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Abstract

The clustering of extremes values of a stationary Gaussian process X (t), t ∈ [0, T] is considered,

where at least two time points of extreme values above a high threshold are separated by at

least a small positive value ǫ. Under certain assumptions on the correlation function of the

process, the asymptotic behavior of the probability of such a pattern of clusters of exceedances is

derived exactly where the level to be exceeded by the extreme values, tends to∞. The excursion

behaviour of the paths in such an event is almost deterministic and does not depend on the high

level u. We discuss the pattern and the asymptotic probabilities of such clusters of exceedances.
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1 Introduction and main results

Let X (t), t ∈ R, be a zero mean stationary, a.s. continuous Gaussian process with unit variance and

covariance function r(t). We study probabilities of high extremes of the process. It is known that

given a high extreme occurs in a bounded interval [0, T], say, then the excursion set

E(u, T ) := {t ∈ [0, T] : X (t)> u}

is non-empty, but typically very short. To prove this, one has to investigate mainly the conditional

expectation of X (t) given X (0) = u1, where u1 is close to u, i.e. E(X (t)|X (0) = u1) = u1r(t) and

to notice that the conditional covariance function does not depend on u1. It is necessary to assume

that r(t) is sufficiently regular at zero and r(t) < r(0) for all t > 0. Applying then usual Gaussian

asymptotical techniques, one can determine the corresponding asymptotically exact results. See for

details, Berman [3], Piterbarg [8]. Notice also that high values of a Gaussian process with excursions

above a high level occur rarely, and for non differentiable paths there are infinitely many crossings of

the high level in a short interval, which tends to 0 as the level u→∞. Hence, they are not separated

by a fixed ǫ, so that to use Gaussian processes modeling for ”physically significant” extremes one

should consider larger excursions. In other words, considering a lower high level u, one may observe

longer excursions. To gain more insight in the extremal behavior of Gaussian processes, a natural

step in studying high excursions is the consideration of the excursion sets, containing two points

separated by some fixed ǫ > 0. Thus let us define the set Eǫ(u, T ) by

Eǫ(u, T ) := {∃s, t ∈ [0, T] : X (s)> u, t ≥ s+ ǫ , X (t)> u}.

We show here that for particular correlation functions r(t), the trajectories spend a non-vanishing

time above u given the two separated excursions X (s)> u and X (t)> u, as u→∞.

In order to study a limit structure of such excursion sets, we introduce the collection of events S

S :=

�
{inf

v∈A
X (v)≥ u, sup

v∈B

X (v)≤ u},A, B ∈ C
�

(A stands for above, B for below), where C denotes the collection of all closed subsets of R. Denote

by {Ts, s ∈ R} the group of shifts along trajectories of the process X (t). The family of probabilities

Pǫ,u,T (S) := P(∃s, t ∈ [0, T], t ≥ s+ ǫ : X (s)> u, X (t)> u, TsS), S ∈ S ,

describes the structure of the extremes containing two excursions points separated by at least ǫ. We

study the asymptotic behavior of this probability when u → ∞, which depends on the particular

behavior of r(t).

We describe the possible sets A with excursions above u given two exceedances which are at least

ǫ separated. Furthermore, we can also describe in this case the sets B on which the trajectories

are typically below u. Thus we study here the asymptotic behavior of the probability of "physi-

cal extremes", that is, the probability of existence of excursions above a high level with physically

significant duration.

Related problems were considered in Piterbarg and Stamatovic [9], where the asymptotic behaviour

of the logarithm of the probability was derived for general Gaussian processes, where the sets A and

B are not used because they have no impact. Ladneva and Piterbarg [4] and Anshin [2] considered
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the probability of joint high values of two Gaussian processes. Clustering of extremes in time series

data is a subject of modeling, e.g. in mathematical finances, meteorological studies, or reliability

theory. The paper by Leadbetter et al. [5] presents some theoretical background for studying clusters

of time series.

Our results depend on the behavior of the correlation function r(t) of the Gaussian process X (t).

We introduce the following assumptions.

C1 For some α ∈ (0,2),

r(t) = 1− |t|α + o(|t|α) as t → 0,

r(t)< 1 for all t > 0.

The behavior of the clustering depends on the maximal value of r(t) with

t ∈ [ǫ, T]. Thus we restrict r(t) in [ǫ, T] by the following conditions.

C2 In the interval [ǫ, T] there exists only one point tm of maximum r(t) being an interior point of

the interval: tm = arg max[ǫ,T] r(t) ∈ (ǫ, T ), where r(t) is twice continuously differentiable in

a neighborhood of tm with r ′′(tm)< 0.

The following condition deals with the case tm = ǫ, which seems somewhat more common since

r(t) decreases in a right neighborhood of zero. Unfortunately considerations in this case are more

complicated.

C3 Assume that r(t) is continuously differentiable in a neighborhood of the point ǫ < T , with

r ′(ǫ)< 0, and r(ǫ)> r(t) for all t ∈ (ǫ, T], hence tm = ǫ.

Denote by Bα(t), t ∈ R, the fractional Brownian motion with the Hurst parameter α/2 ∈ (0,1), that

is a Gaussian process with a.s. continuous trajectories, and with Bα(0) = 0 a.s., EBα(t) ≡ 0, and

E(Bα(t)− Bα(s))
2 = |t − s|α. For any set I ⊂ R and a number c ≥ 0, we denote

Hα,c(I) = E exp

�
sup
t∈I

p
2Bα(t)− |t|α − c t

�
.

It is known, from Pickands [7] and Piterbarg [8], that there exist positive and finite limits

Hα := lim
λ→∞

1

λ
Hα,0([0,λ]) (Pickands’ constant) (1)

Hα,c := lim
λ→∞

Hα,c([0,λ]), for c > 0. (2)

Now consider the asymptotic expression for the joint exceedances of the level u by the two r.v.’s X (0)

and X (t), i.e. for any t > 0,

P (X (0)> u, X (t)> u) = Ψ2(u, r(t))(1+ o(1))

as u→∞, where

Ψ2(u, r) =
(1+ r)3/2

2πu2
p

1− r
exp

�
−

u2

1+ r

�
.
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The shape of excursion sets depends on the behavior of the conditional mean m(v): m(v) =

E(X (v) | X (0) = X (tm) = 1) which is

m(v) =
r(v) + r(tm− v)

1+ r(tm)
.

Let

A0 := {v : m(v)> 1} and B0 := {v : m(v)< 1}.

We split the collection of events S into two sub-collections S0 and S1. The first sub-collection S0

consists of the events generated by all closed subsets A ⊂ A0, and all closed subsets B ⊂ B0, and

the second sub-collection S1 is its complement, S1 = S \ S0, generated by all closed A, B, having

non-empty intersections with B0 or A0, respectively, A∩ B0 6= ; or B ∩ A0 6= ;. Let us single out an

event S ∈ S with A= B = ;, it equals Ω with probability one, since trajectories of X are continuous

and we can simply write in this case S = Ω. Clearly, we have Ω ∈ S0.

The probability

P(u;ǫ, T ) := Pu;ǫ,T (Ω) = P(∃s, t ∈ [0, T] : t ≥ s+ ǫ, X (s)≥ u, X (t)≥ u)

plays the crucial role in the study of asymptotic behavior of the set of exceedances. It turns out that

the events S from S0 give no contribution in the asymptotic behavior of the probability Pu;ǫ,T (S).

Conversely, considering S ∈ S1 makes the probability exponentially smaller. Our main results show

the equivalence

Pǫ,u,T (S)∼ P(u;ǫ, T ), S ∈ S0, (3)

moreover, we give asymptotic expressions for P(u;ǫ, T ) and exponential bounds for Pǫ,u,T (S), S ∈
S1. Note, this means that for any A⊂ A0 we have Pǫ,u,T (A) = P{∃t : mins∈A+t X (s) > u} ∼ P(u;ǫ, T )

as u→∞.

Theorem 1. Let X (t), t ∈ R, be a Gaussian centered stationary process with a.s. continuous trajecto-

ries. Assume that the correlation function r(t) satisfies C1 and C2. Then we have the following.

