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Abstract

We consider a model of a discrete time “interacting particle system" on the integer line where
infinitely many changes are allowed at each instance of time. We describe the model using
chameleons of two different colours, viz., red (R) and blue (B). At each instance of time each
chameleon performs an independent but identical coin toss experiment with probability α to
decide whether to change its colour or not. If the coin lands head then the creature retains its
colour (this is to be interpreted as a “success"), otherwise it observes the colours and coin tosses
of its two nearest neighbours and changes its colour only if, among its neighbours and including
itself, the proportion of successes of the other colour is larger than the proportion of successes
of its own colour. This produces a Markov chain with infinite state space {R, B}Z. This model
was studied by Chatterjee and Xu [5] in the context of diffusion of technologies in a set-up of
myopic, memoryless agents. In their work they assume different success probabilities of coin
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tosses according to the colour of the chameleon. In this work we consider the symmetric case
where the success probability, α, is the same irrespective of the colour of the chameleon. We
show that starting from any initial translation invariant distribution of colours the Markov chain
converges to a limit of a single colour, i.e., even at the symmetric case there is no “coexistence"
of the two colours at the limit. As a corollary we also characterize the set of all translation
invariant stationary laws of this Markov chain. Moreover we show that starting with an i.i.d.
colour distribution with density p ∈ [0, 1] of one colour (say red), the limiting distribution is all
red with probability π

�

α, p
�

which is continuous in p and for p “small" π(p)> p. The last result
can be interpreted as the model favours the “underdog".

Key words: Coexistence, Learning from neighbours, Markov chain, Random walk, Stationary
distribution.
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1 Introduction and Main Results

1.1 Background and Motivation

Chatterjee and Xu [5] introduced a model of particle systems consisting of a countable number of
particles of two types, each particle being situated on integer points of the integer line. The type of
a particle evolves with time depending on the behaviour of the neighbouring particles. This model,
as Chatterjee and Xu explain is

“... a problem of diffusion of technology, where one technology is better than the other and
agents imitate better technologies among their neighbours.”

The model above is part of a large class of models studied by economists over the last decade
on ‘social learning’. Ellison and Fudenberg [6] introduced the notion of social learning – they
studied how the speed of learning and the ultimate determination of market equilibrium is affected
by social networks and other institutions governing communication between market participants.
Bala and Goyal [2] studied a model where “... individuals periodically make decisions concerning
the continuation of existing information links and the formation of new information links, with their
cohorts ... (based on) ... the costs of forming and maintaining links against the potential rewards
from doing so”. They studied the long run behaviour of this process. Much of the work on this was
inspired by an earlier paper Bala and Goyal [1] where the learning was from neighbours and they
showed “ ... local learning ensures that all agents obtain the same payoffs in the long run”. Banerjee
and Fudenberg [3] also obtained similar results of a single ‘long-run outcome’ when the decision
making of an individual is based on a larger set of agents.

Here we consider the model studied by Chatterjee and Xu [5]. Instead of particles or technologies
we describe the model with chameleons which can change their colours. Let G = (V, E) be an infinite
connected graph which is locally finite, i.e., degG (v) < ∞ for any vertex v ∈ V . Suppose at every
v ∈ V and at any instance of time t, there is a chameleon ξv(t), which is either red (R) or blue (B)
in colour. In accordance with its colour it also has either a red coin CR(v, t) or a blue coin CB(v, t).
The red coin has a probability pR of success (1) and a probability 1− pR of failure (0), while the blue
coin has a probability pB of success (1) and a probability 1− pB of failure (0). The outcome of the
coin toss of a chameleon is independent of the outcomes of the coins as well as the colours of the
other chameleons. The evolution is governed by the rule described below which is referred as Rule-I
in [5].

Fix t ≥ 0 and v ∈ V , let Nv :=
§

u
�

�

� < v, u>∈ E
ª

∪ {v} be the set of neighbours of the vertex v

including itself.

• If Cξv(t)(v, t) = 1 then ξv(t + 1) = ξv(t), in other words, if the coin toss of the chameleon at
v at time t results in a success then it retains its colour.

• If Cξv(t)(v, t) = 0 then it retains its colour if the proportion of successes of the coin tosses of the
chameleons of its colour in Nv is larger or equal to the proportion of successes of the coin tosses
of the chameleons of the other colour in Nv . Otherwise it switches to the other colour. Here we
interpret 0/0 as 0.
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Formally, we have a configuration ξ(t) ∈ {R, B}V for every t ≥ 0 and two independent collections
{CR(v, t) : v ∈ V, t ≥ 0} and {CB(v, t) : v ∈ V, t ≥ 0} of i.i.d. Bernoulli

�

pR
�

and i.i.d. Bernoulli
�

pB
�

random variables. Let (Ω,F ,P) be the probability space where all these random variables are
defined.

