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1 Introduction

Let N be an integer equal or greater than 2 and x = (=1)"*N/2 if N is even, k, = £1if N is odd.
Consider the heat-type equation of order N:

du oNu
E:KN m (11)

For N = 2, this equation is the classical normalized heat equation and its relationship with linear
Brownian motion is of the most well-known. For N > 2, it is known that no ordinary stochastic
process can be associated with this equation. Nevertheless a Markov “pseudo-process” can be con-
structed by imitating the case N = 2. This pseudo-process, X = (X(t)),>o say, is driven by a signed
measure as follows. Let p(t;x) denote the elementary solution of Eq. (1.1), that is, p solves
with the initial condition p(0; x) = 6(x). This solution is characterized by its Fourier transform (see,
e.g., [13])

+o00
f e p(t;x)dx = eR i)Y
—00

The function p is real, not always positive and its total mass is equal to one:

+00
f p(t;x)dx =1.

—00

Moreover, its total absolute value mass p exceeds one:

+00
p= f Ip(t;x)|dx > 1.

—00

In fact, if N is even, p is symmetric and p < 400, and if N is odd, p = 4+00. The signed function
p is interpreted as the pseudo-probability for X to lie at a certain location at a certain time. More
precisely, for any time t > 0 and any locations x, y € R, one defines

P{X(t) edy|X(0) = x}/dy = p(t;x — y).

Roughly speaking, the distribution of the pseudo-process X is defined through its finite-dimensional
distributions according to the Markov rule: for any n > 1, any times ¢,,...,t, such that 0 < t; <
-++ < t, and any locations x, y;,...,¥, €R,

n
P{X(t;) €dys,... X(t,) €dy,|X(0) = x}/dy;...dy, = l_[P(ti —ti13Yi-1 = Vi)
i=1

where ty =0 and y, = x.

This pseudo-process has been studied by several authors: see the references [2] to [[4] and the
references [|8] to [20].

Now, we consider the sojourn time of X in the interval [0, +00) up to a fixed time ¢:
t
T(t) = f ]1[0,+oo)(X(5)) ds.
0
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The computation of the pseudo-distribution of T(t) has been done by Beghin, Hochberg, Nikitin,
Orsingher and Ragozina in some particular cases (see [2; [4; [9; [16; [20]), and by Krylov and the
second author in more general cases (see [[10; [11]]).

The method adopted therein is the use of the Feynman-Kac functional which leads to certain differ-
ential equations. We point out that the pseudo-distribution of T(t) is actually a genuine probability
distribution and in the case where N is even, T(t) obeys the famous Paul Lévy’s arcsine law, that is

]l(O,t)(S)
7T/ s(t —s).

We also mention that the sojourn time of X in a small interval (—¢, ) is used in [3]] to define a local
time for X at 0. The evaluation of the pseudo-distribution of the sojourn time T(t) together with the
up-to-date value of the pseudo-process, X(t), has been tackled only in the particular cases N = 3
and N = 4 by Beghin, Hochberg, Orsingher and Ragozina (see [2; 4]]). Their results have been
obtained by solving certain differential equations leading to some linear systems. In [2; [4; [11]], the
Laplace transform of the sojourn time serves as an intermediate tool for computing the distribution
of the up-to-date maximum of X.

P{T(t) e ds}/ds=

In this paper, our aim is to derive the joint pseudo-distribution of the couple (T (t),X(t)) for any
integer N. Since the Feynman-Kac approach used in [2} 4] leads to very cumbersome calculations,
we employ an alternative method based on Spitzer’s identity. The idea of using this identity for
studying the pseudo-process X appeared already in [[8] and [[18]]. Since the pseudo-process X is
properly defined only in the case where N is an even integer, the results we obtain are valid in this
case. Throughout the paper, we shall then assume that N is even. Nevertheless, we formally perform
all computations also in the case where N is odd, even if they are not justified.

The paper is organized as follows.

e In Section 2] we write down the settings that will be used. Actually, the pseudo-process X is
not well defined on the whole half-line [0, +00). It is properly defined on dyadic times k/2",
k,n € N. So, we introduce ad-hoc definitions for X(t) and T(t) as well as for some related
pseudo-expectations. For instance, we shall give a meaning to the quantity

o0
EA,u,v)=E [ f o MHIX(D-VT() 4
0

which is interpreted as the 3-parameters Laplace-Fourier transform of (T(t),X(t)). We also
recall in this part some algebraic known results.

e In Section 3] we explicitly compute E(A, u,v) with the help of Spitzer’s identity. This is Theo-
rem[3.1]

e Sections and [6] are devoted to successively inverting the Laplace-Fourier transform with
respect to u, v and A respectively. More precisely, in Section |4} we perform the inversion
with respect to u; this yields Theorem Next, we perform the inversion with respect to
v which gives Theorems [5.1| and Finally, we carry out the inversion with respect to A
and the main results of this paper are Theorems [6.2] and In each section, we examine
the particular cases N = 3 (case of an asymmetric pseudo-process) and N = 4 (case of the
biharmonic pseudo-process). For N = 2 (case of rescaled Brownian motion), one can retrieve
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several classical formulas and we refer the reader to the first draft of this paper [6]]. Moreover,
our results recover several known formulas concerning the marginal distribution of T(t), see
also [6]].

e The final appendix (Section [7) contains a discussion on Spitzer’s identity as well as some
technical computations.

2 Settings

2.1 A first list of settings

In this part, we introduce for each integer n a step-process X,, coinciding with the pseudo-process
X on the times k/2", k € N. Fix n € N. Set, for any k € N, X; , = X(k/2") and for any t €
[k/2",(k+1)/2"), X(t) = X} ,. We can write globally

o0
Xn(t)= Zxk,n]l[k/Z”,(k—i-l)/Z“)(t)-
=0

Now, we recall from [[13]] the definitions of tame functions, functions of discrete observations, and
admissible functions associated with the pseudo-process X. They were introduced by Nishioka [[18]]
in the case N = 4.

Definition 2.1. Fix n € N. A tame function for X is a function of a finite number k of ob-
servations of the pseudo-process X at times j/2", 1 < j < k, that is a quantity of the form
Fn = F(X(1/2"),...,X(k/2")) for a certain k and a certain bounded Borel function F : Rk — C.
The “expectation” of Fy ,, is defined as

E(Fyn) = f J F(xy,...,x)p(1/2"x —x1)...p(1/2"; X371 — X3 ) dxq .. . dxg.
Rk
Definition 2.2. Fix n € N. A function of the discrete observations of X at times k/2", k > 1, is a

convergent series of tame functions: Fxy = Ziozl Fy, where Fy , is a tame function for all k > 1.
. . o0 . . 3
Assuming the series Y. _ , [E(F %,n)| convergent, the “expectation” of Fy_is defined as

E(Fy,) = > E(Fi)-
k=1

Definition 2.3. An admissible function is a functional Fx of the pseudo-process X which is the limit of
a sequence (Fx )nen of functions of discrete observations of X: Fy = lim,,_,, Fx _, such that the sequence
(E(Fx, ))nen is convergent. The “expectation” of Fy is defined as

E(Fx) = nll_{lgo E(FXH)-

In this paper, we are concerned with the sojourn time of X in [0, +00):
t
T(t) = f ]1[0,+oo)(X(5)) ds.
0
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In order to give a proper meaning to this quantity, we introduce the similar object related to X,,:

T,(t)= f 140 400)(Xn(5)) ds.
0

For determining the distribution of T,(t), we compute its 3-parameters Laplace-Fourier transform:

(0.0]
E,(A,u,v)=E |:f e~ AHIX, (- T, (0) dt:| )
0
In Section 3] we prove that the sequence (E, (A, 4, v)),cy is convergent and we compute its limit:
lim E, (A, u,v) = E(A,u,v).
n—oo

Formally, E(A, u,v) is interpreted as
o0
E(A’ u, ’V) = |:J e_kt'i'ilix(f)—vT(t) dt]
0

where the quantity f(;)o e~ AMHX(O=vT(O) 4t is an admissible function of X. This computation is per-
formed with the aid of Spitzer’s identity. This latter concerns the classical random walk. Neverthe-
less, since it hinges on combinatorial arguments, it can be applied to the context of pseudo-processes.
We clarify this point in Section

2.2 A second list of settings
We introduce some algebraic settings. Let 6;, 1 <i < N, be the N* roots of k, and
J={ie{l,...,N}: %6, >0}, K={ie{l,...,N}: R0, <0}.

