.42)). o

473



Corollary 3.1. Under the same assumption as in Proposition we have

00 2" 0
supZ n”ZlZ(m)izil’lei <00 a.s.
m h=1 k=1

Proof: From the Minkowski inequality,

o . 5

(; Z(m)2, Ll )
< 2 2 g S 2 2 Al

(; Z(m)2, . —2Z(m =102 pr|2) + (Z Z(m—12, . —2(m~ 2)x’,:_1’x£|z)
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e 2 _ 2 6 6
o (;lz(l)xi—vxﬂ Z(O)xz_px;:“)
00 2" , % on 9 %
Z Zn n Z -1 2” n 2 Z 2n n 2 . .
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as 2 < O < 3, h6 > 1, where C is a generic constant and also depends on 8, h, wy(x’,x”), and c.
Therefore,

2
3
supanY (Z:lZ(m)2 L g) <00 a.s.

However, it is easy to see as 6 > 2,

(supz:nVXIIZ(m)2 L 2) <sup2ney (Z:IZ(m)2 L 2) <00 a.s.

So the claim follows. S

SIS
SN

Theorem 3.2. Let LY be the local time of the time homogeneous Lévy process X, given by (1.1). Assume
g is a continuous function of finite g-variation with a real number 2 < q < 3, and the Lévy measure

n(dy) satisﬁes (B-23), o # 0. Then for any 6 € (q,3), the continuous process Z, = (L{,g(x))
satisfying (3.28 there exists a unique Z' on A taking values in (R*)®! (i = 1,2) such that

2

Y
Zsup(zlz(m)xz Lx Xz 1Xz|i) —0,

i=1

both almost surely and in L'(Q,Z,%) as m — oo. In particular, Z = (1,Z',Z2) is the canonical
geometric rough path associated to Z , and Z}l b =Zb— Zq

Proof: The convergence of Z(m)! to Z! is actually the result of Theorem In the following we
will prove Z(m)g , converges in the 6-variation distance. By Proposition 4.1.2 in [23]],

0
Esng|Z(m+ 1)32Cz —Z( )qu L xllz
l
1
00 2" 2
< ¥ 1 _ 1 0
< C(6,7)E (Zn Z|Z(m+1)x£71’xz Z(m)yn ol )
n=1 k=1
1
00 2" 2
. y 1 2] 1 0
(333 (et g i, o))
n=1 k=1
00 2" 0
Y 2 — 2 2
+C(9,Y)E;n k_1|Z(m+ D g = 20l

= A+B.

We will estimate part A, B respectively. First from the Cauchy-Schwarz inequality, (3.33) and (3.35),
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we know

A

Xg_1s

00 on )
Y 1 gl 0 1 1 o 1
; n (|Z(m + 1)x1’:_1,x’:‘ Zx;_l,x£| + |Z(m)xl,(1_ . yAR xkl ))

IA
@)
~
e

=
Il
it

1

00 2n
. r 1 0 1 ARE
(£ (om0l 12y 17 )
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IA
@)
Q

| ~
—

=

$‘<°

~—

Secondly from Proposition [3.1] and Proposition [3.2] we know

00 1 Ro-1 m—1 1 04 1 " m—1 1 0 4 1 1,
B < C2n7(2m+n) = +C ZHY(ZT)4 (2—m)2 +Z”Y(2_n)2 (2—m)2
n=m n=1 n=1
1 _ne- he 1
ho-1 )
< C[(z—m) 2 (—) (—) e }

asq <6 <3,and h6 > 1. So

ho—1 1 34

Esup D |2m+ 1%, —~2m), 2S¢ [(—)* ()7 1. (3.47)
l

Similar to the proof of Theorem 3.1, we can easily deduce that (Z(m)?),,cy is a Cauchy sequence in
the O-variation distance. So when m — oo, it has a limit, denote it by Z2. And from the completeness
under the O-variation distance (Lemma 3.3.3 in [23]]), Z2 is also of finite 8-variation. The theorem
is proved. o

Remark 3.4. We would like to point out that the above method does not seem to work for two arbitrary
functions f of p-variation and g of q-variation (2 < p,q < 3) to define a rough path Z,. = (f (x), g(x)).
However the special property of local times makes our analysis work. A similar method was used
in [23]] for fractional Brownian motion with the help of long-time memory. Here (13.45)) serves a similar
role of the long-time memory as in [23]].

