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1. Introduction

Deterministic neutral differential difference equations and their stability have been
studied by many authors e.g. Hale [4], Hale & Meyer [5]. Such equations arise in various
situations. For example, the reactors in chemical engineering systems can sometimes
be described by a linear neutral differential difference equation

ẋ(t)− Cẋ(t− τ ) = Ax(t) +Bx(t − τ ), (1.1)

and in the theory of aeroelasticity, one often meets non-linear neutral differential dif-
ference equations of the form

d

dt
[x(t) −G(x(t − τ ))] = f(t, x(t), x(t − τ )) (1.2)

(for the details please see Kolmanovskii & Nosov [8]). If there exist damped stochas-
tic perturbations to equations (1.1) and (1.2) we arrive at a linear neutral stochastic
differential difference equation

d[x(t)−Cx(t− τ )] = [Ax(t) +Bx(t − τ )]dt+ σ(t)dw(t), (1.3)

or a non-linear neutral stochastic differential difference equation

d[x(t)−G(x(t − τ ))] = f(t, x(t), x(t − τ ))dt+ σ(t)dw(t). (1.4)
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Such neutral stochastic differential difference equations were introduced by Kolmanov-
skii & Nosov [7], and the stability and asymptotic stability of the equations have also
been studied by Kolmanovskii [6], Kolmanovskii & Nosov [7]. However, so far little is
known about the almost sure exponential stability of such neutral stochastic differential
difference equations and the aim of this paper is to close this gap.

In this paper we are only concerned with the damped stochastic perturbations.
That is, we require that the diffusion coefficient σ(t) tends to zero sufficiently rapidly
as t → ∞ (more precisely, please see condition (2.2) below). Such damped stochastic
perturbations appear frequently in many branches of science e.g. stochastic mechanics
(cf. Albeverio et al. [1], Durran & Truman [2]). For example, Durran & Truman
[2] showed that under the damped stochastic perturbation, the orbit of the planetesi-
mal is in an L2-neighbourhood of the Keplerian circular orbit after a sufficiently long
time. Damped stochastic perturbations also appear in a natural way in hierarchically
controlled systems (cf. Mao [9, 10]). For example, consider a stochastic hierarchical
system

d[y(t)−G1(y(t − τ ))] = f1(t, y(t), y(t − τ )) + g1(t, y(t), y(t − τ ))dw(t), (1.5a)

d[x(t)−G2(x(t − τ ))] = f2(t, x(t), x(t − τ ), y(t), y(t − τ ))dt
+ g2(t, y(t), y(t − τ ))dw(t). (1.5b)

Note that the ‘lower’ subsystem (1.5a) will not depend on the ‘higher’ subsystem (1.5b)
but will feed to the ‘higher’ one. Assume that subsystem (1.5a) is exponentially stable,
that is y(t) tends to zero exponentially fast. Assume also that ||g2(t, x, y)|| ≤ K(|x|+|y|)
for some K > 0. We then see that the diffusion coefficient g2(t, y(t), y(t− τ )) in (1.5b)
tends to zero exponentially rapidly. In other words, we have the damped stochastic
perturbation in subsystem (1.5b). The stability problem of subsystem (1.5b) is then
reduced to the study of equation (1.4).

In this paper we shall first study the almost sure exponential stability of equation
(1.3) in Section 2 and then equation (1.4) in Section 3. Also several interesting examples
will be given to illustrate our theory in Section 4. It should be pointed out that our
results are even new in the case when σ(t) ≡ 0, i.e. for deterministic neutral differential
difference equations.

2. Almost Sure Exponential Stability of Linear Neutral Stochastic Differ-
ential Difference Equations

Throughout this paper, unless otherwise specified, let w(t) = (w1(t), · · · , wm(t))T

be an m-dimensional Brownian motion on a complete probability space (Ω,F , P ) with
a natural filtration {Ft}t≥0 (i.e. Ft = σ{w(s) : 0 ≤ s ≤ t}). If A is a vector or matrix,

denote by AT its transpose. Denote by | · | the Euclidean norm, i.e. |x| =
√
xTx

if x ∈ Rn. If A is a matrix, denote by ||A|| the operator norm of A, i.e. ||A|| =
sup{|Ax| : |x| = 1}. Furthermore, let τ > 0 and denote by CbF0

([−τ, 0];Rn) the family
of all continuous bounded Rn-valued stochastic processes ξ(s),−τ ≤ s ≤ 0 such that
ξ(s) is F0-measurable for every s.