(i) For any S ∈ S0,

Pǫ,u,T (S) =
(T − tm)

p
2πH2

α u−1+4/α

p
−r ′′(tm)(1+ r(tm))

−1+4/α
Ψ2(u, r(tm))(1+ o(1))

as u→∞.

(ii) For any S ∈ S1 there exists a δ > 0 with

Pǫ,u,T (S) = o
�

e−δu2

Ψ2(u, r(tm))
�

as u→∞.

For the next results we need the following constant h. It is defined as

h= lim inf
λ→∞

lim inf
µ→∞

h1(λ,µ)

µ
= lim sup

λ→∞
lim sup
µ→∞

h1(λ,µ)

µ
∈ (0,∞)
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with h1(λ,µ) =

=

∫ ∫

R2

ex+y P
�⋃

D

{
p

2B1(s)− (1+ r ′(ǫ))s > x ,
p

2eB1(t)− (1− r ′(ǫ))t > y}
�
d xd y <∞,

where D = {(s, t) : 0 ≤ s ≤ µ/(1+ r(ǫ))2, 0 ≤ t − s ≤ λ/(1+ r(ǫ))2} and B1(t) and eB1(t) denote

independent copies of the standard Brownian motion.

Theorem 2. Let X (t), t ∈ R, be a Gaussian centered stationary process with a.s. continuous trajecto-

ries. Assume that the correlation function r(t) satisfies C1 and C3. Then the following assertions take

place.

1. If S ∈ S0, then we have:

(i) for α > 1,

Pu;ǫ,T (S) =
(T − ǫ)|r ′(ǫ)|
(1+ r(ǫ))2

u2Ψ2(u, r(ǫ))(1+ o(1)).

(ii) For α= 1,

Pu;ǫ,T (S) = (T − ǫ)hu2Ψ2(u, r(ǫ))(1+ o(1)).

(iii) For α < 1,

Pu;ǫ,T (S) =
(T − ǫ)H2

α u−2+4/α

|r ′(ǫ)|(1+ r(ǫ))−2+4/α
Ψ2(u, r(ǫ))(1+ o(1)).

2. If S ∈ S1, then there exists δ > 0 such that Pu;ǫ,T (S) = o
�

e−δu2

Ψ2(u, r(ǫ))
�

as u→∞.

Remark 1: Notice that the relation (3) follows by letting in both Theorems S = Ω ∈ S0.

Remark 2: We do not consider the case of differentiable processes, α = 2, because such considera-

tions require quite different arguments. This case will be considered in a separate publication. In

addition, we do not care about the points t such that r(t) =−1, because they can be deleted in the

derivations, as can be noted in the proofs.

The necessary lemmas for the proof of the two results are treated in Section 3, in Section 4 follows

the proof of the main results. In the next section we first discuss some examples to indicate the

pattern of exceedances depending on the given correlation function.

2 Examples

A general property in case of C3: If r(v) is above the straight line traced between (0,1) and

(ǫ, r(ǫ)), then m(v) > 1 for all v ∈ (0,ǫ). Indeed, in this case r(v) > 1 − (1 − r(ǫ))v/ǫ and

r(ǫ − v) > 1− (1− r(ǫ))(ǫ − v)/ǫ. Summing we get r(v) + r(ǫ − v) > 1+ r(ǫ). In particular, this

holds if r(t) is strictly concave on [0,ǫ]. It means that in this case A0 contains (0,ǫ).

Example 1: Consider the correlation function

r(t) = exp(−|t/6|1.9)(2+ cos(3t))/3,
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being the product of two correlation functions. It has countable many local maxima with decreasing

heights. The first three local maxima after 0 are t(1)m ≈ 2.055, t(2)m ≈ 4.115, t(3)m ≈ 6.175. For k ≥ 1,

denote by sk, the maximal root of the equation r(s) = r(t(k)m ) with s < t(k)m , s1 ≈ 0.294, s2 ≈ 2.544,

s3 ≈ 4.734, (see Figure 1). Let T be larger than the considered t(k)m , with k fixed.

If ǫ has been chosen between s1 and t(1)m , then tm = t(1)m and A0 = ;. It means that a typical trajectory

with two such separated exceedances crosses (perhaps infinitely many times) a high level u, but only

in two very short (vanishing as u→∞) intervals concentrated around two points separated by tm,

approximately.

If ǫ is larger, ǫ ∈ (s2, t(2)m ), then tm = t(2)m , A0 is non-empty, A0 ≈ (1.82,2.29) (see Fig. 2). That

is, given two exceedances of a high level u separated by at least such an ǫ, say, X (t1) > u and

X (t2) > u, t2 − t1 ≥ ǫ, one observes between the exceedances an interval (not tending to 0) on

which the trajectory is above u. This interval is approximately congruent to A0. Note that t2 is rather

close to t1+ t(2)m for large u.

Furthermore, if ǫ ∈ (s3, t(3)m ), then tm = t(3)m and A0 ≈ (1.80,2.31)∪(3.86,4.37) (see Fig. 2), implying

in the case of two exceedances separated by at least ǫ that one observes two intervals on which the

corresponding trajectory is entirely above u.

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1.0
Correlation function r(t)

t

t
(1)
m t

(2)
m t

(3)
m t

(4)
ms1 s2 s3 s4

Figure 1: Correlation function r(t) of the example with the local maxima t(k)m and the corresponding

values sk.

Theorem 2 can be used for the other cases of ǫ. The correlation function r(t) is strictly concave on

(0, s1). For any positive ǫ ∈ (0, s1] we have also r(t)< r(ǫ) for all t > ǫ. Thus, for such ǫ, Condition

C3 holds and thus Theorem 2 can be applied with A0 = (0,ǫ). It is easy to verify that m(v) < 1

outside of [0,ǫ].

If ǫ ∈ (t(1)m , s2), one can derive that A0 consists of two separated intervals (0,κ) ∪ (ǫ − κ,ǫ). For

example, for ǫ = 2.3, we get κ ≈ 0.22. The Conditions C1 and C3 are fulfilled, so the assertion (i)

of Theorem 2 holds, but not the assertion of Corollary 3.

The following two examples consider the cases with ǫ being the maximal point of r(t) in [ǫ, T].

We can show that (3) holds and want to describe the typical base of the excursions above the level
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Figure 2: Conditional mean function m(v) for the second and third local maxima t(i)m , i = 2,3, with

the corresponding sets A0

u with ǫ-separation.

Example 2: Consider the correlation function r(t) = exp(−|t|α), α ∈ (0,2). For any ǫ > 0, the

point ǫ is the maximal point of r(t) on [ǫ,∞). This is the situation of C3.

If α ≤ 1, then r(t) is convex and it can be determined that m(v) < 1 for all v 6∈ {0,ǫ}. We have

m(v) = 1 for v ∈ {0,ǫ}. Thus A0 is empty.

If α > 1, r(t) is concave in a neighborhood of zero, as long as 0 < t < [(α− 1)/α]1/α, so that for

small enough ǫ we have A0 = (0,ǫ). In fact, m(v) > 1, for v ∈ (0,ǫ), even when ǫ does not belong

to the domain of concavity of r(t). By symmetry this holds if m(ǫ/2)> 1, which means if

2 exp(−(ǫ/2)α)> 1+ exp(−ǫα).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4v

0.85

0.90

0.95

1.00

1.05
m(v) with ε = 1.5

α = 1.9

α = 1.5

1

Figure 3: Conditional mean function m(v) for example 2 with α= 1.5 and 1.9

For bigger values of ǫ, A0 consists of two intervals after 0 and before ǫ, like in Example 1 (see Fig.

2). Theorem 2 implies that the trajectories which have two points of exceedances separated by ǫ,

spend typically some time above the high level u after the first intersection and before the second

one separated by ǫ. If ǫ is small enough, these intervals overlap.

Example 3: Consider the correlation function r(t) = (1+ |t|α)−1, α ∈ (0,2], given e.g. in [6]. Let
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ǫ = 1. For α ≤ 1, the set A0 is empty. For α = α0 = log 3/ log 2 ≈ 1.585, A0 = (0,0.5)∪ (0.5,1). For

1< α < α0, A0 consists of two smaller separated intervals. For α > α0, we have A0 = (0,1) (see Fig.