The process ξ0 starts with some initial distribution P0 on {R, B}V and the evolution is governed by
the rule above. Let Pt be the distribution of ξt at time t. In this work we are interested in finding
the possible limiting distributions π for

�

Pt
�

t≥0. From the definition it follows that {ξt : t ≥ 0} is
a Markov chain with state space {R, B}V ; thus any limiting distribution π, if it exists, is a stationary
distribution of this Markov chain. We also observe that there are two absorbing states for this Markov
chain, namely, the configuration of all reds and the configuration of all blues. Let δR denote the
degenerate measure on {R, B}V which assigns mass 1 to the configuration of all reds, and similarly
δB denote the measure on {R, B}V which assigns mass 1 to the configuration of all blues. Chatterjee
and Xu [5] studied this model for the one dimensional integer line Z with nearest neighbour links.
They showed that when

�

ξi(0)
�

i∈Z are i.i.d. with P0
�

ξ0(0) = R
�

= p and P0
�

ξ0(0) = B
�

= 1− p,
for some p ∈ (0,1) and pR > pB

Pt
w−→ δR as t →∞. (1)

In this work we first present a simpler proof of the above result. However our main interest is the
study of the model when pR = pB, that is, when the success/failure of a coin is “colour-blind”. We
call this the symmetric case. The following subsection provides our main results.

1.2 Main Results

We first state the result of Chatterjee and Xu [5] for which we provide a different proof in Section 2.

Theorem 1. Let G := Z be the one dimensional integer line with nearest neighbour links and suppose
{ξi(0) : i ∈ Z} are i.i.d. with P0

�

ξ0(0) = R
�

= p and P0
�

ξ0(0) = B
�

= 1− p, for some p ∈ (0,1) If
pR > pB, then

Pt
w−→ δR as t →∞. (2)

Our main result is for the symmetric case when pR = pB. For this we have the following result.

Theorem 2. Let G := Z with nearest neighbour links and suppose {ξi(0) : i ∈ Z} are i.i.d. with
P0
�

ξ0(0) = R
�

= p and P0
�

ξ0(0) = B
�

= 1− p, for some p ∈ (0, 1) Assume pR = pB = α ∈ (0,1).
Then, as t →∞

Pt
w−→ π

�

α, p
�

δR+
�

1−π
�

α, p
��

δB, (3)

where π
�

α, p
�

∈ [0,1] satisfies the following properties

(i) For every fixed α ∈ (0,1) the function p 7→ π
�

α, p
�

is continuous on [0,1].

(ii) For any α and p ∈ (0,1), π
�

α, p
�

= 1−π
�

α, 1− p
�

. Thus in particular π
�

α, 1
2

�

= 1
2

for all
α ∈ (0, 1).

(iii) p2 < π
�

α, p
�

< 2p− p2 for all 0< p < 1 and α ∈ (0,1).

(iv) For every α ∈ (0,1) there exists ε ≡ ε (α)> 0 such that π
�

α, p
�

> p for all 0< p < ε.
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Figure 1: Conjectured Graph of the function p 7→ π
�

α, p
�

.

Theorem 2 basically says that under the evolution scheme described above if pR = pB = α then
starting with i.i.d. colours on the integer line the distribution of the colours will converge either to
the all red or to the all blue configuration; thus ruling out the possibility of any coexistence of both
the colours at the limit. Such a result is expected considering the one dimensionality of the graph
Z. This lack of coexistence on Z is akin to the situation in many statistical physics models, such
as, percolation, Ising model, q-Potts model which do not admit phase transition in one dimension
[9, 8].

Here it is worth mentioning that it is natural to compare our model to the one dimensional nearest
neighbour threshold voter model. A closer look reveals that our model has certain intrinsically dif-
ferent aspects than the standard interacting particle system models including threshold voter model
with nearest neighbour interactions as described in [10]. On the technical side those models are
typically studied in continuous time while ours is discrete in nature and we allow the possibility
of infinitely many changes to happen simultaneously at a time instance. In fact there is no “natu-
ral” continuous time analogue of this kind of particle system. Moreover unlike in voter’s model the
change of colour is not determined just by the number of successes of a colour in the neighbourhood
but by the proportion of successes. This introduces more local dependency in the model. On more
conceptual side it is interesting to note that for our model we get π

�

α, p
�

> p in a neighbourhood
of 0, which can be interpreted as follows:

The model gives an “advantage to the underdog”, in the sense that for a fixed α ∈ (0, 1)
if p is “small” then there is still a possibility that the (underdog) red chameleons will
survive at the end.

This is different from what one obtains in a threshold voter model where the limiting fraction of
reds is same as the initial density of reds.

We believe that this phenomenon of “advantage given to the underdog” is true for all 0 < p < 1
with the caveat that the colour of the underdog is different according as p is smaller or greater than
1
2
. We conjecture that the graph of the function p 7→ π

�

α, p
�

is as in Figure 1.2 for every fixed
α ∈ (0, 1).

We would also like to point out that unlike in the voter model there is no simple coalescing branching
random walks as a dual process to our model. Our techniques involve a direct computation of
probabilities of certain type of cylinder sets leading to the result in Theorem 2.
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Finally, we note that the proof of the convergence (3) of Theorem 2 (which is given in Section 4)
works as it is, when we start the Markov chain with a translation invariant starting distribution.
Thus we get the following more general result.