In this section we shall consider an n-dimensional linear neutral differential differ-
ence equation with damped stochastic perturbations of the form

d[x(t)− Cx(t− τ )] = [Ax(t) +Bx(t − τ )]dt+ σ(t)dw(t) (2.1)
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on t ≥ 0 with initial data x(t) = ξ(t) for −τ ≤ t ≤ 0, where A, B, C are all n × n
matrices, σ(t), t ≥ 0 is an Ft-adapted bounded Rn×m-valued stochastic process, and
ξ := {ξ(s) : −τ ≤ s ≤ 0} ∈ CbF0

([−τ, 0];Rn). An Ft-adapted process x(t),−τ ≤ t <∞
(let Ft = F0 for −τ ≤ t ≤ 0) is said to be the solution of equation (2.1) if it satisfies
the initial condition, and moreover for every t ≥ 0,

x(t)− Cx(t− τ ) = ξ(0)− Cξ(−τ )

+

∫ t

0

[Ax(s) +Bx(s−τ )]ds+

∫ t

0

σ(s)dw(s). (2.1)′

To see that equation (2.1) has a unique solution, we first restrict t on the interval [0, τ ].
In this case, equation (2.1)′ becomes

x(t) = ξ(0) + C [ξ(t− τ )− ξ(−τ )]

+

∫ t

0

[Ax(s) +Bξ(s− τ )]ds+

∫ t

0

σ(s)dw(s).

By the theory of stochastic differential equations (cf. [3], [9] or [12]) one can find a
unique solution x(t) on [0, τ ]. Similarly, a unique solution exists on [τ, 2τ ], [2τ, 3τ ] and
so on, hence on the whole t ≥ 0. Denote by x(t; ξ) the unique solution. It is also easy
to see that the solution is square integrable.

Theorem 2.1 Assume that there exist two symmetric n × n matrices Q and D with
Q positive definite and D non-negative definite such that the symmetric matrix

H =

(
QA+ATQ+D QB −ATQC
BTQ− CTQA −D −CTQB −BTQC

)
is negative definite, and denote by −λ the biggest eigenvalue of H. Assume ||C || < 1.
Assume also that there exists a pair of positive constants γ and δ such that

trace[σT (t)σ(t)] ≤ δe−γt for all t ≥ 0. (2.2)

Then equation (2.1) is almost surely exponentially stable. Moreover, the top Lyapunov
exponent of the solution should not be greater than −(γ ∧ α ∧ β)/2, that is

lim sup
t→∞

1

t
log(|x(t; ξ)|) ≤ −1

2
(γ ∧ α ∧ β) a.s. (2.3)

where α ∈ (0, λ) is the unique root of

2α||Q||+ ατeατ ||D|| = λ, (2.4)

and

β = −2

τ
log(||C ||) > 0.

In order to prove this theorem let us prepare a lemma which is very useful in the
study of exponential stability for neutral stochastic differential difference equations.
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Lemma 2.2 Assume that G : Rn → Rn is a Borel measurable function such that for
some κ ∈ (0, 1)

|G(x)| ≤ κ|x| for all x ∈ Rn. (2.5)

Let ϕ(t),−τ ≤ t < ∞ be a Borel measurable Rn-valued function. Let α > 0, K > 0
and ko be a positive integer. Assume

|ϕ(t)−G(ϕ(t − τ ))|2 ≤ K(1 + log k)e−α(k−1)τ (2.6)

for (k − 1)τ ≤ t ≤ kτ, k ≥ ko. Then

lim sup
t→∞

1

t
log(|ϕ(t)|) ≤ −1

2
(α ∧ β), (2.7)

where

β = −2

τ
logκ > 0.

