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1 Introduction, Motivation

1.1 Notation

We first introduce some notation which will be used throughout our paper.

If A and B are two random variables, A
d
= B means that these variables have the same law.

If (X t , t ≥ 0) and (Yt , t ≥ 0) are two processes, (X t)
(1.d)
= (Yt) means that the processes (X t , t ≥ 0)

and (Yt , t ≥ 0) have the same one-dimensional marginals, that is, for any fixed t, X t
d
= Yt .

If (X t , t ≥ 0) and (Yt , t ≥ 0) are two processes, (X t)
(d)
= (Yt) means that the two processes are

identical in law.

All random variables and processes which will be considered are assumed to be real valued.

1.2 PCOC’s

In a number of applied situations involving randomness, it is a quite difficult problem to single out
a certain stochastic process (Yt , t ≥ 0), or rather its law, which is coherent with the real-world data.

In some cases, it is already nice to be able to consider that the one-dimensional marginals of (Yt)
are accessible. The random situation being studied may suggest, for instance, that:

(i) there exists a martingale (Mt) such that

(Yt)
(1.d)
= (Mt)

(this hypothesis may indicate some kind of “equilibrium” with respect to time),

(ii) there exists H > 0 such that

(Yt)
(1.d)
= (tH Y1)

(there is a “scaling” property involved in the randomness).

It is a result due to Kellerer [14] that (i) is satisfied for a given process (Yt) if and only if this process
is increasing in the convex order, that is: it is integrable (∀t ≥ 0, E[|Yt |]<∞), and for every convex
function ϕ : R−→ R,

t ≥ 0−→ E[ϕ(Yt)] ∈ (−∞,+∞]

is increasing.
In the sequel, we shall use the acronym PCOC for such processes, since, in French, the name of such
processes becomes: Processus Croissant pour l’Ordre Convexe.
A martingale (Mt) which has the same one-dimensional marginals as a PCOC is said to be associated
to this PCOC. Note that several different martingales may be associated to a given PCOC. We shall
see several striking occurrences of this in our examples.
We also note that Kellerer’s work [14] does not contain a constructive algorithm for a martingale
associated to a PCOC.
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On the other hand, Roynette [23] has exhibited two large families of PCOC’s, denoted by (F1) and
(F2): The family (F1) consists of the processes

�

1

t

∫ t

0

Ns ds, t ≥ 0

�

,

and the family (F2) consists of the processes
�
∫ t

0

(Ns − N0) ds, t ≥ 0

�

,

where (Ns) above denotes any martingale such that:

∀t ≥ 0 E[sup
s≤t
|Ns|]<∞.

1.3 Self-decomposability and Sato processes

It is a non-trivial problem to exhibit, for either of these PCOC’s, an associated martingale. We have
been able to do so concerning some examples in (F1), in the Brownian context, with the help of
the Brownian sheet ([9]), and in the more general context of Lévy processes, with the help of Lévy
sheets ([10]). Concerning the class (F2), note that, considering a trivial filtration, it follows that
(t X ), where X is a centered random variable, is a PCOC. Even with this reduction, it is not obvious
to find a martingale which is associated to (t X ). In order to exhibit examples, we were led to
introduce the class (S) of processes (Yt) satisfying the above condition (ii) and such that Y1 is a
self-decomposable integrable random variable. It is a result due to Sato (see Sato [24, Chapter
3, Sections 15-17]) that, if (Yt) ∈ (S), then there exists a process (Ut) which has independent

increments, is H-self-similar (∀c > 0, (Uc t)
(d)
= (cH Ut)) and satisfies Y1

d
= U1. This process (Ut),

which is unique in law, will be called the H-Sato process associated to Y1. Clearly, then (Ut −E[Ut])
is a H-self-similar martingale which is associated to the PCOC (Vt) defined by: Vt = Yt − E[Yt].

Moreover, (Vt)
(1.d)
= (tH (Y1−E[Y1])).

We note that the self-decomposability property has also been used in Madan-Yor [18, Theorem
4,Theorem 5] in a very different manner than in this paper, to construct martingales with one-
dimensional marginals those of (t X ).

1.4 Examples

We look for some interesting processes in the class (S), in a Brownian framework.

Example 1 A most simple example is the process:

Yt :=

∫ t

0

Bs ds, t ≥ 0

Then,
�
∫ t

0

Bs ds

�

(1.d)
=

�
∫ t

0

s dBs

�
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and the RHS is a centered (3/2)-Sato process. Moreover the process (Yt) obviously belongs to the
class (F2).

Example 2 The process

V1(t) :=

∫ t

0

(B2
s − s) ds, t ≥ 0

and more generally the process

VN (t) :=

∫ t

0

(R2
N (s)− Ns) ds, t ≥ 0

where (RN (s)) is a Bessel process of dimension N > 0 starting from 0, belongs to the family (F2)
and is 2-self-similar. We show in Section 4 that the centered 2-Sato process:

N2

4

∫ τt

0

1�|Bs|≤
2
N `s

� ds−
N t2

2
, t ≥ 0

where (`s) is the local time in 0 of the Brownian motion B, and

τt = inf{s; `s > t}

is a martingale associated to the PCOC VN .

Example 3 We extend our discussion of Example 2 by considering, for N > 0 and K > 0, the
process:

VN ,K(t) :=
1

K2

∫ t

0

s2
�

1
K−1

�

(R2
N (s)− Ns) ds, t ≥ 0

Then, in Section 5, a centered (2/K)-Sato process (and hence a martingale) associated to the PCOC
VN ,K may be constructed from the process of first hitting times of a perturbed Bessel process RK ,1− N

2

as defined and studied first in Le Gall-Yor [16; 17] and then in Doney-Warren-Yor [6]. We remark
that, if 0< K < 2, then the process

VN ,K(t
K

2−K ), t ≥ 0

belongs to (F2).