4). Again Theorem 2 can be applied with the same behavior of the trajectories as in Example 2.

0.0 0.2 0.4 0.6 0.8 1.0v

0.98

0.99

1.00

1.01

1.02
m(v) with ε = 1

α = 1.5

α = 1.6

1

Figure 4: Conditional mean function m(v) for example 3 with α= 1.5 and 1.6, with ǫ = 1.

3 Overview on the proofs

The proof of the two results is rather lengthy and technical. Therefore, we indicate the basic ideas of

the proof first without much technicalities. The applied ideas of the two proofs are the same. For the

double cluster events with the path behavior given by m(v), one can consider the Gaussian process

(X (s), X (t)) on [0, T]2. The events which contribute mostly to the asymptotic probability, are those

with time points (s, t) ∈ D = {(s, t) : |t − s− tm| ≤ δ} for some positive δ. This domain is then split

into smaller two-dimensional ’intervals’ ∆k ×∆l of suitable length λu−2/α (for some λ > 0) in case

of Theorem 1, and another length in Theorem 2. The probability of such double exceedance clusters

and exceedance behavior in the small ’intervals’ are derived asymptotically exact for the two cases

assuming C2 or C3. These results are given in Lemma 1 and Lemma 2. Their proofs are combined

because a good part follow the same steps where we condition on the event {X (s) > u, X (t) > u}
for s, t in the subinterval separated by τ which is near tm. Here we have to consider the conditional

process converging to the limit process which defines also the Pickands type conditions. The limit is

holding using a domination argument.

The Pickands type constants are considered in Lemma 4 and 5 where neighboring and separated

intervals are considered. Further properties for these constants are investigated in Lemma 7 and 8.

Finally the probabilities of the events on subintervals are combined by Bonferroni inequalities, ap-

plying the double sum method for the lower bound. For the double sum we need bounds for double

exceedance clusters. One such bound is derived in Lemma 3. Lemma 8 considers the bound for

the probability of four clusters of exceedances, needed for the double sums in the proofs of the

Theorems.
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The proof of Theorem 1 is given in Section 4 which follows the ideas mentioned above, dealing with

the double exceedance clusters in D and outside D, showing that a double exceedance cluster occurs

with much smaller probability than within D, which gives the presented result. For the domain D

with the subintervals we apply Lemma 1. The lower bound needs again Lemma 1, but also the

results in Lemma 8. The proof of the second statement of Theorem 1 is much simpler.

Similar ideas are applied in the proof of Theorem 2 based on different intervals. We have to consider

the three cases α > 1,= 1 and < 1 separately since the path behavior of the conditioned Gaussian

process plays a role. This is similar (but technically more complicated) to Theorem D.3 in [8], when

different relations between smoothness of trajectories and smoothness of variance in its maximum

point lead to quite different type of considerations.

We note that limiting conditioned processes are fractional Brownian motions with trend, where the

Brownian motions have positive dependent increments if α > 1, independent increments if α = 1,

and negative correlated increments if α < 1. The major contribution to the asymptotic probability

comes in all three cases from events where X (s) > u, X (t) > u with s, t separated by not more than

ǫ + o(1) (with o(1) → 0 as u → ∞). Again we apply subintervals and the Bonferroni inequality,

with the double sum method for the lower bounds where the subintervals are adapted to the three

different cases of α. In all four cases considered by Theorems 1 and 2, one has to choose the lengths

of the two-dimensional small intervals carefully in Lemma 1 and 2, to hold the double sum infinitely

smaller than the sum of probabilities in the Bonferroni inequality. The cases of Theorem 1 and

Theorem 2 (iii) are similar because the smoothness of the variance exceeds the smoothness of the

trajectories. Therefore, we choose the same two-dimensional ’subintervals’ and prove these cases in

the same way.

The second part of Theorem 2 is as for the second statement of Theorem 1, and is not repeated.

4 Lemmas

We write aΛ = {ax : x ∈ Λ} and (a1, a2)+Λ = {(a1, a2)+ x : x ∈ Λ}, for any real numbers a, a1, a2

and set Λ ⊂ R2. Let A be a set in R, and Aδ := {t : infs∈A |t − s| ≤ δ} its δ-extension, with δ > 0. We

denote the covariance matrix of two centered random vectors U,V by

cov (U,V) = E
�

UVT
�

and

cov(U) =E(UUT).

In the following, we let τ be a point in [0, T]which may depend on u and lies in the neighborhood of

tm where r(τ) is either twice continuously differentiable (in case of Condition C2) or continuously

differentiable (in case of Condition C3 with tm = ǫ).

Lemma 1 and 2 deal with the events of interest on small intervals assuming the condition C2 and

C3, respectively. Here the limiting conditioned process enters with the Pickands type conditions. For

S ∈ S and Λ⊂ R2, denote

p(u; S,Λ) := P




⋃

(s,t)∈(0,τ)+u−2/αΛ

{X (s)> u, X (t)> u, TsS}



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Lemma 1. Let X (t) be a Gaussian process with mean zero and covariance function r(t) satisfying

assumptions C1 and C2. Let Λ be a closed subset of R2.

(i) Then for any τ= τ(u) with |τ− tm|= O(u−1
p

log u) as u→∞, and any S ∈ S0,

p(u; S,Λ)∼ hα

�
Λ

(1+ r(tm))
2/α

�
Ψ2(u, r(τ)), (4)

as u→∞, where

hα(Λ) =

∫ ∞

−∞

∫ ∞

−∞
ex+y P



⋃

(s,t)∈Λ
(
p

2Bα(s)− |s|α > x ,
p

2B̃α(t)− |t|α > y)


 d xd y,

with Bα, B̃α are independent copies of the fractional Brownian motion with the Hurst parameter α/2.

In particular, for Λ1 and Λ2, closed subsets of R,

p(u; S,Λ1 ×Λ2)∼ Hα,0

�
Λ1

(1+ r(tm))
2/α

�
Hα,0

�
Λ2

(1+ r(tm))
2/α

�
Ψ2(u, r(τ)) (5)

as u→∞.

(ii) Further, for any S ∈ S1 there exist C > 0, δ > 0 such that

p(u; S,Λ) ≤ Ce−δu2

Ψ2(u, r(τ)). (6)

Remark 3: Note that if |τ− tm|= o(u−1), then Ψ2(u, r(τ))∼Ψ2(u, r(tm)) as u→∞.

Lemma 2. Let X (t) be a Gaussian process with mean zero and covariance function r(t) satisfying

assumptions C1 and C3 with α≤ 1. Let Λ be a closed subset of R2.

(i) Let τ= τ(u), be such that |τ− ǫ|= O(u−2 log u) as u→∞. Then for any S ∈ S0 and α < 1,

p(u; S,Λ) ∼ hα

�
Λ

(1+ r(ǫ))2/α

�
Ψ2(u, r(τ)) (7)

as u→∞. If α= 1, (7) holds with hα replaced by

h̃1(Λ) =

∫ ∞

−∞

∫ ∞

−∞
ex+yP

n ⋃

(s,t)∈Λ
(
p

2B1(s)− |s| − r ′(ǫ)s > x ,

p
2B̃1(t)− |t|+ r ′(ǫ)t > y)

o
d xd y

(ii) Statement (ii) of Lemma 1 holds also in this case.

Proof of Lemma 1 and 2: The proofs of both lemmas can be derived partially together with the

same steps, where it does not matter whether tm is an inner point or the boundary point ǫ. Some

deviations are induced by this difference of tm, hence with different smoothness conditions around

tm. Therefore, we give both proofs simultaneously, as much as possible, and some parts we have to

separate for the cases tm > ǫ and tm = ǫ, using condition C2 or C3. This we indicate by paragraphs
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denoted by ’Part for Lemma 1’ and ’Part for Lemma 2’. If both cases can be dealt with together, we

denote the paragraph as ’Common part’.