Proof. Let θ ∈ (κ, 1) be arbitrary. Note

|ϕ(t)−G(ϕ(t − τ ))|2

≥ |ϕ(t)|2 − 2|ϕ(t)| |G(ϕ(t− τ ))|+ |G(ϕ(t− τ ))|2

≥ |ϕ(t)|2 − θ|ϕ(t)|2 − θ−1|G(ϕ(t− τ ))|2 + |G(ϕ(t − τ ))|2

≥ (1 − θ)|ϕ(t)|2 − κ2(θ−1 − 1)|ϕ(t− τ )|2.

Thus

|ϕ(t)|2 ≤ 1

1− θ |ϕ(t)−G(ϕ(t− τ ))|2 +
κ2

θ
|ϕ(t− τ )|2. (2.8)

Now define, for k = ko − 1, ko, ko + 1, · · · ,

φk = sup
(k−1)τ≤t≤kτ

|ϕ(t)|2.

One can see from (2.8) and (2.6) that

φk ≤
1

1− θ sup
(k−1)τ≤t≤kτ

|ϕ(t)−G(ϕ(t − τ ))|2 +
κ2

θ
φk−1

≤ K

1− θ (1 + log k)e−α(k−1)τ +
κ2

θ
φk−1 for all k ≥ ko. (2.9)

Set

βθ =
1

τ
log

(
θ

κ2

)
and let ε ∈ (0, α ∧ βθ) be arbitrary. It then follows from (2.9) that

max
ko≤i≤k

(φie
εiτ ) ≤ K

1− θ e
ατ max

ko≤i≤k

(
(1 + log i)e−(α−ε)iτ )

)
+
κ2

θ
max
ko≤i≤k

(φi−1e
εiτ )

≤ Kc1

1− θ e
ατ +

κ2

θ
eετ max

ko≤i≤k
(φi−1e

ε(i−1)τ)

≤ Kc1

1− θ e
ατ +

κ2

θ
eετ
(
φko−1e

ε(ko−1)τ + max
ko≤i≤k

(φie
εiτ )
)
, (2.10)
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where

c1 = sup
ko≤i<∞

(
(1 + log i)e−(α−ε)iτ)

)
<∞.

Note
κ2

θ
eετ < 1.

One sees from (2.10) that

max
ko≤i≤k

(φie
εiτ ) ≤ c2,

that is

φk ≤ c2e−εkτ for all k ≥ ko,

where

c2 =
( Kc1

1− θ e
ατ +

κ2

θ
φko−1e

εkoτ
)(

1− κ2

θ
eετ
)−1

,

By the definition of φk it is therefore easy to derive that

lim sup
t→∞

1

t
log(|ϕ(t)|) ≤ − ε

2
.

Finally, letting ε→ α ∧ βθ we get

lim sup
t→∞

1

t
log(|ϕ(t)|) ≤ −1

2
(α ∧ βθ),

and then letting θ → 1 we obtain the required (2.7). The proof is complete.

Proof of Theorem 2.1. Fix the initial data ξ arbitrarily and write x(t; ξ) = x(t) simply.
Define a Lyapunov function

V (z, t) = zTQz +

∫ 0

−τ
xT (t + s)Dx(t + s)ds (2.11)

for (z, t) ∈ Rn × [0,∞). Applying the Itô formula to V (x(t) − Cx(t− τ ), t) and using
the assumptions we derive that

dV (x(t) − Cx(t− τ ), t)

= 2(x(t) − Cx(t− τ ))TQ
(
[Ax(t) +Bx(t − τ )]dt+ σ(t)dw(t)

)
+ trace[σT (t)Qσ(t)]dt +

(
xT (t)Dx(t) − xT (t− τ )Dx(t − τ )

)
dt

≤ (xT (t), xT (t − τ ))H
(

x(t)
x(t − τ )

)
dt+ ||Q||trace[σT (t)σ(t)]dt

+ 2(x(t)− Cx(t− τ ))TQσ(t)dw(t)