Theorem 3. Let {ξi(0) : i ∈ Z} be random variables which are translation invariant and let P(ξ(0) =
R) = p = 1− P(ξi(0) = B). Assume pR = pB = α ∈ (0,1). Then as t →∞

Pt
w−→ π̄δR+ (1− π̄)δB, (4)

where π̄ depends on the initial distribution P0 and as well as α.

The following corollary is also an immediate consequence

Corollary 4. Assume pR = pB = α ∈ (0,1) then for the Markov chain
�

ξt
�

t≥0 the only translation
invariant stationary measures are of the form

κδR+ (1−κ)δB

for some 0≤ κ≤ 1.

Here it is worthwhile to mention that it is unlikely that this chain has a stationary distribution which
is not translation invariant, but we have not explored in that direction.

1.3 Outline

The rest of the paper is divided as follows. In Section 2 we prove Theorem 1. In Section 3 we
consider a toy model on the half-line Z+ where a chameleon decides to change its colour according
to its own toss and the colour and outcome of the toss of its neighbour to the right. This model
is simpler to analyze and its usefulness is in providing an illustration of our method. In Section 4
we prove Theorem 2. Section 5 provides some auxiliary technical results which we use in various
derivations. We end with some discussion on the coexistence of two colours in Section 6.

2 Red is More Successful than Blue

In this section we provide a simple proof of Theorem 1. We begin by placing only blue chameleons
at each point of the negative half line and red chameleons on the non-negative half line, and we
take this as our initial configuration, that is,

ξi(0) =

(

B for i ≤−1

R for i ≥ 0.
(5)

It is easy to see that, starting with ξ(0) as given above there is always a sharp interface left of which
all chameleons are blue and right of which all are red. Moreover if we write X t as the position of
the left most red chameleon at time t ≥ 0 then

�

X t
�

t≥0 performs a symmetric random walk starting
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from the origin with i.i.d. increments, each taking values −1, 0 and 1 with probabilities pR
�

1− pB
�

,
pRpB +

�

1− pR
��

1− pB
�

and pB
�

1− pR
�

respectively. This is because, for any t ≥ 0 we have

X t+1− X t =







−1 if CB
�

X t − 1, t
�

= 0 and CR
�

X t , t
�

= 1
0 if CB

�

X t − 1, t
�

= CR
�

X t , t
�

= 1 or
CB
�

X t − 1, t
�

= CR
�

X t , t
�

= 0
+1 if CB

�

X t − 1, t
�

= 1 and CR
�

X t , t
�

= 0

(6)

Now it is easy to check that if pR > pB, then
�

X t
�

t≥0 is a transient random walk with a strictly
negative drift. In other words it proves that starting with the configuration given in (5)

Pt
w−→ δR as t →∞.

2.1 Proof of Theorem 1

To complete the proof of Theorem 1, fix an η > 0 and let M be such that the random walk X t
satisfies

P
�

X t ≤ M for all t ≥ 0
�

> 1−η.

If the initial distribution of chameleons at time 0 is such that, for some j ∈ Z

ξi(0) =

(

R for j ≤ i ≤ j+ 2M + 1

B otherwise

then,
P
�

X−t →−∞ and X+t →∞
�

≥
�

1−η
�2 (7)

where we write X−t as the left interface and X+t as the right interface at time t ≥ 0.

Further an easy coupling argument shows that the above situation of a stretch of 2M + 2 red
chameleons flanked by only blue chameleons on either sides is “worse” than the case when the
two ends instead of being all blue is actually a mixture of red and blue chameleons. More precisely,
suppose the starting configuration ξ0 is such that there exists a location j ∈ Z with ξi(0) = R for all
j−M ≤ i ≤ j+M + 1, then

P
�

X−, j
t →−∞ and X+, j

t →∞
�

≥
�

1−η
�2 (8)

where we write X−, j
t and X+, j

t are the positions of the leftmost and rightmost red chameleons at
time t ≥ 0 of the lounge of chameleons which started as the stretch of length 2M + 2.

Let J := inf
§

j ≥ 0
�

�

�ξi(0) = R for all j−M ≤ i ≤ j+M + 1
ª

. When the initial distribution of the

chameleons is i.i.d. then P (0≤ J <∞) = 1. Thus, conditioning on X−,J
t ≤ J − M and X+,J

t ≥
J +M + 1, the ensuing conditional independence of X−,J

t and X+,J
t , yields

P
�

X−,J
t →−∞ and X+,J

t →∞
�

≥
�

1−η
�2 . (9)
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Now for any k ≥ 1

lim inf
t→∞
Pt
�

ξi(t) = R for all − k ≤ i ≤ k
�

≥ lim inf
t→∞
P
�

X−,J
t <−k and X+,J

t > k
�

≥ P
�

X−,J
t <−k and X+,J

t > k eventually
�

≥ P
�

X−,J
t →−∞ and X+,J

t →∞
�

≥
�

1−η
�2 ,

where the last inequality follows from equation (9).