Statement (i): Common part: Let S ∈ S0 which means that there are closed sets A ⊂ A0 and

B ⊂ B0. Obviously, r(t) > −1 in a neighborhood of tm. We have for any u > 0, denoting for short,

K = (0,τ) + u−2/αΛ and

U(K ,S) =
⋃
(s,t)∈K{ X (s)> u, X (t)> u, TsS},

p(u; S,Λ) = u−2

∫ ∫
P

�
U(K ,S)| X (0) = u−

x

u
, X (τ) = u−

y

u

�

× fX (0),X (τ)(u−
x

u
,u−

y

u
) d x d y. (8)

Consider first the conditional probability in (8). Denote by Px ,y the family of conditional probabili-

ties given X (0) = u− x

u
, X (τ) = u− y

u
. Let κ > 0 be small such that the κ-extensions of A and B are

still subsets of A0 and B0, respectively, Aκ ⊂ A0, Bκ ⊂ B0, then the corresponding event Sκ ∈ S0, and

for all sufficiently large u and all (s, t) ∈ K , Sκ ⊂ TsS. Note that Sκ is independent of s, if (s, t) ∈ K .

Hence

U(K ,S)⊇ Sκ ∩
⋃
(s,t)∈K{ X (s)> u, X (t)> u} = Sκ ∩ U(K ,Ω).

Now we prove that Px ,y(Sκ∩U(K ,Ω))∼ Px ,y(U(K ,Ω)) as u→∞. For the conditional mean of X (v),

using inequality (r(s)− r(t))2 ≤ 2(1− r(t − s)) and the conditions of the two lemmas, we have by

simple algebra,

Mx y(v,u) := E

�
X (v)

��� X (0) = u−
x

u
, X (τ) = u−

y

u
.

�

=
(u− x/u)(r(v)− r(τ− v)r(τ)) + (u− y/u)(r(τ− v)− r(v)r(τ))

1− r2(τ)

= u
r(v) + r(τ− v)

1+ r(τ)
+

1

u
(g1(v,τ)x + g2(v,τ)y)

= um(v)
�

1+O
�

u−α(log u)α/2
��
+O(u−1)(g1(v, tm)x + g2(v, tm)y),

where g1 and g2 are continuous bounded functions. The conditional variance can be estimated as

follows,

Vx ,y(v) := var(X (v)|X (0), X (τ)) =
det cov(X (0), X (τ), X (v))

1− r2(τ)
≤ 1. (9)

We have by the construction of Sκ, infv∈Aκ
m(v) > 1 and supv∈Bκ

m(v) < 1. Similarly as (9), we get

that

Vx ,y(v, v′) := var(X (v)− X (v′)|X (0), X (τ))≤ var(X (v)− X (v′))≤ C |v − v′|α.
Hence there exists an a.s. continuous zero mean Gaussian process Y (v) with variance V (v) and

variance of increments V (v, v′). Using Fernique’s inequality and (9), for any positive δ1 <

min(minv∈Aκ
m(v)− 1,1−maxv∈Bκ

m(v)), we derive for all sufficiently large u,

Px ,y

�
U(K ,Ω)\Sκ

�
≤ Px ,y

�
Ω\Sκ

�

≤min(P( inf
v∈Aκ

Y (v) +Mx y(v,u)< u), P(sup
v∈Bκ

Y (v) +Mx y(v,u)> u)

≤ C exp(−δ2
1u2/2),
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which gives the desired result

Px ,y (U(K ,S))≥ Px ,y

�
Sκ ∩ U(K ,Ω)

�

≥ Px ,y (U(K ,Ω))− C exp(−δ2
1u2/2). (10)

Notice that also

Px ,y (U(K ,S))≤ Px ,y (U(K ,Ω)) . (11)

Now we study the integrand in (8) replacing Px ,y(U(K ,S)) by Px ,y(U(K ,Ω)). To this end we consider

the limit behavior of the conditional distributions of the vector process (ξu(t), ηu(t)), where

ξu(t) = u(X (u−2/α t)− u) + x , ηu(t) = u(X (τ+ u−2/α t)− u) + y,

given (ξu(0),ηu(0)) = (0,0) (that is X (0) = u− x/u, X (τ) = u− y/u). These Gaussian processes

describe the cluster behavior which are separated by at least ǫ. We need to know the mean and the

covariance structure of ξu(s) and ηu(s) with the limiting expressions for the corresponding limiting

processes ξ(s) and η(s). We have,

E

�
ξu(t)

ηu(t)

����
ξu(0)

ηu(0)

�
= E

�
ξu(t)

ηu(t)

�
+ RtR

−1
0

�
ξu(0)− Eξu(0)

ηu(0)− Eηu(0)

�
, (12)

where

Rt := E

 �
ξu(t)− Eξu(t)

ηu(t)− Eηu(t)

��
ξu(0)− Eξu(0)

ηu(0)− Eηu(0)

�⊤!
.

Further,

Eξu(0) = Eξu(t) = x − u2, Eηu(0) = Eηu(t) = y − u2, (13)

varξu(0) = varηu(0) = u2, cov(ξu(0),ηu(0)) = u2r(τ),

cov(ξu(0),ξu(t)) = cov(ηu(0),ηu(t)) = u2r(u−2/α t),

cov(ξu(0),ηu(t)) = u2r(τ+ u−2/α t), cov(ξu(t),ηu(0)) = u2r(τ− u−2/α t). (14)

We write

r(u−2/α t) = 1− u−2|t|α + o(u−2),

r(τ± u−2/α t) = r(τ)± u−2/α t r ′(τ+ θ±u−2/α t),

where |θ±| ≤ 1. Obviously, if α < 1, it follows for both lemmas, that

r(τ± u−2/α t) = r(τ) + o(u−2). (15)

Part for Lemma 1: For this lemma the last relation (15) also holds for α ∈ [1,2) by using |τ− tm|=
O(u−1

p
log u). Indeed, we get |r ′(τ+θ±u−2/α t)−r ′(tm)|= O(u−1

p
log u) and again r(τ±u−2/α t) =

r(τ) + o(u−2). This implies that with the notation r = r(τ) and r ′ = r ′(τ)

Rt = u2

�
1− u−2|t|α + o(u−2) r + o(u−2)

r + o(u−2) 1− u−2|t|α + o(u−2)

�
= R0− |t|α I + o(1),
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where I denotes the identity matrix. Note that

R0 = u2

�
1 r

r 1

�
and R−1

0 =
1

u2(1− r2)

�
1 −r

−r 1

�

Multiplying the matrices gives

RtR
−1
0 = I +

u−2|t|α

1− r2

�
−1 r

r −1

�
+ o(u−2),

as u→∞. From (12) and (13) we immediately get that

E

 �
ξu(t)

ηu(t)

������

�
ξu(0)

ηu(0)

�
=

�
0

0

�!
= −
|t|α

1+ r

�
1

1

�
+ o(1) (16)

as u→∞.

Part for Lemma 2: Let α= 1. We have

Rt = R0+

�
−|t| −r ′ t
r ′ t −|t|

�
+ o(1).

Multiplying by R−1
0 , we get

RtR
−1
0 = I +

u−2

1− r2

�
−|t| −r ′ t
r ′ t −|t|

��
1 −r

−r 1

�
+ o(u−2)

= I +
u−2

1− r2

�
−|t| + r r ′ t r|t| − r ′ t
r|t|+ r ′ t −|t| − r r ′ t

�
+ o(u−2).

For α < 1, we have RtR
−1
0 = I − |t|αR−1

0 + o(u−2), as u→∞. By (12) and (13), for α≤ 1,

E

��
ξu(t)

ηu(t)

������

�
ξu(0)

ηu(0)

�
=

�
0

0

��
=−
|t|α

1+ r

�
1

1

�
+

t r ′

1+ r̃

�
−1

1

�
1(α= 1) + o(1)

= −
|t|α

1+ r

�
1

1

�
+

t r ′

1+ r

�
−1

1

�
1(α= 1) + o(1) (17)

as u→∞.

