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The maximum of Brownian motion minus a parabola
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Abstract

We derive a simple integral representation for the distribution of the maximum of Brownian
motion minus a parabola, which can be used for computing the density and moments of the
distribution, both for one-sided and two-sided Brownian motion .

Key words: Brownian motion, parabolic drift, maximum, Airy functions.

AMS 2000 Subject Classification: Primary 60J65,60J75.

Submitted to EJP on October 5, 2010, final version accepted October 28, 2010.

∗Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands, p.groeneboom@tudelft.nl; http://
dutiosc.twi.tudelft.nl/~pietg/

1930

http://www.math.washington.edu/~ejpecp/
http://dutiosc.twi.tudelft.nl/~pietg/
http://dutiosc.twi.tudelft.nl/~pietg/


1 Introduction

It is the purpose of this note to show how one can easily obtain information on properties of the
distribution of the maximum of Brownian motion minus a parabola from Groeneboom (1989). In
fact, Corollary 3.1 in that paper gives the joint distribution of both the maximum and the location
of the maximum. In the latter paper most attention is on the distribution of the location of the
maximum, which is derived from this corollary. The reason for the emphasis on the distribution of
the location of the maximum is that this distribution very often occurs as limit distribution in the
context of isotonic regression; one could say that it is a kind of “normal distribution" in that context.
But one can of course also derive the distribution of the maximum itself from this corollary and at
the same time deduce numerical information, as will be shown below.

Numerical information on the density, quantiles and moments of the location of the maximum is
given in Groeneboom and Wellner (2001), which in turn relies on section 4 of Groeneboom (1985).

2 Representations of the distribution of the maximum

Let Fc be the distribution function of the maximum of W (t)−c t2, t ≥ 0, where W is one-sided Brow-
nian motion (in standard scale and without drift). Then, according to Theorem 3.1 of Groeneboom
(1989), Fc has the representation

Fc(x) =ψx ,c(0), (2.1)

where the function ψx ,c : R→ R+ has Fourier transform

ψ̂x ,c(λ) =

∫ ∞

−∞
eiλsψx ,c(s) ds =

π {Ai(iξ)Bi(iξ+ z)− Bi(iξ)Ai(iξ+ z)}
(2c2)1/3Ai(iξ)

, (2.2)

and where ξ =
�

2c2
�−1/3

λ, and z = (4c)1/3 x . It follows that the corresponding density fc has the
representation

fc(x) = φx ,c(0)
def
=

∂

∂ x
ψx ,c(0), (2.3)

where φx ,c has Fourier transform

φ̂x ,c(λ) =

∫ ∞

−∞
eiλsφx ,c(s) ds =

π(4c)1/3
�

Ai(iξ)Bi′(iξ+ z)− Bi(iξ)Ai′(iξ+ z)
	

(2c2)1/3Ai(iξ)
, (2.4)

The (symmetric) density gc of the maximum M of W (t)−c t2, t ∈ R, where W is two-sided Brownian
motion, originating from zero, therefore has the representation

gc(x) = 2 fc(x)Fc(x) = 2φx ,c(0)ψx ,c(0) =
1

2π2

∫ ∞

−∞
ψ̂x ,c(u) du

∫ ∞

−∞
φ̂x ,c(u) du, x > 0, (2.5)

since the distribution function of M is the maximum of the two maxima one gets to the right and to
the left of zero. Note that these two maxima are independent, since two-sided Brownian motion is
started independently to the right and to the left, starting at zero. It is also obvious that these two
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maxima have the same distribution. Interestingly, the situation is more complicated for the location
of the maximum!

Note that this gives the complete characterization of the distribution of the maximum of Brownian
motion with parabolic drift. The purpose of this note, however, is to show how one can deduce
useful numerical information from this.

The two fundamental solutions of the Airy differential equation are Ai and Bi which are unbounded
on different regions of the complex plane. For the purpose of computing moments, etc., it is easier
to only work with the solution Ai, so we want to get rid of Bi. To this end we simply use Cauchy’s
formula.

We have the following lemma.