Example 4 In Section 6, we generalize again our discussion by considering the process

V (µ)N (t) :=

∫

(0,∞)
(R2

N (ts)− N ts) dµ(s), t ≥ 0

for µ a nonnegative measure on (0,∞) such that
∫

(0,∞) s dµ(s)<∞. We show that V (µ)N is a PCOC to
which we are able to associate two very different martingales. The first one is purely discontinuous
and is a centered 1-Sato process, the second one is continuous. The method of proof is based on
a Karhunen-Loeve type decomposition (see, for instance, [5] and the references therein, notably
Kac-Siegert [13]). For this, we need to develop a precise spectral study of the operator K(µ) defined
on L2(µ) by :

K(µ) f (t) =

∫

(0,∞)
f (s) (t ∧ s) dµ(s)

935



1.5 Organisation of the paper

We now present more precisely the organisation of our paper:

- in Section 2, we recall some basic results about various representations of self-decomposable
variables, and we complete the discussion of Subsection 1.3 above;

- in Section 3, we consider the simple situation, as in Subsection 1.3, where Yt = R2
N (t), for RN a

Bessel process of dimension N starting from 0;

- the contents of Sections 4, 5, 6 have already been discussed in the above Subsection 1.4.

We end this introduction with the following (negative) remark concerning further self-
decomposability properties for squared Bessel processes: indeed, it is well-known, and goes
back to Shiga-Watanabe [25], that R2

N (•), considered as a random variable taking values in
C(R+,R+) is infinitely divisible. Furthermore, in the present paper, we show and exploit the self-
decomposability of

∫

(0,∞) R
2
N (s) dµ(s) for any positive measure µ. It then seems natural to wonder

about the self-decomposability of R2
N (•), but this property is ruled out: the 2-dimensional vectors

(R2
N (t1), R2

N (t1+ t2)) are not self-decomposable, as an easy Laplace transform computation implies.

2 Sato processes and PCOC’s

2.1 Self-decomposability and Sato processes

We recall, in this subsection, some general facts concerning the notion of self-decomposability. We
refer the reader, for background, complements and references, to Sato [24, Chapter 3].

A random variable X is said to be self-decomposable if, for each u with 0< u< 1, there is the equality
in law:

X
d
= u X + bXu

for some variable bXu independent of X .
On the other hand, an additive process (Ut , t ≥ 0) is a stochastically continuous process with càdlàg
paths, independent increments, and satisfying U0 = 0.
An additive process (Ut) which is H-self-similar for some H > 0, meaning that, for each c > 0,

(Uc t)
(d)
= (cH Ut), will be called a Sato process or, more precisely, a H-Sato process.

The following theorem, for which we refer to Sato’s book [24, Chapter 3, Sections 16-17], gives
characterizations of the self-decomposability property.

Theorem 2.1. Let X be a real valued random variable. Then, X is self-decomposable if and only if one
of the following equivalent properties is satisfied:

1) X is infinitely divisible and its Lévy measure is
h(x)
|x |

dx with h increasing on (−∞, 0) and

decreasing on (0,+∞).
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2) There exists a Lévy process (Cs, s ≥ 0) such that

X
d
=

∫ ∞

0

e−s dCs.

3) For any (or some) H > 0, there exists a H-Sato process (Ut , t ≥ 0) such that X
d
= U1.

In 2) (resp. 3)) the Lévy process (Cs) (resp. the H-Sato process (Ut)) is uniquely determined in law
by X , and will be said to be associated with X . We note that, if X ≥ 0, then the function h vanishes
on (−∞, 0), (Cs) is a subordinator and (Ut) is an increasing process.

The relation between (Cs) and (Ut) was made precise by Jeanblanc-Pitman-Yor [11, Theorem 1]:

Theorem 2.2. If (Ut) is a H-Sato process, then the formulae:

C (−)s =

∫ 1

e−s

r−H dUr and C (+)s =

∫ es

1

r−H dUr , s ≥ 0

define two independent and identically distributed Lévy processes from which (Ut , t ≥ 0) can be recov-
ered by:

Ut =

∫ ∞

− log t

e−sH dC (−)s if 0≤ t ≤ 1

and

Ut = U1+

∫ log t

0

esH dC (+)s if t ≥ 1.

In particular, the Lévy process associated with the self-decomposable random variable U1 is

Cs = C (−)s/H , s ≥ 0.

2.2 Sato processes and PCOC’s

We recall (see Subsection 1.2) that a PCOC is an integrable process which is increasing in the convex
order. On the other hand, a process (Vt , t ≥ 0) is said to be a 1-martingale if there exists, on some

filtered probability space, a martingale (Mt , t ≥ 0) such that (Vt)
(1.d)
= (Mt). Such a martingale

M is said to be associated with V . It is a direct consequence of Jensen’s inequality that, if V is a
1-martingale, then V is a PCOC. As indicated in Subsection 1.2, the converse holds true (Kellerer
[14]).

The following proposition, which is central in the following, summarizes the method sketched in
Subsection 1.3.

Proposition 2.3. Let H > 0. Suppose that Y = (Yt , t ≥ 0) satisfies:

(a) Y1 is an integrable self-decomposable random variable;

(b) (Yt)
(1.d)
= (tH Y1).
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Then the process
Vt := Yt − tH E[Y1], t ≥ 0

is a PCOC, and an associated martingale is

Mt := Ut − tH E[Y1], t ≥ 0

where (Ut) denotes the H-Sato process associated with Y1 according to Theorem 2.1.

3 About the process (R2
N(t), t ≥ 0)

In the sequel, we denote by (RN (t), t ≥ 0) the Bessel process of dimension N > 0, starting from 0.

3.1 Self-decomposability of R2
N(1)

As is well-known (see, for instance, Revuz-Yor [22, Chapter XI]) one has

E[exp(−λR2
N (1))] = (1+ 2λ)−N/2.

In other words,

R2
N (1)

d
= 2γN/2

where, for a > 0, γa denotes a gamma random variable of index a. Now, the classical Frullani’s
formula yields:

N

2
log(1+ 2λ) =

N

2

∫ ∞

0

(1− e−λt)
e−t/2

t
dt.

Then, R2
N (1) satisfies the property 1) in Theorem 2.1 with

h(x) =
N

2
1(0,∞)(x)e

−x/2

and it is therefore self-decomposable.