Finally since η > 0 is arbitrary we conclude that Pt
w−→ δR as t →∞.

Remark: We observe that the above argument holds for any starting configuration ξ (0) such that
intervals of reds of arbitrary length can be found with probability one. This generalizes Theorem 1.

3 One Directional Neighbourhood Model

In this section we study the simpler one directional neighbourhood model model where the dynamics
follows our rule but with Ni := {i, i+ 1} for i ∈ Z. The computations for this model are much simpler
than the original two sided neighbourhood model and the method used here is illustrative of the
method employed for the original two sided neighbourhood model. We now state the convergence
result for the one directional neighbourhood model.

Theorem 5. Let {ξi(0) : i ∈ Z} be random variables which are translation invariant and let P(ξ(0) =
R) = p = 1− P(ξi(0) = B). Then for the one directional neighbourhood model with pR = pB = α ∈
(0,1) we have

Pt
w−→ pδR+

�

1− p
�

δB as t →∞. (10)

Moreover the following corollary is now immediate.

Corollary 6. For the one directional neighbourhood model with pR = pB = α ∈ (0,1) the only transla-
tion invariant stationary measures are of the form

κδR+ (1−κ)δB

for some 0≤ κ≤ 1.

Before we prove this theorem we make the following observation which is very simple to prove but
plays an important role in all our subsequent discussions.

Proposition 7. Under the dynamics of the one directional neighbourhood model, if P0 is a translation
invariant measure on {R, B}Z then Pt is also translation invariant for every t ≥ 0.

The proof of this Proposition follows from the Markov chain dynamics of the model and we omit
the details. It is worth remarking here that a similar result is true for the two sided neighbourhood
model.
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3.1 Proof of Theorem 5

Before we embark on the proof of Theorem 5 we present some notation. From the translation
invariance of Pt as given by Proposition 7, for every t ≥ 0, k ≥ 1, i ∈ Z and ω j ∈ {R, B} we observe
that Pt

�

ξi(t) =ω1,ξi+1(t) =ω2, . . . ,ξi+k−1 =ωk
�

does not depend on the location i; thus with a
slight abuse of notation we write

Pt
�

ω1,ω2, . . . ,ωk
�

:= Pt
�

ξi(t) =ω1,ξi+1(t) =ω2, . . . ,ξi+k−1 =ωk
�

.

Also
Pt
�

RBkR
�

:= Pt (RB . . . BR)

where there are k many B’s in the expression on the right.

To prove this theorem we will use the technical result Theorem 9 given in Section 5.

Now fix t ≥ 0. Observe

Pt+1 (R) = Pt (RR) +
�

α+ (1−α)2
�

Pt (RB) +α (1−α)Pt (BR)

= Pt (RR) +
�

α+ (1−α)2+α (1−α)
�

Pt (RB)

= Pt (RR) + Pt (RB)

= Pt (R) . (11)

The first equality follows from the dynamics rule. The second equality follows from the fact
Pt (RB) = Pt (R)− Pt (RR) = Pt (BR), which is a consequence of the translation invariance of Pt .

Now for t ≥ 0 using the rule of the dynamics we get

Pt+1 (RR) = Pt (RRR) +
�

α+ (1−α)2
�

Pt (RRB)

+α (1−α)
�

Pt (RBR) + Pt (BRR) + Pt (BRB)
�

. (12)

On the other hand by translation invariance of Pt we have

Pt (RR) = Pt (RRR) + Pt (RRB) . (13)

Subtracting equation (13) from the equation (12) we get

Pt+1 (RR)− Pt (RR) = α (1−α)
�

Pt (RBR) + Pt (BRB)
�

, (14)

Here we use the fact that Pt (BRR) = Pt (RR)− Pt (RRR) = Pt (RRB). So we conclude that

Pt (RR) = P0 (RR) +α (1−α)
t−1
∑

s=0

�

Ps (RBR) + Ps (BRB)
�

. (15)

Since the summands above are non-negative and since 0 ≤ Pt (RR) ≤ 1 we have limt→∞ Pt (RR)
exists. In addition, we have

∞
∑

t=0

�

Pt (RBR) + Pt (BRB)
�

<∞.

So in particular
lim
t→∞
Pt (RBR) = 0= lim

t→∞
Pt (BRB) . (16)
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Finally observe that for any k ≥ 1 we have

αk+1 (1−α)Pt
�

BRkB
�

≤ Pt+1
�

BRk−1B
�

and

αk+1 (1−α)Pt
�

RBkR
�

≤ Pt+1
�

RBk−1R
�

. (17)

Using (16) and (17) it follows by induction that

lim
t→∞
Pt
�

RBkR
�

= 0= lim
t→∞
Pt
�

BRkB
�

∀ k ≥ 1. (18)

Theorem 5 now follows from Theorem 9.

4 Proof of Theorem 2

In this section we prove our main result, namely, Theorem 2. But before we proceed we note that
as remarked in the previous section, the following result is also true for our original model.

