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Abstract

We obtain asymptotic estimates of the Green functions of random walks on the two-dimensional
integer lattice that are killed on the horizontal axis. A basic asymptotic formula whose leading
term is virtually the same as the explicit formula for the corresponding Green function of Brow-
nian motion is established under the existence of second moments only. Some refinement of it is
given under a slightly stronger moment condition. The extension of the results to random walks
on the higher dimensional lattice is also given.
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1 Introduction and Results

Let S x
n = x + ξ1+ · · ·+ ξn be a random walk on Z2 (the two dimensional integer lattice) starting at

S x
0 = x ∈ Z2. Here ξ j , j = 1, 2, . . ., are independent and identically distributed Z2-valued random

variables defined on a probability space (Ω,F , P). The walk S0
n is supposed irreducible and having

zero mean and finite variances. Let [x1, x2] stand for a point of R2 with components x1 and x2 and
put

L = {[s, 0] : s ∈ R} (the first coordinate axis).

In this paper we obtain asymptotic estimates of the Green function GL of the walk killed on L:

GL(x , y) =
∞
∑

n=0

pn
L(x , y)

where pn
L(x , y) = P[S x

n = y, S x
j /∈ L for j = 1, . . . , n−1], the n-step transition probability of the killed

walk; in particular p0
L(x , y) = δx ,y (Kronecker’s symbol). Note that pn

L(x , y) (with n ≥ 1), hence
GL(x , y), may be positive even if x , y ∈ L. Our definition, thus different from usual one (but only if
|x | · |y| = 0), is convenient when duality relations are considered (see Remark 4 below). Let X and
Y be the first and second component of ξ1 = S0

1 , respectively, put σ2
1 = EX 2, σ12 = EX Y, σ2

2 = EY 2,
σ j j = σ2

j ( j = 1, 2), Q = (σi j) (the covariance matrix of S0
1) and σ = |detQ|1/4, and define the

norm ‖x‖, x ∈ R2 by ‖x‖2 = σ2Q−1(x), where Q−1 and Q−1(x) stand for the inverse matrix of Q
and its quadratic form , respectively.

For a, b ∈ R, a ∨ b and a ∧ b denote, respectively, the maximum and the minimum of a and b. The
function t log t is understood continuously extended to t = 0.

Theorem 1.1. Suppose that nk > 0 and let Bs,n,k be given via the equation

GL([0, n], [s, k]) =
1

2πσ2 log
�

1+
4(σ/σ2)2nk

‖[s, k− n]‖2 ∨ 1

�

+ Bs,n,k.

Then

Bs,n,k = o
�

1∨ log
�

nk

‖[s, k− n]‖2 ∨ 1

��

as nk→∞ (1.1)

uniformly in s; in particular Bs,n,k = o(log n) as n→∞ uniformly in s, k. Moreover Bs,n,k is uniformly
bounded if and only if E[|S0

1 |
2 log |S0

1 |]<∞ and if this is the case Bs,n,k→ 0 as ‖[s, k− n]‖ →∞.

Theorem 1.2. Suppose that nk < 0. Then GL([0, n], [s, k])→ 0 as ‖[s, k− n]‖ →∞.

For each pair of k, n, GL([0, n], [s, k]) → 0 as |s| → ∞ and GL is everywhere positive. With this
taken into account it is inferred from the first half of Theorem 1.1 that under the condition nk > 0,
GL is bounded away from zero if and only if so is nk/(‖[s, k− n]‖2 ∨ 1). Unless this is the case the
estimate in Theorem 1.1 is crude. The next result is complementary in this respect (its proof is much
more involved than that of Theorem 1.1).

Let a(n) (n ∈ Z2) denote the potential function of the one dimensional random walk of the second

component of S0
n: a(n) =

∑∞
k=0

�

P[S0
k ∈ Z× {0}]− P[S0

k ∈ Z× {−n}]
�

. (Cf. [7]:T29.1.) Also put

a∗(n) = δ0,n+ a(n),
µ= σ12/σ

2
2 and X̃ = X −µY.

1162



Theorem 1.3. If E[X̃ 2 log |X̃ |]<∞, then, as
�

k ∨ 1)(n∨ 1)
�

/(‖[s, k− n]‖2 ∨ 1)→ 0

GL([0, n], [s, k]) =
1

π

σ4
2a∗(n)a∗(−k) + nk

σ2
2‖[s, k− n]‖2

+ o
�

(n∨ 1)(|k| ∨ 1)
‖[s, k− n]‖2

�

for n≥ 0, k, s ∈ Z.

REMARK 1. Let λ= σ2/σ2
2 and observe that

‖[s, m]‖2 = λ−1(s−µm)2+λm2 = ‖[s+ 2µm,−m]‖2

and ‖[s, k − n]‖2 + 4λkn = ‖[s + 2µn, k + n]‖2. Then the formula of Theorem 1.1 is under-
stood to be in accordance with the one for Brownian motion, say g◦(a, b), that is explicit ow-
ing to reflection principle (see Appendix (B)). Donsker’s invariance principle implies that if two
points a, b are taken from the upper half plane R × (0,∞), ε > 0 and αx = |a|/|x | (x ∈ Z2),
then α2

x

∑

{y:|αx y−b|<ε} GL(x , y) converges to
∫

|u−b|<ε g◦(a, u)du as |x | → ∞ in such a way that
limαx x = a, but not much more.

REMARK 2. For n < 0, the formula of Theorem 1.3 hold true as n[(−k) ∨ 1]/‖[s, k − n]‖2 → 0 by
duality. In the case when nk < 0 and |k| ∧ |n| → ∞ we have σ4

2a(n)a(−k) + nk = o(nk), so that
any proper asymptotic form of GL is not given by it; the determination of it requires more detailed
analysis than that carried out in this paper and will be made in a separate paper ([11]).

REMARK 3. It follows from (1.1) that under the constraint s2+(n−k)2 > εnk > 0 (for some ε > 0) the
convergence to zero of Bs,n,k stated in Theorem 1.1 holds true without assuming E[|S0

1 |
2 log |S0

1 |] <
∞, which however cannot be removed in general (see also Theorem 3.2). Similarly the moment
condition E[X̃ 2 log |X̃ |] < ∞ in Theorem 1.3 is needed only in the case when |k| + |n| = o(|s|)
(Lemmas 4.2 and 4.3), while without it lim sup|s|→∞ s2GL([0, n], [s, k]) can be infinite in view of
Theorem 1.3 of [9].

REMARK 4. If G̃L denotes the Green function associated with the dual process (i.e. the process
(−S−x

n )), then G̃L([0, n], [s, k]) = GL([0, k], [−s, n]). Because of this duality we may suppose that
|k| ≤ n for the proof of Theorems above. In view of (1.4) (that also follows from the duality) the
results on H[0,n](s) obtained in [9] provide the formula of Theorem 1.3 in the case nk = 0. Thus we
may further suppose that |k|> 0.

This paper is in a sense a continuation of [9] in which the hitting distribution of L for the walk
starting at [0, n] is evaluated. As in [9] put

ψ(t, l) = E[ei tX+ilY ]

and for t 6= 0,

πk(t) =
1

2π

∫ π

−π

1

1−ψ(t, l)
e−ikl dl and ρ(t) =

1

π0(t)
.

Let Hx(s) denote the probability that the first entrance after time 0 of the walk S x
n into L takes place

at [s, 0]: Hx(s) = P[ for some τ≥ 1, S x
τ = [s, 0] and S x

n /∈ L for 0< n< τ]. The evaluation of Hx(s)
in [9] is based on the Fourier representation formula

H[0,k](s) =
1

2π

∫ π

−π
ρ(t)

h

π−k(t)−δ0,k

i

e−ist d t, (1.2)
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while our starting point for evaluation of GL is

GL([0, n], [s, k]) =
1

2π

∫ π

−π

h

π−n+k(t)−ρ(t)(π−n(t)−δ0,n)πk(t)
i

e−ist d t, (1.3)

which is derived in a standard way (see Appendix (A) for a proof). From (1.2) and (1.3) it follows
that

GL([0,0], y) = H−y(0). (1.4)

The asymptotic formulae presented above are extended to higher dimensional walks. Consider
a d-dimensional random walk S0

n, moving on Zd , for d ≥ 3. Suppose that the walk is irreducible
and has zero mean and the finite variances. Let X and Y be the first Zd−1 component and the d-th
component of S0

1 , respectively. Put σ2
d = E[Y 2] and define the norm ‖ · ‖ analogously to the two

dimensional case. For k ∈ Z, x = (x1, . . . , xd−1) ∈∈ Zd−1, let [x , k] stand for the d-dimensional
point (x1, . . . , xd−1, k). Theorems 1.3 is extended as follows.

Theorem 1.4. Suppose the moment conditions E[|X |d]<∞ and

E[Y 2 log |Y |]<∞ for d = 3 and E[|Y |d−1]<∞ for d ≥ 4 (1.5)

to hold. Then for n≥ 0, k ∈ Z, x ∈ Zd−1, as ([k ∨ 0]n+ 1)/(‖[x , k− n]‖2 ∨ 1)→ 0

GL([0, n], [x , k]) =
Γ(d/2)

πd/2
·
σ4

d a∗(n)a∗(−k) + nk

σ2
d‖[x , k− n]‖d

+ o
�

(n∨ 1)(|k| ∨ 1)

‖[x , k− n]‖d

�

.

Let pm(x , y) = P[S x
m = y] and G(x , y) :=

∑∞
m=0 pm(x , y), the Green function of the walk S x

n . In the
next theorem we give results corresponding to Theorems 1.1 and 1.2 under the following moment
condition (to be a minimal one for the obtained estimates):

E[Y 2 log |Y |]<∞ if d = 4 and E[|Y |d−2]<∞ if d ≥ 5. (1.6)

Theorem 1.5. Suppose (1.6) to hold. Then as |n|∨|k|∨|x | →∞ in such a way that |nk|/‖[x , k−n]‖2

is bounded away from zero,

GL([0, n], [x , k]) (1.7)

=

(

G([0, n], [x , k])−κdσ
−2‖[x + 2nµ, k+ n]‖−d+2(1+ o(1)) if nk > 0,

o(‖[x , k− n]‖−d+2) if nk < 0,

where µ= E[Y X ] (∈ Rd−1) and κd = Γ(d/2)/(d − 2)πd/2.