The process R2
N is 1-self-similar and E[R2

N (1)] = N . By Proposition 2.3, the process

V N
t := R2

N (t)− t N , t ≥ 0

is a PCOC, and an associated martingale is

M N
t := UN

t − t N , t ≥ 0

where (UN
t ) denotes the 1-Sato process associated with R2

N (1) by Theorem 2.1.

We remark that, in this case, the process (V N
t ) itself is a continuous martingale and therefore obvi-

ously a PCOC. In the following subsections, we give two expressions for the process (UN
t ). As we will

see, this process is purely discontinuous with finite variation; consequently, the martingales (V N
t )

and (M N
t ), which have the same one-dimensional marginals, do not have the same law.
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3.2 Expression of (UN
t ) from a compound Poisson process

We denote by (Πs, s ≥ 0) the compound Poisson process with Lévy measure:

1(0,∞)(t)e
−t dt.

This process allows to compute the distributions of a number of perpetuities
∫ ∞

0

e−Λs dΠs

where (Λs) is a particular Lévy process, independent of Π; see, e.g., Nilsen-Paulsen [20]. In the case
Λs = r s, the following result seems to go back at least to Harrison [8].

Proposition 3.1. The Lévy process (CN
s ) associated with the self-decomposable random variable R2

N (1)
in the sense of Theorem 2.1 is

CN
s = 2ΠNs/2, s ≥ 0.

Proof

a) First, recall that for a subordinator (τs, s ≥ 0) and f : R+ −→ R+ Borel, there is the formula:

E
�

exp

�

−
∫ ∞

0

f (s) dτs

��

= exp

�

−
∫ ∞

0

Φ( f (s)) ds

�

,

where Φ is the Lévy exponent of (τs, s ≥ 0). Consequently, a slight amplification of this formula
is:

E
�

exp

�

−µ
∫ ∞

0

f (s) dτAs

��

= exp

�

−
∫ ∞

0

Φ(µ f (u/A)) du

�

for every µ, A> 0.

b) We set CN
s = 2ΠNs/2. Then, as a consequence of the previous formula with µ = 2, f (s) =

λe−s, A= N/2, we get:

E
�

exp

�

−λ
∫ ∞

0

e−s dCN
s

��

= exp

�

−
∫ ∞

0

Φ(2λe−
2
N u) du

�

with, for x > 0,

Φ(x) =

∫ ∞

0

(1− e−t x)e−t dt =
x

1+ x
.

c) We obtain by change of variable:

exp

�

−
∫ ∞

0

Φ(2λe−
2
N u) du

�

= exp

 

−
∫ ∞

0

2λe−
2
N u

1+ 2λe−
2
N u

du

!

= exp

 

−
N

2

∫ 2λ

0

1

1+ x
dx

!

= (1+ 2λ)−N/2.

939



Consequently,

E
�

exp

�

−λ
∫ ∞

0

e−s dCN
s

��

= (1+ 2λ)−N/2,

which proves the result.

�

By application of Theorem 2.2 we get:

Corollary 3.1.1. Let Π(+) and Π(−) two independent copies of the Lévy process Π. Then

UN
t = 2

∫ ∞

− N
2

log t

e−2s/N dΠ(−)s if 0≤ t ≤ 1

and

UN
t = UN

1 + 2

∫
N
2

log t

0

e2s/N dΠ(+)s if t ≥ 1.

3.3 Expression of (UN
t ) from the local time of a perturbed Bessel process

There is by now a wide literature on perturbed Bessel processes, a notion originally introduced by
Le Gall-Yor [16; 17], and then studied by Chaumont-Doney [3], Doney-Warren-Yor [6]. We also
refer the interested reader to Doney-Zhang [7].

We first introduce the perturbed Bessel process (R1,α(t), t ≥ 0) starting from 0, for α < 1, as the
nonnegative continuous strong solution of the equation

R1,α(t) = Bt +
1

2
Lt(R1,α) +αMt(R1,α) (1)

where Lt(R1,α) is the semi-martingale local time of R1,α in 0 at time t, and

Mt(R1,α) = sup
0≤s≤t

R1,α(s),

(Bt) denoting a standard linear Brownian motion starting from 0. (The strong solution property has
been established in Chaumont-Doney [3].)
It is clear that the process R1,0 is nothing else but the Bessel process R1 (reflected Brownian motion).
We also denote by Tt(R1,α) the hitting time:

Tt(R1,α) = inf{s; R1,α(s)> t}.

We set LTt
(R1,α) for LTt (R1,α)(R1,α).

Finally, in the sequel, we set

αN = 1−
N

2
.

Proposition 3.2. For any α < 1, the process (LTt
(R1,α), t ≥ 0) is a 1-Sato process, and we have

(UN
t )
(d)
= (LTt

(R1,αN
)).
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Proof

By the uniqueness in law of the solution to the equation (1), the process R1,α is (1/2)-self-similar.
As a consequence, the process (LTt

(R1,α), t ≥ 0) is 1-self-similar.

On the other hand, the pair (R1,α, M(R1,α)) is strong Markov (see Doney-Warren-Yor [6, p. 239]).
As

R1,α(u) = Mu(R1,α) = t if u= Tt(R1,α),

the fact that (LTt
(R1,α), t ≥ 0) is an additive process follows from the strong Markov property.

Finally, we need to prove:

R2
N (1)

d
= LT1

(R1,αN
).

For the remainder of the proof, we denote R1,αN
by R, and Lt(R1,αN

), Tt(R1,αN
), Mt(R1,αN

) · · · are
simply denoted respectively by Lt , Tt , Mt · · · As a particular case of the “balayage formula” (Yor
[26], Revuz-Yor [22, VI.4]) we deduce from equation (1), that:

exp(−λ Lt)Rt =

∫ t

0

exp(−λ Ls) dRs

=

∫ t

0

exp(−λ Ls) dBs +
1− exp(−λ Lt)

2λ
+αN

∫ t

0

exp(−λ Ls) dMs.

Hence,

exp(−λ Lt) (1+ 2λRt) = 1+ 2λ

∫ t

0

exp(−λ Ls) dBs

+2λαN

∫ t

0

exp(−λ Ls) dMs.