Remark 3.5. The requirement on Lévy measure can guarantee us to prove so that we
can obtain the desired convergence. We think if we relax the condition on Lévy measure, we probably
need to calculate the higher level of rough path. We don’t include this analysis in here as it is already a
long paper.

As local time LY has a compact support in x for each w and t, so we can define integral of local time
directly in R. For this, we take [x’, x"] covering the support of LY. From Chen’s identity, it’s easy to
know that for any (a, b) € A,

2 _ 1 1
IR
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In particular,

r—1

(Z2)21 = lim Z((xx+1)21+(z ®Z) . )21)

m(D[a b] )—>0

lim Z(( 2 a1+ (g0c) — g(@)(L™ — 1))

m(D(q,p))—0 %

exists. Here (Zi_ . )21 means lower-left element of the 2 x 2 matrix Z> . It turns out that
i Xi+17% Xi>Xi4+1

lim)_)OZ(( X 1)2,1 + g(xi)(LfiH _ Lfi))

m(Diq,b]

= lim Z(( 2 21 +(80x) — g(@)(L™ = L) + g(a)(L) — L)

m(Dpq,57)—0

b b

exists. Denote this limit by f g(x)dLy. Similarly, we can define f LY¥dLY. To verify the latter
a a

integral is well defined, we only need to consider the case ¢ = 2. Then it is easy to see under

b
condition (3.24), f . L¥dLy is defined as a rough path integral. Therefore we have the following
corollary.

Corollary 3.2. Assume all conditions of Theorem but the Lévy measure satisfies . Then the
local time Ly is a geometrical rough path of roughness p in x for any t > 0 a.s. for any p > 2, and
(a,b) e A,

b
f Li.chf = lim —>OZ(( Xi,Xit1 )1,1 + L(xi)(Lle - Lfl))
a

m D[a b]

Moreover, if g is a continuous function with bounded g-variation, 2 < q < 3, and the Lévy measure
b
satisfies (3.23)), then the integral fa g(x)d Ly is defined by

b
f glx)dL(x)= _ lim Z(( i )21 T 8(%; L = L) (3.48)

m(Dra,p1)—0 1=

4 Continuity of the rough path integrals and applications to exten-
sions of It6’s formula

In this section we will apply the Young integral and rough path integral of local time defined in
sections 2 and 3 to prove a useful extension to Itd’s formula. First we consider some convergence
result of the rough path integrals.

Let Z;(x) := (L}, g;(x)), where g;(-) is of bounded g-variation uniformly in j for 2 < q < 3, and
when j — oo, g](x) — g(x) for all x € R. Assume the Lévy measure satisfies Repeatlng
the above argument, for each j, we can find the canonical geometric rough path Z = (1, Z ZZ)

associated to Z;, and the smooth rough path Z;(m) = (1,Z;(m)*, Z;(m)?). Actually, (Z; )(11 — Za
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2

the sense of the uniform topology, and also in the sense of the 6-variation topology. As for (Z;) ;.

we can easily see that
dy,0((2))%,Z%) < dy,((Z))%, (Z;(m))*) + da,6((Z;(m))?, Z(m)?) + do,(Z2(m)?, Z%). 4.1

From Theorem , we know that d, 4(Z(m)?,Z2) — 0 as m — oo. Moreover, it is not difficult to
see from the proofs of Propositions and Theorem dz’e((Zj)Z, (Zj(m))z) —0asm— oo
uniformly in j. So for any given ¢ > 0, there exists an m, such that when m > my, d, ¢(Z(m)?,Z%) <
55 do,9((2;)%,(Z;(m))*) < § for all j. In particular, dy o(Z(mo)?, 2%) < 5, d3 9 ((Z;)%,(Z;(mg))?) < 5
for all j. It’s easy to prove for such my, dz,e((Zj(mo))z, Z(mo)z) < g for sufficiently large j. Replacing
m by mq in (4.1), we can get d, 4((Z;)?,Z*) < ¢ for sufficiently large j. Then by (3.48) and the
; b b

definition of fa gj(x)de, we know that fa gj(x)de — fa g(x)de as j — oo. Similarly, we can
see from the last section, when we consider Z,(m) = (1,Z,(m)!,Z,(m)>?), dzyg((zt)z, (z,(m))*) — 0,
as m — oo uniformly in t € [0,T], for any T > 0. Therefore we can also conclude that Z? is
continuous in t in the d, g topology. Note now that the local time L} has a compact support in x
a.s. So it is easy to see from taking [x’, x”] covering the support of LY that the above construction
of the integrals and the convergence can work for the integrals on R. Therefore we have