REMARK 5. The Fourier representation (1.3) is a manifestation of the decomposition

GL([0, n], [x , k]) = G([0, n], [x , k])−
∑

j∈Z

H[0,n]( j)G([ j, 0], [x , k]). (1.8)

As for the two-dimensional walk, if A(x , y) =
∑∞

m=0[p
m(0, 0)−pm(x , y)], then as a two dimensional

analogue of (1.8), with −A(x , y) replacing G(x , y), we have

GL([0, n], [s, k]) =−A([0, n], [s, k]) +
∑

j∈Z

H[0,n]( j)A([ j, 0], [s, k]). (1.9)
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If the walk satisfies a certain condition concerning symmetry and continuity in the vertical direction
these identities reduce to the reflection principle. Otherwise, however, direct computation using
them together with the estimates of H[0,n] and G (as found e.g. in [9], [8]) does not give any
correct asymptotic form of GL unless either the first term of the decomposition is dominant or we
have nice estimates of the second order terms of H[0,n] and G; in any case the results obtained in
such a way are in general not sharp.

Two relevant matters on some closely related random walks are briefly discussed in the rest of this
section.

Walks Killed on a half horizontal axis. Put L± = {[s, 0] : ±s ≥ 0} ⊂ Z2 (the non-negative and non-
positive parts of the horizontal axis) and let GL−(x , y) be the Green function of the two dimensional
walk killed on L− that is defined analogously to GL(x , y). Then it follows that for y /∈ L−,

GL−(x , y) = GL(x , y) +
∞
∑

s=1

Hx(s)GL−([s, 0], y), (1.10)

and if y = [s, 0] ∈ L−,

GL−(x , [s, 0]) =
∞
∑

s1=1

Hx(s1)g(−∞,0](s1, s),

where g(−∞,0](s, s1) denotes the Green function of one dimensional walk which is the trace on
L+ \ {0} of the walk (S[s,0]n ) killed on L−. Consider the last identity for the time-reversed walk.
Indicating the dual objects by putting ∼ over the notation as in Remark 4, we then find the identities
GL−(x , y) = G̃L−(y, x), H̃ y(s1) = H−y(−s1) and g̃(−∞,0](s1, s) = g(−∞,0](s, s1) and substitute these
into (1.10) to obtain that

GL−(x , y) = GL(x , y) +
∞
∑

s=1

∞
∑

s1=1

Hx(s)H−y(−s1)g(−∞,0](s, s1) (y /∈ L−); (1.11)

similarly

GL−([s, 0], y) = G̃L−(y, [s, 0]) =







H+−y(−s), s ≤ 0,
∞
∑

s1=1

H−y(−s1)g(−∞,0](s, s1) s > 0,

where H+x (s) denotes the entrance distribution into L+ (defined analogously to Hx(s)).

Certain asymptotic estimates of H+x (s) are obtained in [10] (under the present setting), [4] (for
simple walk) and [1] (for a class of random walks with a finite range of jump by an algebraic
method). Computation made in Section 4 of [10] would be helpful for evaluation of the double sum
in (1.11).

Walks Killed on a half plane. Let D = {[s, k] ∈ Z2 : k ≤ 0}, the lower half plane. The evaluation of
GL is intimately related to that of GD, the Green function of the walk killed on D. First it is pointed
out that if the walk is either upwards or downwards continuous, namely either P[Y ≥ 2] = 0 or
P[Y ≤ −2] = 0, then GL and GD agree on Z2 \ D. Let f +(n) (resp. f −(n)) (n = 1,2, . . .) be the
positive harmonic function that is asymptotic to n of the one dimensional walk killed on {n ≤ 0}
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whose increment has the same law as Y (resp. −Y ): f±(n) = E[ f±(n± Y ); n± Y > 0] (n ≥ 1) and
limn→∞ f±(n)/n= 1, which each exists uniquely ([7]:p.212). If P[Y ≥ 2] = 0, then for n≥ 1,

f+(n) =
1
2
(σ2

2a(n) + n) and f−(n) = σ
2
2a(−n) = n,

and the formula of Theorem 1.3 may be written as

GD([0, n], [s, k]) =
2 f+(n) f−(k)

πσ2
2‖[s, k− n]‖2

(1+ o(1)) (1.12)

(n, k > 0, nk/‖[s, k − n]‖2 → 0). In a separate paper [11] we prove (1.12) to be true in general
under E[X̃ 2 log |X̃ |]<∞, where the proof rests on Theorem 1.3 of the present paper.

The rest of the paper is organized as follows. In Section 2 some preliminary lemmas are established.
Theorems 1.1 and 1.2 are proved in Section 3 and Theorem 1.3 in Section 4. In Section 5 their d-
dimensional analogues, i.e., Theorems 1.4 and 1.5, are proved. Section 6, the last section, consists
of Appendices (A), (B), (C) and (D) ; in (A) a proof of the Fourier representation formula (1.3) is
given; we exhibit in (B) the formula for the Green function of Brownian motion corresponding to
GL for comparison with those given above and provide in (C) certain details for the case σ12 6= 0
which are omitted in Section 2; in (D) two lemmas concerning Fourier type integrals are proved.

2 Preliminary Lemmas

Throuout the rest of the paper we suppose that σ12 = 0 unless otherwise stated explicitly, so that
the quadratic form Q(θ) =Q(θ1,θ2) =

∑

σi jθiθ j (θ = (θ1,θ2) ∈ R2) is of the form

Q(θ) = σ2
1θ

2
1 +σ

2
2θ

2
2 .

The case σ12 6= 0 can be similarly treated and necessary modifications will be given in Appendix
(C).

Let n> 0. As an ideal substitute for π−n(t), we bring in

π◦−n(t) =
1

2π

∫

R

2

Q(t, l)
einl dl. (2.1)

It follows that

π◦−n(t) =
e−nλ|t|

σ2|t|
, (2.2)

where, as in Remark 1,
λ= σ1/σ2 = σ

2/σ2
2.

On writing m= n− k the Fourier representation (1.3) is decomposed as

GL([0, n], [s, k]) =
1

2π

∫ π

−π

�

π−m(t)−π−n(t)
�

e−ist d t +
1

2π

∫ π

−π

(π0(t)−πk(t))π−n(t)
π0(t)

e−ist d t.

We evaluate these two integrals separately in Propositions 2.1 and 2.2 given below.
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For the evaluation of the first integral above we observe that

1

2π

∫

R

(π◦−m(t)−π
◦
−n(t))e

−ist d t =
1

πσ2

∫ ∞

0

e−|m|t/λ− e−|n|t/λ

t
cos st d t

=
1

2πσ2 log
�

s2+λ2n2

s2+λ2m2

�

. (2.3)

Lemma 2.1. Define J = Js,n,m by

J =
1

(2π)2

∫ π

−π
e−ist d t

∫ π

−π

2

Q(t, l)
(eiml − einl)dl −

1

2πσ2 log
�

s2+λ2n2

s2+λ2m2

�

. (2.4)

Then |J | ≤
C

(s2+ 1)(n2 ∧m2+ 1)
if s2+ (m2 ∧ n2) 6= 0.

Proof. Write J =−2π−2(I + I I), where

I :=

∫ ∞

π

cos st d t

∫ π

0

cos ml − cos nl

Q(t, l)
dl and I I :=

∫ ∞

0

cos st d t

∫ ∞

π

cos ml − cos nl

Q(t, l)
dl.

Then I ≤ C/(s2+1)(m2∧n2+1) since the function
∫∞
π
[Q(t, l)]−1 cos st d t is a nice smooth function

of l bounded by C ′/(s2 + 1); the same or a rather better bound is true for I I as readily seen from
the identity I I = σ−2

∫∞
π

cos ml−cos nl
l

e−|s|l/λdl.

Proposition 2.1. For integers s, n, m such that s2+ (n2 ∧m2) 6= 0, define Cs,n,m via the equation

1

2π

∫ π

−π

h

π−m(t)−π−n(t)
i

e−ist d t =
1

πσ2 log
‖[s, n]‖
‖[s, m]‖

+ Cs,n,m.

(a) Cs,n,m is bounded if and only if E0[ |S0
1 |

2 log |S0
1 |]<∞, and if this is the case Cs,n,m tends to zero as

both |s|+ |n| and |s|+ |m| go to∞.

(b) Uniformly in s, Cs,n,m = o(|n−m|/(|n| ∧ |m|)) as |n| ∧ |m| →∞.

(c) Uniformly in s, Cs,n,m = o(1∨ log{n2/(s2+m2)}) as n/(|m| ∨ 1)→∞.

As an immediate corollary of Proposition 2.1 we obtain

Corollary 2.1. Suppose that n→∞, s/n→ α ∈ R∪ {±∞}, m/n→ β ∈ R. Then
∫ π

−π

�

π−m(t)−π−n(t)
�

e−ist d t −→
1

σ2 log
�

(α/σ1)2+ (1/σ2)2

(α/σ1)2+ (β/σ2)2

�

,

where the limit value is understood to be 0 or∞ according as |α| =∞ or α = β = 0. For each M > 1
the convergence is uniform for s and m such that |m|< Mn and |m| ∨ |s|> n/M.

1167



Proof of Proposition 2.1. Let J = Js,n,m be the function given by (2.4). Then

Cs,n,m =
1

(2π)2

∫ π

−π
e−ist d t

∫ π

−π

�

1

1−ψ(t, l)
−

2

Q(t, l)

�

(eiml − einl)dl + J (2.5)

According to Lemma 2.1 J → 0 as |s|+ (|n| ∧ |m|)→∞. The repeated integral on the right side is
decomposed into the sum of the integral

∫

(−π,π]2

�

1

1−ψ
−

2

Q

�

(1− e−ist+inl)d tdl

and a similar one (with m in place of n). As |s|+ |n| →∞, the first integral converges to a finite limit

(which equals
∫

(−π,π]2

h

1/(1−ψ)−2/Q
i

d tdl) or diverges to +∞ according as E0[|S0
1 |

2 log |S0
1 |]<

∞ or=∞ (cf. [8]: proof of its Theorem 1), so that if E0[|S0
1 |

2 log |S0
1 |]<∞, Cs,n,m remains bounded,

and otherwise it diverges to +∞ as |n| →∞ with s, m being fixed. This completes the proof of (a).

For the proof of (b) we may suppose |m| ≤ n. Put k = n−m. By Lemma 2.1 J ≤ Cm−2 = o(k/n)
(as |m| → ∞). We must prove that the double integral in (2.5) is o(k/|m|). To this end we break it
into three parts by dividing the inner integral at l = ±1/n. The part corresponding to the interval
|l|< 1/n is easy to evaluate to be o(k/n). For the evaluation of the remaining parts we put

D(t, l) =
1

1−ψ(t, l)
−

2

Q(t, l)
and K± =

∫ π

−π
e−ist d t

∫ π

1/n

D(t,±l)(e±iml − e±inl)dl.

It remains to prove K++K− = o(k/m). Since the factor e−ist does not come into play at all, let s = 0
for simplicity. Writing eiml − einl = (e−ikl − 1)einl we integrate by parts to have

K+ =
1

in

∫ π

−π
d t
h

(eiml − einl)D
iπ

l=1/n
+

k

n

∫ π

−π
d t

∫ π

1/n

eiml Ddl

−
1

in

∫ π

−π
d t

∫ π

1/n

(e−ikl − 1)einl∂l Ddl.