From this formula, we learn that the martingale
 

∫ u∧Tt

0

exp(−λ Ls) dBs, u≥ 0

!

is bounded; hence, by applying the optional stopping theorem, we get:

E[exp(−λ LTt
)] (1+ 2λ t) = 1+ 2λαN E





∫ Tt

0

exp(−λ Ls) dMs





= 1+ 2λαN

∫ t

0

E[exp(−λ LTu
)] du,

by time-changing. Setting
ϕλ(t) = E[exp(−λ LTt

)],

we obtain:

ϕλ(t) =
1

1+ 2λ t
+

2λαN

1+ 2λ t

∫ t

0

ϕλ(u) du.
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Consequently
ϕλ(t) = (1+ 2λ t)−N/2.

Therefore,
E[exp(−λ LT1

)] = (1+ 2λ)−N/2 = E[exp(−λR2
N (1)],

which proves the desired result.

�

4 About the process
�

∫ t

0
R2

N(s) ds, t ≥ 0
�

4.1 A class of Sato processes

Let (`t , t ≥ 0) be the local time in 0 of a linear Brownian motion (Bt , t ≥ 0) starting from 0. We
denote, as usual, by (τt , t ≥ 0) the inverse of this local time:

τt = inf{s ≥ 0; `s > t}.

Proposition 4.1. Let f (x , u) be a Borel function on R+×R+ such that

∀t > 0

∫ ∫

R+×[0,t]
| f (x , u)| dx du<∞. (2)

Then the process A( f ) defined by:

A( f )t =

∫ τt

0

f (|Bs|,`s) ds, t ≥ 0

is an integrable additive process. Furthermore,

E[A( f )t ] = 2

∫ ∫

R+×[0,t]
f (x , u) dx du.

Proof

Assume first that f is nonnegative. Then,

A( f )t =
∑

0≤u≤t

∫ τu

τu−

f (|Bs|, u) ds.

By the theory of excursions (Revuz-Yor [22, Chapter XII, Proposition 1.10]) we have

E[A( f )t ] =

∫ t

0

du

∫

n(dε)

∫ V (ε)

0

ds f (|εs|, u)
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where n denotes the Itô measure of Brownian excursions and V (ε) denotes the life time of the
excursion ε. The entrance law under n is given by:

n(εs ∈ dx; s < V (ε)) = (2πs3)−1/2 |x | exp(−x2/(2s)) dx .

Therefore

E[A( f )t ] = 2

∫ t

0

du

∫ ∞

0

dx f (x , u).

The additivity of the process A( f ) follows easily from the fact that, for any t ≥ 0, (Bτt+s, s ≥ 0) is a
Brownian motion starting from 0, which is independent ofBτt

(where (Bu) is the natural filtration
of B).

�

Corollary 4.1.1. We assume that f is a Borel function on R+ × R+ satisfying (2) and which is m-
homogeneous for m>−2, meaning that

∀a > 0, ∀(x , u) ∈ R+×R+, f (ax , au) = am f (x , u).

Then the process A( f ) is a (m+ 2)-Sato process.

Proof

This is a direct consequence of the scaling property of Brownian motion.

�

4.2 A particular case

Let N > 0. We denote by A(N) the process A( f ) with

f (x , u) =
N2

4
1(x≤ 2

N u).

By Proposition 4.1, (A(N)t ) is an integrable process and

E[A(N)t ] =
N t2

2
.

We now consider the process YN defined by

YN (t) =

∫ t

0

R2
N (s) ds, t ≥ 0.

Theorem 4.2. The process A(N) is a 2-Sato process and

(YN (t))
(1.d)
= (A(N)t ).
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Proof

It is a direct consequence of Corollary 4.1.1 that A(N) is a 2-Sato process.

By Mansuy-Yor [19, Theorem 3.4, p.38], the following extension of the Ray-Knight theorem holds:
For any u> 0,

(La−(2u/N)
τu

, 0≤ a ≤ (2u/N))
(d)
= (R2

N (a), 0≤ a ≤ (2u/N))

where L x
t denotes the local time of the semi-martingale (|Bs| −

2
N
`s, s ≥ 0) in x at time t.

We remark that

s ∈ [0,τt] =⇒ |Bs| −
2

N
`s ≥−

2t

N
.

Therefore, the occupation times formula entails:

A(N)t =
N2

4

∫ 0

−2t/N

L x
τt

dx =
N2

4

∫ 2t/N

0

L x−(2t/N)
τt

dx .

Thus, by the above mentioned extension of the Ray-Knight theorem,

(A(N)t )
(1.d)
=

 

N2

4

∫ 2t/N

0

R2
N (s) ds

!

.

The scaling property of RN also yields the identity in law:

(A(N)t )
(1.d)
=

�
∫ t

0

R2
N (s) ds

�

,

and the result follows from the definition of YN .

�

We may now apply Proposition 2.3 to get:

Corollary 4.2.1. The process VN defined by:

VN (t) = YN (t)−
N t2

2
, t ≥ 0

is a PCOC and an associated martingale is MN defined by:

MN (t) = A(N)t −
N t2

2
, t ≥ 0.

Moreover, MN is a centered 2-Sato process.

4.3 Representation of A(N) as a process of hitting times

Theorem 4.3. The process A(N) is identical in law to the process

Tt(R1,αN
), t ≥ 0

where R1,αN
denotes the perturbed Bessel process defined in Subsection 3.3 and

Tt(R1,αN
) = inf{s; R1,αN

(s)> t}.
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The proof can be found in Le Gall-Yor [17]. Nevertheless, for the convenience of the reader, we give
again the proof below. A more general result, based on Doney-Warren-Yor [6], shall also be stated
in the next section.

Proof

In this proof, we adopt the following notation: (Bt) still denotes a standard linear Brownian motion
starting from 0, St = sup0≤s≤t Bs and σt = inf{s; Bs > t}. Moreover, for a < 1 and t ≥ 0, we set:

Ha
t = (Bt − a St), X a

t =

∫ t

0

1(Bs>a Ss) ds and Za
t = inf{s; X a

s > t}.

Lemma 4.3.1. Let a < 1. Then

Mt(H
a) := sup

0≤s≤t
Ha

s = (1− a)St .

Consequently, −a St = αMt(Ha), with α=−a/(1− a).