Proposition 8. Under the dynamics of our original model with pR = pB, if P0 is a translation invariant
measure on {R, B}Z then Pt is also translation invariant for every t ≥ 0.

Once again the proof is simple so we omit the details.

As in Section 3.1, Proposition 8 demonstrates the translation invariance of Pt whenever P0 is trans-
lation invariant. The notation we use in this section are the same as those in Section 3.1.

4.1 Proof of The Convergence (3)

As in the previous section, here too we use the Theorem 9 to prove the convergence (3). For that we
begin by checking that limt→∞ Pt (RR) exists. In order to prove this limit we use a technique similar
to that in Section 3. The dynamics of the two sided neighbourhood model bring in some additional
intricacies.

The following table presents some calculations which we use repeatedly. The column on the right is
the probability of obtaining a configuration RR at locations (i, i+ 1) of Z at time (t + 1) when the
configuration at time t at locations (i− 1, i, i+ 1, i+ 2) is given by the column on the left.
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Configuration at time t Probability of getting a configuration RR at time t + 1

RRRR 1
BRRR α+ (1−α)2

RRRB α+ (1−α)2

BRRB α2+ 2α (1−α)2+ (1−α)4

RRBR α (1−α) (2−α)
BRBR α (1−α)

�

1+ (1−α)2
�

RRBB α (1−α)
BRBB α (1−α)
RBRR α (1−α) (2−α)
BBRR α (1−α)
RBRB α (1−α)

�

1+ (1−α)2
�

BBRB α (1−α)
RBBR α2 (1−α)2

BBBR 0
RBBB 0
BBBB 0

Combining we get

Pt+1 (RR) = Pt (RRRR) +
�

α+ (1−α)2
�

�

Pt (BRRR) + Pt (RRRB)
�

+
�

α2+ 2α (1−α)2+ (1−α)4
�

Pt (BRRB)

+α (1−α) (2−α)
�

Pt (RRBR) + Pt (RBRR)
�

+α (1−α)
�

Pt (RRBB) + Pt (BRBB) + Pt (BBRR) + Pt (BBRB)
�

+α2 (1−α)2 Pt (RBBR)

+α (1−α)
�

1+ (1−α)2
�

�

Pt (BRBR) + Pt (RBRB)
�

. (19)

Also by translation invariance of Pt it also follows that

Pt (RR) = Pt (RRRR) + Pt (RRRB) + Pt (BRRR) + Pt (BRRB) . (20)

1584



Now subtracting equation (20) from equation (19) we get

Pt+1 (RR)− Pt (RR)

=
�

α+ (1−α)2− 1
�

�

Pt (BRRR) + Pt (RRRB)
�

+
�

α2+ 2α (1−α)2+ (1−α)4− 1
�

Pt (BRRB)

+α (1−α) (2−α)
�

Pt (RRBR) + Pt (RBRR)
�

+α (1−α)
�

Pt (RRBB) + Pt (BRBB) + Pt (BBRR) + Pt (BBRB)
�

+α2 (1−α)2 Pt (RBBR)

+α (1−α)
�

1+ (1−α)2
�

�

Pt (BRBR) + Pt (RBRB)
�

= α (1−α)
h

−
�

Pt (RRRB) + Pt (BRRB) + Pt (BRRR) + Pt (BRRB)
�

+α (1−α)
�

Pt (BRRB) + Pt (RBBR)
�

+(1−α)
�

Pt (RRBR) + Pt (RBRR)
�

+
�

1+ (1−α)2
�

�

Pt (BRBR) + Pt (RBRB)
�

+
�

Pt (BRBB) + Pt (RBRR)
�

+
�

Pt (RRBB) + Pt (RRBR) + Pt (BBRR) + Pt (BBRB)
�i

= α (1−α)
h

α (1−α)
�

Pt (BRRB) + Pt (RBBR)
�

+(1−α)
�

Pt (RRBR) + Pt (RBRR)
�

+
�

1+ (1−α)2
�

�

Pt (BRBR) + Pt (RBRB)
�

+
�

Pt (BRBB) + Pt (BBRB)
�i

. (21)

In the above equations the second equality holds because of the following two easy algebraic iden-
tities:

α+ (1−α)2− 1=−α (1−α) and

α2+ 2α (1−α)2+ (1−α)4− 1= α (1−α) (α (1−α)− 2) ,

and the last equality is obtained from the following relations:

Pt (RRB) = Pt (RRBB) + Pt (RRBR) = Pt (RRRB) + Pt (BRRB) ,

Pt (BBR) = Pt (BBRR) + Pt (RBRR) = Pt (BRRR) + Pt (BRRB) .

Since each of the terms in the last equality of (21) are non-negative so we conclude that
�

Pt (RR)
	

t≥1
is an increasing sequence and hence converges. Thus Pt+1 (RR)− Pt (R)→ 0 as t →∞. So each of
the following eight probabilities converge to 0 as t →∞.