Lemma 2.1. Let Nc be defined by

Nc =max
x≥0

¦

W (x)− cx2
©

,

So Nc is the maximum for the one-sided case. Then the distribution function Fc = FNc
of Nc is given by:

Fc(x) = 1−
∫ ∞

(4c)1/3 x

Ai(u) du− 2 Re

(

e−iπ/6

∫ ∞

0

Ai
�

e−iπ/6u
�

Ai(iu+ (4c)1/3 x)

Ai(iu)
du

)

, x > 0.

One can use this representation to compute the distribution function Fc in one line in, for example,
Mathematica, and the result of this computation is shown below in Figure 1, where we take c = 1/2.
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Figure 1: The distribution function FNc
, for c = 1/2.

Proof of Lemma 2.1. After the change of variables u = (2c2)−1/3ξ we get for the corresponding
distribution function Fc , still taking z = (4c)1/3 x ,

Fc(x) =
1

2

∫ ∞

−∞

{Ai(iu)Bi(iu+ z)− Bi(iu)Ai(iu+ z)}
Ai(iu)

du. (2.6)

Using
Bi(z) = iAi(z)− 2ieπi/3Ai

�

ze−2πi/3�,
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which is 10.4.9 in Abramowitz and Stegun (1964), we can write:

1

2

∫ ∞

0

{Ai(iu)Bi(iu+ z)− Bi(iu)Ai(iu+ z)}
Ai(iu)

du

= e−iπ/6

∫ ∞

0

Ai
�

e−iπ/6u+ ze−2iπ/3
�

du− e−iπ/6

∫ ∞

0

Ai
�

e−iπ/6u
�

Ai(iu+ z)

Ai(iu)
du. (2.7)

By Cauchy’s formula we can reduce the first integral on the right-hand side of (2.7) to:
∫ ∞

0

Ai
�

u+ ze−2iπ/3
�

du. (2.8)

Differentiation w.r.t. z yields:

e−2iπ/3

∫ ∞

0

Ai′
�

u+ ze−2iπ/3
�

du=−e−2iπ/3Ai
�

ze−2iπ/3
�

.

We similarly have:

1

2

∫ 0

−∞

{Ai(iu)Bi(iu+ z)− Bi(iu)Ai(iu+ z)}
Ai(iu)

du

= eiπ/6

∫ ∞

0

Ai
�

eiπ/6u+ ze2iπ/3
�

du− eiπ/6

∫ ∞

0

Ai
�

eiπ/6u
�

Ai(−iu+ z)

Ai(−iu)
du. (2.9)

Again using Cauchy’s formula we can reduce the first integral on the right-hand side of (2.9) to:
∫ ∞

0

Ai
�

u+ ze2iπ/3
�

du. (2.10)

Differentiation w.r.t. z yields:

e2iπ/3

∫ ∞

0

Ai′
�

u+ ze2iπ/3
�

du=−e2iπ/3Ai
�

ze2iπ/3
�

.

So the derivative w.r.t. z of the sum of the two integrals (2.8) and (2.10) is given by

− e−2iπ/3Ai
�

ze−2iπ/3
�

− e2iπ/3Ai
�

ze2iπ/3
�

= Ai(z). (2.11)

For the latter relation, see (10.4.7) in Abramowitz and Stegun (1964).

So we get:
∫ ∞

0

Ai
�

u+ ze−2iπ/3
�

du+

∫ ∞

0

Ai
�

u+ ze2iπ/3
�

du=

∫ z

0

Ai(u) du+ k, (2.12)

for some constant k. For z = 0 we get:
∫ ∞

0

Ai(u) du+

∫ ∞

0

Ai(u) du= 2

∫ ∞

0

Ai(u) du= k = 2/3.
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Hence k = 2/3 and
∫ ∞

0

Ai
�

u+ ze−2iπ/3
�

du+

∫ ∞

0

Ai
�

u+ ze2iπ/3
�

du=

∫ z

0

Ai(u) du+ 2/3

= 1−
∫ ∞

z

Ai(u) du. (2.13)

Note that this implies:

lim
z→∞

�
∫ ∞

0

Ai
�

u+ ze−2iπ/3
�

du+

∫ ∞

0

Ai
�

u+ ze2iπ/3
�

du
�

= 1. (2.14)

The second term is given by

−e−iπ/6

∫ ∞

0

Ai
�

e−iπ/6u
�

Ai(iu+ z)