The first term on the right side is dominated by kn−2
∫ π

0
|D(t, 1/n)|d t + r = o(k/n) + r, where r is

the boundary term corresponding to π and cancels out with that arising from K−. Integrating by
parts once more and using the relations

∫ π

−π
|∂ νl D(t, l)|d t = o

�

l−ν−1
�

as l → 0 (ν = 0, 1,2), (2.6)

one can easily deduce that the second and third terms are o(k/m) and o(k/n), respectively.

We continue the argument made above for the proof of (c). Obviously K± = o(log n) (uniformly in
s, k), hence one may suppose |m| ∧ |s| → ∞. First consider the case |m| > |s|. We must prove that
K± = o(log(n/|m|)) as n/|m| → ∞. The contribution to K± of the part involving einl tends to zero
as n→ 0 uniformly in s, namely

sup
s

�

�

�

�

∫ π

−π
e−ist d t

∫ π

1/n

D(t,±l)e±inl dl

�

�

�

�

→ 0 as n→∞. (2.7)
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With this in mind we see that as |m| →∞
�

�

�

�

∫ π

−π
e−ist d t

∫ π

1/n

D(t, l)eiml dl

�

�

�

�

≤ C

∫ 1/|m|

1/n

dl

∫ π

0

|D|d t + o(1) = o(1∨ log(n/|m|)),

in view of (2.6). Now let s|s| ≥ |m|. In view of (2.7), with symmetric roles of t and l in D(t, l) taken
into account, it suffices to prove that uniformly in m,

M+ :=

∫ 1/s

0

e−ist d t

∫ π

1/n

D(t, l)eiml dl = o(1∨ log(n/s)) (2.8)

as s→∞. Changing the variable of integration we see that for any ε > 0 and N > 0

|M+| ≤
1

s2

∫ 1

0

d t

∫ sπ

s/n

D(t/s, l/s)dl ≤
∫ 1

0

d t
�
∫ N

s/n

ε

t2+ l2 dl +

∫ ∞

N

C

l2 dl
�

≤ 2ε[(log(n/s) + log N] +
C

N

for all sufficiently large s. Thus (2.8) is verified. Proof of Proposition 2.1 is complete.

Proposition 2.2. As |k| →∞, uniformly for n≥ |k| and for s ∈ Z,
∫ π

−π

(π0(t)−πk(t))π−n(t)
π0(t)

e−ist d t =
1

σ2 log
�

s2+λ2(n+ |k|)2

s2+λ2n2

�

+ o
�

k

n

�

.

Proof. Write ρ◦(t) for 1/π◦0(t) = σ
2|t| and make decomposition

ρ[π0−πk]π−n = ρ◦[π◦0−π
◦
k]π

◦
−n+

n

ρ[π0−πk]−ρ◦[π◦0−π
◦
k]
o

π◦−n

+ ρ[π0−πk](π−n−π◦−n). (2.9)

On using (2.2) the Fourier transform of the first term equals

2

σ2

∫ ∞

0

e−λnt − e−λ(n+|k|)t

t
cos st d t =

1

σ2 log
�

s2+λ2(n+ |k|)2

s2+λ2n2

�

,

hence gives the principal term of the formula of the lemma.

For the remaining terms we use certain estimates of Fourier type integrals, which are collected in
Appendix (D). From Lemma 6.1 (i) there it follows that

ρ(t)|π0(t)−πk(t)| ≤ C |kt|,

which implies
∫ π

−πρ[π0−πk](π−n−π◦−n)e
−ist d t = o(k/n) in view of Lemma 6.2 (ii).

By Lemma 6.1 (i)
lim

k→∞
k−1 sup

0<|t|<1
|π0(t)−πk(t)− [π◦0(t)−π

◦
k(t)]|= 0.

This, together with (2.9), shows that the middle term on the right side of (2.9) is e−λn|t|(|k|×o(|t|)+
|t| × o(k)), hence its contribution is o(k/n) as above (but this time not only n but |k| must also be
made large indefinitely: otherwise o(k/n) must be replaced by O(k/n)).
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REMARK 6. If a{d=2}([s, n]) denotes the potential function of the two-dimensional walk S x
· , namely

a{d=2}([s, n]) =
∑∞

j=0(P[S
0
j = 0]− P[S[s,n]j = 0]), then

a{d=2}([−s, n])− a{d=2}([−s, n− k]) =
1

2π

∫ π

−π

h

π−n(t)−π−n+k(t)
i

e−ist d t.

The asymptotic estimates of a{d=2}([s, n]) given in [3] or [8] provide better estimates of Cs,n,m than
in Proposition 2.1 but under certain stronger moment conditions.

3 Proof of Theorems 1.1 and 1.2

For simplicity we let 0< |k| ≤ n unless contrary is stated, which gives rise to no loss of generality as
being pointed out in Remark 4. We continue to suppose that Q is diagonal.

Set for (α,δ) ∈ R2 with |α|+ |1−δ|> 0,

Λ(α,δ) =
4δ+

α2+ (1−δ)2
(δ+ = (|δ|+δ)/2),

write
s∗ = s/σ1, n∗ = n/σ2 and k∗ = k/σ2,

and for |s|+ |n− k|> 0, define r(s, k, n) by

GL([0, n], [s, k]) = (2πσ2)−1 log
�

1+Λ(s∗/n∗, k∗/n∗)
�

+ r(s, k, n).

It follows that ‖[s, n]‖2 = σ2(s2
∗ + n2

∗). For simple random walk the reflection principle may apply
and it immediately follows from an asymptotic expansion of the potential function a{d=2} as found
in [3], [5] or [2] that

r(s, k, n) = O((s2+ |n− k|2+ 1)−1).

We are to find a reasonable estimate of r in general case.

We first consider the case when n→∞ under the constraint

Λ(s/n, k/n) =
4nk+

s2+ (n− k)2
� 1, (3.1)

namely M−1 ≤ Λ(s/n, k/n) ≤ M for some M > 0. This condition is equivalent (or understood to be
so) to the condition that there exists a constant ε, 0 < ε < 1 such that k > εn; |s| < n/ε; and either
k < (1− ε)n or |s|> εn.

Theorem 3.1. As n → ∞ under (3.1), r(s, k, n) → 0 uniformly for s, k subject to the restriction
specified above (for each ε); in particular, if k∗/n∗ → δ, s∗/n∗ → α, 0 < δ ≤ 1 and |1− δ|+ |α| > 0,

then GL([0, n], [s, k])→ (2πσ2)−1 log
�

1+Λ(α,δ)
�

.

Proof. The integrand of the integral on the right side of (1.3) (with µ = 0, n > 0) may be written
in the form

π−n+k(t)−ρ(t)πk(t)π−n(t) = π−n+k(t)−π−n(t) + [π0(t)−πk(t)]ρ(t)π−n(t), (3.2)

1170



and the assertion is inferred as an immediate consequence of Propositions 2.1 and 2.2.

Next consider the case when
Λ(s/n, k/n)→∞. (3.3)

Theorem 3.2. As n→∞ under (3.3), namely as k/n→ 1 and s/n→ 0, the difference

GL([0, n], [s, k])−
1

πσ2 log
‖[s, n+ k]‖
‖[s, n− k]‖ ∨ 1

remains uniformly bounded if and only if E0[|S0
1 |

2 log |S0
1 |] <∞. If this is the case it converges to zero

as |s|+ |n− k| →∞; if not it diverges to +∞ as n→∞ whenever |s|+ |n− k| is confined in any finite
set.

Proof. Here again the expression on the right side of (3.2) is employed. From Proposition 2.2
it follows that (2π)−1

∫ π

−π(πk − π0)ρπ−ne−ist d t → (πσ2)−1 log2 in the limit under (3.3). Com-
bined with this as well as with the equality lim‖[s, n+ k]‖/‖[s, n]‖ = 2 (in the same limit) (a) of
Proposition 2.1 shows the assertion of Theorem 3.2.

Proof of Theorem 1.1. On looking at (3.2) the first half of Theorem 1.1 follows from Propositions
2.1 and 2.2. The second half is included in Theorem 3.2.

Proof of Theorem 1.2. If |s| →∞ but n remains in a finite set, then the assertion of Theorem 1.2 is
rather trivial since then the probability that the walk S[0,n]

· visits [s, k] earlier than L tends to zero.
If n → ∞, we have only to apply Propositions 2.1 and 2.2 as in the proof of Theorem 3.1 since
m= n− k = n+ |k| in the case k < 0.

4 Proof of Theorem 1.3

Theorem 1.3 pertains to the case when Λ(s/n, k/n)→ 0 and follows if we prove

Theorem 4.1. Suppose that E[|X̃ |2 log |X̃ | ]<∞. Then, as (k ∨ 1)/(n∨ |s|)→ 0

GL([0, n], [s, k]) =
1

π

σ2
2a∗(n)a∗(−k) + k∗n∗

‖[s, n]‖2
+ o
� |nk|

s2+ n2

�

for nk 6= 0.

Proof. As in the preceding section suppose that 0< |k| ≤ n and Q is diagonal. The proof is given in
the following three subcases

(i) |s| ≤ n; k = o(n), (ii) n≤ |s|; k = o(|s|) and (iii) |s| ≤ n; n� (−k)∨ 1,

separately. Put
en(t) = π−n(t)−π0(t) + a(n) (4.1)

and
f (x) = |x |−1(e−|x |− 1) + 1 (= 1

2!
|x | − 1

3!
|x |2+ · · ·)

as in [9] (see (5.12) of the next section for how f comes up in the next lemma). We need the
following result from [9] (Lemmas 4.2 and 5.5).
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Lemma 4.1. (a) ρ(t) = σ2|t|+ o(t), ρ′(t) = σ2 t/|t|+ o(1) and ρ′′(t) = o(1/t) as t → 0;

(b) en(t) = σ
−2
d |n| f (λnt) + ηn(t) with supn |n|−1|η( j)n (t)| = o(|t|− j) for j = 0, 1,2; in particular,

each of en(t)/n, te′n(t)/n and t2e′′n(t)/n tends to zero as nt → 0 and is uniformly bounded. (Here η( j)

denotes the derivative of the j-th order.)

Case (i) |s| ≤ n; |k|= o(n). We make the decomposition

π−n+k −ρπ−nπk = (π−n+k −π−n) + a(−k)ρπ−n−ρπ−ne−k.

The contribution to GL of the first term on the right side is given in Proposition 2.1 (b) and that of
the second is given by Theorem 1.1 of [9] (in view of (1.2)). The sum of these two may be written
as

1

2πσ2 log
‖[s, n]‖
‖[s, n− k]‖

+
a(−k)n
π‖[s, n]‖2

+ o(k/n) =
a(−k)n+ k∗n∗
π‖[s, n]‖2

+ o(k/n) (4.2)

as n→∞ under (i). As for the third term we write
∫ π

−π
(ρπ−ne−k)(t)e

−ist d t =

∫ π

−π
(ρπ◦−ne−k)(t)e

−ist d t +

∫ π

−π
(ρ [π−n−π◦−n]e−k)(t)e

−ist d t.