Of course, the cardinalities of J and K sum to N: #J + #K = N. We state several results related to
the 8,’s which are proved in [[11}; [13]. We have the elementary equalities

> +Zek_29 = (ﬂej)(ﬂek) =ﬂei=(—1)N—1KN @.1)

j&eJ kek jeJ kek
and
N N i
l_[(x—Oi):l_[(x—Gi)sz—KN. (2.2)
i=1 i=1
Moreover, from formula (5.10) in [[13]],
[[-60= Z( Do x ™, (2.3)
kek

where o, = Zk1<~~~<k5 Ok, - - - O,- We have by Lemma 11 in [[11]]

kl ,,,,, k[GK
1 . .
6 9 nE if Nis even,
iX — N
291 l_[ ZQ - Zek - 1 cos = 2.4)
jel  ie\{j} 0; jeJ kek = ZﬂN if N is odd.
2sin ﬁ sin N
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Set A; = ]_LGJ\{]} 5 9 for j € J, and By = l_[leK\{k} ) 6 for k € K. The Aj’s and By’s solve a

Vandermonde system: we have

D>A=>B=1

jeJ keK (2.5)
DApr=0forl<m<#J—1, Y BO=0forl<m<#K-1.
jeJ kek

Observing that 1/6; = éj for j € J, that {0;,j € J} = {G_j,j € J} and similarly for the 6;’s, k € K,
formula (2.11) in [[13] gives

(2.6)
In particular,
Bkek
= . 2.7)

Set, forany m € Z, a,, = Z]GJ JG and B, = ZkeKBk . We have, by formula (2.11) of [[13],

Bsx = (=111, 6k Moreover, By 1 = (—1)*1 (]_[keK Gk) (ZkeK Gk) The proof of this
claim is postponed to Lemma|7.2]in the appendix. We sum up this information and (2.5) into

1 ifm=0,
0 ifl<m<#K -1,
B =1 (=D [ Tex Ok if m = #K, (2.8)
(D" (TTeex 0) (Zkex 0k)  if m=#K +1,
K, ifm=N.
We also have
:Z_r]n_K ZA N~ M=K, Ay
eJ jeJ
and then
1 ifm=0,
KN(—].)#J_l(njeJ ])(Z]GJ J) 1fm=#K—1,
am =14k, 1], 6 if m = #K, (2.9
0 if#K+1<m<N-1,
K ifm=N.

N

In particular, by (2.1]),

aofo=a_nBn =1, a_pxPux =—1, A uxBrrs1 = Z 0;,  a1_uxByx = Z 6. (2.10)

jeJ kek
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Concerning the kernel p, we have from Proposition 1 in [[11]]

()

N7cUN if N is even,
p(t;0) = . - (2.11)
F()eos(sr)
——————== if N is odd.
Nrtt/N
Proposition 3 in [[11]] states
00 0

#K
P{X(t) 2 0} = j p(t;—§)dE = — (2.12)

0

#J
pt;=8)de=—,  PX()=<0}= f

—00

and formulas (4.7) and (4.8) in [[13] yield, for A > 0 and u € R,

OOe_At 0 ) N,‘/A
iug _ - = —_—
L : dtJ (e = 1) p(t; —E)dE IOg(HW—mek)’

—00 kek

(2.13)
eh [ Vi
e .
dtf et —1 p(t;—i)d&zlog( —)
JO t 0 ( ) !:J[ W— l‘LLQJ
Let us introduce, for jeJ,m <N —1and x > 0,
Ni - * N—m—1 —TEN—Q-ei%xﬁ i%n * N-m—1 —TEN—O-e_i%xg
Ij’m(r;x)=2— e 'N 3 e j dé —e'n 3 e i d¢ |.
T 0 0
(2.14)
Formula (5.13) in [[13]] gives, for 0<m <N —1 and x > 0,
o N
J e M p(t3x)dr=A"Nne Y Vax, (2.15)
0

We introduce in a very similar manner the functions I ,,(7; x) for k € K and x < 0.

Example 2.1. Case N = 3.

.21 - 27
e For k5 = +1, the third roots of k5 are 6; =1, 6, =¢'3, O3 =¢ '3, and the settings read J = {1},
K=1{2,3}A=1,B, =2, By=%2, ag=a_;=a_,=1, fy =1, f_; = —1. Moreover,

3i (% . %0 -
- 3_¢'3 3_ _—im
Il’o(T;x) = o (J 52 e—r& —e 3 x& dg _ J gze—’rg —e 3x& dg) )
0 0

e For k3 = —1, the third roots of x5 are 6; = elg, 0, = e_ig, 03 = —1. The settings read J = {1, 2},
K={3}A = %;Az = %, By=1,ap=a_1=1, =p-»=1, f_; = —1. Moreover,

3i [ 3 i2n Y 5
halmx) =2 e_lgf EeTTE e v xE dE—eISJ feExEgr |,
21 0 .
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3i . o 3 . o0 3 _i2n
I1(7;%) = o (e_l3f Ee "¢ _ngi—elsj Ee 8¢ 3 ngi).
0 0

Actually, the three functions I, I; ; and I,; can be expressed by mean of the Airy function Hi

3
defined as Hi(z) = % f;o e_%“g dé& (see, e.g., [1, Chap. 10.4]). Indeed, we easily have by a change
of variables, differentiation and integration by parts, for T > 0 and z € C,

00 —7&3+2E — n : z
L ¢ csr)4/3Hl(%/s—f)’

—7E342E _ i/ 2
Jg 4 = ot (m)

0 1
2 —T§3+z§d — iz Hi 2 + —
J;) S : (37)4/3 \vae) 3o

Therefore,
X T e_l%x T eigx
ILO(T;X)IW[E 6H1(—3—\/§)+e 6H1(—ﬁ)}, (2.16)
3 iz

Li(7;x) = 2;/25/3 [e“éHi’(— % +e‘“§Hi’(— ‘3/3;7)] (2.17)

- 27
I,(7;x) = E [eigHi’(— X ) +e—i2Hi’(— e o x )] (2.18)

’ 272/3 V3t V3t
Example 2.2. Case N = 4: we have x4, = —1 This is the case of the biharmonic pseudo-process.

The fourth roots of k4 are 6; = e - 92—6 i ,0;=¢' b 94—6 % and the notations read in this
case J ={1,2}, K ={3,4},A; =B3 = f’A =B, = f,ao—a y=lLa,1=v2 By=PF_y=1,
B_1 = —V2. Moreover,

2 0 )
Il 1(T;X):_ (eiZJ 526—754_X€d€+e—i2J §2€_T€4+iX§d€ ,
s p . .

[2 1(7.' X) — ( J 62 —TEt—ixE d§+e J €2 —TE&*—x¢& dg)

3 Evaluation of E(A, u,v)

(2.19)

The goal of this section is to evaluate the limit E(A,u,v) = lim,_, E,(A,u,v). We write
E (A, u,v) =E[F,(A, u,v)] with

o0

Fn(l, u, V) — J e—M-HHXn(t)—an(t) dt.
0

Let us rewrite the sojourn time T, (t) as follows:

[2"t] rG+1)/2" ([2"t]+1)/2"
T ()= f 10, 400) (X (s)) ds —J 10, 400) (X (1) ds
j=0 Jj/2" t
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[2"t] ~G+1D/2" ([2"e]+1)/2"
= Z f 110, 400)(Xj ) ds — J 110, +00)(X[2047,0) ds

j=0 Jj/2" t

(2] "
1 [2%t] + 1
=on D Lo o) + (f - T) Tgo,+00)X1201,n)-
=0

Set Tp , = 0 and, for k > 1,
1 &
Tk,n = E Z ]I[O,-i-oo)(Xj,n)-
j=1

Fork>0and t € [k/2",(k+1)/2"), we see that

k+1

1
—) ]1[0,+oo)(Xk,n) + ?

T,(t) = Ty + (t - on

With this decomposition at hand, we can begin to compute F,(A, u,v):

o0
Fn(k, u, v)= f e‘“*'iMXn(t)—an(t) dt
0
oo (k+1)/2" o
= Z J‘ e—kf'ﬂ'll‘xk,n_VTk,n_zln"t‘v(zin—t)][o’Jroo)(Xk,n) dt
k=0 k/2"

%) (k+1)/2" .
=e—v/2” ZJ e—?ut+v(2inl—t)l[0’+oo)(xk,n)dt ei,uXk)n—ka,n'

k=0 k/2"
The value of the above integral is
AV 1o 400 (Kin)1/2" _ 1

A+v ]1[0,+oo) (Xk,n)

(k+1)/2" e
J e_At""V(%_t)l[O&oo)(Xk,n) dt = e Mk+1)/2"
k/2n
Therefore,

1 — e~(v)/2" o0

—lk/zn'f'l-‘U.an—’VTanl
E e ’ ’ [0,+oo)(Xk,n)
A+v pard

1 —e_l/zn X nq
T Ze_xk/z HiuXen =V Tin ]l(_oo,o)(Xk,n)'
k=0

Fn(ky .U':V) =

+e /%

Before applying the expectation to this last expression, we have to check that it defines a function of
discrete observations of the pseudo-process X which satisfies the conditions of Definition This

fact is stated in the proposition below.