Ai(iu)
du− eiπ/6

∫ ∞

0

Ai
�

eiπ/6u
�

Ai(−iu+ z)

Ai(−iu)
du

=−2Re

(

e−iπ/6

∫ ∞

0

Ai
�

e−iπ/6u
�

Ai(iu+ z)

Ai(iu)
du

)

. (2.15)

�

Corollary 2.1. The density of Nc is given by:

fc(x) = (4c)1/3
(

Ai
�

(4c)1/3 x
�

− 2Re

 

e−iπ/6

∫ ∞

0

Ai
�

e−iπ/6u
�

Ai ′
�

iu+ (4c)1/3 x
�

Ai(iu)
du

!)

, x > 0.

Proof. This follows by straightforward differentiation from Lemma 2.1. �

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Figure 2: The density fNc
, for c = 1/2.

A picture of the density fNc
, for c = 1/2, is given in Figure 2. By the remarks above, we also have:

1934



Corollary 2.2. The density gc of the maximum M of W (t)−c t2, t ∈ R, where W is two-sided Brownian
motion, originating from zero, if given by

gc(x) = 2 fc(x)Fc(x), x > 0,

where fc is given by Corollary 2.1 and Fc by Lemma 2.1.

A picture of the density fMc
, for c = 1/2 and two-sided Brownian motion, is given in Figure 3.
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Figure 3: The density fMc
= gc of the maximum for two-sided Brownian motion and c = 1/2.

3 Concluding remarks

The densities of the maximum and location of the maximum of Brownian motion minus a parabola
were originally studied by solving partial differential equations. For example, if we denote the
location of the maximum of two-sided Brownian motion minus the parabola y = t2 by Z , then the
density of Z is expressed in Chernoff (1964) in terms of the solution of the heat equation

∂

∂ t
u(t, x) =−1

2

∂ 2

∂ x2 u(t, x),

for x ≤ t2, under the boundary conditions

u(t, t2)
def
= lim

x↑t2
u(t, x) = 1, lim

x↓−∞
u(t, x) = 0, t ∈ R.

If u(t, x) is the (smooth) solution of this equation, the density fZ of Z is given by

fZ(t) =
1
2
u2(−t)u2(t), x ∈ R,

where (as in Groeneboom (1985)) the function u2 is defined by

u2(t) = lim
x↑t2

∂

∂ x
u(t, x).
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The original computations of this density were indeed based on numerically solving this partial
differential equation (as I learned from personal communications by Herman Chernoff and Willem
van Zwet). However, it is very hard to solve this equation numerically sufficiently accurately for
negative values of t, since we have, by (4.25) in Groeneboom (1985):

u2(t)∼ c1 exp
¦

−2
3
|t|3− c|t|

©

, t →−∞,

where c ≈ 2.9458 . . . and c1 ≈ 2.2638 . . . .

At present the situation is drastically different, since we have much more analytical information
about the solution and, moreover, can use advanced computer algebra packages. One only needs
one line in Mathematica to compute the density fZ , since, by (3.8) in Groeneboom (1989), fZ is
given by fZ(x) =

1
2
φ(x)φ(−x) = 1

2
u2(x)u2(−x), where:

φ(x) =
1

22/3π

∫ ∞

−∞

e−iux

Ai(i2−1/3u)
du,

and where one can even allow the boundaries −∞ and ∞ in the numerical integration (in Math-
ematica). A picture of the density fZ , obtained from just using this definition in Mathematica, is
given in Figure 4.

However, if one wants to get very precise information about the tail behavior of the density or the
behavior close to zero, it is better to use power series expansions or asymptotic expansions, which
are different in a neighborhood of zero from the representation for large values of the argument.
Details on this are given in Groeneboom (1985) and Groeneboom and Wellner (2001).

More details on the history of the subject are given in Perman and Wellner (1996) and Janson,
Louchard and Martin-Löf (2010). In the latter manuscript also more details on the distribution of
the maximum of Brownian motion minus a parabola are given. Their results seem to be in complete
agreement with some numerical computations, based on the representations given in section 2.
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Figure 4: The density fZ of the location of the maximum of W (t)− t2, t ∈ R.
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