Proof

Since a < 1, we have, for 0≤ s ≤ t,

(Bs − a Ss)≤ (1− a)Ss ≤ (1− a)St .

Moreover, there exists st ∈ [0, t] such that Bst
= St and therefore Sst

= St . Hence, Bst
− a Sst

=
(1− a)St .

�

Lemma 4.3.2. Let a < 1 and recall α=−a/(1− a). We set:

Da
t = Ha

Za
t
, t ≥ 0.

Then the processes Da and R1,α are identical in law.

Proof

a) Since Za
t is a time of increase of the process

X a
s =

∫ s

0

1(Ha
u>0) du, s ≥ 0,

we get: Da
t = Ha

Za
t
≥ 0. Moreover, since the process (Ha)+ is obviously Za-continuous, the

process Da is continuous.

b) By Tanaka’s formula,

(Ha
t )
+ =

∫ t

0

1(Ha
s >0) d(Bs − a Ss) +

1

2
Lt(H

a)
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where Lt(Ha) denotes the local time of the semi-martingale Ha in 0 at time t. If s > 0 belongs
to the support of dSs, then Bs = Ss and, since a < 1, Bs − a Ss > 0. Therefore,

(Ha
t )
+ =

∫ t

0

1(Bs−a Ss>0) dBs − a St +
1

2
Lt(H

a).

By Lemma 4.3.1, −a St = αMt(Ha) . Consequently,

Da
t =

∫ Za
t

0

1(Bs−a Ss>0) dBs +
1

2
LZa

t
(Ha) +αMZa

t
(Ha).

By the Dubins-Schwarz theorem, the process
∫ Za

t

0

1(Bs−a Ss>0) dBs, t ≥ 0

is a Brownian motion.
On the other hand, it is easy to see that

LZa
t
(Ha) = Lt(D

a) and MZa
t
(Ha) = Mt(D

a).

Therefore, the process Da is a continuous and nonnegative solution to equation (1).

�

To conclude the proof of Theorem 4.3, we observe that by Lévy’s equivalence theorem ([22, Theorem
VI.2.3]), the process A(N) is identical in law to the process

N2

4

∫ σt

0

1(Bs>(1−
2
N )Ss)

ds, t ≥ 0.

By the scaling property of B, the above process has the same law as
∫ σN t/2

0

1(Bs>(1−
2
N )Ss)

ds = X
1− 2

N
σN t/2

, t ≥ 0.

Now,

X
1− 2

N
σN t/2

= inf{X
1− 2

N
u ; Su >

N t

2
}

and, by Lemma 4.3.1,

Su =
N

2
Mu(H

1− 2
N ).

Thus,

X
1− 2

N
σN t/2

= inf{X
1− 2

N
u ; Mu(H

1− 2
N )> t}

= inf{v; Mv(D
1− 2

N )> t}= inf{v; D
1− 2

N
v > t}.

The result then follows from Lemma 4.3.2.

�
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Corollary 4.3.1. The process
Tt(R1,αN

), t ≥ 0

is a 2-Sato process and
�
∫ t

0

R2
N (s) ds

�

(1.d)
=
�

Tt(R1,αN
)
�

.

5 About the process
�

1
K2

∫ t

0
s

2(1−K)
K R2

N(s) ds, t ≥ 0
�

In this section we extend Corollary 4.3.1. We fix two positive real numbers N and K . We first recall
some important results on general perturbed Bessel processes RK ,α with α < 1.

5.1 Perturbed Bessel processes

We follow, in this subsection, Doney-Warren-Yor [6]. We first recall the definition of the process
RK ,α with K > 0 and α < 1.
The case K = 1 was already introduced in Subsection 3.3. For K > 1, RK ,α is defined as a continuous
nonnegative solution to

Rt = Bt +
K − 1

2

∫ t

0

1

Rs
ds+αMt(R), (3)

and, for 0< K < 1, RK ,α is defined as the square root of a continuous nonnegative solution to

X t = 2

∫ t

0

p

Xs dBs + K t +αMt(X ). (4)

We note that, for any K > 0, (RK ,0(t))
(d)
= (RK(t)) . As in the case K = 1, for any K > 0, the pair

(RK ,α, M(RK ,α)) is strong Markov.
We denote, as before,

Tt(RK ,α) = inf{s; RK ,α(s)> t}.

The following theorem, due to Doney-Warren-Yor [6, Theorem 5.2, p. 246] is an extension of the
Ciesielski-Taylor theorem and of the Ray-Knight theorem.

Theorem 5.1. 1)
∫ ∞

0

1(RK+2,α(s)≤1) ds
d
= T1(RK ,α)

2)

(La
∞(RK+2,α), a ≥ 0)

(d)
= (

a1−K

K
R2(1−α)(a

K), a ≥ 0)
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5.2 Identification of the Sato process associated to YN ,K

We denote, for N > 0 and K > 0, by YN ,K the process:

YN ,K(t) =
1

K2

∫ t

0

s
2(1−K)

K R2
N (s) ds, t ≥ 0.

We also recall the notation:

αN = 1−
N

2
.

Theorem 5.2. The process
Tt1/K (RK ,αN

), t ≥ 0

is a (2/K)-Sato process and

(YN ,K(t))
(1.d)
= (Tt1/K (RK ,αN

)).

Proof

In the following proof, we denote RK ,αN
simply by R, and we set Tt and Mt for, respectively, Tt(R)

and Mt(R).

The first part of the statement follows from the (1/2)-self-similarity of R and from the strong Marko-
vianity of (R, M), taking into account that, for any t ≥ 0,

RTt
= MTt

= t.

By occupation times formula, we deduce from 1) in Theorem 5.1,
∫ 1

0

L x
∞(RK+2,αN

) dx
d
= T1.

Using then 2) in Theorem 5.1, we obtain:
∫ 1

0

L x
∞(RK+2,αN

) dx
d
=

∫ 1

0

x1−K

K
R2

N (x
K) dx .

By change of variable, the last integral is equal to YN ,K(1), and hence,

YN ,K(1)
d
= T1.

The final result now follows by self-similarity.