Proposition 4.1. Let Z;(x) := (L}, g;j(x)), Z(x) := (L{, g(x)), where g;(-), g(-) are continuous and
of bounded g-variation uniformly in j, 2 < q < 3, and the Lévy measure n(dy) satisfies , 0 #£0.
Assume g;(x) — g(x) as j — oo for all x €RR. Then as j — oo, Z;(-) — Z(-) a.s. in the 6-variation
. . . 00 X 00 x .. . . .
distance. In particular, as j — oo, f_oo gj(x)dLy — f_oo g(x)dL{a.s. Similarly, Z,(-) is continuous in

t in the 6-topology. In particular; ffooo g(x)dLy is a continuous function of t a.s.

Now for any g being continuous and of bounded g-variation (2 < q < 3), define

gi(x) = f K (x — y)g()dy, (4.2)

—00

where k/ is the mollifier given by

1
i Gx-1%-1 2
Kix)={ ¢ Di-1, leG(O,j),
0, otherwise.

2 .
Here c is a constant such that fo K (x)dx = 1. It is well known that g; is a smooth function and
gj(x) — g(x) as j — oo for each x. So the integral ffooo gj(x)dL{ is a Riemann integral for the

smooth function g;(x). Moreover, Proposition guarantees that ffooo gi(x)dLy — ffooo g(x)dL¥
a.s.

In the following, we will show that Proposition is true for g being of bounded g-variation (2 <
g < 3) without assuming g being continuous. Note that a function with bounded g-variation (q > 1)
may have at most countable discontinuities. Using the method in [35]], we will define the rough

path integral f;, L¥dg(x). Here we assume g(x) is cadlag in x.
First we can define a map

T5() [, x"] = [, x4 6 > ie,)I],

n=1
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in the following way:

o0
T5(0) = x +8 Y 1700 gy, <y (),
n=1

where j(x;) 1= G(x;) — G(x;—), {x;}22, are the discontinuous points of G inside [x’, x"], & > 0. The
map 75(-): [x’,x"] — [x’, T5(x"")] extends the space interval into the one where we can define the
continuous path Gs(y) from a cadlag path G by:

G(x) if y =75(x),

G(xp=)+ (¥ — T50ea=))i(x)6 (eI if y € [T500—), Ts()).  F)

Gs(y) = {

Take G to be g and L., we can define g5 and L, 5 respectively. As L7 is continuous, we can easily
see that L, 5(y) := L, 5(75(x)) = L}.

Theorem 4.1. Let g(x) be a cadlag path with bounded g-variation (2 < q < 3), and the Lévy measure
n(dy) satisfies (3.23), o # 0. Then

1"

x T5(x")
J Lydg(x)= f L s(y)dgs(y). 4.4

x’ x’

Proof: First it is easy to see that the integral f ;,6(}( )Lt,5( y)dgs(y) is a rough path integral that can
be defined by the method of last section. Now note that at any discontinuous point x,,

f ' L¥dg(x) = L )(g () — g6 —)
and

Té(xr)

Z((zwia(xr—),ra(xr))z’l = ZJ (Les(y) = Les(t5(x,—)))dgs(y) =0,

ﬁ(xr_)

where Z5(y) := (L;5(¥), 85(y)). Thus
DL (8(x) — 8(x,-))
= iLt,g(fg(xr—))(gg(fg(xr))—gb-(rg(xr—)))
= > [eslrste,-0ga(m506)) = &5(T5 (e, = + (Z61 ) 22|

-
< 00,

SO

T5(x)
f Lis(y)dgs(y) = L s(t5(x,—))gs(75(x,)) — gs(t5(x—)))

5(xr_)

L(x,)(g(x;) — g(x;2)).
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Thus

X T5(x;)
J Lfdg(x)Zf L s(y)dgs(y).