Pt (BRRB) ,Pt (RBBR) ,Pt (RRBR) ,Pt (RBRR) ,
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Pt (BRBR) ,Pt (RBRB) ,Pt (BRBB) ,Pt (BBRB) . (22)

It then follows that
Pt (RBR) = Pt (RBRR) + Pt (RBRB)→ 0, (23)

Pt (BRB) = Pt (BRBR) + Pt (BRBB)→ 0. (24)

Now observe that for any k ≥ 1 we have

αk+1 (1−α)Pt
�

BRkB
�

≤ Pt+1
�

BRk−1B
�

and

αk+1 (1−α)Pt
�

RBkR
�

≤ Pt+1
�

RBk−1R
�

. (25)

So by induction
lim
t→∞
Pt+1

�

BRkB
�

= 0= lim
t→∞
Pt+1

�

RBkR
�

(26)

for any k ≥ 1.

Finally, we consider the one dimensional marginal and observe

Pt+1 (R) = Pt (RRR) +
�

α+ (1−α)2
�

�

Pt (RRB) + Pt (BRR)
�

+
�

α+ (1−α)3
�

Pt (BRB)

+α (1−α)
�

Pt (BBR) + Pt (RBB)
�

+(1−α)
�

1− (1−α)2
�

Pt (RBR) . (27)

Also from translation invariance of Pt it follows that

Pt (R) = Pt (RRR) + Pt (RRB) + Pt (BRR) + Pt (BRB) . (28)

Subtracting equation (28) from equation (27) we have

Pt+1 (R)− Pt (R) = α
2 (1−α)

�

Pt (BRB)− Pt (RBR)
�

. (29)

To derive this final expression we used the following identities which are easy consequences of
translation invariance of Pt .

Pt (BBR)− Pt (BRR) = Pt (BRB)− Pt (RBR) = Pt (RBB)− Pt (RRB) .

Now from equation (21) we get that all the eight probabilities given in (22) are summable. In fact
we can write

Pt+1 (RR)− P0 (RR) = α (1−α)



α (1−α)
t
∑

n=0

�

Pn (BRRB) + Pn (RBBR)
�

+(1−α)
t
∑

n=0

�

Pn (RRBR) + Pn (RBRR)
�

+
�

1+ (1−α)2
�

t
∑

n=0

�

Pn (BRBR) + Pn (RBRB)
�

+
t
∑

n=0

�

Pn (BRBB) + Pn (BBRB)
�



 . (30)
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It then follows that the two sequences Pt (RBR) = Pt (RBRR) + Pt (RBRB) and Pt (BRB) =
Pt (BRBR) + Pt (BRBB) are also summable. In particular they converge to 0. This proves that
limt→∞ Pt (R) exists.

Invoking Theorem 9 we now complete the proof of the convergence (3).

We also note that so far we have only used the fact that the starting distribution is translation
invariant. Thus as mentioned in the introduction this in fact proves Theorem 3 as well.

4.2 Proof of the Properties of π
�

α, p
�

First, from the definition it follows that π
�

α, p
�

= limt→∞ Pt (RR); thus using equation (30) we get

π
�

α, p
�

= p2+α (1−α)



α (1−α)
∞
∑

t=0

�

Pt (BRRB) + Pt (RBBR)
�

+(1−α)
∞
∑

t=0

�

Pt (RRBR) + Pt (RBRR)
�

+
�

1+ (1−α)2
�

∞
∑

t=0

�

Pt (BRBR) + Pt (RBRB)
�

+
∞
∑

t=0

�

Pt (BRBB) + Pt (BBRB)
�



 . (31)

This immediately proves that π
�

α, p
�

> p2 for any p ∈ (0,1). Moreover because the model is
symmetric with respect to colour we have

π
�

α, p
�

= 1−π
�

α, 1− p
�

. (32)

This proves that
p2 < π

�

α, p
�

< 2p− p2

as well as π
�

α, 1
2

�

= 1
2
. Thus properties (ii) and (iii) of π hold.

Moreover from the expression (31) it follows that for every fixed α ∈ (0,1) the limiting marginal
π as a function of p is an increasing limit of polynomials in p. This implies that p 7→ π

�

α, p
�

is
lower semi-continuous [11]. But because of the identity (32) for the same reason it is also upper
semi-continuous. This proves that that π as a function of p is continuous, establishing the property
(i).

Finally, we show property (iv). For this fix α ∈ (0, 1) and notice that from the expression (31), since
all the summands are non-negative, we have

π
�

α, p
�

p
≥

1

p
α (1−α)

∞
∑

t=0

�

Pt (BRBB) + Pt (BBRB)
�

. (33)

Now fix t ≥ 0 and consider the probability Pt (BRBB). Because of translation invariance, without
loss of any generality, we may assume that the configuration we are considering is at the loca-
tions −1, 0,1, 2. Now notice that because the dynamics depends only on the nearest neighbours so
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Pt (BRBB) depends on the initial configuration at the locations in the interval [−t − 1, t + 2]. So
without loss of generality we may assume that outside the interval [−t − 1, t + 2], at every location
the colour of the chameleons are blue (B). So we may write

Pt (BRBB) = p
�

1− p
�2t+3 p(t)11 (α) + o

�

p2
�

(34)

where the terms in o
�

p2
�

are all non-negative and p(t)11 (α) is the sum over all locations x ∈
[−t − 1, t + 2] of the probability of obtaining exactly one red (R) chameleon at location 0 at time
t having started at time 0 with exactly one red (R) chameleon at location x . Observe also that
Pt (BBRB) has exactly the same representation as Pt (BRBB).