�

Corollary 5.2.1. The process

VN ,K(t) := YN ,K(t)−
N

2K
t2/K , t ≥ 0

is a PCOC, and an associated martingale is

MN ,K(t) := Tt1/K (RK ,αN
)−

N

2K
t2/K , t ≥ 0,

which is a centered (2/K)-Sato process.
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Finally, we have proven, in particular, that for any ρ >−2 and any N > 0, the random variable

∫ 1

0

sρ R2
N (s) ds

is self-decomposable. This result will be generalized and made precise in the next section, using
completely different arguments.

6 About the random variables
∫

R2
N(s) dµ(s)

In this section, we consider a fixed measure µ on R∗+ = (0,∞) such that
∫

R∗+

s dµ(s)<∞.

6.1 Spectral study of an operator

We associate with µ an operator K(µ) on E = L2(µ) defined by

∀ f ∈ E K(µ) f (t) =

∫

R∗+

f (s) (t ∧ s) dµ(s)

where ∧ denotes the infimum.

Lemma 6.1. The operator K(µ) is a nonnegative symmetric Hilbert-Schmidt operator.

Proof

As a consequence of the obvious inequality:

(t ∧ s)2 ≤ t s,

we get
∫ ∫

(R∗+)2
(t ∧ s)2 dµ(t)dµ(s)≤

 

∫

R∗+

s dµ(s)

!2

,

and therefore K(µ) is a Hilbert-Schmidt operator.
On the other hand, denoting by (•,•)E the scalar product in E, we have:

(K(µ) f , g)E = E
�
∫

f (t)Bt dµ(t)

∫

g(s)Bs dµ(s)

�

where B is a standard Brownian motion starting from 0. This entails that K(µ) is nonnegative
symmetric.

�
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Lemma 6.2. Let λ ∈ R. Then λ is an eigenvalue of K(µ) if and only if λ > 0 and there exists f ∈ L2(µ),
f 6= 0, such that:

i)
λ f ′′+ f ·µ= 0 in the distribution sense on R∗+ (5)

ii) f admits a representative which is absolutely continuous on R+, f ′ admits a representative which
is right-continuous on R∗+;
(In the sequel, f and f ′ respectively always denote such representatives.)

iii)
f (0) = 0 and lim

t→∞
f ′(t) = 0.

Proof

Let f ∈ L2(µ) and g = K(µ) f . We have, for µ-a.e. t > 0,

g(t) =

∫ t

0

du

∫

(u,∞)
f (s) dµ(s). (6)

Thus g admits a representative (still denoted by g) which is absolutely continuous on R+ and
g(0) = 0. Moreover, g ′ admits a representative which is right-continuous on R∗+ and is given by:

g ′(t) =

∫

(t,∞)
f (s) dµ(s). (7)

In particular

|g ′(t)| ≤ t−1/2





∫

(t,∞)
f 2(s) dµ(s)

∫

(t,∞)
u dµ(u)





1/2

. (8)

Hence:
lim
t→∞

g ′(t) = 0.

Besides, (7) entails:
g ′′+ f ·µ= 0 in the distribution sense on R∗+.

Consequently, 0 is not an eigenvalue of K(µ) and the “only if” part is proven.

Conversely, let f ∈ L2(µ), f 6= 0, and λ > 0 such that properties i),ii),iii) hold. Then

λ f ′(t) =

∫

(t,∞)
f (s) dµ(s).

Hence

λ f (t) =

∫ t

0

du

∫

(u,∞)
f (s) dµ(s) = K(µ) f (t),

which proves the “if” part.

�
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We note that, since 0 is not an eigenvalue of K(µ), K(µ) is actually a positive symmetric operator. On
the other hand, by the previous proof, the functions f ∈ L2(µ), f 6= 0, satisfying properties i),ii),iii)
in the statement of Lemma 6.2, are the eigenfunctions of the operator K(µ) corresponding to the
eigenvalue λ > 0.

Lemma 6.3. Let f be an eigenfunction of K(µ). Then,

| f (t)|= o(t1/2) and | f ′(t)|= o(t−1/2)

when t tends to∞.

Proof

This is a direct consequence of (8).

�

Lemma 6.4. Let f1 and f2 be eigenfunctions of K(µ) with respect to the same eigenvalue. Then,

∀t > 0 f ′1(t) f2(t)− f1(t) f ′2(t) = 0.

Proof

By (5),
( f ′1 f2− f1 f ′2)

′ = 0 in the sense of distributions on R∗+.

By right-continuity, there exists C ∈ R such that

∀t > 0 f ′1(t) f2(t)− f1(t) f ′2(t) = C .

Letting t tend to∞, we deduce from Lemma 6.3 that C = 0.

�

Lemma 6.5. Let f be a solution of (5) with λ > 0, and let a > 0. We assume as previously that f
(resp. f ′) denotes the representative which is absolutely continuous (resp. right-continuous) on R∗+. If
f (a) = f ′(a) = 0, then, for any t ≥ a, f (t) = 0.

Proof

This lemma is quite classical if the measure µ admits a continuous density with respect to the
Lebesgue measure (see, for instance, [4]). The proof may be easily adapted to this more general
case.

�

We are now able to state the main result of this section.

Theorem 6.6. The operator K(µ) is a positive symmetric compact operator whose all eigenvalues are
simple, i.e. the dimension of each eigenspace is 1.
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Proof

It only remains to prove that the eigenvalues are simple. For this purpose, let λ > 0 be an eigenvalue
and let f1 and f2 be eigenfunctions with respect to this eigenvalue. Let a > 0 with µ({a}) = 0. By
Lemma 6.4,

f ′1(a) f2(a)− f1(a) f ′2(a) = 0.

Hence, there exist c1 and c2 with c2
1 + c2

2 > 0 such that, setting f = c1 f1+ c2 f2, we have

f (a) = f ′(a) = 0.

By Lemma 6.5, f (t) = 0 for any t ≥ a. But, since µ({a}) = 0, f ′ is also left-continuous at a. Then,
we may reason on (0, a] as on [a,∞) and therefore we also have f (t) = 0 for 0< t ≤ a. Finally,

c1 f1+ c2 f2 = 0,

which proves the result.

�

In the following, we denote by λ1 > λ2 > · · · the decreasing (possibly finite) sequence of the
eigenvalues of K(µ). Of course, this sequence depends on µ, which we omit in the notation. The
following corollary plays an essential role in the sequel.