≤ −λ(|x(t)|2 + |x(t− τ )|2)dt + δ||Q||e−γtdt
+ 2(x(t)− Cx(t− τ ))TQσ(t)dw(t). (2.12)
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Let θ ∈ (0, α ∧ γ) be arbitrary. Applying Itô’s formula once again we derive that

d
(
eθtV (x(t) −Cx(t− τ ), t)

)
= θeθtV (x(t) − Cx(t− τ ), t)dt+ eθtdV (x(t)− Cx(t− τ ), t)

≤ θeθt
(
2||Q||

(
|x(t)|2 + ||C ||2|x(t − τ )|2

)
+ ||D||

∫ 0

−τ
|x(t + s)|2ds

)
dt

+ eθt
(
−λ(|x(t)|2 + |x(t − τ )|2)dt + δ||Q||e−γtdt

+ 2(x(t)− Cx(t− τ ))TQσ(t)dw(t)
)

≤ eθt
(
−(λ− 2θ||Q||)(|x(t)|2 + |x(t− τ )|2) + θ||D||

∫ 0

−τ
|x(t + s)|2ds

)
dt

+ δ||Q||e−(γ−θ)tdt+ 2eθt(x(t)− Cx(t− τ ))TQσ(t)dw(t). (2.13)

That is

eθtV (x(t) − Cx(t− τ ), t)

≤ c3 − (λ− 2θ||Q||)
∫ t

0

eθs(|x(s)|2 + |x(s− τ )|2)ds

+ θ||D||
∫ t

0

eθs
∫ 0

−τ
|x(s+ r)|2drds+M(t), (2.14)

where

c3 = V (ξ(0)− Cξ(−τ ), 0) +
δ||Q||
γ − θ

and

M(t) = 2

∫ t

0

eθs(x(s) − Cx(s− τ ))TQσ(s)dw(s).

But ∫ t

0

eθs
∫ 0

−τ
|x(s + r)|2drds =

∫ t

0

eθs
∫ s

s−τ
|x(r)|2drds

=

∫ t

−τ

(∫ (r+τ)∧t

r∨0

eθsds
)
|x(r)|2dr ≤

∫ t

−τ
τeθ(r+τ)|x(r)|2dr

≤ τeθτ
∫ 0

−τ
|ξ(s)|2ds+ τeθτ

∫ t

0

eθs|x(s)|2ds. (2.15)

Substituting (2.15) into (2.14) yields

eθtV (x(t) −Cx(t− τ ), t) ≤ c4 − θ̄
∫ t

0

eθs(|x(s)|2 + |x(s− τ )|2)ds+M(t), (2.16)

where

θ̄ = λ− 2θ||Q|| − θτeθτ ||D||,

c4 = c3 + θτeθτ ||D||
∫ 0

−τ
|ξ(s)|2ds.
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Recalling 0 < θ < γ ∧ α as well as (2.4) one sees that θ̄ > 0. On the other hand, note
that M(t) is a continuous martingale vanishing at t = 0 and its quadratic variation

〈M(t)〉 = 4

∫ t

0

e2θs|x(s) −Cx(s− τ ))TQσ(s)|2ds

≤ 8δ||Q||2
∫ t

0

eθs(|x(s)|2 + |x(s− τ ))|2)ds. (2.17)

Let

ε =
θ̄

4δ||Q||2 .

By the well-known exponential martingale inequality (cf. Mao [9] or Métivier [11]) we
have that for k = 1, 2, · · ·,

P
(
ω : sup

0≤t≤kτ

[
M(t)− ε

2
〈M(t)〉

]
>

2

ε
log k

)
≤ 1

k2
.

Hence the well-known Borel-Cantelli lemma yields that for almost all ω ∈ Ω there exists
an integer ko = ko(ω) such that

sup
0≤t≤kτ

[
M(t) − ε

2
〈M(t)〉

]
≤ 2

ε
log k whenever k ≥ ko.