Now let us consider the case when we start with exactly one R chameleon at some location x ∈ Z
and all other chameleon of colour blue (B). For this let Lt be the number of red chameleons at time
t and X t be the position of the leftmost red chameleon at time t. These two quantities are well
defined for our Markov chain. Thus we get

p(t)11 =
t+2
∑

x=−t−1

P
�

Lt = 1, X t = 0
�

�

� L0 = 1, X0 = x
�

=
t+2
∑

x=−t−1

P
�

Lt = 1, X t =−x
�

�

� L0 = 1, X0 = 0
�

= P
�

Lt = 1
�

�

� L0 = 1, X0 = 0
�

(35)

where the second equality follows because of the translation invariance of the measure while the
last follows because if X0 = 0 then X t ∈ [−t, t] with probability one.

Now it follows easily that starting with exactly one R chameleon at the origin the stochastic process
�

Lt
�∞

t=0 is a Markov chain with state-space {0, 1,2, . . .} starting at L0 = 1 and with absorbing state
0. The transition matrix P :=

��

pi j

��

is given by

pi j =























2α (1−α)2+α2 (1−α) if i = 1, j = 0
1− 3α (1−α) if i = 1, j = 1
2α2 (1−α) if i = 1, j = 2
α (1−α)2 if i = 1, j = 3
P
�

Z1+ Z2 = j− i
�

if i ≥ 2
0 otherwise

(36)

where Z1, Z2 are i.i.d. random variables with P
�

Z1 =−1
�

= P
�

Z1 = 1
�

= α (1−α) and
P
�

Z1 = 0
�

= 1− 2α (1−α).
Now using equations (33), (34) it follows that

lim inf
p→0

π
�

α, p
�

p
≥ 2α (1−α) lim inf

p→0

∞
∑

t=0

�

1− p
�2t+3 p(t)11

≥ 2α (1−α)
∞
∑

t=0

p(t)11

≥ 1.
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Here we note that the second inequality follows from Fatou’s Lemma and, noting that
∑∞

t=0 p(t)11 =

E
�

# of returns to state 1
�

�

� L0 = 1
�

, the last inequality follows from Theorem 10 of Section 5.

This completes the proof of Theorem 2.

5 Some Technical Results

In this section we prove some technical results which have been used in the proofs in the previous
sections.

Theorem 9. Let
�

Pt
�

t≥0 be a sequence of translation invariant measures on {R, B}Z such that the
following conditions hold

(i) limt→∞ Pt (R) exists,

(ii) limt→∞ Pt (RR) exists, and

(iii) for all k ≥ 1 limt→∞ Pt
�

BRkB
�

= 0= limt→∞ Pt
�

RBkR
�

,

then
Pt

w−→ aδR+ (1− a)δB as t →∞, (37)

where a := limt→∞ Pt (R).

Proof. Let a := limt→∞ Pt (R) and b := limt→∞ Pt (RR). To prove the result it is enough to show that
a = b. This is because then Pt (RB) = Pt (BR) = Pt (RR)− Pt (R)→ 0 as t →∞.

Now to show a = b we first observe that

Pt (RB) = Pt (R)− Pt (RR)→ a− b.

Now for k ≥ 1,
Pt
�

Rk+1B
�

= Pt
�

RkB
�

− Pt
�

BRkB
�

.

Thus under assumption (iii) it follows by induction that

Pt
�

RkB
�

→ a− b. (38)

Also for any k ≥ 1 we have
Pt
�

Rk+1
�

= Pt
�

Rk
�

− Pt
�

RkB
�

.

Thus it follows by induction that

Pt
�

Rk
�

→ (k− 1) b− (k− 2) a. (39)

From equation (38) and (39) it follows that

b ≤ a ≤ k−1
k−2

b for all k ≥ 3. (40)

This proves that a = b completing the proof.
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Theorem 10. Let
�

Lt
�

t≥0 be a Markov chain on the state-space {0, 1,2, . . .} with transition matrix
P =

��

pi j

��

as given in (36) and L0 = 1. Then

E
�

# of returns to the state 1
�

�

� L0 = 1
�

>
1

2α (1−α)
. (41)

Proof. Let f ?11 := P
�

Lt = 1 for some t ≥ 1
�

�

� L0 = 1
�

then from standard Markov chain theory [7] it

follows that

E
�

# of returns to the state 1
�

�

� L0 = 1
�

=
1

1− f ?11
. (42)

Moreover we can also write,
f ?11 = p11+ p12 f ?21+ p13 f ?31, (43)

where f ?k1 := P
�

Lt = 1 for some t ≥ 1
�

�

� L0 = k
�

for k ∈ {2, 3}.