Xr= T5(x-—)
Now define g(x) = §(x)+ h(x), where h(x) = Y. (g(x,) — g(x,_)). Then § is the continuous part
X, <x

of g and h is the jump part of g. Moreover, g satisfies the g-variation condition. So f;, L(x)dg(x)
can be well defined as in the last section. For h, we can define hs by taking G = h in (4.3). So the

integral f;, L¥dh(x) can be well defined by the followings:

T5(x") T5(x,)
f Les(y)dhs(y) Zf Les(y)dhs(y) = D Le(x,)(h(x,) — h(x,))
x’ r Jrs(x,_) r

= ZLt<xr)(g(xr)—g(xr_))=Zf Ldh(x) = f LXdh(x).

x/

Therefore

1" 1 1"

x rx x
f LYdg(x) = Lfdg(x)+f L¥dh(x)
x’ Jx! x/
T5(x") T5(x")

= Lt,a(Y)dé’a(Y)-i'J Ly 5(y)dhs(y)
Jx! x’

(‘Ts(x”)

= L s(y)dgs(y).

Jx!

Similarly to Proposition 4.1} we have

Proposition 4.2. Under the conditions of Proposition we have as j — oo, ffooo LYdgi(x)
— ffooo L¥dg(x) a.s. for such g with bounded q-variation (2 < q < 3).

Proof: Define F;(x) := (g;—g)(x), so Fj(x) — 0 as j — oo, for all x. It’s easy to see that F; 5(x) — 0
as j — oo, for all x. From the above theorem and Proposition 4.1} we have

1 17

x x T5(x")
f Lfd(gj—g)(X)ZJ Ldej(x)Zf L, 5dF;5(y) — 0, asj— oo.

x’ x’ x’
Then the proposition follows easily. o

Applying the standard smoothing procedure on f(x), we can get f,,(x) which is defined in the same
way as g;(x) in (4.2). And by It6’s formula (c.f. [29]), we have

faX ) = fuXo) +J fX)dX, +A}, 0<t<oco. (4.5)
0
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where

1 t
Artl = EJ fT:/(Xs—)d [X’X]E + Z [fn(Xs) _fn(Xs—) _fT:(Xs—)AXs]- (46)
0

0<s<t

From the occupation times formula, the definition of the integral of local time and the convergence
results of the integrals, we have

«© 1

1 (" 1 o
lim EJ f,{’(Xs_)d[X,X]EZ,}LHQOQJ L¥df (x)=—7 J FL (X)L,
0 00 —00

n—oo

and the rough path integral f fooo f(x)d, LY is continuous in t from Proposition For the con-
vergence of jump part in (4.6), we can conclude from the proof of Theorem 3 in Eisenbaum and
Kyprianou [[7], if the following assumption:

Condition (A): f{|y|<1} If(x +y)— f(x)— f/(x)yln(dy) is well defined and locally bounded in x,
holds, then

lim > [~ fo) = fiX AT = D [FX) - FX) =V f(X,AX,],
0<s<t 0<s<t
in L?(dP). Therefore we have:

Theorem 4.2. Let f : R — R be an absolutely continuous function and have left derivative f’(x)
being left continuous and locally bounded, f’(x) be of bounded g-variation, where 1 < q < 3. Then

for X = (X,);>0, a time homogeneous Lévy process with o # 0 and Lévy measure n(dy) satisfying
Condition (A), and when 1 <q <2, (3.23) when 2 < q < 3, we have P-a.s.

t 1 [ee}
F&X) = fXo)+ J fLX)AX, ~ 5 f FL)d, L
0 —00
+ LX) — f(XD) — fL(X,)AX,], 0<t <o, “.7)

0<s<t

Here the integral f fooo fL(x)d, LY is a Lebesgue-Stieltjes integral when q = 1, a Young integral when
1 < g < 2 and a Lyons’ rough path integral when 2 < q < 3 respectively. In particular, under the

condition (3.25), {.7) holds for any 2 < q < 3.
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