This, together with (2.17) and the definition of ε, implies that for almost all ω ∈ Ω

M(t) ≤ 2

ε
log k + θ̄

∫ t

0

eθs(|x(s)|2 + |x(s− τ ))|2)ds (2.18)

whenever 0 ≤ t ≤ kτ, k ≥ ko. Substituting (2.18) into (2.16) we obtain that for almost
all ω ∈ Ω

eθtV (x(t) − Cx(t− τ ), t) ≤ c4 +
2

ε
log k

whenever 0 ≤ t ≤ kτ, k ≥ ko. Consequently, for almost all ω ∈ Ω

V (x(t) − Cx(t− τ ), t) ≤
(
c4 +

2

ε

)
(1 + log k)e−θ(k−1)τ (2.19)

whenever (k − 1)τ ≤ t ≤ kτ, k ≥ ko. However

V (x(t) − Cx(t− τ ), t) ≥ (x(t) − Cx(t− τ ))TQ(x(t) − Cx(t− τ ))
≥ λmin|x(t)− Cx(t− τ )|2,

where λmin > 0 is the smallest eigen-value of Q. Therefore, for almost all ω ∈ Ω

|x(t)− Cx(t− τ )|2 ≤ 1

λmin

(
c4 +

2

ε

)
(1 + log k)e−θ(k−1)τ (2.20)

whenever (k − 1)τ ≤ t ≤ kτ, k ≥ ko. Now applying Lemma 2.2 one gets that

lim sup
t→∞

1

t
log(|x(t)|) ≤ −1

2
(θ ∧ β) a.s.
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Finally letting θ → γ ∧ α we obtain the required (2.3). The proof is complete.

We now apply Theorem 2.1 to establish one useful corollary.

Corollary 2.3 Assume that the symmetric matrix A + AT is negative definite and
denote by −η its biggest eigenvalue. Assume ||C || < 1 and

η

2
> ||CTB||+ ||B −ATC ||.

Assume furthermore that there exists a pair of positive constants γ and δ such that

trace[σT (t)σ(t)] ≤ δe−γt for all t ≥ 0.

Then equation (2.1) is almost surely exponentially stable. Moreover, the top Lyapunov
exponent of the solution should not be greater than −(γ ∧α∧β)/2, where β is the same
as defined in Theorem 2.1, α > 0 is the unique root to the equation

2α+ ατeατ
(η

2
+ ||CTB||

)
=
η

2
− ||CTB|| − ||B −ATC ||.

Proof. Let Q = I and D = θI, where I is the n× n identity matrix and

θ =
η

2
+ ||CTB||.

Let the matrix H be the same as defined in Theorem 2.1. We claim that H is negative
definite and its biggest eigenvalue is not greater than

−λ := −
(η
2
− ||CTB|| − ||B −ATC ||

)
.

In fact, for any x, y ∈ Rn,

(xT , yT )H

(
x
y

)
= xT (A+AT )x+ θ|x|2 + 2xT (B −ATC)y− θ|y|2 − 2yTCTBy

≤ −(η − θ)|x|2 + 2||B −ATC || |x| |y| − (θ − 2||CTB||)|y|2

≤ −(η − θ − ||B −ATC ||)|x|2 − (θ − 2||CTB|| − ||B −ATC ||)|y|2

= −λ(|x|2 + |y|2).

Therefore the conclusion of the corollary follows from Theorem 2.1. The proof is
complete.

3. Almost Sure Exponential Stability of Non-linear Neutral Stochastic
Differential Difference Equations

In this section we shall consider an n-dimensional non-linear neutral differential
difference equation with damped stochastic perturbations of the form

d[x(t)−G(x(t − τ ))] = f(t, x(t), x(t − τ ))dt+ σ(t)dw(t) (3.1)
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on t ≥ 0 with initial data x(t) = ξ(t) for −τ ≤ t ≤ 0, where w(t), σ(t), ξ are the same
as in the previous section; f : R+ × Rn × Rn → Rn is a locally Lipschitz continuous
function satisfying the linear growth condition; moreover G is a continuous function
from Rn to itself such that for some κ ∈ (0, 1)

|G(x)| ≤ κ|x| for all x ∈ Rn. (3.2)

It is easy to see that the equation (3.1) has a unique solution which is denoted by x(t; ξ)
again.