Now let
��

p̄i j

��

be the transition matrix of a new Markov chain on the same state-space {0,1, 2, . . .}
such that both 0 and 1 are absorbing states and p̄i j = pi j for all i ≥ 2. Let uk be the probability of
getting absorbed in the state 1 for this new chain when started at state k. Then it is easy to see that
f ?k1 = uk for any k ≥ 2.

From definition u0 = 0 and u1 = 1. Moreover it is easy to see that

uk = β2
�

uk−2+ uk+2
�

+ β1
�

uk−1+ uk+1
�

+ β0uk , (44)

where β2 = θ2, β1 = 2θ (1− 2θ) and β0 = 1 − β1 − β2 and θ := α (1−α). The characteristic
equation of this difference equation is given by

λ2 = β2

�

λ4+ 1
�

+ β1

�

λ3+λ
�

+ β0λ
2. (45)

It then follows easily that this has three real roots, γ0 = 1 with multiplicity 2 and −γ1 and −γ2 such
that γ2 > 1> γ1 > 0. So a general solution of (44) is given by

uk = C1+ C2k+ C3(−γ1)
k + C4

�

−γ2
�k . (46)

But our uk ’s are probability and hence are in [0, 1], so we must have C2 = C4 = 0. But because of
the initial conditions u0 = 0 and u1 = 1 it follows that

uk =
1

1+ γ1
−
�

−γ1
�k

1+ γ1
. (47)

In particular
u2 = 1− γ1 and u3 = 1− γ1+ γ

2
1. (48)

Going back to the characteristic equation (45) we determine that

1− γ1 = h(θ) , (49)

where

h(θ) =

p
1− 2θ − (1− 2θ)

θ
. (50)
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Now to complete the proof we need to show that

f ?11 > 1− 2α (1−α)

which is equivalent to showing

h(θ) (3α− 1)−α+ (1−α) (h(θ))2 > 0

where θ = α (1−α) and h is as defined in (50).

The rest of the proof is simple calculus and some exact calculations; for completeness we provide
the essential details. From the definition of h one can show easily by Taylor expansion that

1− h(θ)≤ θ
2
+ cθ2, (51)

where c = 2.18. Also it is not difficult to show that

h(θ)≥ 2
�p

2− 1
�

> 0.8, (52)

here we note that θ = α (1−α) ∈
h

0, 1
4

i

.

Finally,

h(θ) (3α− 1)−α+ (1−α) (h(θ))2

= α (2h(θ)− 1)− (1−α)h(θ) (1− h(θ))

≥ α (2h(θ)− 1)− (1−α)h(θ)θ
�

1
2
+ cθ

�

= α
¦

h(θ)
�

2− (1−α)2
�

1
2
+ cθ

��

− 1
©

≥ α
¦

h(θ)
�

2− 1
2
− cα (1−α)3

�

− 1
©

≥ α
¦

0.8
�

3
2
− 2.18 ∗ 27

256

�

− 1
©

≥ α (1.01− 1)

> 0.

Here we use the fact that α (1−α)3 ≤ 27
256

. This completes the proof.

6 Coexistence of the Two Colours

We observe that in our model even in the symmetric case only one of the colours survives at the limit
provided we start with a translation invariant distribution. In this case it is also easy to see that if we
start with all blue chameleons on the negative integers and all red chameleons at the non-negative
integer locations then at the limit with probability 1/2 we have the all red configuration and with
probability 1/2 the all blue configuration. So once again there is no coexistence. This is because in
this case the interface between the blue and red chameleons will perform a discrete time symmetric
random walk with holding and hence the result will follow from standard local limit theorem.

It is possible though to get coexistence of the two colours by making the success probability α
inhomogeneous, that is to depend on time. Suppose that αt is the probability of success of the
coin toss of any colour at time t and we start with a configuration of all blue chameleons on the
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negative integers while all red chameleons at the non-negative integers. Let X t be the position of
the left-most red chameleon. Then it is easy to see that X t := Y1 + Y2 + · · ·+ Yt where

�

Yi
�

i≥1 are
independent and Yi follows a distribution on {−1, 0,1} with P

�

Yi =−1
�

= P
�

Yi = 1
�

= αi
�

1−αi
�

and P
�

Yi = 0
�

= 1− 2αi
�

1−αi
�

. So by Kolmogorov’s Three Series Theorem [4] the sequence of
random variables

�

X t
�∞

t=0 converges a.s. if and only if

∞
∑

t=1

αt
�

1−αt
�

<∞ (53)

Thus if (53) is satisfied then there will be both colours present at the limit.

This is intuitively clear since under the condition (53) for large enough t one of αt or
�

1−αt
�

is
“small” and hence there will either be a large number of failures or large number of successes of the
coin tosses, and in either case, no change is expected.

It is of course more interesting to study this symmetric model on higher dimensions with homoge-
neous success probability and to explore the possibility of coexistence in that case. Unfortunately
our method does not help in that case. In fact in higher dimension it is not even clear a condition
like pR > pB is good enough to get all red configuration at the limit.
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