Common part: Since the conditional expectation is linear, the o(1) terms in (16), (17) have the

structure (|x | + |y |)ou, with ou → 0 as u → ∞ uniformly in x , y ∈ R. Now we compute the

conditional covariance matrix of the vector (ξu(t)−ξu(s), ηu(t1)−ηu(s1))
⊤ given ξu(0),ηu(0). We

have

cov

 �
ξu(t)− ξu(s)

ηu(t1)−ηu(s1)

������

�
ξu(0)

ηu(0)

�!
= cov

�
ξu(t)− ξu(s)

ηu(t1)−ηu(s1)

�
− C cov

�
ξu(0)

ηu(0)

�−1

C⊤, (18)

where

C = cov

��
ξu(t)− ξu(s)

ηu(t1)−ηu(s1)

�
,

�
ξu(0)

ηu(0)

��
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is the matrix of covariances of the two random vectors. Then, as u→∞,

var(ξu(t)− ξu(s)) = var(ηu(t)−ηu(s)) = 2u2(1− r(u−2/α(t − s)))∼ 2|t − s|α (19)

Part for Lemma 1: Using the Taylor expansion, we get by C2 as u→∞

cov(ξu(t)− ξu(s),ηu(t1)−ηu(s1))

= u2(r(τ+ u−2/α(t1− t)) + r(τ+ u−2/α(s1− s))− r(τ+ u−2/α(t1− s))

− r(τ+ u−2/α(s1− t)))

= u2(u−2/αr ′(τ)(t1− t + s1− s− t1+ s− s1+ t +O(u−4/α))

= O(u2−4/α) = o(1) (20)

Part for Lemma 2: In this case the second derivative is not used. Since α ≤ 1, the statement holds

in the same way by C3.

cov(ξu(t)− ξu(s),ηu(t1)−ηu(s1))

= u2(u−2/αr ′(τ)(t1− t + s1− s− t1+ s− s1+ t) + o(u−2)) = o(1). (21)

Common Part: Further we have for both lemmas,

cov(ξu(t)− ξu(s),ξu(0)) = cov(ηu(t)−ηu(s),ηu(0)) = u2(r(tu−2/α)− r(su−2/α))

= O(1),

cov(ξu(t)− ξu(s),ηu(0)) = u2(r(τ− u−2/α t)− r(τ− u−2/αs)) = O(u2−2/α),

cov(ηu(t1)−ηu(s1),ξu(0)) = O(u2−2/α),

so each element of the matrix

C cov

�
ξu(0)

ηu(0)

�−1

C⊤

is bounded by

O(u4−4/α)

u2
= O(u2−4/α) = o(1) (22)

as u→∞. This implies together that (18) can be written as

cov

�
ξu(t)− ξu(s)

ηu(t1)−ηu(s1)

����
ξu(0)

ηu(0)

�
=

�
2|t − s|α 0

0 2|t1− s1|α
�
(1+ o(1))

as u→∞. Since the conditional variance is bounded by the unconditional one, we get that

var(ξu(t)− ξu(s) | ξu(0),ηu(0))≤ C |t − s|α, (23)

var(ηu(t)−ηu(s) | ξu(0),ηu(0))≤ C |t − s|α, (24)

for all t, s ∈ [0,∞). Thus we proved that for any T > 0, the distribution of the Gaussian vector

process (ξu(t),ηu(t)) conditioned on ξu(0) = ηu(0) = 0 converges weakly in C[−T, T] to the

distribution of the Gaussian vector process (ξ(t),η(t)), t ∈ [−T, T]. This implies that

lim
u→∞

Px ,y(U(K ,Ω)) = P



⋃

(s,t)∈Λ
{ ξ(s)> x , η(t)> y}


 .
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Furthermore, we have for ξ and η the following representations:

Part for Lemma 1: The limit process are

ξ(t) =
p

2Bα(t)−
|t|α

1+ r(tm)
and η(t) =

p
2eBα(t)−

|t|α

1+ r(tm)
.

Part for Lemma 2: The limit processes are

ξ(t) =
p

2Bα(t)−
|t|α + r ′ t1(α= 1)

1+ r
and η(t) =

p
2eBα(t)−

|t|α − r ′ t1(α= 1)

1+ r
.

Common Part: Domination: We want to apply the dominated convergence theorem for the integral

in (8) divided by Ψ2(u, r), hence to

(1+ r)−2

∫ ∫
Px ,y(U(K ,Ω)) fud x d y, where fu = exp

�
x + y

1+ r
−

x2− 2r x y + y2

2u2(1− r2)

�
. (25)

We construct an integrable dominating function with separate representations in the four quadrants

as follows. Use (11) and bound the probability Px ,y(U(K ,Ω)). Let T > 0 be such that Λ ⊂ [−T, T]×
[−T, T].

1. For the quadrant (x < 0, y < 0), we bound the probability Pu by 1, and the function fu by

exp(
x+y

1+r
), using the relations |r(t)| ≤ 1 and x2+ y2 ≥ 2x y .

2. Within the quadrant (x > 0, y < 0), we bound the probability Pu by

pu(x) = P

�
max

t∈[−T,T]
ξu(t)> x

����ξu(0) = 0,ηu(0) = 0

�
,

and the function fu by

exp

�
y

1+ r
+

x

0.9+ r

�
,

for sufficiently large u, using arguments similar to 1. The function pu(x) can be bounded by

C exp(−bx2), b > 0, using the Borel inequality with relations (16) - (24). Similar arguments were

applied in Ladneva and Piterbarg [4].

3. The consideration in the quadrant (x < 0, y > 0) is similar to 2. with obvious changes. Thus the

dominating function is

C exp(−b y2)exp

�
x

1+ r
+

y

0.9+ r

�
.

4. In the quadrant (x > 0, y > 0) we bound fu by

exp

�
x

0.9+ r
+

y

0.9+ r

�

and the probability by

P

�
max

(s,t)∈[−T,T]2
ξu(s) +ηu(t)> x + y

����ξu(0) = 0,ηu(0) = 0

�
.
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Again, in the same way we apply the Borel inequality for the probability, to get the bound

C exp(−b(x + y)2), with a positive b.

The four bounds give together the dominating function for the integrand in (25).

Asymptotic probability: Finally we transform the limit of (25) using the self-similarity of the frac-

tional Brownian motion. We give the transformation for Lemma 1 with r̃ = r(tm). The correspond-

ing transformation for Lemma 2 with α < 1 and r̃ = r(ǫ) is the same and for α = 1 it is similar.

Let

∫ ∫
exp

�
x + y

1+ r̃

�
P

 
⋃

Λ

{ ξ(s)> x , η(t)> y}
!

d x d y

(1+ r̃)2

=

∫ ∫
ex+y P

 
⋃

Λ

�p
2Bα(s)−

|s|α

1+ r̃
> (1+ r̃)x ,

p
2eBα(t)−

|t|α

1+ r̃
> (1+ r̃)y

�!
d xd y

=

∫ ∫
ex+y P

 
⋃

Λ

¨p
2Bα(s)

1+ r̃
−
|s|α

(1+ r̃)2
> x ,

p
2eBα(t)
1+ r̃

−
|t|α

(1+ r̃)2
> y

«!
d x d y

=

∫ ∫
ex+y P




⋃

Λ/(1+r̃)2/α

¦p
2Bα(s)− |s|α > x ,

p
2eBα(t)− |t|α > y

©

 d x d y. (26)

This shows first statements of the two lemmas.

Statement (ii): It remains to prove the statements (ii) of both lemmas, it means the bound (6).

Since S ∈ S1, the set A contains an inner point v ∈ B0 or B contains an inner point w ∈ A0. In the

first case, for all sufficiently large u, we have v ∈ ∩(s,t)∈u−2/αΛ{s+ A} ∩ {s+ B0} and m(v) < 1. In the

second case, for all sufficiently large u, w ∈ ∩(s,t)∈u−2/αΛ{s+ B} ∩ {s+ A0} and m(w) > 1. Define the

Gaussian field

X (s, t) =
X (s) + X (t)

p
2(1+ r(t − s))

,

with

b(v) =

r
2

1+ r(v)
, and ms,t(v) =

r(v − s) + r(v − t)

1+ r(t − s)
.

Note that the Gaussian field X (s, t) has variance 1.

The event we consider implies that there are at least three exceedances of which two are separated

by at least ǫ, and at least one additional exceedance occurs at v with m(v)< 1, or there are at least

two exceedances which are separated by at least ǫ, and in addition at least a non-exceedance occurs

at some point w with m(w)> 1.