Proposition 3.1. Suppose N even and fix an integer n. For any complex A such that ®(A) > 0
and any v > 0, the series Ziozo e /2R [el“xkv"_”kv“ ]1[0,+oo)(Xk,n)] and Z,?;O e M/2'R [e”‘“Xkﬂ_VTk’"

1o)X k,n)] are absolutely convergent and their sums are given by

> N e"’2" —SH(A, u,v)
Ze MIZR [ et in = Ten T 4 ooy Kjen) | = ev/; —
k=0
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% " e[S, (A p,v) — 1]
Z:e—W2 B [eXen™Thn1_ g 0)(Xgn)] = r

k=0 e/ -1 ’
where
00 . e—lk/Z” )
S*Y(A,u,v) =exp —Z (1 — e Vk/2 ) E[el“X"’”]l[o,Jroo)(Xk,n)] ,
k=1
00 . e—)Lk/Z” )
S, (A, u,v) =exp Z (1 — e Vk/2 ) E [el“X"’"]l(—oo,o)(Xk,n)] .
k=1
ProoF

e Step 1. First, notice that for any k > 1, we have

‘]E [eiHXk,n—VTk,n ]1[0,+oo)(Xk,n)] ‘
_ iux —LZI?, 1 (x:)
= .. e kT T 4uj=1 [0, +00) 1 P{Xl,Hdeli""Xk,nedxk}
Rk=1x[0,400)

: v k
=1 eHXk— 5 i Yo +o0)(X3) py ,x (X — X | dxg ... dx
' J kalx[O +00) n 1 l_[p 2n X;j j+1 1 k

k-1

2n’ l_[ (2n’ Xj— J‘H)
]

dx;...dx;

k
J f l_[ Zn,yj) dy; .. d.)’k—l_[f ,y]) dy; =p~.
Hence, we derive the following inequality:
o0 (0.0] 1
—2k/2" g 7= Tk k| ,—ak/2n| _
kz: e~ k/ IMXk, vy, ]1[0,+oo)(Xk,n)] ‘ < Zp e AK/2Y| — Y=
=1 k=1

We can easily see that this bound holds true also when the factor T 4)(Xy ) is replaced by
1(—00,0)(Xk,n)- This shows that the two series of Proposition are finite for A € C such that
pe MM/2" <1 that is R(A) > 2" log p.

e Step 2. For A € C such that ®(1) > 2"log p, the Spitzer’s identity (7.2) (see Lemma [7.1]in the
appendix) gives for the first series of Proposition [3.1]

o0

Z e—lk/Z"]E [eiﬂxk,n_VTk’” ]1[0’+oo)(Xk,n)j|

k=0
1 n 0 n e
e -1 k=1

—Ak/2"

E I:ei.U«Xk,n ]1[0,+00)(Xk,n):| ) :| . (3.1)
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The right-hand side of (3.1) is an analytic continuation of the Dirichlet series lying in the left-hand
side of (3.1), which is defined on the half-plane {A € C : ®#(A1) > 0}. Moreover, for any & > 0, this
continuation is bounded over the half-plane {A € C: (1) > ¢}. Indeed, we have

+00 e k dg +00 ﬁ ~ dg B
o e p 2n > o p on 2 p

‘E I:ei'UXk’n ]1[0,+oo)(Xk,n):| ’ =

and then
) e/ .
exp( Z vk/2 k El:elMXk’n]l[O,+oo)(Xk,n):|
k=1
00 ,—R(A)k/2" B ) 1
Sexp(pZT :exp(—plog(l—e R(1)/2 ))z =T
k=1 (1-—e )
Therefore, if #(A) > ¢,
- erHiz) Tt (x <1
€xp Z( [e#en Ty ooy (Ki )] || < Ay

This proves that the left-hand side of this last inequality is bounded for (1) > ¢. By a lemma of
Bohr ([5]), we deduce that the abscissas of convergence, absolute convergence and boundedness of
the Dirichlet series Y°° , e */2'E [ e XienVTin Ty (X k’ﬁare identical. So, this series converges
absolutely on the half-plane {A € C : ®(A) > 0} and (3.1) holds on this half-plane. A similar
conclusion holds for the second series of Proposition [3.1] The proof is finished. ®

Thanks to Proposition [3.1} we see that the functional F,(A, u,v) is a function of the discrete obser-
vations of X and, by Definition[2.2] its expectation can be computed as follows:

1—e /2" /2" gt u,w)  1—e M2 ST (A, u,v)—1

EH(A’)AU’JV): A,""V ev/zn _1 )L e,v/zn _1
ev/Z"(l _ e—(l+v)/2”) 1— e—?L/Z”
L0+ -1 AP -1)
1— 6—1/2" 1— e—(A+v)/2" N
+—n5_ A, ,V)— n S )L, V). (32)
e T G e — S Y

Now, we have to evaluate the limit E(A,u,v) of E, (A, u,v) as n goes toward infinity. It is easy
to see that this limit exists; see the proof of Theorem below. Formally, we write E(A,u,v) =
E[F(A, u,v)] with

o0
F()L, u, V) — J e—)tt+i,uX(t)—vT(t) dt.
0
Then, we can say that the functional F(A, u,v) is an admissible function of X in the sense of Defini-
tion The value of its expectation E(A, u,v) is given in the following theorem.

Theorem 3.1. The 3-parameters Laplace-Fourier transform of the couple (T(t),X(t)) is given by

1
EA,u,v) = . 3.3
(B ph:v) [T, (VA2+v —ipb) [Tk (VA —iuby) 33
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ProoOF

It is plain that the term lying within the biggest parentheses in the last equality of (3.2) tends to
zero as n goes towards infinity and that the coefficients lying before ST (A, u,v) and S_ (A, u,v) tend
to 1/v. As a byproduct, we derive at the limit when n — oo,

1
EQpv) =~ (S~ uv) = ST (A, 1, V)] (3.4)

where we set

S ()'J u,v ) - nll)ngosn (}'a l"l’ﬂ'v) = exp

00 oAt
ST(A,u,v) = hm ST(A,u,v) = exp( J E ettX(0q [0.4+00 )(X(t))](l — e‘”) )
0

i —A
J IE[ luX(t)]l(—oo,o)(X(t)):l(l eVt )
0

We have

—At
dt

f E [eiMX(t)]l[o,+oo)(X(t))1 (1 _ e—vt) €
0

:f E[(emx(r) — 1)]1[0,+00)(X(t))J ¢
0

—At e~ AVt

dt

f E[ (0 1) 10 1o)X (1))]
0

0 e_M _ e—(7L+v)t
+J P{X(t) >0} —dt
0 t
00 At o 0 ,—(A+v)t o
= f dt f (" =1) p(t;-8)dg - J - dtf (" —1) p(t;-8)dg
00 —At —(M—v)t ’ ’
+P{X(1) > O}J —dt.

In view of (2.12) and (2.13) and using the elementary equality f (;)o w dt =log ()HV) we
have

—At
dt

f E [eiMX(t)]l[O,+oo)(X(t))1 (1 _ e‘”) e
0

_ VY A+v #J A+v _ N\/k—l—v—inj
o s lué’) (n«/——zue)+ﬁl°g( 2 )‘1°g(nW)'

jeJ jeJ jeJ

We then deduce the value of ST(A, u,v). By (2.2),

ST, v) = l‘[ — Wb [T, (V7 —iuby)
jer VATV _1“9 njeJ(m_iﬂej)nkeK(W— i)
A=k (iu)"

- e ¥ ) : (3.5)
[T, (VA+v = iu0) [ ik (VA — inby)
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Similarly, the value of S™(A, u, v) is given by

YA+v—iub A4+v—x (iwN
S™(A,u,v) = l_[ — bl — — — _ . (3.6)
rek VA —iub; l_[jej(«/k+ — i) [ Teex (VA —iuby)
Finally, putting and into (3.4) immediately leads to (3.3). W
Remark 3.1. We can rewrite (3.3)) as
EA,u,v)= 3.7)
k#K _H,)ﬁf!;[ w/l+v—lu9”l;[< l‘U,Qk

Actually, this form is more suitable for the inversion of the Laplace-Fourier transform.

In the three next sections, we progressively invert the 3-parameters Laplace-Fourier transform
E(A, u,v).