Having the bound |(ρπ◦−ne−k)(t)| ≤ C[|kt|∧1]e−λn|t| in view of (2.2) and Lemma 4.1 (b), we infer
that the first integral on the right side is o(k/n). That the second one admits the same estimate
follows from Lemma 6.2 with the help of the bound |e−k(t)| ≤ C |k|. Thus we obtain the relation of
Theorem 4.1.

Case (ii) n≤ |s|; |k|= o(|s|). Here we make the decomposition

π−n+k −ρπ−nπk = (π−n+k −π−n−πk +π0)− (π−n−π0)(πk −π0)/π0

= (π−n+k −π−n−πk +π0)−ρ ene−k

+ a(n)ρ e−k + a(−k)ρ en− a(n)a(−k)ρ. (4.3)

It suffices to compute the Fourier inversions for the first two terms of the right-most member, the
other terms being dealt with in [9] (see (4.17) and (4.18) given at the end of the present proof).
The first and second of the two is dealt with in Lemmas 4.2 and 4.3 below, respectively.

Lemma 4.2. If E[X 2 log |X |]<∞, then as |s| →∞
∫ π

−π
(π−n+k −π−n−πk +π0)(t)e

−ist d t =
1

σ2 log
� (s2

∗ + k2
∗)(s

2
∗ + n2

∗)

s2
∗(s

2
∗ + (n∗− k∗)2)

�

+ o
�

nk

s2

�

.

Proof. Write
∫ π

−π
(π−n+k −π−n−πk +π0)(t)e

−ist d t = I + r

with

I = I(s, k, n) =

∫ π

−π
e−ist w(t)d t

∫ π

−π

2(ei(n−k)l − einl − e−ikl + 1)
Q(t, l)

dl, (4.4)
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r = r(s, k, n) =

∫ π

−π
e−ist d t

∫ π

−π

�

1

1−ψ(t, l)
−

2w(t)
Q(t, l)

�

(einl − 1)(e−ikl − 1)dl,

where w(t) is a smooth cutoff function such that w ≥ 0; w = 1 for |t| < 1/2; w = 0 for |t| > 1. As
before we have that for any N

I =
1

σ2 log
� (s2

∗ + k2
∗)(s

2
∗ + n2

∗)

s2
∗(s

2
∗ + (n∗− k∗)2)

�

+O(|s|−N )

as |s| → ∞. As for the error term r, perform integration by parts twice (to have the factor s−2) and
decompose (einl − 1)(e−ikl − 1) = sin nl sin kl + An,k(l), where

An,k(l) = (cos nl − 1)(cos kl − 1)− i(cos nl − 1) sin kl + i(cos kl − 1) sin nl.

Observe

F(t, l) := ∂ 2
t

�

1

1−ψ(t, l)
−

2w(t)
Q(t, l)

�

= o
�

1

(t2+ l2)2

�

(|t| ∨ |l| → 0), (4.5)

so that
∫

(−π,π]2
|F(t, l)| × d tl3→ 0 as l → 0, and then deduce that

sup
k,n

�

�

�

�

∫ π

−π
e−ist d t

∫ π

−π
F(t, l)

An,k(l)

nk
dl

�

�

�

�

−→ 0 (|s| →∞)

(cf. Lemma 11.1 of [9]). In order to deal with the contribution of sin nl sin kl we need the moment
condition E[X 2 log |X |]<∞, with which we proceed as in [9]: Lemma 6.3 (estimation of ΘI I ). We
decompose F(t, l) = V (t, l) + R(t, l), where

V (t, l) =
E[X 2eiY l(eiX t − 1)]
(1−ψ(t, l))2

(4.6)

and R is the rest. On the one hand R admits once more differentiation with ∂tR = o((|t|+ |l|)−3),
and the integration by parts shows that its contribution is o(nk). On the other hand V satisfies

∫ π

−π

∫ π

−π
(t2+ l2)|V (t, l)|d tdl <∞

if E[X 2 log |X |]<∞, so that the Riemann-Lebesgue lemma apply. These together show that

sup
k,n

�

�

�

�

∫ π

−π
e−ist d t

∫ π

−π
F(t, l)

sin nl sin kl

nk
dl

�

�

�

�

−→ 0 (|s| →∞).

(Here the outer integral (for the R part) must in general be understood improper and for the integral
on |t|< 1/|s| one should integrate by parts back to have the result above.) Consequently r(s, k, n) =
s−2n|k| × o(1) with o(1)→ 0 as |s| →∞ uniformly in n, k.

The next lemma is subtler than the preceding one.

Lemma 4.3. If E[X 2 log |X |]<∞, then as |s| →∞ with k = o(s) and n= O(s)
∫ π

−π
ρ(t)en(t)e−k(t)e

−ist d t = o
�

nk

s2

�

.
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Proof. Although one can proceed by extending the lines of the proof of Theorem 1.2 of [9] (given
in Sections 3 and 6), where evaluation of the integral

∫

ρene−ist d t is carried out, we proceed
somewhat differently in a way the proof works better in the higher dimensions.

From Lemma 4.1 we have the expression en(t) = fn(t) +ηn(t) with the estimates

| f ( j)n (t)| ≤ Cn(|nt| ∧ 1)|t|− j and η( j)n (t) = n× o(t− j) for j = 0, 1,2, (4.7)

where fn(t) = σ
−2
d |n| f (λnt). In addition to the fact that both ρ and en do not necessarily admit

the differentiation of the third order, the difference of estimates between the derivatives of fn and
those of ηn as given above causes the complication of arguments. To make the proof conceptually
clear we replace (ρene−k)(t) by σ2(|t| fn f−k)(t)w(t) and compute the corresponding integral of the
latter and that of the difference between the two, separately. First we consider the difference, for
which we need to find a way round the lack of differentiability. Write ρ◦(t) for σ2|t| (as in (2.9))
and put

g(t) = (ρene−k)(t)− (ρ◦ fn f−k)(t)w(t). (4.8)

We may suppose that 0< k ≤ n≤ s. After integrating by parts once we split the range of integration
at t = ±1/|s|. From Lemma 4.1 it follows that under the constraint of the variables s, n, s of the
lemma

sup
|t|<1/s

|(ρene−k)
′(t)|/nk→ 0 as s→∞,

which entails the same relation for g ′ in place of (ρene−k)′. We then deduce that the Fourier integral
of g on |t|< 1/|s| is o(kn/s2), and one more integration by parts gives

s2

∫ π

−π
g(t)e−ist d t =−

∫

1/|s|<|t|<π
g ′′(t)e−ist d t + o(nk). (4.9)

For the latter we express g as the telescopic sum (ρ −ρ◦) fn fk + (en − fn)ρ fk +ρen(e−k − fk) and
deal with them separately. Among them we consider only the last term and verify that

∫

1/|s|<|t|<π
(ρenη−k)

′′(t)e−ist d t = o(nk), (4.10)

the integrals for the other two being evaluated in the same way in view of (4.7).

For the proof of (4.10) we claim that
∫

1/|s|<|t|<π
[ρen](t)η

′′
−k(t)e

−ist d t = o(nk). (4.11)

Since |ρen| ≤ C |nt| and η′′−k(t) = k × o(t−2), the integrand is nk × o(1/t). Let F and V be the
functions given in (4.5) and (4.6), respectively. We may write

η′′−k(t) =
1

2π

∫ π

−π
F(t, l)(1− e−ikl)dl + rk(t)

with rn(t), a nice function that is negligible for the present purpose, and then η′′−k(t) = vk(t)+τk(t),
where

vk(t) =
1

2π

∫ π

−π
V (t, l)(1− e−ikl)dl
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and τk is the rest. Then, as in the preceding proof, we see that the function τk(t) is differentiable for
t 6= 0, τ′k(t)/k = o(1/t3) and its contribution is o(nk) and that if E[X 2 log |X |] <∞, the Riemann-
Lebesgue lemma yields

∫

1/|s|<|t|<π
[ρen](t)vk(t)e

−ist d t = o(nk). (4.12)

That the last estimate is uniform in n and k requires proof. Since, by dominated convergence,
∫ π

−π |t vk(t)|d t/k → 0 as |k| → ∞, it suffices for the proof to show that n−1 times the integral
restricted on |t|> ε tends to zero uniformly in n for each ε > 0 and k. This follows from the fact that
en = π−n−π0+a(n) and supε<|t|<π |π−n(t)−π0(t)|= o(n). Thus the claim (4.11) has been verified.

For the proof of (4.10) we must evaluate the integrals of other terms of
�

ρen[e−k − fk]
�′′
(t), e.g.,

ρ′′(t)en(t)[e−k − fk](t), but their evaluations are quite similar, hence omitted.

It remains to prove
∫

R

(ρ◦ fn fk)(t)w(t)e
−ist d t = o

�

nk

s2

�

. (4.13)

It is not hard at all to verify this as in a similar way to the above, but we take up another way. We
are concerned with the Fourier integral that has an explicit form if w is removed and we shall seek
out it. To this end the following decomposition of ρ◦ fn fk is convenient:

ρ◦ fn fk = ρ◦(π◦n−π
◦
0)(π

◦
k −π

◦
0) (4.14)

+σ−2
2 kρ◦(π◦n−π

◦
0) +σ

−2
2 nρ◦(π◦k −π

◦
0) +σ

−4
2 nkρ◦.

Remember the identity πn(t) = e−λ|nt|/σ2|t| given in (2.2) and observe that ρ◦π◦nπ
◦
k = π

◦
n+k, so

that the first term on the right side of (4.14) equals π◦n+k −π
◦
n−π

◦
k +π

◦
0, whose Fourier transform,

already computed in the preceding lemma, equals

1

σ2 log
� (s2

∗ + k2
∗)(s

2
∗ + n2

∗)

s2
∗(s

2
∗ + (n∗+ k∗)2)

�

=
−nk

σ2
2π‖[s, n]‖2

+ o
�

nk

s2

�

. (4.15)

The other terms are the transforms of Cauchy densities and by inverting them we have

nk

σ2
2π‖[s, n]‖2

+
nk

σ2
2π‖[s, k]‖2

−
nk

σ2
2π‖[s, 0]‖

2
(4.16)

for the Fourier integral of their sum (but the last term necessitates truncation by w or, otherwise,
interpretation as a Schwartz distribution). Now summing (4.15) and (4.16) gives (4.13). This
completes the proof of Lemma 4.3.