Corollary 6.6.1. There exists a Hilbert basis ( fn)n≥1 in L2(µ) such that

∀n≥ 1 K(µ) fn = λn fn.

Since K(µ) is Hilbert-Schmidt,
∑

n≥1

λ2
n <∞.

It will be shown in Subsection 6.3 (see Theorem 6.7) that actually
∑

n≥1

λn <∞,

i.e. K(µ) is trace-class.

6.2 Examples

In this subsection, we consider two particular types of measures µ.

6.2.1 µ=
∑n

j=1 a j δt j

Let a1, · · · , an positive real numbers and 0 < t1 < · · · < tn. We denote by δt the Dirac measure at t
and we consider, in this paragraph,

µ=
n
∑

j=1

a j δt j
.
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By the previous study, the sequence of eigenvalues of K(µ) is finite if and only if the space L2(µ)
is finite dimensional, that is if µ is of the above form. In this case, the eigenvalues of K(µ) are the
eigenvalues of the matrix (mi, j)1≤i, j≤n with

mi, j =
p

ai a j t i∧ j .

In particular, by the previous study, such a matrix has n distinct eigenvalues, which are > 0.

6.2.2 µ= C tρ 1(0,1](t)dt

In this paragraph, we consider
µ= C tρ 1(0,1](t)dt

with C > 0 and ρ > −2. By Lemma 6.2, the eigenfunctions f of K(µ) associated with λ > 0 are
characterized by:

λ f ′′(x) + C xρ f (x) = 0 on (0,1), (9)

f (0) = 0, f ′(1) = 0.

We set σ = (ρ+ 2)−1 and ν = σ− 1. For a >−1, we recall the definition of the Bessel function Ja:

Ja(x) =
∞
∑

k=0

(−1)k (x/2)a+2k

k!Γ(a+ k+ 1)
.

Then, the only function f satisfying (9) and f (0) = 0 is, up to a multiplicative constant,

f (x) = x1/2 Jσ

 

2σ

r

C

λ
x1/2σ

!

.

We deduce from the equality, which is valid for a > 1,

a Ja(x) + x J ′a(x) = x Ja−1(x)

that f ′(1) = 0 if and only if

Jν

 

2σ

r

C

λ

!

= 0.

Denote by ( jν ,k, k ≥ 1) the sequence of the positive zeros of Jν . Then the sequence (λk, k ≥ 1) of
eigenvalues of K(µ) is given by:

2σ

r

C

λk
= jν ,k, k ≥ 1

or, since σ = ν + 1,
λk = 4 C (ν + 1)2 j−2

ν ,k, k ≥ 1.

Particular case Suppose ρ = 0. Then ν =−1/2 and

Jν(x) = J−1/2(x) =
�

2

π x

�1/2

cos(x).

Hence,
λk = 4 C π−2 (2k− 1)−2, k ≥ 1.
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6.3 Representation of
∫

B2
s dµ(s)

We again consider the general setting defined in Subsection 6.1, the notation of which we keep.

In this subsection, we study the random variable

Y (µ)1 :=

∫

B2
s dµ(s).

The use of the operator K(µ) and of its spectral decomposition in the type of study we develop below,
is called the Karhunen-Loeve decomposition method. It has a long history which goes back at least
to Kac-Siegert [12; 13]. We also refer to the recent paper [5] and to the references therein.

Theorem 6.7. The eigenvalues (λk, k ≥ 1) of the operator K(µ) satisfy

∑

k≥1

λk =

∫

R∗+

t dµ(t) (<∞, by hypothesis).

Moreover, there exists a sequence (Γn, n≥ 1) of independent normal variables such that:

Y (µ)1
d
=
∑

n≥1

λnΓ
2
n.

Proof

We deduce from Corollary 6.6.1, by the Bessel-Parseval equality, that:

Y (µ)1 =
∑

n≥1

�
∫

Bs fn(s) dµ(s)

�2

a.s.

Taking expectations, we get
∫

R∗+

t dµ(t) =
∑

n≥1

(K(µ) fn, fn)E =
∑

n≥1

λn.

We set, for n≥ 1,

Γn =
1
p

λn

∫

Bs fn(s) dµ(s).

Then (Γn, n≥ 1) is a Gaussian sequence and

E[ΓnΓm] =
1

p

λnλm

(K(µ) fn, fm)E = δn,m

where δn,m denotes Kronecker’s symbol. Hence, the result follows.

�
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Corollary 6.7.1. The Laplace transform of Y (µ)1 is

F (µ)1 (t) =
∏

n≥1

(1+ 2 t λn)
−1/2.

Proof

This is a direct consequence of the previous theorem, taking into account that, if Γ is a normal
variable, then

Γ2 d
= 2γ1/2.

�

6.4 Representation of
∫

R2
N(s) dµ(s)

We now consider the random variable

Y (µ)N :=

∫

R2
N (s) dµ(s).

A number of explicit computations of the Laplace transforms of these variables are found in Pitman-
Yor ([21, Section 2]).

Theorem 6.8. There exists a sequence (ΘN ,n, n≥ 1) of independent variables with, for any n≥ 1,

ΘN ,n
d
= R2

N (1)
d
= 2γN/2

such that
Y (µ)N

d
=
∑

n≥1

λnΘN ,n. (10)

Moreover, the Laplace transform of Y (µ)N is

F (µ)N (t) =
∏

n≥1

(1+ 2 t λn)
−N/2. (11)

Proof

It is clear, for instance from Revuz-Yor [22, Chapter XI, Theorem 1.7], that

F (µ)N (t) = [F
(µ)
1 (t)]

N .

Therefore, by Corollary 6.7.1, formula (11) holds. Formula (10) then follows directly by the injec-
tivity of the Laplace transform.

�
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Corollary 6.8.1. The random variable Y (µ)N is self-decomposable. The function h, which is decreasing

on (0,∞) and associated with Y (µ)N in Theorem 2.1, is

h(x) =
N

2

∑

n≥1

exp
�

−
1

2λn
x
�

.