4 Inverting with respect to u

In this part, we invert E(A, u,v) given by (3.7) with respect to u.

Theorem 4.1. We have, for A,v > 0,

f e M [E(e™T®, X(t) edx)/dx] dt
0

1 B0 0N/
- A0, e UVATYX ifx >0,
B +'\/)% jeJ / ](é9kW—9jva+v) (41)

1 A.0Q. N
B0 e e 0Vix iy <.
) ; Kok (; OkW—QjN\/k+v)

Proor
By (2.6) applied to x = iu/VA+v and x = iu/V A, we have

l—[ A+V l—[
jeJ VAi+v - u6; e lu‘wk jes 1— ﬁ

B,6
=23 Do

jeJ ] - I\F kek ek N/

=Vaa+n)] 4159
P (QjN\/k +v —iw)(BNVA —in)

keKk

1 1
l_[ o] l_[ MA ek

]keKl
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Let us write that

1 1 1 1
(ON2A+v —iw)(OVA — i) a O VA — 9].’{/14-“ (QjIVA—I—V —iu B QkW—i,u)

00 0
1 . N . N
_ (iu—06;3/ A+u)x J (fu—6 vV A)x
= e i dx + e dx |.
ONA—6//2+p Uo —o0 )

Therefore, we can rewrite E(A, u,v) as

1
EAuv) = —s Fi-1
AN (k-i—v) N
A.B.6.0 o N
jPkYjYk iux (=6, Vax _oN/ATv x
X e e 1 x)+e Y% 1 ) dx
; ekN‘/A_ejN[A—F’V o ( ( O0,0]( ) [0,00)( ))

kekK

which is nothing but the Fourier transform with respect to u of the right-hand side of (4.1). W

Remark 4.1. One can observe that formula (24) in [[11]] involves the density of (T (t),X(t)), this
latter being evaluated at the extremity X(t) = O when the starting point is x. By invoking the
duality, we could derive an alternative representation for (4.1). Nevertheless, this representation is
not tractable for performing the inversion with respect to v.

Example 4.1. For N = 3, we have two cases to consider. Although this situation is not correctly
defined, (4.1) writes formally, with the numerical values of Example in the case k3 =1,

J e ME(e™T®, X(t) edx)/dx] dt
0

o~ VAHvx

if x >0,

A2+ Y AA+v)+ (A +v)?3

= 3

e%" ﬁﬁcos(@x)—(2\/37L+v+3/7)sin(@x) ] o
if x <0,

V3V2 223 4 A+ V) + (A +v)2/3

and in the case k3 = —1,

f e M [E(e™ TV, X(t) edx)/dx] dt
0

3
e*@x V3VA+v cos(L ”Z’H"x) + (¥ A+v—|—2w3/7)sin(L VZH"X)
_ | VBVA+w 223 4 3/ AA+v) + (A +v)2/3
Vax
e

A2+ Y AA+Vv)+ (A +v)?3

if x>0,

if x <0.
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Example 4.2. For N = 4, formula (4.1) supplies, with the numerical values of Example

f e M [E(e™ TV, X(t) e dx)/dx] dt
0

Yz

V2e % |:\4/A+vcos(4l+vx)+4 Asin(4k+vx)] ifx>0
VAV (VA+ VATV A+ VA+) V2 V2 7

2 [ ) - Y e 2]
VAWA+VA+V)VA+ VA +v) V2 V2 -

5 Inverting with respect to v
In this section, we carry out the inversion with respect to the parameter v. The cases x < 0 and

x > 0 lead to results which are not quite analogous. This is due to the asymmetry of our problem.
So, we split our analysis into two subsections related to the cases x < 0 and x > 0.

5.1 Thecasex <0

Theorem 5.1. The Laplace transform with respect to t of the density of the couple (T(t),X(t)) is given,
when x <0, by

f e MIP{T(t) € ds,X(t) € dx}/(dsdx)]dt
0

—As #K
e m N
=~ 2y A-m (AS)VE mews (As) E B ol 0V Ax, (5.1)
A NTSN m=0 o kek

ProoOF
Recall (4.1I) in the case x < 0:

J e M [E(e™ TV, X (t) e dx)/dx] dt
0

1 A0 N
= E B0 E 1) e~ Ok VAx,
T & "( ekW-ejwm)

jeJ
We have to invert with respect to v the quantity
4

1 3 A;9; .
J

By using the following elementary equality, which is valid for a > 0,

© 00 -1,-2s
1 — 1 e—(?t+v)ssa—1 ds = e Vs se ds
A+v)*  T(a) ), 0 I'(a) ’
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we obtain, for |B] < YA+,

r

1 1 1 i Zi BT f G, g
Vitv—F VAtvi- Ll ro(xm’ﬁl =C)

Y

® o 1l s (BYs)
=J0 e (SN 16’1;F(r;_1)>ds

The sum lying in the last displayed equality can be expressed by means of the Mittag-Leffler function

(see [[7, Chap. xvin]): E, (&) = Zr —0 r(frer) Then,

— =-1,-2s . N
Uity p fo e E1 1(f ﬁ))ds

Next, we write

Z Ty — ek T J [ vl _ASZA].E%’% (g—f%)} ds,

jeJ

where

jeJ jeJ r=0

QkN T (As)v S 4 ()7
1 1 Qr or .
ZA NN( ) ZA Z( 1) r(rH) r=0( kfz@:ejr) F(r;_l)

(5.2)

(5.3)

When performing the euclidian division of r by N, we can write r as r = {N + m with £ > 0 and

0 <m < N — 1. With this, we have 8.7 = (6¥) ¢ 0™ = k! 6™ and 6] =k’ 6/". Then,
J J J N ] k N k
EOIELD 2 B
jeJ jeJ
Hence, since by (2.9) the a_,,,, #K +1 < m < N, vanish,

#K

jeJ

and (5.3)) becomes

3 A % L #XKI n

= e VS| sNT e a_, O (AS)NE, mt1(As) | ds
ity -2V o " o

J

jeJ m=0

As a result, by introducing a convolution product, we obtain
o0

f e M [E(e™T®, X(t) edx)/dx] dt
0

— o.NV7
=— #K1ZBQe kVAX

N kek
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#J-1_

0 SoN e Ao ZK m m+1
XJ ,vs J T e a0 (s — o) TE, wa (A — 0))do | ds
0 0 F( N ) -

m=0

By removing the Laplace transforms with respect to the parameter v of each member of the foregoing
equality, we extract

f e MIP{T(t) e ds, X(t) € dx}/(dsdx)]dt
0

#Jll

ohs HK
o m+1
=—— = Za_mkz\f (ZB CHEaRY: _Gk‘r")f — 0)T+_1E1)mTH(7L(s—0))do.

#J 1
keKk

The integral lying on the right-hand side of the previous equality can be evaluated as follows:

S +1 S ol 0 & Als—o)
mtl ¢ _ mtl_ 4 -
f W(S—U)” El,"gl(l(s—g))da—f F(#TIJ(S_U)N Zmd"
0 N 0 N N
= o
#J-1 +1
= () F(H’"T)
> )\,€8£+m;r\f#]_1 m+#J B (l )
=S N m+#J (AS
T (04 LN

from which we deduce (5.1).
Remark 5.1. An alternative expression for formula (5.1)) is for x <0

f e M[P{T(¢) € ds,X(¢) € dx}/(dsdx)] dt
0

—As [}
= _% ZA BkaEl # (Q—%N\/ ls) e_ek%x. (5.4)
J

RS =y
keK

In effect, by (5.1)),

J e M [P{T(¢t) € ds,X(t) € dx}/(dsdx)] dt
0

_ izz B 9m+1 (A,S) 9 Ax
- #K 1 #K — A—mPk 1-.(€+m+#J)

N SN m=0keK
oo N-1
(AS) -6 N/ A x
e 2 S () e
k SN {=0m=0 jeJ r(£+m )
kek
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In the last displayed equality, we have extended the sum with respect to m to the range 0 < m < N—1
because, by (2.9), the a_,,, #K +1 < m < N — 1, vanish. Let us introduce the index r = {N + m.

m r
Since (g—’;) = (Z—’;) , we have
. (37%)
—Qk%X

J e M [P{T(t) € ds,X(t) € dx}/(dsdx)]dt = — e ZA BkaZ (=)
0

N SN jej
kek

which coincide with (5.4).

Example 5.1. Case N = 3. We have formally for x <0, when k3 = —1:

—As

Ey 2 (29) - ﬁ)

J e M[P{T(t) eds, X(¢t) € dx}/(dsdx)]dt = e Vix (63—
0 Vs

and when k3 = 1:

f e MIP{T(t) e ds, X(t) € dx}/(dsdx)]dt
0

3
Dot L2

i/__\/;_ [\/_ cos([;/_x)(g AsEl,g(As)—(As)Z/?’eks)
S
+ sin(%‘/_x) ( VAsSE, 2(45) + s/ - 2E1’%(7Ls))} .