Now we can finish the proof of Theorem 4.1 in the case (ii). Proposition 6.1 of [9] says that if
E[X 2 log |X |]<∞, then as |s| →∞ with n≤ |s|

a∗(−k)
2π

∫ π

−π
ρ(t)en(t)e

−ist d t =
a∗(−k)n
πσ2

�

1

s2
∗ + n2

∗
−

1

s2
∗

�

+ o
�

nk

s2

�

(4.17)

and the corresponding Fourier coefficient of a∗(n)ρ(t)e−k(t) is O(nk3/s4), hence o(nk/s2); from
[9] we also have

a∗(−k)a∗(n)
2π

∫ π

−π
(−ρ(t))e−ist d t =

a∗(−k)a∗(n)σ2
2

πσ2s2
∗

+ o
�

nk

s2

�

. (4.18)
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Observe that under the constraint of (ii), (2π)−1 times the right side of the formula in Lemma 4.2
may be written as n∗k∗/π‖[s, n]‖2+ o(nk/s2) and that the sum of (4.17) and (4.18) may be written
as σ2

2a∗(n)a∗(−k)/π‖[s, n]‖2+o(nk/s2) since lim a(n)/n= 1/σ2
2. Combined with (4.3) and Lemma

4.3, these observations yield the estimate of Theorem 4.1.

Case (iii) |s| ≤ n; (−k)∨ 1� n. It suffices to prove that GL([0, n], [s, k]) = o(1) uniformly for |s| ≤
n; − n≤ k <−εn for each ε > 0 but this is included in Theorem 1.2.

The proof of Theorem 4.1, hence that of Theorem 1.3 is complete.

5 The Walks in Dimensions d ≥ 3

This section consists of five subsections and some preliminary discussions given preceding them.
Here our primary purpose is to prove Theorems 1.4 and 1.5, of which the proof of the latter is given
in Subsection 1. After obtaining some preliminary estimates in Subsections 3 and 4, we derive in
Subsection 4 an estimate of the hitting distribution H[0,n] (Theorem 5.1) under the same moment
condition of Theorem 1.4, and, succeeding it, we prove Theorem 1.4. In [9] (Theorem 10.1) the
present author has presented the same asymptotic form of H[0,n] as in Theorem 5.1 and erroneously
asserted that it holds without any additional moment condition (i.e., under the existence of second
moments) for d ≥ 3. We shall see in the last subsection that how H0(x) = GL([0, n], [x , 0]) may
behave when E|X |d =∞, which in particular shows that the formula for H[0,n] as given in Theorem
5.1 cannot be assured under the second moment condition only.

Let the random walk S0
n on Zd be irreducible and has zero mean and finite variances. Throughout

this section the dimension d is supposed to be greater than or equal to three. For x ∈ Zd−1 and
n ∈ Z we denote by [x , n] the d-dimensional point (x1, . . . , xn−1, n) ∈ Zd and by L the hyper plane
{[x , 0] : x ∈ Zd−1}. The random variables X , Y , the norm ‖[x , n]‖, the Green function GL , the
functions ρ,πn etc. are all understood to be analogously defined. The Euclidian norm is denoted by
| · | and we often write θ2 for |θ |2, θ ∈ Rd−1.

An obvious analogue of the Fourier representation formula (1.3) (as well as that of (1.2)) is valid
in the dimensions d ≥ 3. The leading term in the asymptotic formula of Theorem 1.4 comes from
the explicit expression of the Fourier integral that intrinsically arises when 1−ψ is replaced by 1

2
Q

in the representation formula of GL . The problem is to estimate the error term that is caused by
the replacement; for the estimation we need some moment condition, of which the condition (1.5)
(resp. E|X |d <∞) is appropriate under the constraint |x |< M(|n| ∨ |k|) (resp. |x | ≥ M−1|n| ∨ |k|).

Throughout the rest of this section we suppose that X and Y are uncorrelated so that

Q(θ , l) = R(θ) +σ2
d l2 where R(θ) := E[(X · θ)2] and σ2

d = E[Y 2].

Let n> 0, write s = |x | and define π◦−n(θ) analogously to (2.1). It follows that π◦0(θ) = 1/
p

σ2
dR(θ).

Hence, putting |θ |R =
p

R(θ)/det R , λ= σd/σ2
d =
p

det R/σd and ρ◦(θ) = 1/π◦0(θ) we have

ρ◦(θ) =
Æ

σ2
dR(θ) = σd |θ |R

and

π◦−n(θ) =
1

2π

∫

R

2

Q(θ , l)
einl dl =

e−nλ|θ |R

σd |θ |R
. (5.1)
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Let T ′ = [−π,π)d−1 be the range of the variable θ ; w(θ) denotes a smooth cut off function as
before (w equals 1 about the origin and vanishes for |θ |> 1) . For every N > 0, as s→∞

σd

(2π)d−1

∫

T ′
|θ |Rw(θ)e−i x ·θ dθ =

Γ(d/2)σ2
d

πd/2‖[x , 0]‖d
+ o(s−N ). (5.2)

Indeed, together with the change of variables of integration, Green’s formula transforms the in-
tegral above into (d − 2)σ2

dσ
−d+2‖[x , 0]‖−2

∫

Rd−1 |θ |−1ei x ′·θ dθ + o(s−N ), where x ′ = R−1/2 x (cf.
[8]:Lemma 2.1), and a known explicit formula for the last integral ([6], p.73) yields (5.2).

With these preliminaries Theorems 1.4 and 1.5 are proved independently except for the case when
k/n→−1 (see the end of Subsection 4).

5.1. Proof of Theorem 1.5

Lemma 5.1. Let |k| ≤ n and Dx ,n,k be defined via the equation

1

(2π)d−1

∫

T ′

[π0(θ)−πk(θ)]π−n(θ)
π0(θ)

e−i x ·θ dθ =
κd

σ2

�

1

‖[x , n]‖d−2
−

1

‖[x , |k|+ n]‖d−2

�

+ Ds,n,k.

Then, under (1.6), supk |Dx ,n,k| = o(1/nd−2) as n→∞ and under (1.5), supn nd−1|Dx ,n,m| = o(|k|)
as |k| → ∞, where the supremums are taken under the constraint |k| ≤ n and both formulae are valid
uniformly in |x |< Mn for each M > 1.

(If µ 6= 0, ‖[x , |k|+ n]‖ appearing in the right side is to be replaced by ‖[x + 2nµ, k+ n]‖ for k > 0
and by ‖[x , k− n]‖ for k < 0. ; also ‖[x , n]‖ to be replaced by ‖[x ,−n]‖= ‖[x + 2nµ, n]‖)

Proof. The proof is similar to that of Proposition 2.2. We have the same decomposition of ρ[π0 −
πk]π−n as in (2.9) and the same estimate for each terms of it but with |θ | in place of |t|. Thus

(ρ◦[π◦0−π
◦
k]π

◦
−n)(θ) =

e−nλ|θ |R − e−(n+|k|)λ|θ |R

σd |θ |R

for the first term, whose Fourier coefficient (i.e. integral on T ′) therefore agrees with the princi-
pal term of the formula of the lemma up to o(n−N ) for any N . The middle term is of the form
e−λn|θ |(|k| × o(|θ |) + |θ | × o(k)) and it is readily inferred that its Fourier coefficientl is o(k/nd−1)
under (1.6). For the last term, which is ρ[π0−πk](π−n−π◦−n), we first observe that

(ρ|π0−πk|)(θ)≤ C[|kθ | ∧ 1]

(see Lemma 6.1 (i) for the case |kθ | < 1) and then infer from (i) and (ii) of Lemma 6.2 that its
contribution is o(n−d+2) under (1.6) and o(k/nd−1) under (1.5), respectively.

Proof of Theorem 1.5. Under (1.6) it holds that for each M > 1, uniformly for |x |< Mn, as n→∞

G([n, 0], [x , 0]) =
1

(2π)d−1

∫

T ′
π−n(θ)e

−i x ·θ dθ =
κd

σ2‖[x , n]‖d−2
(1+ o(1)) (5.3)

(see [8] for the identification of the leading term and Lemma 6.2 for the error estimate). Combining
this with Lemma 5.1 (its first case) we find the formula of Theorem 1.5.

The following lemma that corresponds to (b) of Proposition 2.1 will be applied in the proof of
Theorem 1.4.
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Lemma 5.2. If (1.5) holds, s2+ (n2 ∧m2) 6= 0 and Cx ,n,m is defined via the equation

1

(2π)d−1

∫

T ′

h

π−m(θ)−π−n(θ)
i

e−i x ·θ dθ =
κd

σ2

�

1

‖[x , m]‖d−2
−

1

‖[x , n]‖d−2

�

+ Cs,n,m,

then, uniformly in x, Cx ,n,m = o(|n−m|/(|n| ∧ |m|)d−1) as |n| ∧ |m| →∞.

Proof. We have an analogue of (2.5). By making a suitable truncation argument by means of w(l)
the term J in it is evaluated to be negligible. As for the double integral in it, writing eiml − einl =
(e−ikl −1)einl (k = n−m), we first integrate its inner integral by parts d−2 times successively, and
then proceed as in the proof of (b) of Proposition 2.1 (with the help of Lemma 6.2 of Appendix (D))
to obtain the required estimate.

REMARK 7. The case |n/m| → ∞ is excluded in Lemma 5.2, since in its subcase |m|/s → 0
we need to impose an additional moment condition on X for identifying the asymptotic form of
G([0, m], [0, x]) = (2π)−d+1

∫

T ′
π−m(θ)e−i x ·θ dθ (cf. [8]).

5.2. Estimation of ρ(θ)−ρ◦(θ)

We infer that
π0(θ)−π◦0(θ) = o(|θ |−1).

Hence,
ρ(θ)−σd |θ |R = ρ(θ)−ρ◦(θ) = o(|θ |). (5.4)

We denote by ∇ the gradient operator w.r.t. θ and write

s = |x |, ω= x/s and ∇ω =ω · ∇.

Lemma 5.3. Suppose E|X |d <∞. Then for k = 0,1, 2, . . . , d,

∇k
ω(ρ−ρ

◦)(θ) = o
�

|θ |−k+1
�

(5.5)

and
∇d
ω(ρ−ρ

◦)(θ) = O
�

|θ |−1
�

+τ(θ) (5.6)

with some differentiable function τ(θ) on T ′ \ {0} such that ∇τ(θ) = o(|θ |−d).

Proof. As in the proof of Proposition2.1 let D = D(θ , l) denote the difference of (1−ψ)−1 and
2/Q:

D(θ , l) =
1

1−ψ(θ , l)
−

2

Q(θ , l)
=
ψ(θ)− 1+ 1

2
Q(θ , l)

(1−ψ(θ , l))1
2
Q(θ , l)

.