1840



We have for all sufficiently large u that

P(u,S,Λ)≤ P


X (v)≥ u,

⋃

(s,t)∈(0,τ)+u−2/αΛ

{X (s)> u, X (t)> u}




+ P


X (w)≤ u,

⋃

(s,t)∈(0,τ)+u−2/αΛ

{X (s)> u, X (t)> u}




≤ P

 
X (v)≥ u, sup

(s,t)∈(0,τ)+u−2/αΛ

(X (s) + X (t))> 2u

!

+ P

 
X (w)≤ u, sup

(s,t)∈(0,τ)+u−2/αΛ

(X (s) + X (t))> 2u

!

≤ P

 
X (v)≥ u, sup

(s,t)∈(0,τ)+u−2/αΛ

X (s, t)

b(t − s)
> u

!

+ P

 
X (w)≤ u, sup

(s,t)∈(0,τ)+u−2/αΛ

X (s, t)

b(t − s)
> u

!
(27)

Let us consider the first term in (27) which is for any α̃ ∈ (0,1) at most

P

 
α̃X (v)≥ α̃u, sup

(s,t)∈(0,τ)+u−2/αΛ

(1− α̃)
X (s, t)

b(t − s)
> (1− α̃)u

!

≤ P

 
sup

(s,t)∈(0,τ)+u−2/αΛ

α̃X (v) + (1− α̃)
X (s, t)

b(t − s)
> u

!
.

We estimate the variance of the Gaussian field Y (s, t) = α̃X (v)+(1− α̃) X (s,t)

b(t−s)
in this probability and

minimize it in α̃. The variance equals (b = b(t − s), m= ms,t(v))

α̃2+ b−2(1− α̃)2+ 2α̃(1− α̃)b−2m

= b−2((b2+ 1− 2m)α̃2− 2(1−m)α̃+ 1),

with its minimal point at

α̃=
1−m

1−m+ b2−m

and with minimal value

D2
s,t(v) :=

1

b2(t − s)

�
1−

(1−ms,t(v))
2

1+ b2(t − s)− 2ms,t(v)

�
.

In the domain of interest, r(t − s) → r(tm), ms,t(v) → m(v), as u → ∞, moreover, m(v) < 1 and

b(tm)> 1, so that for any ε > 0 and all sufficiently large u, we have α̃ ∈ (0,1) and

D2
s,t(v)≤

1+ r(tm)

2

�
1−

(1−m(v))2

1+ b2(tm)− 2m(v)
+ ǫ

�
.
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Choose ε small such that

δ1 =
(1−m(v))2

1+ b2(tm)− 2m(v)
− ε > 0.

Since the Gaussian field Y (s, t) satisfies the variance condition of Theorem 8.1 of [8], we can use

this inequality result to get that

Pu,S ≤ Cuc exp

�
−

u2

(1+ r(tm))(1−δ1)

�
,

for some positive constants C and c. This implies that the statements of the lemmas hold for the

first probability of (27) for any positive δ < δ1/(1+ r(tm)).

Now we turn to the second probability term in (27) with w such that m(w) > 1. We estimate the

probability in the same way from above again with any α̃ > 0.

P(u,S,Λ)≤ P


X (w)≤ u,

⋃

(s,t)∈(0,τ)+u−2/αΛ

{X (s)> u, X (t)> u}




≤ P

 
X (w)≤ u, sup

(s,t)∈(0,τ)+u−2/αΛ

(X (s) + X (t))> 2u

!

P

 
−α̃X (w)≥−α̃u, sup

(s,t)∈(0,τ)+u−2/αΛ

(1+ α̃)b−1X (s, t)> (1+ α̃)u

!

≤ P

 
sup

(s,t)∈(0,τ)+u−2/αΛ

−α̃X (w) + (1+ α̃)
X (s, t)

b(t − s)
> u

!
.

The variance of the field Y (s, t) = −α̃X (w) + (1+ α̃)
X (s,t)

b(t−s)
equals

α̃2+ b−2(1+ α̃)2− 2α̃(1+ α̃)b−2m

= b−2((b2+ 1− 2m)α̃2− 2(m− 1)α̃+ 1).

Notice that for any s, t, w, we have b2 + 1− 2m > 0, otherwise we would have a negative variance.

The minimum of the parabola is at

α̃=
m− 1

b2+ 1− 2m
> 0

for all sufficiently large u,, with value

D2
s,t(v) :=

1

b2(t − s)

�
1−

(ms,t(w)− 1)2

1+ b2(t − s)− 2ms,t(w)

�
.

By the same steps as above, the stated bound holds again for the second probability of (27), which

show the second statements of both lemmas. �

From this proof the following result can be derived also which we use in the proof of Theorem 2 (i).

Let us denote by Ẽ the conditional expectation: Ẽ(·) = E(·|ξu(0) = ηu(0) = 0).
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Corollary 3. For any α ∈ (0,2), any Λ > 0 and τ as in Lemma 1, the sequence of Gaussian processes

ξu(s)− Ẽξu(s) and ηu(t)− Ẽηu(t) conditioned on ξu(0) = ηu(0) = 0 converges weakly in C[−Λ,Λ]

to the Gaussian processes
p

2Bα(s) and
p

2eBα(t)), respectively, as u→∞.

Indeed, to prove this we need only relations (18, 19, 22) with (23, 24), which are valid by the

assumptions of the corollary.

The following lemma is proved in Piterbarg [8], Lemma 6.3, for the multidimensional time case. We

formulate it here for the one-dimensional time where we consider the event of a double exceedance

separated by C(u−2/α) for some constant C > 0.

Lemma 3. Suppose that X (t) is a Gaussian stationary zero mean process with covariance function r(t)

satisfying assumption C1. Let ε with be such that 1

2
> ε > 0 and

1−
1

2
|t|α ≥ r(t)≥ 1− 2|t|α

for all t ∈ [0,ǫ]. Then there exists a positive constant F such that the inequality

P

�
max

t∈[0,λu−2/α]
X (t)> u, max

t∈[λ0u−2/α,(λ0+λ)u
−2/α]

X (t)> u

�
≤ Fλ2u−1e−

1

2
u2− 1

8
(λ0−λ)α

holds for any λ < λ0, and for any u≥ (4(λ+λ0)/ε)
α/2.

The following two lemmas are straightforward consequences of Lemma 6.1, Piterbarg [8] giving

the accurate approximations for probabilities of exceedances in neighboring intervals or of a double

exceedance in neighboring intervals.

Lemma 4. Suppose that X (t) is a Gaussian stationary zero mean process with covariance function r(t)

satisfying assumption C1. Then for any λ,λ0 > 0,

P

�
max

t∈[0,λu−2/α]∪[λ0u−2/α,(λ0+λ)u
−2/α]

X (t)> u

�
∼ Hα([0,λ]∪ [λ0,λ0+λ])

1
p

2πu
e−

1

2
u2

as u→∞, where

Hα([0,λ]∪ [λ0,λ0+λ]) = Eexp

�
max

t∈[0,λ]∪[λ0,λ0+λ]
(Bα(t)− |t|α)

�
.

Lemma 5. Suppose that X (t) is a Gaussian stationary zero mean process with covariance function r(t)

satisfying assumption C1. Then for any λ,λ0 > 0,

P

�
max

t∈[0,λu−2/α]
X (t)> u, max

t∈[λ0u−2/α,(λ0+λ)u
−2/α]

X (t)> u

�

= Hα([0,λ], [λ0,λ0+λ])
1
p

2πu
e−

1

2
u2

(1+ o(1))

as u→∞, where

Hα([0,λ], [λ0,λ0+λ]) =

∫ ∞

−∞
exP

�
max

t∈[0,λ]
Bα(t)− |t|α > x , max

t∈[λ0,λ0+λ]
Bα(t)− |t|α > x

�
d x .
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Proof. Write

P

�
max

t∈[0,λu−2/α]
X (t)> u, max

t∈[λ0u−2/α,(λ0+λ)u
−2/α]

X (t)> u

�

= P

�
max

t∈[0,λu−2/α]
X (t)> u

�
+ P

�
max

t∈[λ0u−2/α,(λ0+λ)u
−2/α]

X (t)> u

�

− P

�
max

t∈[0,λu−2/α]∪[λ0u−2/α,(λ0+λ)u
−2/α]

X (t)> u

�

and apply Lemma 6.1, Piterbarg [8] and Lemma 4. �

From Lemmas 5 and 3 we get a bound for Hα([0,λ], [λ0,λ0+λ]), the Pickands type constant, which

depends on the separation λ0−λ.