Example 5.2. Case N = 4. We have, for x > 0,

J e M[P{T(¢) € ds, X(t) € dx}/(ds dx)]d¢
0

B () (4,30 i) i ) (V00 -89

5.2 The case x >0
Theorem 5.2. The Laplace transform with respect to t of the density of the couple (T(t),X(t)) is given,
when x > 0, by

f e M[P{T(t) €ds, X(t) € dx}/(dsdx)]dt
0

)
=- #K - ZA BkaJ oNT % 1 (—k V Aa) I 4y-1(s —o;x)do (5.5)

N jes ej
kek

where the function I; 4; 1 is defined by (2.14).
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ProoOF
Recall (4.1I) in the case x > 0:

f e M [E(e™T®, X(t) edx)/dx] dt
0

= 71 Z ;6 (Z IV_ 1\(/—) e 0; 7L+vx‘
T o S ONT - 0T TV

—G-N A+vx
We have to invert the quantity o 5 with respect to v. Recalling (5.2 and (2.15)),
( (N 7L+v—9flf%)

A+v) N

%7?7'—ﬁ::J; e (BY5) ) s

e—OjN\/ A+v x

0
1 J e " (e_Ast,#J—l(S;x)) ds,
(A+v) v 0

we get by convolution
e—GjNv Aty x
A+ (Vv - 2V2)
J

o0 S 9
:J e Vs (J ovle A0 ’ (—kN\/ ko) X e_l(s_a)lj’#J_l(s —0;x) dc) ds
0

0 6;

J
00 s
1_
=f e~ Vs (e—ksf ON lE
0 0

This immediately yields (5.5). W

Z|=
Z =

0
(Q—kN\/ AG) Iiyy-1(s —0;x) do) ds.

1
5

N
J

Z =

Remark 5.2. Noticing that

Ok 0 (Ao)v XN O (Ao)
w1 (5V37) < B8 iy B D o (e )~ B O B0

and reminding that, from (2.8), the f,, 1 < m < #K — 1, vanish, we can rewrite (5.5) in the
following form. For x > 0,

f e M[P{T(¢) € ds, X(t) € dx}/(dsdx)] d¢
0

- S A,
= _¢ Z (ZB 9m+1) #K+1f O-TH_lEl,mTH(kO') (Ze—rjan,#J_l(s—o';x))do-
0

m=#K-1 \ keK jeJ 7
N s
=—e Z B A N Uﬁ_lEL%(AO')q)m(s—O';X)dO' (5.6)
m=#K 0
A

with @,,(7;) = X5 s gt [ -1(75 X).
J
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Remark 5.3. For x = 0, using formula which is valid for x < 0, we get, by (2.8), (2.9)

and (2.10),

00
[ e
0

dt
x=0

e—?LS

= T T K1 # Za—mﬁm+1(A5)N 1m+#J(A‘5)
N SN m=0

e—?us

#K=1 2K
=——mT = (al—#K By (As) v El’l_%(ks) + oy Bux 1 (As) N E1,1(AS))

N SN

—As
= #il #K (ZQ(AS) N E11 1(AS)+29k(ks)Ne )
A

N SN ]eJ kek

(29 ) (El,l_%(ks)— %eks).

jeJ

On the other hand, with formula (5.6 which is valid for x > 0,

f e MP{T(t) eds, X(t) € dx}/(ds dx)’
o -0

—)Ls Z ﬁm

J G%_lEL%(Ao)Cbm(s —0;0)do

m=#K
with
Ni Aj TIE P #J 1. Ky N
- 23
@(730)= 5 (Z g7 )(e C T dg
jeJ
#K+1 #I—1
_F( N )Sm( N ”)a B A1,
- 1-m = . < g1
TET#I;JH F(—#J_l) T$

In view of (2.8), (2.9) and (2.10), we have

f e_“IP’{T(t)Eds,X(t)edx}/(dsdx)’ e
0 xX=

#—K—l

(Ze )J ————E, w(A0)do
jeJ 0o (s—o) v b

#K+1 -1

(
(Zek)[ -0 ’#KN“WMU}
kek 0\S—0) N
—2s OOB(E—F#ILV_K’ _%) (-1
(B (B

(=0
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© B £+#K+1’1_#K+1
_WZ ( N M N )()LS)K)

=0 F(€+ N )

—As
= (Z Qj) eNf (El’l_%(ks)_ N\/Zexs).

jeJ
Thus, we have checked that the two different formulas (5.7) and (5.8) lead to the same result.
Example 5.3. Case N = 3. For x > 0, (5.5) supplies formally with the numerical values of Exam-
ple[2.1} when k3 = -1,

f e MIP{T(t) e ds, X(t) € dx}/(dsdx)]dt
0

—2s s
€ i -2/3 —iﬂv_
=——|es o Eii(—e '3V Ao Il’l(s—a;x)da
7 ( L 1 ( )
S
+e_lgf 0_2/3E1 1(—61% \3/ AU)IZ 1(s—a;x)da)
0 3’3 ?

and when k3 =1,

J e M[P{T(¢) € ds, X(t) € dx}/(ds dx)] d¢
0

© ,—As S
_ te —2/3 _j2 3/ o
_ﬁona By (e Va0 ) ol — o5 do

N
—J 0~ 2PE; . (ei%ﬂ v Aa) I o(s — o;x)do).
0 3’3

The functions I o, I; ; and I, ; above are respectively given by (2.16)), (2.17) and (2.18).

Example 5.4. Case N = 4. For x >0, supplies, with the numerical values of Example
(e 0]
f e M[P{T(¢) € ds, X(t) € dx}/(ds dx)] dt
0

—2As s
__¢ iz —3/4 _ 4 .
=377 (e 4f0 o E%%( }Lo)ll,l(s o;x)do

S
- 31
+e t f 0_3/4E1 1 (— i \4/ AO) Il’l(s —o;x)do
0 474

N
-l-eiBIJ o34, 1(1’ Vv AU)Iz’l(s—a;x)da
0 404
S
+e_iZJ 0_3/4E; 1(— \4/ AG)IZ 1(s—a;x)d(7).
0 474 ’

The functions I; ; and I, ; above are given by (2.19).
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6 Inverting with respect to A

In this section, we perform the last inversion in F(A, u,v) in order to derive the distribution of the
couple (T(t),X(t)). As in the previous section, we treat separately the two cases x < 0 and x > 0.

6.1 The case x <0

Theorem 6.1. The distribution of the couple (T(t),X(t)) is given, for x <0, by

P{T(t) e ds,X(t) € dx}/dsdx

Ni & T +#J —(t—s)EN N
=52, %ms ¥ grriie s Hm(XE) Ey mess (—s87)dE (6.1

m=0 0
where , ,

. #K—m— iz - #K—m—1 —iZ

%m(Z)ze_l N 77 —eliN EZBkelin—i-le—er Nz'
keK keK

ProOOF

Assume x < 0. Recalling (5.1)), we have

J e MIP{T(t) € ds, X(t) € dx}/(ds dx)]dt
0

—As

e

:‘mza_m(ks)w " m+#J(ls)ZB om0V Ax

A NS N m=0 kek

As)EF
- _ As ( nt1,-0Vix
=-—V2e Z _mZ m+#J)Z k@ 3
kek

by Se+_m 3 #K+1 ¢*
= _ m+1 5 0+ —Xs 0 x
o Zza_ml—‘(€+m+#J ZBkQ A 3 6.2)

£=0m=0 kek

m— #K+1

We need to invert the quantlty ALt e A= ONAx for ¢ > 0 and 0 < m < #K with respect to A.
We intend to use which is valid for 0 < m < N — 1. Actually holds true also for m < 0;
the proof of this claim is postponed to Lemma in the appendix. As a byproduct, for any £ > 0
and 0 <m < #K,

00

m-#K+l 5. g N — -

A,“_ N e As Gkﬁx:e lsf e kqu,#K—ZN—m—l(u;x)du
0

o0
= f e_MIk,#K_ZN_m_l(t —s;x)dt. (6.3)
S

Then, by putting (6.3)) into (6.2) and next by eliminating the Laplace transform with respect to A,
we extract

P{T(t) e ds, X(t) € dx}/(dsdx)
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#K [+m #K

o0
Z m €+m+#J ZBk Ik,#K—eN—m—l(t—Szx)