Proof

We saw in Subsection 3.1 that R2
N (1) satisfies the property 1) in Theorem 2.1 with

h(x) =
N

2
1(0,∞)(x)e

−x/2

and it is therefore self-decomposable. Using then the representation (10) of Y (µ)N , we obtain the
desired result.

�

As a consequence, following Bondesson [1], we see that Y (µ)N is a generalized gamma convolution
(GGC) whose Thorin measure is the discrete measure:

N

2

∑

n≥1

δ1/2λn
.

Particular case We consider here, as in Section 5, the particular case:

µ=
1

K2 t
2(1−K)

K 1(0,1](t) dt.

Then, Y (µ)N is the random variable YN ,K(1) studied in Section 5. As a consequence of Paragraph 6.2.2
with

C =
1

K2 and ρ =
2

K
− 2,

we have
λk = j−2

ν ,k, k ≥ 1

with ν = K
2
− 1. Moreover, by Theorem 5.2,

Y (µ)2
d
= T1(RK).

It is known (see Kent [15] and, for instance, Borodin-Salminen [2, formula 2.0.1, p. 387]) that

E[exp(−t T1(RK))] =
2−ν

Γ(ν + 1)
(
p

2t)ν

Iν(
p

2t)

where Iν denotes the modified Bessel function:

Iν(x) =
∞
∑

k=0

(x/2)ν+2k

k!Γ(ν + k+ 1)
.
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We set:

bIν(x) =
∞
∑

k=0

(x/2)2k

k!Γ(ν + k+ 1)
.

Therefore, by formula (11) in the case N = 2, we recover the following representation:

bIν(x) =
1

Γ(ν + 1)

∏

k≥1

 

1+
x2

j2
ν ,k

!

.

In particular (ν =−1/2),

cosh(x) =
∏

k≥1

�

1+
4 x2

π2 (2k− 1)2

�

.

Likewise we obtain, for ν = 1/2,

sinh(x)
x

=
∏

k≥1

�

1+
x2

π2 k2

�

.

6.5 Sato process associated to Y (µ)N

Theorem 6.9. Let (UN
t ) be the 1-Sato process associated to R2

N (1) (cf. Section 3). Then, the 1-Sato

process associated to Y (µ)N is (U (N ,µ)
t ) defined by:

U (N ,µ)
t =

∑

n≥1

λn UN ,n
t , t ≥ 0

where ((UN ,n
t ), n≥ 1) denotes a sequence of independent processes such that, for n≥ 1,

(UN ,n
t )

(d)
= (UN

t ).

Proof

This is a direct consequence of Theorem 6.8.

�

Corollary 6.9.1. The process

V (N ,µ)
t :=

∫

R∗+

(R2
N (t s)− N t s) dµ(s), t ≥ 0

is a PCOC and an associated martingale is

M (N ,µ)
t := U (N ,µ)

t − N t

∫

R∗+

s dµ(s), t ≥ 0.
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The above martingale (M (N ,µ)
t ) is purely discontinuous. We also may associate to the PCOC (V (N ,µ)

t )
a continuous martingale, as we now state.

Theorem 6.10. A continuous martingale associated to the PCOC (V (N ,µ)
t ) is

∑

n≥1

λn ((R
(n)
N )

2(t)− N t), t ≥ 0

where ((R(n)N (t)), n≥ 1) denotes a sequence of independent processes such that, for n≥ 1,

(R(n)N (t))
(d)
= (RN (t)).

Proof

This is again a direct consequence of Theorem 6.8.

�

We can also explicit the relation between U (N ,µ) and U (N
′,µ). Let C (N ,µ) (resp. C (N

′,µ)) be the Lévy
process associated with Y (µ)N (resp. Y (µ)N ′ ). We see, by Laplace transform, that

(C (N
′,µ)

s , s ≥ 0)
(d)
= (C (N ,µ)

N ′s/N , s ≥ 0). (12)

Then, using the relations between the processes U and C given in Theorem 2.2, we obtain:

Proposition 6.11. We have:

(U (N
′,µ)

t , t ≥ 0)
(d)
=







∫ tN ′/N

0

s
N−N ′

N ′ dU (N ,µ)
s , t ≥ 0






.

Proof

By Theorem 2.2,

(U (N
′,µ)

t , 0≤ t ≤ 1)
(d)
=

 

∫ ∞

− log t

e−s dC (N
′,µ)

s , 0≤ t ≤ 1

!

.

Therefore, we obtain by (12),

(U (N
′,µ)

t , 0≤ t ≤ 1)
(d)
=

 

∫ ∞

− log t

e−s dC (N ,µ)
N ′s/N , 0≤ t ≤ 1

!

or, after the change of variable: N ′s/N = u,

(U (N
′,µ)

t , 0≤ t ≤ 1)
(d)
=

 

∫ ∞

− log tN ′/N
e−Nu/N ′ dC (N ,µ)

u , 0≤ t ≤ 1

!

.

By Theorem 2.2,

C (N ,µ)
u =

∫ 1

e−u

1

r
dU (N ,µ)

r =

∫ u

0

ev dU (N ,µ)
e−v .
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Therefore,

(U (N
′,µ)

t , 0≤ t ≤ 1)
(d)
=

 

∫ ∞

− log tN ′/N
e

N ′−N
N ′ u dU (N ,µ)

e−u , 0≤ t ≤ 1

!

and, after the change of variable: e−u = s,

(U (N
′,µ)

t , 0≤ t ≤ 1)
(d)
=







∫ tN ′/N

0

s
N−N ′

N ′ dU (N ,µ)
s , 0≤ t ≤ 1






.

By a similar computation for t ≥ 1, we finally obtain the desired result.

�

Corollary 6.11.1. For N > 0 and K > 0, we set, with the notation of Section 5,

T N ,K
t = Tt(RK ,αN

), t ≥ 0.

Then, for N > 0, N ′ > 0 and K > 0, for any t ≥ 0,

T N ′,K
t

d
=

∫ tN ′/N

0

s2 N−N ′

N ′ dT N ,K
s .

Proof

By Theorem 5.2, (T N ,K
t1/2 ) is the 1-Sato process associated with Y (µ)N defined from

µ=
1

K2 t
2(1−K)

K 1(0,1](t) dt.

�
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