Putting U = ρ−ρ◦ and recalling that π◦0 = 1/ρ◦ we have

∇U(θ) =−ρ2(θ)∇[π0−π◦0](θ) + U(θ)(ρ(θ) +ρ◦(θ))∇π◦0(θ). (5.7)

Since∇D(θ , l) = o((|θ |+ |l|)−3) as |θ |+ |l| → 0, we have∇[π0−π◦0](θ) =
1

2π

∫ π

−π∇Ddl+O(|θ |) =
o(|θ |−2), which, together with (5.4), gives the desired bound for k ≤ 1. In general for 1≤ k ≤ d,

∇k
ωD(θ , l) = o

�

(|θ |+ |l|)−k−2
�

, (5.8)
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hence ∇k
ω[π0−π◦0](θ) = o(|θ |−k−1). Further noting that ∇k

ωρ(θ) = O(|θ |−k+1) we obtain the first
bound of the lemma for k ≥ 2. The second one is obtained by defining τ(θ) via the equation

−ρ2(θ)∇d
ω[π0−π◦0](θ) =−ρ

2(θ)
id

2π

∫ π

−π

E[eiX ·θ+iY l(X ·ω)d]
(1−ψ(θ , l))2

dl +τ(θ).

Proposition 5.1. Suppose E|X |d <∞. Then H0(x) =
Γ(d/2)σ2

d

πd/2‖[x , 0]‖d
+ o(s−d).

Proof. Using the bound (5.5) we readily deduce that

H0(x) =
1

(2π)d−1

∫

T ′
ρ◦(θ)w(θ)e−i x ·θ dθ +

id

(2π)d−1sd

∫

T ′1/s

∇d
ω(ρ−ρ

◦)(θ)e−i x ·θ dθ + o(s−d),

where T ′ε = {θ ∈ T ′ : |θ | > ε} (ε > 0). Now substitute from (5.5) and apply the Riemann-Lebesgue
lemma to see that the second integral above takes on the form o(1) +

∫

T ′1/s
τ(θ)e−i x ·θ dθ , of which,

on integrating by parts once more, the integral term is also o(1). Finally the formula (5.2) concludes
that of the lemma.

5.3. Estimation of en(θ)

Remember that f (x) = |x |−1(e−|x |− 1) + 1 and en(θ) = π−n(θ)−π0(θ) + a(n) (Section 4).

Lemma 5.4. Suppose that E|X |d <∞. Then en(θ) = σ
−2
d |n| f (λn|θ |R) +ηn(θ) with

sup
n,ω

1

|n|
|∇k
ωηn(θ)|= o(|θ |−k) for k = 0,1, . . . , d (5.9)

and

sup
n,ω

1

|n|
|∇d
ωηn(θ)−τn(θ)|= O

�

|θ |−2
�

(5.10)

for some differentiable function τn(θ) on T ′ \ {0} such that supn |n−1∇τn(θ)|= o(|θ |−d−1).

Proof. Put W (θ , l) =
h

1
1−ψ(θ ,l) −

1
1−φ(l)

i

−
h

2
Qθ ,l) −

2
σ2

d l2

i

, which may also be written as

W (θ , l) =
ψ−φ

(1−ψ)(1−φ)
−
−2R(θ)

Q(θ , l)σ2
d l2

. (5.11)

The function f comes up from the corresponding integral of the second term:

1

2π

∫ π

−π

−2R(θ)

Q(θ , l)σ2
d l2
(cos nl − 1)dl =

1

πσ2
d

∫ n

0

du

∫ π

0

2R(θ)
Q(θ , l)

·
sin ul

l
dl

= σ−2
d |n| f (λn|θ |R) +O(θ2), (5.12)

where the formula a2
∫∞

0
[π(a2 + l2)l]−1 sin yl dl = 1

2
(1− e−|a|y) (valid for y ≥ 0) is used for the

last equality. It accordingly follows that 2πηn(θ) =
∫ π

−πW (θ , l)(einl −1)dl+ a negligible term. The

1179



evaluation of the last integral is made in the same way as for the two dimensional case for here the
integration by θ is not involved. This gives (5.9). Since ∇W =∇D, we have for k ≥ 1,

∇k
ωηn(θ) =

1

2π

∫ π

−π
∇k
ωD(θ , l)(einl − 1)dl

and the formula (5.10) is obtained as in the proof of Lemma 5.3.

REMARK 8. Suppose E[[X |d+ |Y |d]<∞. Then ψ−1+ 1
2
Q = O(|θ |3+ |l|3), from which we infer that

for |θ | < 1/2, π0(θ) = 1/σd |θ |R +O(log |θ |−1), hence ρ(θ)−ρ◦(θ) = O(θ2 log |θ |−1); moreover
the estimates of Lemmas 5.3 and 5.4 are improved as follows: for k = 0, . . . , d,

∇k
ω(ρ−ρ

◦)(θ) = O
�

|θ |−k+2log |θ |−1
�

and sup
n,ω
|n|−1|∇k

ωηn(θ)|= O
�

|θ |−k+1log |θ |−1
�

,

respectively, and the use of these considerably simplifies the argumenys in the next section.

5.4. Estimation of H[0,n](x) and Proof of Theorem 1.4

As has been noticed in the two-dimensional case Theorem 1.4 includes, as a special case of k = 0, the
asymptotic estimate of the hitting distribution H[0,n](x). For the proof of Theorem 1.4 this special
case is essential and first dealt with.

Theorem 5.1. (i) Suppose (1.5) to hold. Then uniformly for |x |< M |n|, as |n| →∞

H[0,n](x) =
Γ(d/2)

πd/2
·

|n|
‖[x ,−n]‖d

(1+ o(1)).

(ii) Suppose that E|X |d <∞. Then uniformly for |n|< M |x |, as |x | →∞

H[0,n](x) =
Γ(d/2)

πd/2

�

σ2
d a∗(n)

‖[x , 0]‖d
+

|n|
‖[x ,−n]‖d

−
|n|

‖[x , 0]‖d

�

+ o
�

n

sd

�

.

Proof. First we prove (i). Let n> 0. The leading term should be given by

1

(2π)d−1

∫

Rd−1

ρ◦(θ)π◦−n(θ)e
−i x ·θ dθ =

Γ(d/2)

πd/2
·

n

‖[x , n]‖d
.

(see Section 10 of [9]). Our task is to prove that uniformly for |x |< Mn,
∫

T ′
[ρ(θ)π−n(θ)−ρ◦(θ)π◦−n(θ)w(θ)]e

−i x ·θ dθ = o(n−d+1). (5.13)

Now suppose (1.5) to hold. We decompose ρπ−n−ρ◦π◦−n as follows:

ρπ−n−ρ◦π◦−n = ρ[π−n−π◦−n] + [ρ−ρ
◦]π◦−n.

In view of (5.1) (i.e., π◦−n(θ) = e−nλ|θ |R/ρ◦(θ)) and the estimate ρ(θ)−ρ◦(θ) = o(|θ |) we have

sup
x

�

�

�

�

∫

T ′
(ρ(θ)−ρ◦(θ))π◦−n(θ)e

−i x ·θ dθ

�

�

�

�

= o(n−d+1)).
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We shall see in Appendix (D) (Lemma 6.2 (ii)) that the Fourier coefficient of ρ[π−n −π◦−n] admits
the same estimate as above. Thus the proof the part (i) is complete.

Proof of (ii). Remember that ρπn = ρen + 1− a∗(n)ρ. Owing to Theorem 5.1 it therefore suffices
to prove

Proposition 5.2. If E|X |d <∞, then uniformly for |n|< |x |, as s = |x | →∞,

1

(2π)d−1

∫

T ′
ρ(θ)en(θ)e

−i x ·θ dθ =
Γ(d/2)

πd/2

� |n|
‖[x ,−n]‖d

−
|n|

‖[x , 0]‖d

�

+ o
� n

sd

�

.

Proof. Recalling that f (u) = |u|−1(e−|u|− 1) + 1 we put

fn(θ) = σ
−2
d |n| f (nλ|θ |R).

Let n> 0. Then
σd |θ |R fn(θ) = e−nλ|θ |R − 1+ nλ|θ |R,

and by Lemma 5.4
en(θ) = fn(θ) +ηn(θ)

with ∇k
ωηn(θ) = n×O(|θ |−k+1) for k = 0,1, . . . , d. Taking this into account we decompose

(ρen)(θ) = (ρ
◦ fn)(θ) + (ρηn)(θ) + ([ρ−ρ◦] fn)(θ). (5.14)

Since ρen is periodic,
∫

T ′
(ρen)(θ)(1−w(θ))e−i x ·θ dθ = o(s−d). On using (5.2)

1

(2π)d−1

∫

T ′
(ρ◦ fn)(θ)w(θ)e

−i x ·θ dθ =
Γ(d/2)

πd/2

�

n

‖[x ,−n]‖d
−

n

‖[x , 0]‖d

�

+ o
� n

sd

�

. (5.15)

It suffices for the proof of Proposition 5.2 to verify that uniformly in n,

sd

n

∫

T ′
(ρηnw)(θ)e−i x ·θ dθ +

sd

n

∫

T ′
([ρ−ρ◦] fnw)(θ)e−i x ·θ dθ = o(1).

Denote the first and second terms on the left side by I1 and I2, respectively.

Evaluation of I1 is made in a similar way to the proof of Proposition 5.1. We employ Lemma 5.4.
After integrating by parts d−1 times we split the range of integration along the (d−2)-dimensional
sphere of radius 1/s. The integral inside the sphere is easy to evaluate. For the integral on its outside
we integrate by parts once more. The typical term that then arises is a constant multiple of

1

n

∫

T ′1/s

(w∇ j
ωρ∇

d− j
ω ηn)(θ)e

−i x ·θ dθ =

∫

T ′1/s

o
�

1

|θ | j−1 ×
1

|θ |d− j

�

e−i x ·θ dθ (0≤ j ≤ d),

plus the boundary term, which is o(1). For 1 ≤ j < d, further performing integration by parts once
we see that the last integral is also o(1). For the case j = 0 we use the second formula of Lemmas 5.4
to obtain the same estimate. As for the case j = d, separating the non-differentiable term from∇d

ωρ

according to (5.6), we have only to make the same argument. Thus we have I1 = o(1) as s →∞.
Here, the Riemann-Lebesgue lemma is applied to the parts involving the functions (O(·) terms in
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(5.6) and (5.10) ) that are integrable but not necessarily differentiable. That the convergence is
uniform in n ≤ s/M for such parts is verified as in the relevant discussion following (4.12) in the
proof of Lemma 4.3.

Now we turn to I2. We need to derive a bound of ∇ j
ω fn(θ). First observe that

f ( j)(u) = O(1∧ |u|− j−1)

and ∇ fn(θ) = σ
−2
d σ

−d f ′(nλ|θ |R)n2Rθ/|θ |R. Then one deduces that

∇ j
ω fn(θ) = O

�

[ |nθ |2 ∧ 1]× |θ |− j−1
�

. (5.16)

Combining this with the estimate of ∇d− j
ω (ρ − ρ◦) given in Lemma 5.3 one readily obtains that

I2 = o(1).