Theorem 3.1 Let (3.2) and (2.2) hold with κ ∈ (0, 1) and δ, γ > 0. Assume that
there exist two symmetric n × n matrices Q and D with Q positive definite and D
non-negative definite as well as two constants λ1, λ2 > 0 such that

2(x−G(y))TQf(t, x, y) + xTDx− yTDy ≤ −λ1|x|2 − λ2|y|2 (3.3)

for all (t, x, y) ∈ R+ × Rn × Rn. Then equation (3.1) is almost surely exponentially
stable. Moreover, the top Lyapunov exponent of the solution should not be greater than
−(γ ∧ α1 ∧ α2 ∧ β)/2, that is

lim sup
t→∞

1

t
log(|x(t; ξ)|) ≤ −1

2
(γ ∧ α1 ∧ α2 ∧ β) a.s. (3.4)

where

β = −2

τ
log κ > 0, α2 =

λ2

2κ2||Q|| (3.5)

and α1 ∈ (0, λ1) is the unique root of

2α1||Q||+ α1τe
α1τ ||D|| = λ1. (3.6)

Proof. Again fix any initial data ξ and write x(t; ξ) = x(t) simply. Define the Lyapunov
function V (z, t) by (2.11). By Itô’s formula and condition (3.3) one can show that

dV (x(t) −G(x(t − τ )), t) ≤
(
−λ1|x(t)|2 − λ2|x(t− τ )|2

)
dt

+δ||Q||e−γt + 2(x(t) −G(x(t − τ )))TQσ(t)dw(t).

Let θ ∈ (0, γ ∧ α1 ∧ α2) be arbitrary. Applying Itô’s formula once again we can derive
that

d
(
eθtV (x(t) −G(x(t − τ )), t)

)
≤ eθt

(
−(λ1 − 2θ||Q||)|x(t)|2 − (λ2 − 2θκ2||Q||)|x(t − τ )|2

+ θ||D||
∫ 0

−τ
|x(t + s)|2ds

)
dt

+ δ||Q||e−(γ−θ)tdt+ 2eθt(x(t) −G(x(t − τ )))TQσ(t)dw(t).
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That is

eθtV (x(t)−G(x(t − τ )), t)

≤ c5 − (λ1 − 2θ||Q||)
∫ t

0

eθs|x(s)|2ds− (λ2 − 2θκ2||Q||)
∫ t

0

eθs|x(s− τ )|2)ds

+ θ||D||
∫ t

0

eθs
∫ 0

−τ
|x(s+ r)|2drds+N(t), (3.7)

where

c5 = V (ξ(0)−G(ξ(−τ )), 0) +
δ||Q||
γ − θ

and

N(t) = 2

∫ t

0

eθs(x(s) −G(x(s − τ )))TQσ(s)dw(s).

Substituting (2.15) into (3.7) gives

eθtV (x(t)−G(x(t − τ )), t) ≤ c6 − θ1
∫ t

0

eθs|x(s)|2ds

− θ2
∫ t

0

eθs|x(s− τ )|2ds+N(t), (3.8)

where

θ1 = λ1 − 2θ||Q|| − θτeθτ ||D||, θ2 = λ2 − 2θκ2||Q||,

c6 = c5 + θτeθτ ||D||
∫ 0

−τ
|ξ(s)|2ds.

Recalling (3.5), (3.6) and θ ∈ (0, γ ∧α1 ∧α2) one sees that both θ1 and θ2 are positive.
Let

ε =
θ1 ∧ θ2
4δ||Q||2 .

Since N(t) is a continuous martingale vanishing at t = 0, we can show in the same way
as the proof of Theorem 2.1 that for almost all ω ∈ Ω there exists an integer ko = ko(ω)
such that

N(t) ≤ 2

ε
log k + (θ1 ∧ θ2)

∫ t

0

eθs(|x(s)|2 + |x(s− τ )|2)ds

whenever 0 ≤ t ≤ kτ, k ≥ ko. Substituting this into (3.8) one can easily derive that
for almost all ω ∈ Ω

|x(t)−G(x(t − τ ))|2 ≤ 1

λmin

(
c6 +

2

ε

)
(1 + log k)e−θ(k−1)τ (3.9)

whenever (k − 1)τ ≤ t ≤ kτ, k ≥ ko, where λmin > 0 is the smallest eigenvalue of Q.
An application of Lemma 2.2 implies that

lim sup
t→∞

1

t
log(|x(t)|) ≤ −1

2
(θ ∧ β) a.s.