{=0m=0 kek
Ni Z sHmN#K
[ p— o, —
2m = r(¢+ ™2
ZB 9m+1 ( j #KNomL ZN m-l. f gN #K+{N+m —(t —s)EN Q! NxE dg
kek

. —(N—m— iz
_eIWnJ SN—#K+€N+m e—(t—s)gN—le N x§& di)

- #K

= —]2\[—; Z a5 ZB,{QIZ”H

m=0 keK

l

(0.9) o0 — N LT

% e—i#KlenJ ( s& ) gm-ﬁ-#J e—(t—s)i”—@;{elﬁxﬁ d&
0 p l—-(g + m+#.])

j#K=—m=1 & SgN) mt#J —(t—s)EN 6 e—i%xg
—e N Z 1—| e + m+#J) g e k dg
0 =0

. #K
Ni m—#K
=—— A_pS N E BkGZTJrl
m=0 kek

o0
X (e_i#Kle”J gmr#I e (t=)E"~0e'N xE E| miws (—SgN) d¢
0 > N

o0
. TN

The proof of (6.1)) is established. W

Remark 6.1. Let us integrate (6.1 with respect to x on (—o0,0]. We first compute, by using (2.8)),

fo H(xE)dx = —— (nggm)( el#ij—mn)

kekK
ifl<m<
2 | (#K—m )[5 0 if1<m<#K,
= s T =13 2i #K
& N " — sin| —m ifm=0.
3 N

We then obtain

Nsin(Z 7 o0
P{T(t) € ds,X(t) <0}/ds = (—#’;) g1 E (—sg™)de
SN 0 N
#K 00 ) 0
NSID( N TL_) Z (_5) £€N+#J—le—(t—s)§N d

#K

asv = T((+2) Jo




__sin(§m) i(_;){

- #K #J
sy (t—s)N (o~ 7S

In the foregoing equality we must assume 0 < s < t/2 in order to make convergent the series. From
this, we extract

P{T(t) €ds,X(t) <0}/ds = (6.4)

Tt S

sin(#;v—Kn) (t _s)ff

We retrieve Theorem 14 of [11]].

Remark 6.2. Let us evaluate P{T(t) € ds,X(t) €dx}/(dsdx) at x = 0. For 0 <m < #K,

P AR #K —m—1
Hin(0) = e 1”z:BkG,T“ — e ITEZBkQIT—H = —ZiSin(T 71') Bmt1-
kek kek

Observing that sin(%rc) =0if m=#K — 1, in view of , and , we get

P{T(t) eds, X(t) € dx}/ds

x=0

N /=« ® N (N
= —sm(—) a—#Kﬂ#K+1J N el E1q (_SgN) dg
T N 0

v S OLE
— —ein[ = _ 3 —__\NJ \NJ .
= ﬂSln(N)(JZEJ:GJ)JO EN et g = Nt JZGJ:QJ.

Thanks to (2.4) and (2.11)), we see that

P{T(t) eds, X(t) €dx}/ds 0= %p(t; 0)

xX=

and we deduce

P{T(t) € ds|X(t) = 0} /ds = ]1(0’?(5),

that is, (T(¢)|X(t) = 0) has the uniform law on (0, t). This is Theorem 13 of [[11]].

6.2 Thecasex >0

The case x > 0 can be related to the case x < 0 by using the duality. Let us introduce the dual
process (X7 );>o of (X;);>o defined as X} = —X, for any t > 0. It is known that (see [11]]):

e If N is even, the processes X and X™ are identical in distribution (because of the symmetry of
the heat kernel p): X* Lx ;

e If N is odd, we have the equalities in distribution (X*)* L x- and (X)) L x+ where X is
the pseudo-process associated with k= +1 and X~ the one associated with x = —1.
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When N is even, we have {—0;,j € J} = {0,k € K}. In this case, for any j € J, there exists a unique
k € K such that 6; = —0 and then

) —6; 0,
A=l g=o= 11 54 = 11 o245 =5
J —_0. —_0. -

ey =6 dy 0+ 6 0, — 0,

iek\{k}
and
=Y AOM = B (—0)" = (1",
jeJ kek
When N is odd, we distinguish the roots of x, in the cases x, =+1 and x, = —1:

e Forx =+1,let6;",1<i<N,denote therootsof 1 and setJ* = {i € {1,...,N} : ®(6;") > 0}
and K* ={ie{l,...,N}: %(6;") < 0};

e Forx =—1,let 67,1<i<N,denote theroots of —1 and setJ~ ={i € {1,...,N}: R(6) >
O}and K~ ={ie{l,...,N}: R(6,) <0}

We have {6;,i € J7} = {—07,keK*}and {0 k€K } = {—QJf,j € JT}. In this case, for any

j €J7, there exists a unique k € K™ such that 9]._ = —9; and then
0" -0 0F
- 1 _ 1 _ 1 _ +
45 = I_[ 0~ —06- l_l —9t —pt+ l_[ 9+_9+_Bk
ieJ\{j} i i iekt\{k} i k  iek+\{k} i k

and similarly A;f = B, . Moreover, we have
@, = D A (6" = 3 BI(=60)" = (-1)" 3 BI(6)" =(-1)"B;;
jeJ~ kek™* kek*

. . + _ m —_
and similarly o) = (=1)"f, .
Now, concerning the connection between sojourn time and duality, we have the following fact. Set

T(r):f 10400y X (w)du  and T*(t):f 116,400y (X (1)) du.
0 0

Since Spitzer’s identity holds true interchanging the closed interval [0, 400) and the open interval
(0,400), it is easy to see that T'(t) and T(t) have the same distribution. On the other hand, we have

t

T(t) = f 10 00X (1)) du = f 1,0y (X (1)) du = J [1 = Tpo, o)X ()] du = t — T*(t).
0 0

0

We then deduce that T(t) and t — T*(t) have the same distribution. Consequently, we can state the
lemma below.

Lemma 6.1. The following identity holds:

P{T(t) € ds,X(t) € dx}/(ds dx) = P{T*(¢) € d(t —s),X*(t) € d(—x)}/(ds dx).
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As a result, the following result ensues.

Theorem 6.2. Assume N is even. The distribution of (T(t),X(t)) is given, for x > 0, by
P{T(t) € ds,X(t) € dx}/(dsdx)

- #J 00
N zNT; 2 Bon(t=9)F f g g (xE)Ey mox (~(£—9)EN)dE (6.5
m=0 0

where

_i#J-m—1 0T #T—m—1 DLk
In(@) =T TN TN A M0 s _ TN gl gmfie e,
m JYj 775
jeJ jeJ
ProoOF

When N is even, we know that X* is identical in distribution to X and (T*(t),X*(t)) is then dis-
tributed like (T(¢),X(t)). Thus, by (6.1) and Lemma|6.1], for x > 0,

P{T(t)eds, X(t) €dx}/(dsdx)
=P{T(t) ed(t —s), X(t) €d(—x)}/(dsdx)
Nl 7K m—#K o0 N
=—5- 2 amlt—s) v f EMHH €755 A (—xE) By mews (—(t —5)EN) E.
27 0 TN

m=0
The discussion preceding Lemma [6.1] shows that
F#]—m—1 i F#J—m—1 —ig
_ i b m+1 ,0;e'Nz i b m+1 ,60,e”'Nz
J{m(z)_e N ZAJ(_Qj) e’ —e N ZA]'(_QJ') e’ .
jeJ j&eJ

We see that #;,(z) = (—1)™*!_g, (—z) where the function _¢,, is written in Theorem Finally, by
replacing a_,, by (—1)"B_,, and #J, #K by #K, #J respectively (which actually coincide since N

is even), ensues. W

If N is odd, although the results are not justified, similar formulas can be stated. We find it interest-
ing to produce them here. We set T*(t) = fot ]l[o,+oo)(Xi(u)) du.
Theorem 6.3. Suppose that N is odd. The distribution of (T*(t),X*(t)) is given, for x > 0, by

P{T*(t) €ds, X*(t) € dx}/(dsdx)

#J+

Ni & e
=5 2 Bl (t=9)"w
m=0

J €m+#K+ e—s&jN f,:(x‘i) ELM (—(t —S)SN) d& (6.6)
o N

where
#It—m—1 + i gt _me1 L il
+(o) — i n +rp+ym+1,-0eNz i nz +rp+ym+1,-0 e Nz
= N ! . j —_ N ! . j .
S (z)=e E AJ(GJ )" e e A](GJ )" e
jeJt jeJt
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ProoOF
When N is odd, we know that (X*)* £ X~ and then ((T+)"(t),(X)"()) < (T~(t),X~(¢)). Thus,
by and Lemma6.1] for x > 0,
P{T*(t) eds, X*(t) € dx}/(ds dx)
= P{T~(t) € d(t —s), X (t) € d(—x)}/(ds dx)

Ni & i > m+#I~ —sEN . — N
=—— > al (t=s)" v | &M s (—xE)E, s (—(t —5)EV) dE
21 0 0 >N
where
— —j K omol —rn—ym+1 0~V i 2K Lo —rn—ym+1 —0 e Nz
Hp@)=e W T B (O ) e e e D B e e e,

kek~ keKk~
As in the proof of Theorem we can write 4 (z) = (—1)"*! #*(—z) where the function ¢
is defined in Theorem Finally, by replacing a by (=1)"B} and #J~, #K~ by #K*, #J*
respectively, ensues. W

Formula involves only quantities with associated ‘4’ signs. We have a similar formula for X~
by changing all ‘4’ into ‘—’. So, we can remove these signs in order to get a unified formula (this
is (6.5))) which is valid for even N and, at least formally, for odd N without sign.