Proof of Theorem 1.4. We follow the lines of the proof of Theorem 1.3. While much of details are
simplified, there are a few places where modifications are necessitated, which we indicate below.

Case (i) s ≤ n; k = o(n). Here we use the moment condition (1.5) but does not the condition

E|X |d < ∞. The first step of getting the leading term (see (4.2)) is cleared by Proposition 5.1
and Lemma 5.2. The rest is the same.

Case (ii) n≤ s; k = o(s). Here we need only the condition E|X |d <∞. In view of Propositions 5.1
and 5.2 it suffices to obtain the propositions corresponding to Lemmas 4.2 and 4.3. For the former
one, if F is given by (4.5) with ∂ 2

t replaced by ∇d
ω, then F = o((|θ |+ |l| )−d−2), and we can proceed

similarly to the arguments made after it in the proof of Lemma 4.2, except that the leading term
is provided by the formula of Lemma 5.2. To prove the analogue of Lemma 4.3 we also follow its
proof. For the evaluation of the Fourier coefficient of g (given in (4.8)) we perform integration by
parts, successively d − 1 times, for the integral to be evaluated and then proceed in the same way
with the help of Lemmas 5.3 and 5.4. As for the function ρ◦ fk fn treated in the last step of the proof
of Lemma 4.3 the explicit forms of the relevant Fourier transforms are derived from the formulae
(5.2) and (5.15) and that of Lemma 5.2.

Case (iii) s ≤ n; (−k)∨ 1� n. The assertion follows from Theorem 1.5 (under (1.6)).

5.5. An Estimate of H0(x) under E[|X |d] =∞

Theorem 5.2. Let d = 3. Then for each ε > 0, as s := |x | →∞

H0(x) =
σ2

3

2π‖[x , 0]‖3
+

1

s2 Mε(x) + o
�

log s

s3

�

, (5.17)

where

Mε(x) =
1

(2π)3

∫

T ′
ρ2(θ)dθ

∫ π

−π

E[(ω · X )2ei(X−x)·θ+ilY ; |X − x |< εs]
(1−ψ(θ , l))2

dl.

If E[X 2 log |X |]<∞, the error term in (5.17) can be replaced by o(s−3).

It is inferred from Theorem 5.2 that for any increasing and unbounded function h(t), t ≥ 0 and any
positive number δ there exists a probability p on Z3 of zero mean such that E[|X |2+δ]<∞, Y is a.s.
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bounded and H0(x)|x |3−δh(|x |) is unbounded. Similar results are obtained for d > 3 although here
we do not discuss on them.

Proof of Theorem 5.2. The proof starts from the expression

[2πs]2H0(s) =− s2

∫

T ′
ρ(θ)e−i x ·θ dθ =

∫

T ′
∇2
ωρ(θ)e

−i x ·θ dθ .

Differentiate both sides of (5.7) and observe that −ρ2∇2
ω(π0−π◦0) = Λ0+Λ1, where

Λ0(θ) =−
ρ2(θ)

2π

�
∫ π

−π

E[eiX ·θ+ilY (X ·ω)2]
[1−ψ(θ , l)]2

dl +

∫

R

−E[(X ·ω)2]
[1

2
Q(θ , l)]2

dl
�

and Λ1 is the rest, for which Λ1 = o(1/|θ |3) and ∇Λ1 = o(1/|θ |4). Then we have

∇2
ωρ(θ) =∇

2
ωρ
◦(θ) +Λ0+Λ1+Λ2,

where
Λ2 =−∇ω[ρ2](θ)∇ω[π0−π◦0](θ) +∇ω

�

U[ρ+ρ◦]∇ωπ◦0
�

(θ).

We do not make truncation by means of w(θ) at this stage; the boundary terms that arise in the
integration by parts (of non-periodic functions) that will be performed once more cancel out one
another since ∇2

ωρ is periodic. By (5.2) we obtain that

∫

T ′
∇2
ωρ
◦(θ)e−i x ·θ dθ = [2πs]2×

σ2
d

2π‖[x , 0]‖3
+ o(s−1) + the boundary term .

For both Λ1 and Λ2 we have a situation similar to one arising in the proofs of Lemmas 6.2 and 6.3
of [9] (but only with the appearance here more complicated) and by virtually the same arguments
as are made therein it is shown that

∫

T ′
Λ j(θ)e−x ·θ dθ = o(s−1 log s) for j = 1, 2, where the error

term is replaced by o(s−1) plus the boundary term if E[X 2 log |X |]<∞.

It remains to evaluate the Fourier coefficients of Λ0. It is easy to see that
∫

T ′
Λ0(θ)e

−i x ·θ dθ =

∫

T ′1/s

ζ(θ)e−i x ·θ dθ + o(1/s),

where

ζ(θ) =
[ρ(θ)]2

2π

∫ π

−π

E[(eiX ·θ − 1)eiY l(ω · X )2]
[1−ψ(θ , l)]2

dl.

Note that ζ may not admit differentiation and that it is periodic. In what follows we prove that

J(x) :=

∫

T ′1/s

ζ(θ)e−i x ·θ dθ = (2π)2Mε(θ) + o(1). (5.18)

We decompose ζ= ζ0+ ζ1+ ζ2, where, by writing Xw = X ·ω,

ζ0(θ) =
ρ2

2π

∫ π

−π

E[X 2
ωeilY eiX ·θ (1−w(|X |θ))]

(1−ψ)2
dl,
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ζ1(θ) =−
ρ2

2π

∫ π

−π

E[X 2
ωeilY (1−w(|X |θ))]
(1−ψ)2

dl,

and ζ2(θ) =
ρ2

2π

∫ π

−π

E[X 2
ωeilY (eiX ·θ − 1)w(|X |θ)]

(1−ψ)2
dl.

We may suppose that w(u) = 1 for |u| < 1
4

and 0 for |θ | > 1
2
. Note that |∇ j

ωw(|X |θ)(|X ||θ |) j is

bounded by a constant times the indicator function 1(1
4
< |X ||θ |< 1

2
).

On observing that ∇ j
ωζ1(θ) = o(|θ |− j−1) for j = 0, 1,2 integrations by parts give
∫

T ′1/s

ζ1(θ)e
−i x ·θ dθ =

i

s

∫

∂ T ′
ζ1(θ)e

−i x ·θω · ndσ+ o(1/s),

where n denotes the outer normal vector to ∂ T ′. The boundary integral above vanishes since if
X 6= 0, w(|X |θ) = 0 on ∂ T ′ so that the integrand is periodic.

On integrating by parts and applying Fubini’s theorem
∫

T ′1/s

ζ2(θ)e
−i x ·θ dθ = E

�
∫

T ′1/s

e−i x ·θ dθ

2πs

∫ π

−π

ρ2X 3
ωeilY eiX ·θw(|X |θ)
(1−ψ)2

dl

�

+

∫

T ′1/s

e−i x ·θ dθ

2πsi

∫ π

−π
E

�

X 2
ωeilY (eiX ·θ − 1)∇ω

�

ρ2w(|X |θ)
(1−ψ)2

�

�

dl.

The first term on the right side is o(1/s). Indeed if the expectation above is restricted to the event
|X | < K , it is o(1/s) for each K in view of the Riemann-Lebesgue lemma. Changing the variables of
the outer integral we see that the same expectation but on |X | ≥ K is bounded in absolute value by
a positive multiple of

E

�
∫

R2

u2w(u)du

2πs

∫

R

|Xω|3

|X |(u2+ l2)2
dl; |X | ≥ K

�

≤
1

s
E[X 2 : |X |> K].

The second term is similarly dealt with. If the expectation involved in it is restricted to |X | ≤ K , the
corresponding part is o(1/s). The other part, after integrating by parts once more, is disposed of in
the same way. These together verify

∫

T ′1/s

ζ2(θ)e
−i x ·θ dθ = o(1/s).

We are left with ζ0. Let 0 < ε < 1/2. Split the range of integration into two parts according as
|X−x | ≥ εs or |X−x |< εs and call J1 and J2, respectively, their contributions to

∫

T ′1/s
ζ0(θ)e−i x ·θ dθ .

Since J2 = (2π)2Mε(x) if ε < 1/2, it suffices to show that J1 = o(1). We integrate by parts with
respect to θ by factorizing the integrand as ei(X−x)·θ×(the other) to deduce that for each ε > 0, J1
equals

−
∫

T ′1/s

dθ

∫ π

−π
E

�

X 2
ωei(X−x)·θ

2πi|X − x |
eilY∇ω

�

(1−w(|X |θ))ρ2

(1−ψ)2

�

; |X − x | ≥ εs
�

dl
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plus the boundary integral that is o(1/s) (the integral on ∂ T ′ vanish by the same reason as before).
Repeat the same integration by parts once more and note that both ∇w(|X |θ) and 1 − w(|X |θ)
vanishes if |X ||θ |< 1

4
. We then observe that the double integral above is bounded in absolute value

by a constant multiple of

E
�

sX 2
ω

|X − x |2
; |X − x | ≥ εs, |X | ≥

s

4

�

+

∫ π

1/s

E
�

X 2
ω

|X − x |2
; |X − x | ≥ εs, |X | ≥

1

4r

�

dr

r2

= o(1/s).

Finally, observing that the expectation involved in the second term is s−2 × o(1) as r → 0, we
conclude that J1 = o(1/s) as s→∞. The proof of (5.18) is complete.

6 Appendices

(A) We prove the formula (1.3). The proof is based on the identity

pm
L ([0, n], [s, k]) = pm([0, n], [s, k])−

m
∑

τ=1

∑

j∈Z

Fn(τ, j)pm−τ([ j, 0], [s, k]) (m≥ 1), (6.1)

where pm(x , y) = P[S x
m = y] and for τ= 0,1, 2, . . .

Fn(τ, s) = P
h

S[0,n]
τ = [s, 0], S[0,n]

j /∈ L for j = 1, . . . ,τ− 1
i

(the joint distribution of the time τ and position s of the first entrance into L of the walk S[0,n]
· ). It

is readily inferred (cf. [9], Appendix A) that for 0< |t| ≤ π,

∞
∑

m=0

∑

s∈Z

pm(0, [s, k])eist = πk(t) and
∞
∑

τ=0

∑

j∈Z

Fn(τ, j)ei j t = ρ(t)π−n(t)

and with the help of these identities we derive from (6.1)

∞
∑

m=0

∑

s∈Z

pm
L ([0, n], [s, k])eist = π−n+k(t)−ρ(t)π−n(t)πk(t).

The last double series is absolutely convergent: in fact
∑∞

m=0

∑

s∈Z pm
L ([0, n], [s, k]) is nothing but

the Green function of one-dimensional walk killed at the origin and hence equals a(n) + a(−k)−
a(n− k)<∞ (cf. [7]). Now the Fourier inversion yields (1.3).