11



Finally letting θ → γ ∧ α1 ∧ α2 we obtain the required (3.4). The proof is complete.

The following corollary is sometimes convenient for applications.

Corollary 3.2 Let (3.2) and (2.2) hold with κ ∈ (0, 1) and δ, γ > 0. Assume that there
exists a symmetric positive definite n × n matrix Q as well as two constants λ1 > 0,
λ2 < λ1 such that

2(x−G(y))TQf(t, x, y) ≤ −λ1|x|2 + λ2|y|2

for all (t, x, y) ∈ R+ × Rn × Rn. Then equation (3.1) is almost surely exponentially
stable. Moreover, the top Lyapunov exponent of the solution should not be greater than
−(γ ∧ α1 ∧ α2 ∧ β)/2, where

β = −2

τ
log κ > 0, α2 =

λ1 − λ2

4κ2||Q||

and α1 ∈ (0, (λ1 − λ2)/2) is the unique root of

2α1||Q||+
1

2
α1τe

α1τ (λ1 + λ2) =
1

2
(λ1 − λ2).

Proof. Let

D =
1

2
(λ1 + λ2)I,

where I is the n× n identity matrix. Then

2(x−G(y))TQf(t, x, y) + xTDx − yTDy ≤ −1

2
(λ1 − λ2)(|x|2 + |y|2)

for all (t, x, y) ∈ R+ × Rn × Rn. By Theorem 3.1, equation (3.1) is almost surely
exponentially stable. The proof is complete.

We shall now establish one more useful corollary.

Corollary 3.3 Let (3.2) and (2.2) hold with κ ∈ (0, 1) and δ, γ > 0. Assume that there
exists a symmetric positive definite n × n matrix Q as well as four positive constants
λ1–λ4 such that

xTQf(t, x, 0) ≤ −λ1|x|2,
|f(t, x, y) − f(t, x, 0)| ≤ λ2|y|,
|f(t, x, y)| ≤ λ3|x| + λ4|y|

for all t ≥ 0, x, y ∈ Rn. If

(λ2 + κλ3 + κλ4)||Q|| < λ1,

then equation (3.1) is almost surely exponentially stable.

12



Proof. Compute, for all t ≥ 0, x, y ∈ Rn,

2(x−G(y))TQf(t, x, y) = 2xTQf(t, x, y) − 2G(y)TQf(t, x, y)

≤2xTQf(t, x, 0) + 2xTQ[f(t, x, y) − f(t, x, 0)] + 2|G(y)| ||Q|| |f(t, x, y)|
≤ − 2λ1|x|2 + 2λ2||Q|| |x| |y| + 2κ||Q|| |y|(λ3|x|+ λ4|y|)
≤− 2λ1|x|2 + λ2||Q||(|x|2 + |y|2) + κλ3||Q||(|x|2 + |y|2) + 2κλ4||Q|| |y|2

≤−
(
2λ1 − (λ2 + κλ3)||Q||

)
|x|2 + (λ2 + κλ3 + 2κλ4)||Q|| |y|2

Therefore, by Corollary 3.2, equation (3.1) is almost surely exponentially stable. The
proof is complete.

4. Examples

In this section we shall discuss a number of interesting examples in order to illus-
trate our theory. In these examples we shall omit mentioning the initial data which
are always assumed to be in CbF0

([−τ, 0];Rn) anyway.

Example 4.1 Let us start with a linear one-dimensional neutral differential difference
equation with damped stochastic perturbations of the form

d[x(t)− cx(t− τ )] = [−ax(t) + bx(t − τ )]dt+ σ(t)dw(t), (4.1)

on t ≥ 0. We assume that a, b, c are all real numbers such that

|c| < 1 and a > |b|.