Remark 6.3. Let us integrate (6.5) with respect to x on [0,00). We first calculate, recalling that
In(2) = (—1)"*14, (—2) and referring to Remark

) 0 0 ifl1<m<#J,
f fm(XE)dx=(—1)m“J Hp(xE)dx =1 2i [#J _
0 —o00 ( n) ifm=0.

——Ssm| —

3
Then,

#
m(t—s)N

N #J 00
P{T(t) € ds,X(t) > 0}/ds = MJ g1 e B (—(t—5)EN) dE
0 N

Ns1n(#J7t) 2 (—(t =) NO+#K—1 ,—sEN
~1-5EY 4
n(t—s)N KZ(;F €+¢§V_K) g e g
B sm(’ifrc) i( t—s)e
a ns?(t—s)% =0 s '

In the foregoing equality we must assume t/2 < s < t in order to make convergent the series. From

this, we extract
#J

(#J n)
P{T(t) € ds,X(t) > 0}/ds = ( )N 6.7)
t—s

and we retrieve Theorem 14 of [11]]. By adding (6.4] and -, we obtain the counterpart to the
famous Paul Lévy’s arc-sine law stated in [[11]] (Corollary 9):

sin (% n) Tio,0)(s)

#K #
sN(t—s)wN

P{T(t) eds}/ds =
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6.3 Examples

In this part, we write out the distribution of the couple (T(t),X(t)) in the cases N =3 and N = 4.

Example 6.1. Case N = 3. Let us recall that this case is not fully justified. Nevertheless, we find it
interesting to produce the formal corresponding results.

e Suppose k3 = 1. Using E; ;1 (—s&%) = e~¢” and the values of Example 2.1} (6.1) writes, for x <O,
3 >

P{T(t) € ds,X(t) € dx}/(dsdx)

V3 * 5
:E (S—Z/SJO ge—(t—s)g %(xg)El’% (_553) dg

+S—1/3J £2 e—(t—s)ESJfl(xg)EL% (_553) d£+J g3 e_t“ES%’Nz(Xi)dg)
o 0

where
Ho(2) = —iV3.Hy(z) = e* —e7*/? (cos jz + V3 sin \/§z)’
() = —iV3 A (2) = —€* + e/ (cos 232 — /3 sin ﬁz)’
Hy(z) = ~ivVB (@) = ¢ +2¢ 2 cos fi’z

For x > 0, gives

P{T(t) € ds,X(t) € dx}/(dsdx)
3 1 °° .
( _J 278 fy(xE)Ey 2 (—(t—5)g%) ds + J
0

gle fi(xs)di)

= = 0
where

Foz) =i fo(z) =2¢7% sin ‘/fz,

Si(z) =i g1(z) = e /2 (\/5 cos ? —sin \/2§z)
e Suppose k3 = —1. Likewise, for x <0,

P{T(t) € ds,X(t) € dx}/(dsdx)

3 (1 (% . 00 -
“on (ﬁ L & A E 2 (—58) dE 4 fo ghete %q(xg)dg)

where

N V3z
Ho(z)=—i1HH(2)=—-2 e*/2 sin 5
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H(2) = —i A,(z) = e*/? (\/ﬁ cosg + sin \/252)

For x = 0,

P{T(t) € ds,X(t) € dx}/(dsdx)
V3

T on

+(t —s)—l/SJ &2 e A(xE)E, 2 (—(t —)8%) dE + J gemte fZ(XS)dE)
0 0

((t —s5)7%3 J e F(xOEy 1 (~(t—9)E%) d&
0

where
So(z) =1V3 fy(z) = e — &/ (Cosg ~ V3 sin \/fz)
S(z) = —iV3 g1(z) = —eF + &2 (cos \/jz + V3 sin \/252),

5(2)=iV3 #(2) = e % +2¢°/% cos \/2§z.

Example 6.2. Case N = 4. Referring to Example[2.2] formula (6.1) writes, for x <0,
P{T(t) e ds,X(t) € dx}/(dsdx)

2 1 * —(t—s)E* .2
2 (%L £2e IR Ay (xE) By s (—5E*) dE

V2 [ ‘ > .
+4—ﬁf0 & e I A (xE)Ey o (—sEY) d5+f0 gt %(X€)d€)

where
Ho(2) = —i Hy(z) = €* — cosz — sing,
Hy(2) = —i H1(z) = —€* + cosz —sing,
Ho(2) = —i Ho(2) = € + cosz + sinz.
For x >0, reads

P{T(t) e ds,X(t) € dx}/(dsdx)
2 1 ® e
:;( t_sL E2e 5j0(x§)E1,%(—(t—s)§4)d§
V2
Vt—s

+

J e A E s (—(t ") d§+f ghet! f;(xa)ds)
0 0

where
Fo(z) =1 #y(z) =e™* — cosz +sinz,
F1(2)=—i #(2) = —e * +cosz +sinz,
() =1 _#,(2) = e * + cosz —sinz.
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7 Appendix

Lemma 7.1 (Spitzer). Let (&y)r>1 be a sequence of independent identically distributed random vari-
ables and set Xy =0 and Ty = 0 and, for any k > 1,

Xpe=8&++&, T = ) 1o 400)Xi)-

k
=

J

Then, for u € R, v >0and |z| <1,

S WX —vT, ] k S iuX—vkl ) z*
1 -V — 3 -V 00 —_—
E [Tk ] 5 —exp(E E [ XKoo (X1 ] k), (7.1)

k=0 k=1
B k

Sa[or ] = |3 (- e o] ) |
k=0 L k=1

(7.2)
N Xy —v Ty k — e’ - N _ e Vk (X i —_
ZE[e ]l(—oo,O)(Xk):Iz 1 exp 2(1 e )E[e ]1(_00’0)(Xk)] P 1.
k=0 L k=1

(7.3)
Proor

Formula (7.1) is stated in [21]] without proof. So, we produce a proof below which is rather similar
to one lying in [[21]] related to the maximum functional of the X} ’s.

o Step 1. Set, for any (xi,...,x,) € R" and 0 € &, (&,, being the set of the permutations of

1,2,...,n),
n k
U(xy,.esXy) = Z T110,00) (ij)
k=1 1

j:
and

V(a;xl,...,xn)=Z#ck(o)]l[0’oo)( Z xj).
k=1

jec(o)

In the definition of V above, the permutation o is decomposed into n, cycles: o =
(c1(0))(ea(0)) ... (cp, (0)).

In view of Theorem 2.3 in [21]], we have the equality between the two following sets:
{U(o(x1),...,0(x), 0 €6, ={V(o;x1,...,Xx,),0 € S,}.

We then deduce, for any bounded Borel functions ¢ and F,

1 n
E[¢XIFUE....E )] == D E[¢ (Z sgo))F(V(o;a,.,,an))].
j=1

!
n o€EB,
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In particular, for ¢ (x) = e'** and F(x) = e™"* (where u € R and v > 0 are fixed),

IE:[ei“Xn‘Vzﬁzl1£0,+w>(21k':1€f)} :% SE [eXp(lMZ >, ij—vZ#ck(o)]l ooo)( > 51)”

' oeB, 1jec (o) jecr(o)
Z I_[IE [exp(lu Z & — v (Fc(0))1 ) ( Z 5j))i|
0‘66 jec(o) jeck(o)
#c.(0) #cr(0)
=_ Z nE[exp(lu Z & —v (#c(ol 000)( Z 5]’))} :
! oei,

Denote by r,(0) the number of cycles of length ¢ in o for any £ € {1,...,n}. We have r;(o) +
2ry(0)+ -+ +nry(o) =n. Then,

E I:eiIJXn—VT — Z l_[ IMXZ—M 1[0’00)()([)] )rf(o)

! o€EG,

5 2 ][]y

kl ..... anOI
kq+2ky+-4nk,=n

.....