(B) Let Bt be the two dimensional standard Brownian motion and consider its linear transform
X t =Q1/2Bt . If g◦(x , y) denotes the Green function of X t killed on L and gB(x , y) =− 1

π
log |y − x |

and g◦B(x , y) = gB(x , y) − gB(x ′, y), where x ′ stands for the mirror image of x relative to the
line Q−1/2 L, then, g◦(x , y) = g◦B(Ax , Ay)det A (x ∈ R, y > 0) where A = Q−1/2. We may write
(Ax)′ = Ax̃ , so that

g◦(x , y) =
1

2πσ2 log
Q−1(y − x̃)
Q−1(y − x)

(x ∈ R, y > 0).
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The point x̃ is characterized by x̃2 = −x2 and A(x − x̃) · A[1, 0] = 0, which is solved to yield
x̃1 = x1 − 2µx2 (µ = σ12/σ

2). Thus if x = [0, n], then x̃ = [−2µn,−n], and the formula above
may be written as

g◦([0, n], [s, k]) =
1

πσ2 log
‖[s+ 2µn, k+ n]‖
‖[s, k− n]‖

(nk > 0).

in accordance with (6.2) given below.

(C) Here we indicate a way the proofs given in Section 2 are modified in the case σ12 6= 0. (For
those in Sections 3 and 4 see Section 10 of [9].) It is noted that the formula of Theorem 1.1 may be
written as

GL([0, n], [s, k]) =
1

πσ2 log
‖[s+ 2µ(n+ k−), n+ |k| ]‖

‖[s, k− n]‖ ∨ 1
+ Bs,n,k, (6.2)

where k− = (|k| − k)/2. If we define

π̃k(t) =
1

2π

∫ π+µt

−π+µt

e−ikl

1−ψ(t, l −µt)
dl,

then

GL([0, n], [s, k]) =
1

2π

∫ π

−π

h

π̃−n+k(t)−ρ(t)π̃−n(t)π̃k(t)
i

e−i(s+µn−µk)t d t.

The principal part of 1−ψ(t, l −µt) = 1− E[ei t X̃+ilY ] is given by half the quadratic form

Q̃(θ) =Q(θ1,θ2+µθ1) = σ̃
2
1θ

2
1 +σ

2
2θ

2
2 with σ̃2

1 = σ
2
1 −µσ12 = σ

4/σ2
2.

For the quadratic form of the inverse matrix Q̃−1 we have Q̃−1(α− µβ ,±β) = Q−1(α,β); we shall
be interested in the following version of it

Q̃−1(α+µ(1−δ), 1+ |δ|)

=Q−1(α+ 2µ(1+δ−), 1+ |δ|) =
¨

Q−1(α+ 2µ, 1+δ) δ > 0,
Q−1(α,δ− 1) δ < 0.

(6.3)

By changing the variables according to u= l +µt,

∫ π

−π

�

π−m(t)−π−n(t)
�

e−ist d t =
1

2π

∫ π

−π
d t

∫ π+µt

−π+µt

A+ B

1−ψ(t, u−µt)
du,

where
A= e−i(s+µm)t(eimu− einu), B =

�

e−i(s+µm)t − e−i(s+µn)t
�

einu.

Denote by IA and IB the integrals corresponding to A and B, respectively. Then, the same proofs of
Propositions 2.1 and 2.2 yield that in the limit indicated in Corollary 2.1

IA →
1

σ2 log
�

Q̃−1(α+µβ , 1)

Q̃−1(α+µβ ,β)

�

and IB →
1

σ2 log
�

Q̃−1(α+µ, 1)

Q̃−1(α+µβ , 1)

�

,
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respectively. This shows Proposition 2.1 that is so modified that the limit in Corollary 2.1 becomes
σ−2 log [Q̃−1(α+ µ, 1)/Q̃−1(α+ µβ ,β)]. For Proposition 2.2 we can proceed similarly. We write
down
∫ π

−π

(π0−πk)π−n

π0
e−ist d t =

1

(2π)2

∫ π

−π
d t

∫ π+µt

−π+µt

(A+ B)dl

1−ψ(t, l −µt)

∫ π+µt

−π+µt

ρ(t) einudu

1−ψ(t, u−µt)
,

where
A= e−i(s+µn)t(1− e−ikl), B =

�

e−i(s+µn))t − e−i(s+µ(n−k)t
�

e−ikl ,

and denote by IA and IB the corresponding integrals. Then, as s/n→ α and k/n→ δ,

IA →
1

σ2 log
�

Q̃−1(α+µ, 1+ |δ|)
Q̃−1(α+µ, 1)

�

, IB →
1

σ2 log
�

Q̃−1(α+µ(1−δ), 1+ |δ|)
Q̃−1(α+µ, 1+ |δ|)

�

,

which shows Proposition 2.2 modified in an obvious way.

(D) Let θ denote the (d − 1)-dimensional variable as in Section 5 (but here the case d = 2 is
included). It is supposed that X and Y are uncorrelated.

Lemma 6.1. (i) There exists a constant C such that |π0(θ)−πk(θ)| ≤ C |k| (0< |θ |< 1).
(ii) lim

k→∞
k−1 sup

0<|θ |<1
|π0(θ)−πk(θ)− [π◦0(θ)−π

◦
k(θ)]|= 0.

Proof. We decompose 2π[π0(θ)−πk(θ)] = Hc(θ) +Hs(θ), where

Hc(θ) =

∫ π

−π

1− cos kl

1−ψ(θ , l)
dl and Hs(θ) =−i

∫ π

−π

sin kl

1−ψ(θ , l)
dl.

We claim that
1

k
sup

0<|θ |<1
|Hs(θ)| → 0 as |k| →∞. (6.4)

Noticing that only the odd part of (1−ψ)−1 is relevant, for the proof we write ψ(θ , l)−ψ(θ ,−l) =
2iE[(eiX ·θ − 1) sin Y l] + 2iE[sin Y l] so that

Hs(θ)
k
=

∫ π

−π

E[(eiX ·θ − 1) sin Y l]
(1−ψ(θ , l))(1−ψ(θ ,−l))

sin kl

k
dl +

∫ π

−π

E[sin Y l − Y l]
(1−ψ(θ , l))(1−ψ(θ ,−l))

sin kl

k
dl.

The first integral is o(1) uniformly in |θ | > 0 since its integrand is o(|θ |/[θ2 + l2]) as |θ |+ |l| → 0
(due to E[Y X ] = 0). The integrand of the second one is dominated in absolute value by C E| sin Y l−
Y l|/|l|3, which is integrable so that the dominated convergence theorem may be applied to conclude
that it also is o(1). This verifies the claim (6.4).

Since
∫ π

−π(1− cos kl)l−2dl < kπ, we have |Hc| ≤ Ck. Combined with (6.4), this shows (i). (ii) is
obtained in a similar way.

Let w(l) be a smooth cut-off function as in (4.4).
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Lemma 6.2. Let h(θ) be a periodic bounded Borel function on the (d − 1)-dimensional torus T ′ and
put

In =

∫

T ′
dθ

∫ π

−π
h(θ)

�

1

1−ψ(θ , l)
−

2w(l)
Q(θ , l)

�

einl dl.

(i) Let |h(θ)| ≤ 1. Then In = o(n−d+2), provided that

E[Y 2 log |Y |]<∞ for d = 2,4 and E[|Y |d−2]<∞ for d ≥ 5.

(ii) Let |h(θ)| ≤ |θ |. Then In = o(n−d+1), provided that

E[Y 2 log |Y |]<∞ for d = 3 and E[|Y |d−2]<∞ for d ≥ 4.

In both (i) and (ii) the estimates of In hold uniformly for h(θ) that satisfy the assumed bounds.

Proof. Write r =
p

θ2+ l2, Bn = {r ≤ 1/n} and T = T ′× (−π,π]. Put

Dw(θ , l) =
1

1−ψ(θ , l)
−

2w(l)
Q(θ , l)

.

We prove (ii) first. If d = 2, we decompose the range T into Bn and its complement. Clearly the
integral on Bn is o(1/n) under the assumption of (ii). We integrate by parts (w.r.t. the variable l)
the integral on T \ Bn, which is then transformed into

the boundary integral

in
−

1

in

∫

T\Bn

h(θ)∂l D
w(θ , l)einl dθdl. (6.5)

Since |∂ Bn| = O(1/n) and h∂l D
w = o(n) on ∂ Bn, the boundary integral is o(1). Integrating the last

integral by parts once more we find it to be at most a constant multiple of n−1
∫∞

1/n
r−2dr = o(1).

Thus In = o(n−1) as required.

For d = 3 we first perform integration by parts to obtain nIn = i
∫

T
h(θ)∂l D

w(θ , l)einl dθdl and then
apply the same procedure as above to the right side to see that

n2 In =−
∫

T\Bn

h(θ)∂ 2
l Dw(θ , l)einl dθdl + o(1) (6.6)

We make decomposition h∂ 2
l Dw = K +τ, where

K(θ , l) =
h(θ)E[eiX ·θ (eiY l − 1)Y 2]

(1−ψ(θ , l))2
,

and τ = τ(θ , l) is the rest. Since then τ admits one more differentiation w.r.t. l and ∂lτ = o(1/r3),
its contribution to the integral in (6.6) is shown to be o(1). Now use the supposed moment condition
E[Y 2 log |Y |] < ∞ to see that K is integrable on T (cf. Lemma 6.1 of [9]), which fact shows that
this integral tends to zero as n→∞ in view of the Riemann-Lebesgue lemma.

If d ≥ 4, under E[|Y |d−1] <∞ we can decompose ∂ d−1
l Dw(θ , l) = v(θ , l) +τ(θ , l) with |v| ≤ C r−4

(so that hv is integrable) and |∂lτ| = o(r−d−2) (due to E[Y X ] = 0). As above we then have
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nd−1 In = id−1
∫

T ′\Bn
h(θ)[v + τ](θ , l)e−i x ·θ+inl dθdl + o(1). The contribution of v is evaluated by

the Riemann-Lebesgue lemma and that of τ by the integration by parts, both resulting in o(1).

The proof of (i) is carried out similarly. For d = 4 we apply integration by parts two times, which
results in o(r−4) for the integrand, and, the further integration by parts being not allowed under
the condition EY 2 <∞, we impose the logarithmic moment condition on Y to guarantee the inte-
grability. In the case d = 2 we also need to suppose the same moment condition of Y to guarantee
the integrability of Dw (so that In = o(1)), but the reason is slightly different: if d = 2 we cannot
dispose of the integral about the origin in advance, Dw itself being possibly non-integrable.

We must ensure the uniformity of convergence with respect to functions h for the integral that is
disposed of by means of the Riemann-Lebesgue lemma. This is readily done by approximating the
function of l that results in from integration over |θ | > ε by a smooth function for each positive ε,
the other integral approaching zero uniformly as ε→ 0.
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