Assume also that σ(t) is an m-row-vector-valued function defined on t ≥ 0 such that

|σ(t)|2 ≤ δε−γt for all t ≥ 0

with both δ and γ positive constants. To apply Theorem 2.1, let Q = 1 and D = a− bc
and hence

H =

(
−a− bc b+ ac
b+ ac −a− bc

)
.

It is easy to verify that H is negative definite and its biggest eigenvalue

−λ = −a− bc+ |b+ ac| < 0.

Therefore, equation (4.1) is almost surely exponentially stable. Moreover, the top
Lyapunov exponent of the solution should not be greater than −(γ ∧ α ∧ β)/2, where
β = −(2/τ ) log |c| and α > 0 is the unique root to the equation

2α+ ατeατ (a− bc) = a+ bc− |b+ ac|. (4.2)

For instance, let

a = 3, b = 2, c = 0.5, τ = 0.1, γ = 0.5.

13



Then equation (4.2) becomes

2α+ 0.2αe0.1α = 0.5

whose solution is α = 0.2268. Also β = −20 log 0.5 = 13.8629. So in this case the top
Lyapunov exponent should not greater than −0.1134.

Example 4.2 Let us now consider a two-dimensional neutral stochastic differential
difference equation

d[x(t)−Cx(t− τ )] = [Ax(t) +Bx(t − τ )]dt+ σ(t)dw(t), (4.3)

where

A =

(
−3 1
−1 −4

)
, B =

(
−1 −1

1 2

)
, C =

(
0.2 −0.3
0.1 −0.2

)
,

and σ : R+ → R2×m satisfies

trace[σT (t)σ(t)] ≤ δe−0.5t for all t ≥ 0

in which δ > 0 is a constant. Choose Q = the identity matrix and

D =

(
3 0
0 5

)
.

Then the symmetric matrix H defined in Theorem 2.1 has the form

H =


−3.0 0 −0.3 −2.1

0 −3.0 1.2 1.5
−0.3 1.2 −2.8 −0.1
−2.1 1.5 −0.1 −4.8

 .

It can be checked that H is negative definite and its biggest eigenvalue is −0.84888. It
is also not difficult to compute ||C || = 0.423607. Hence, by Theorem 2.1, equation (4.3)
is almost surely exponentially stable. Moreover, the top Lyapunov exponent should not
be greater than −(0.5 ∧ α ∧ β)/2, where β = 1.7178/τ and α > 0 is the root of

2α+ 5ατeατ = 0.84888. (4.4)

For instance, if τ = 0.1, then equation (4.4) becomes

2α+ 0.5αe0.1α = 0.84888

which has the solution α = 0.3372. Also β = 17.178. Hence, in this case the top
Lyapunov exponent should not be greater than −0.1686.

Example 4.3 Consider an n-dimensional nonlinear neutral differential difference equa-
tion with damped stochastic perturbations

d[x(t) −G(x(t − τ ))] = [f1(x(t)) + f2(x(t − τ ))]dt+ σ(t)dw(t), (4.5)
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where G and σ(t) are the same as defined in Section 3, f1, f2 are both locally Lipschitz
continuous functions from Rn to itself. Assume (3.2) and (2.2) hold with κ ∈ (0, 1)
and δ, γ > 0. Assume also that there exist positive constants λi, 1 ≤ i ≤ 4 such that

xT f1(x) ≤ −λ1|x|2, −GT (y)f2(y) ≤ −λ2|y|2,
|f1(x)| ≤ λ3|x|, |f2(y)| ≤ λ4|y|

for all t ≥ 0 and x, y ∈ Rn. Compute

2(x−G(y))T (f1(x) + f2(y))

≤ −2λ1|x|2 − 2λ2|y|2 + 2κλ3|x||y|+ 2λ4|x||y|
≤ −(2λ1 − κλ3 − λ4)|x|2 + (−2λ2 + κλ3 + λ4)|y|2. (4.6)

Hence, by Corollary 3.2, if
2λ1 > κλ3 + λ4 (4.7)

and
2λ1 + 2λ2 > 2κλ3 + 2λ4 (4.8)

then equation (4.5) is almost surely exponentially stable.
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