Lemma 6. For any λ0 > λ,

Hα([0,λ], [λ0,λ0+λ])≤ F
p

2πλ2e−
1

8
(λ0−λ)α .

When λ0 = λ the bound is trivial. A non-trivial bound for Hα([0,λ], [λ, 2λ]) is derived from the

proof of Lemma 7.1, Piterbarg [8], see page 107, inequality (7.5). This inequalitiy, Lemma 6.8,

Piterbarg [8] and Lemma 3 give the following bound.

Lemma 7. There exists a constant F1 such that for all λ ≥ 1,

Hα([0,λ], [λ, 2λ]) ≤ F1

�p
λ+λ2e−

1

8
λα
�

.

Applying the conditioning approach of Lemmas 1 and 2 to the following event of four exceedances,

we can derive the last preliminary result by using Hα(·) of Lemma 5.

Lemma 8. Let X (t) be a Gaussian process with mean zero and covariance function r(t) with α < 1,

satisfying assumptions C1 and either C2 or C3. Let τ= τ(u) satisfies either the assumptions of Lemma

1 or the assumptions of Lemma 2. Then for all λ > 0, λ1 ≥ λ, λ2 ≥ λ

P

�
max

t∈[0,u−2/αλ]
X (t)> u, max

t∈[u−2/αλ1,u−2/α(λ1+λ)]
X (t)> u,

max
t∈[τ,τ+u−2/αλ]

X (t)> u, max
t∈[τ+u−2/αλ2,τ+u−2/α(λ2+λ)]

X (t)> u

�

=
∏

i=1,2

Hα
�
[0,κλ] ,

�
κλi ,κ(λi +λ)

��
Ψ2(u, r(τ))(1+ o(1)),

as u→∞, where κ= (1+ r(tm))
−2/α.

5 Proof of Theorem 1

The proof follows the ideas mentioned in the overview in Section 3. We begin with the first part.

The second part of the theorem is much easier to show.
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First part:

Denote Π = {(s, t) : s, t ∈ [0, T] and t− s ≥ ǫ}, δ = δ(u) = C
p

log u/u, where the positive constant

C is specified later, and D = {(s, t) ∈ Π : |t − s− tm| ≤ δ}.
a) We want to show that we have to deal mainly with the domain D, since events occuring outside

of D occurs with asymptotically smaller probability. We have for any S ∈ S0,

Pǫ,u,T (S)≤ P



⋃

(s,t)∈D

{X (s)> u} ∩ {X (t)> u} ∩ TsS




+ P




⋃

(s,t)∈Π\D
{X (s)> u} ∩ {X (t)> u}


 (28)

and on the other hand, for all sufficiently large u,

Pǫ,u,T (S)≥ P



⋃

(s,t)∈D

{X (s)> u} ∩ {X (t)> u} ∩ TsS}


 . (29)

The second term of the right-hand side of (28) is bounded by

P




⋃

(s,t)∈Π\D
{X (s)> u} ∩ {X (t)> u}


 ≤ P

�
max

(s,t)∈Π\D
(X (s) + X (t))> 2u

�
.

Making use of Theorem 8.1, Piterbarg [8], we can bound the last probability by

const · u−1+2/α exp

�
−

u2

1+max(t,s)∈Π\D r(t − s)

�
.

For all sufficiently large u, the maximal correlation on Π \ D is bounded by

max
(s,t)∈Π\D

r(t − s)≤ r(tm)− 0.4|r ′′(tm)|δ2(u) = r(tm)− 0.4C2|r ′′(tm)|u−2 log u.

Hence, the second term is of smaller order than the leading term, since

P




⋃

(s,t)∈Π\D
{X (s)> u} ∩ {X (t)> u}


 ≤ const · u−1+2/α exp

�
−

u2

1+ r(tm)

�
u−G , (30)

where

G =
0.4C2|r ′′(tm)|
(1+ r(tm))

2
.

b) Now we deal with the first probability in the right-hand side of (28), with events occuring in

D. We bound the probability from above and from below such that the bounds are asymptotically

equivalent. Denote ∆= λu−2/α, for some λ > 0, and define the intervals

∆k = [k∆, (k+ 1)∆], 0≤ k ≤ N , N = [T/∆] ,
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where [·] denotes the integer part. We will apply Lemma 1 for sets∆k×∆l = (0, (l−k)∆)+∆k×∆k,

where τ = (l − k)∆ and Λ = [kλ, (k+ 1)λ]× [kλ, (k+ 1)λ] in this lemma. For S ∈ S0, in virtue of

(5) of Lemma 1, we have

P



⋃

(s,t)∈D

{X (s)> u}∩{X (t) > u} ∩TsS




≤
∑

(k,l): ∆k×∆l∩D 6=;
P
�
∃(s, t) ∈ (0,τ) +∆k ×∆k : X (s)> u, X (t)> u, TsS

�
(31)

≤
(1+ γ(u))(1+ r(tm))

3/2

2πu2
p

1− r(tm)
H2
α,0

�
λ

(1+ r(tm))
2/α

�

×
∑

(k,l): ∆k×∆l∩D 6=;
exp

�
−

u2

1+ r((l − k)∆)

�
, (32)

where γ(u) ↓ 0 as u→∞. For the last sum, denoted by Σ1, we get

Σ1 =
∑

(k,l): ∆k×∆l∩D 6=;
exp

�
−

u2

1+ r((l − k)∆)

�

= exp

�
−

u2

1+ r(tm)

� ∑

(k,l): ∆k×∆l∩D 6=;
exp

�
−u2

r(tm)− r((l − k)∆)

(1+ r((l − k)∆))(1+ r(tm)

�
.

Further, for any exponent with n= l − k

r(tm)− r(n∆)

(1+ r(n∆))(1+ r(tm))
≤
≥

1

2
|r ′′(tm)|(n∆− tm)

2

(1+ r(tm))
2

(1± γ1(u))

= Cr(n∆− tm)
2(1± γ1(u)),

where γ1(u) ↓ 0, as u→∞, and

Cr =

1

2
|r ′′(tm)|

(1+ r(tm))
2

.

The index k of the sum varies between 0 and (T − tm)/∆+ θ , as u→∞, where |θ | ≤ 1, depending

of u. The index n varies between (tm−δ)/∆+θ1 and (tm+δ)/∆+θ2 as u→∞, where θ1,θ2 have

the same properties as θ . Denote xn = (n∆− tm)u and note that xn+1 − xn = u∆→ 0 as u→∞.

Using this, we can approximate the sum Σ1 by an integral

Σ1 = (1+ o(1))exp

�
−

u2

1+ r(tm)

�
T − tm

u∆2

uδ+o(1)∑

xn=−uδ+o(1)

e−Cr x2
n(xn+1− xn)

= (1+ o(1))exp

�
−

u2

1+ r(tm)

�
T − tm

u∆2

∫ ∞

−∞
e−Cr x2

d x (33)

since uδ = C
p

log u→∞. The integral equals
p
π/Cr , hence we get for the right-hand side of (32)
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using the definition of Ψ(u, r)

P



⋃

(s,t)∈D

{ inf
v∈s+A

X (v)≥ u} ∩ {X (s)> u}∩{X (t) > u}




≤
(1+ γ2(u))(T − tm)

p
πu−1+4/α

λ2
p

Cr

H2
α,0

�
λ

(1+ r(tm))
2/α

�
Ψ2(u, r(tm)), (34)

where γ2(u) ↓ 0 as u→∞. Letting λ→∞, using that by (2)

Hα,0

�
λ

(1+ r(tm))
2/α

�
∼

λ

(1+ r(tm))
2/α

Hα,0

this bound gives asymptotically the asymptotic term of Theorem 1.