. is the number of the permutations o of n objects satisfying r{(c) = ky,...,r,(0) =

n!
N, = '
k1,sky (kl!lkl)(kzlzkz)-~~(kn!nk”)

Then,

)= 5 g (et
(=1 ket

ky,....k,=>0:
ky+2ky+--+nk,=n

e Step 2. Therefore, the identity between the generating functions follows: for |z| < 1,

iE iMXn_VTn n __ Z llli ]E iMX[—Vel[OOO)(Xe) é ke
4 [e ]Z - RN [e ’ ] !
n=0 n>0,ky,...k,>0: (=1

kl +2k2++nk =n

£\ ke
_ X =€ 10 00)(X) z_)
Zﬂ ( ortenr]

k!
; k
mxg vzlmw)(x@)] z
14
= € 170,00)(X¢) 2’
= exp | E[ ei#Xe=vE10,00)Xe) |
\ p( | 1%
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o0 ) zn
= exp (Z E [el“xn_"”l[o,ﬂo)(an ;) .

n=1

The proof of (7.1)) is finished.

e Step 3.

Using the elementary identity e*14®) —1 = (¢ — 1)1,(x) and noticing that T, = T,_; + 110, +00) (X
we get for any k > 1,

(et ) - w(eiovn) ]

KT, X vT eV o+00)(Xi) — 1 1
E| et Xk—vTkq X =F| eV 1ik =
e [0.+00) (X | e 1 ]

Now, since X; = X;_; + &, where X;_; and &, are independent and &; have the same distribution
as &, we have, for k > 1,

E(eiMXk—VTk—l) — E(eiu~§1) E(eiMXk—l—VTk—1)_

Therefore,
o0 o0
ZE[ ipXy— VTk]l[O +oo)(Xk) 1 lMXk—VTkﬂjI _E[eiMXk—VTk])zk
k=1 1
— (E( lugl)iE[ei.UXk—l_VTk 1 iE ipXy— VTk k)
= k=1
— ((zE(ewél —1)215 WX Ti ] gk +1) (7.4)
k=0

By putting (7.1) into (7.4), we extract

o0
ZE[eiMXk—ka ]1[0,+oo)(Xk):| Zk — = 1_
k=0

] [e" - (1 —zE(ei“gl)) S(,u,v,z)] (7.5)

where we set

00 . zk
S(u,v,z) =exp (ZE I:el“‘Xk_Vkl[O,-%—OO)(Xk)J ?) )

k=1
Next, using the elementary identity 1 — { = exp[log(1 — {)] = exp [— Zi‘;l Ck/k] valid for |{]| < 1,
> k > , zk
1-— ( ey —exp( Z 1“51 k) = exp (—ZE(eW‘Xk) ?>
k=1 k=1
and then

k
(1 - zE(ei“il)) S(u,v,2z) =exp (iE [ei“Xk_Vklto,m)(Xk) - ei“Xk] %)

k=1
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00 k
= exp (_ Z (1 _ e—vk) E I:einu*Xk 1[O,+OO)(XI<):| %) . (76)
k=1

Hence, by putting (7.6)) into (7.5), formula (7.2) entails.
By subtracting (7.5) from (7.1)), we obtain the intermediate representation

[(ev —zE(ei“gl)) S(u,v,z)— ev].

o0
ZE[eiMXk—ka ]1(—00,0)(Xk):| gk = o

k=0

By writing, as previously,

—kak
eV —zE(el“‘gl =e" exp ZE ”*Xk ,

00
k=1

we find

(e" —zE(e™*1)) S(u,v,2) =" exp ( i E [ e Kloran (i) — giti—vk] 2{)
k=1
o0

k
. b4
=e" exp( (1 — e‘”‘) E [el“‘Xk ]1(_00’0)(Xk)J ?) .
k=1
Finally, (7.3) ensues. W

Lemma 7.2. The following identities hold:

B =" 66 Basr = (1) (]‘[ ek) (Z ek) :

kek kek kek

ProoF
We label the set K as {1,2,3,...,#K}. By (2.5), we know that the B;’s solve a Vandermonde system.
Then, by Cramer’s formulas, we can write them as fractions of some determinants: B, = V;./V where

1 .1 1 ... 1 1 1 .. 1
0 o O 0 o Oa 0 B o O

vo| O e G| and v=| O o Bl O B 62,
#K—1 #K—1 #K—1 #K—1 #K—1 #K—1

0r <1 .. 6 GO s S 9k+1 .. 6

By expanding the determinant V, with respect to its k™ column and next factorizing it suitably, we
easily see that

R
0 ... 0 0 0
1 k-1 k+l #K
V, = (_1)k+l )
#K—1 #K—1 #K—1 #K—1
01 .. 6 ekﬂ 0
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1 ... 1 1
0 ... G O Ok
—C 2 2 2
_ (_1)k+1% h N ) 1 05k
3 . . . .
0P L op L op
- +
With this at hands, we have
1 1 1 1
[T 6 S S
Bux = ZBkGIfK _ k;K k Z(_l)k-i-leli#K—l eh 01 Oipq 05k
kek kek
#K—2 #K—2 #K—2 #K—2
6] 62 S 0k

We can observe that the sum lying on the above right-hand side is nothing but the expansion of the
determinant V with respect to its last row multiplied by the sign (—1)*¥~1. This immediately ensues
that By = (—1)" 71T, Ok. Similarly,

1 1 1 1
M. 0 o Ot Ok Osx
Byx+1 = ZBk 6y = e Z(—l)kﬂe,fq( % -1 O Ok
kek v kek : :
#K-2 #K-2  pH#K-2 #K-2
01 %1 B Ok

The above sum is the expansion with respect to its last row, multiplied by the sign (—1)*X~1, of the

determinant V’ defined as

1 1
9§ %K
v 61 Ok
#K—2 #K—2
o
1 #K

Let Ry,R1,Rs,...,Ryx_9,Rux_1 denote the rows of V'. We perform the substitution Ryx_; «

Ruyx_1+ foz(—l)e 0(Rsx_y where the o,’s are defined by || This substitution does not af-
fect the value of V' and it transforms, e.g., the first term of the last row into

#K
0% +> (-1)o, 0.
(=2

Recall that oy = ), <ky<o<k, <HK Ok, - - - Ok,- We decompose o, by isolating the terms involving 6,
into
I S

2
2<ky<-<k,<#K

Ok, +

_ / /
) leekz...Ok[—910€_1+O'e
2<ky<ky<--<k,<#K
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/ _ [
where we set 0, =0 and 0, = Zzsk1<k2<m<k¢§#K Ok, Ok, - - - Ok, Therefore, we have

#K #K #K
01K+ (Do 0Kt = 0K + > (—1)fo,_, 014+ (1) o 07K
(=2 =2 =2

=0/ + 07 6/% 1 = 6/X1(0, + 0}) = 7! (Z ek) :
kek

The foregoing manipulation works similarly for each term of the last row of V’. So, we deduce that

V' = Tk 0) V and finally By = (~1)* 7! (T 0 ) (ke 0x)- W
Lemma 7.3. For any integer m < N — 1 and any x > 0,
o0 N
J e_kulj’m(u; x)du=A"ne ¥ Vax, (2.15])
0

ProOF
This formula is proved in [[13]] for 0 < m < N — 1. To prove that it holds true also for negative m,
we directly compute the Laplace transform of I; ,,(u; x). We have

00 Ni 00 €N—m—1 0o F 00 gN—m—l Jgs-
—Au . — —i%n —0.e'Nx& R —0.e R xE
e ML (u;x)du=—1|e '~ eV dé —e'n e Vi dé .
L () du= 0 ( JO s : fo o 5)

Let us integrate the function H : 2 — zz,f,/:; e~ for fixed a and M such that R(a) > 0 and M > 0 on
the contour I'; = {pe'¥ € C: ¢ =0,p € [0O,R]}U{pe¥ €C:p € (0,—%),,0 =R} U {pel¥ eC:

p = —ZF“, p € (0,R]}. We get, by residues theorem,

© gM-1 M o gM-1 2z T
— —21 = —age 'N . . N P
—J e ®dz+e ZIN”J e 4 NZdz=217‘cRe51due(H, Ae lN)
0

2N+ 2 o ZV+A
2in N M-N _;M-N_ —a%eii%
= T (ﬁ) e N e
2T M1 it
Ni

.
— —a¥ e IW

e

For M =N —mand a =6, ei%x, this yields
Oo N N
J e"lulj;m(U;x)du =—e 'WTATN X (—elﬁﬂ)e‘eiﬂx — A Ne OiVAx,
0

Hence, (2.15) isvalidform <N —-1. H
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