We choose the value of C . Let C be so large that G > 2− 2/α, which implies that the left-hand side

of (30) is infinitely smaller than the left-hand side of (34), as u→∞.

c) We bound now the probability in the right-hand side of (29) from below. By the Bonferroni

inequality we get

P



⋃

(s,t)∈D

{X (s)> u}∩{X (t) > u}∩ TsS




≥
∑

(k,l):∆k×∆l⊂D

P
�
∃(s, t) ∈ (0,τ) +∆k ×∆l : X (s)> u, X (t)> u, TsS,

�

−
∑∑

P

�
max
s∈∆l

X (s)> u, max
t∈∆k

X (t)> u, max
s′∈∆l′

X (s′)> u, max
t ′∈∆k′

X (t ′)> u

�
, (35)

where second term, the double sum, has been increased by omitting the events TsS. This double-sum

in (35) is taken over the set

K = {(k, l, k′, l ′) : (k′, l ′) 6= (k, l), ∆k ×∆l ⊂ D, ∆k′ ×∆l ′ ⊂ D}.

The first sum in the right-hand side of (35) can be bounded from below in the same way as the

previous sum in (32), therefore it is at least the right-hand side of (34) with a change of (1+γ2(u))

by (1− γ2(u)).

Consider the double-sum Σ2, say, in the right-hand side of (35). For simplicity we denote

H(m) = Hα,0

��
0,

λ

(1+ r(tm))
2/α

�
,

�
mλ

(1+ r(tm))
2/α

,
(m+ 1)λ

(1+ r(tm))
2/α

��

and note that

H(0) = Hα,0

��
0,

λ

(1+ r(tm))
2/α

��
.

With Lemma 8 we derive for the probability

P

�
max
s∈∆l

X (s)> u, max
s′∈∆l′

X (s′)> u, max
t∈∆k

X (t)> u, max
t ′∈∆k′

X (t ′)> u

�
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with k ≤ k′, l ≤ l ′, taking λ1 = (k
′ − k)λ, λ2 = (l

′ − l)λ, and τ = (l − k)∆. Note that τ → tm

uniformly for the possible k and l. Since the process X is stationary, we have for the double-sum Σ2

in (35) (which includes only different pairs (k, l) and (k′, l ′)) with L = {k ≤ k′, l ≤ l ′, (k, l) 6= (k′, l ′)}

Σ2 ≤ 4
∑

L∩K

P

�
max
s∈∆l

X (s)> u, max
s′∈∆l′

X (s′)> u, max
t∈∆k

X (t)> u, max
t ′∈∆k′

X (t ′)> u

�

≤
4(1+Γ(u))(1+ r(tm))

2

2πu2
p

1− r2(tm)

∑

L∩K

H(k′− k)H(l ′− l) exp

�
−

u2

1+ r((l − k)∆)

�

≤
4(1+Γ(u))(1+ r(tm))

2

2πu2
p

1− r2(tm)

∞∑

n=1

H(n)

 
H(0) +

∞∑

n=0

H(n)

!

×
∑

(k,l):∆k×∆l∩D 6=;
exp

�
−

u2

1+ r((l − k)∆)

�
,

where Γ(u) ↓ 0 as u→∞. Note that for the last step we fix k and l, and consider the summation on

k′ and l ′. Since (k, l) 6= (k′, l ′), either k′− k > 0 or l ′− l > 0. This explains the sums on H(n) which

do not depend on k and l. The last sum was considered already in (33).

d) Hence, it remains to bound the sum of H(n). By (5), (6) and (7) and Lemma 6.8 of Piterbarg

[8], we get that H(0)≤ const ·λ, H(1)≤ const ·
p
λ, and

H(n)≤ const ·λ2 exp(−
1

8
(n− 1)αλα) for n> 1,

hence
∞∑

n=1

H(n)

 
H(0) +

∞∑

n=1

H(n)

!
≤ const ·λ3/2.

Thus

Σ2 ≤ const ·λ−1/2u−1+4/αΨ2(u, r(tm))

which shows that the double-sum Σ2 is infinitely smaller than (34) or the asymptotic term of the

statement, letting λ→∞. Thus the first assertion of Theorem 1 follows.

Second part:

Finally we turn to the second assertion of Theorem 1, where S ∈ S1. By Lemma 1, each term in the

sum (31) can be bounded uniformly by

exp{−δu2}Ψ2(u, r(tm)),

for all sufficiently large u, where δ > 0. Since the number of summands in (31) is at most a power

of u, the statement of Theorem 1 follows. �

6 Proof of Theorem 2.

We begin with the proof of the first part of Theorem, assuming S ∈ S0, dealing separately with the

three cases α > 1,= 1 and < 1 since the subintervals have to selected differently in the three cases.
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6.1 Proof of Theorem 2(i).

In this case α > 1. Let b ≥ a, introduce the event

Uu;a,b,T (S) := {∃(s, t) : s, t ∈ [0, T], b ≥ t − s ≥ a, X (t)≥ u, X (s)≥ u, TsS},

with Uu;a,b,T := Uu;a,b,T (Ω). In particular, for any S, P(Uu;ǫ,b,T (S)) = Pu;ǫ,T (S) for all b ≥ T, and

P(Uu;ǫ,ǫ,T (S)) = P(∃t ∈ [ǫ, T] : X (t − ǫ)∧ X (t)> u, Tt−ǫS).

Let δ(u) = cu−2 log u, c > 0, and γ > 0 a small positive number. Then for all u such that δ(u)≥ γu−2,

(which holds for u such that log u≥ γ/c ),

Uu;ǫ,T,T (S)⊆ Uu;ǫ,T,T

⊆ Uu;ǫ,ǫ+γu−2,T ∪ (Uu;ǫ+γu−2,ǫ+δ(u),T \ Uu;ǫ,ǫ+γu−2,T )∪ Uu;ǫ+δ(u),T,T (36)

and

Uu;ǫ,T,T (S)⊇ Uu;ǫ,ǫ+γu−2,T (S)⊇ Uu;ǫ,ǫ,T (S). (37)

We estimate from above the probabilities of the third and second event in the right-hand side of

(36). Then we derive the asymptotic behavior of the probability of the first event in the right-hand

side with small γ and show that it dominates the two other ones. Finally, we need to estimate the

probability of the event in the right hand part of (37) from below, and show that it is equivalent to

the upper bound.

6.1.1 Large separation of the clusters

We estimate from above the probability of the third event in the right-hand side of (36). Using

the inequality of Theorem 8.1, [8], with r(t) < r(ǫ + δ(u)) for t > ǫ + δ(u) by C3, we get with

r = r(ǫ), r ′ = r ′(ǫ)

P(Uu;ǫ+δ(u),T,T )

≤ P(∃(s, t) : s, t ∈ [0, T], t ≥ s+ ǫ+ δ(u), X (t) + X (s)> 2u)

= P

�
max

s,t∈[0,T], t≥s+ǫ+δ(u)
(X (t) + X (s))> 2u

�
≤ Cu4/α−1 exp

�
−

u2

1+ r(ǫ+δ(u))

�

≤Cu4/α−1 exp

�
−

u2

1+ r
+

u2δ(u)r ′(1+ o(1))

(1+ r)2

�
≤ Cu−R exp

�
−

u2

1+ r

�
, (38)

for any R > 0 by choosing c in δ(u) sufficiently large, with some constant C > 0, since r ′ < 0. This

estimate holds for any α≤ 2.

6.1.2 Intermediate separation of clusters

Now we estimate the probability of the second event in the right-hand side of (36). We have

P(Uu;ǫ+γu−2,ǫ+δ(u),T \ Uu;ǫ,ǫ+γu−2,T )≤ P(Uu;ǫ+γu−2,ǫ+δ(u),T ∩ U c
u;ǫ,ǫ,T ).
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For any positive g with g < γ, we use time points on the grid kgu−2 to estimate

P(Uu;ǫ+γu−2,ǫ+δ(u),T ∩ U c
u;ǫ,ǫ,T )≤ P(Uu;ǫ+γu−2,ǫ+δ(u),T ∩ U c

g),

where

U c
g =

¨
max

k:kgu−2∈[ǫ,T]
X (kgu−2− ǫ)∧ X (kgu−2)≤ u

«
.

For any pair (s, t) with t − s ∈ [ǫ + γu−2,ǫ + δ(u)] set k = [tu2/g]. For a fixed k and large u, we

have t ∈ [kgu−2, kgu−2 + δ(u)] and s ∈ [kgu−2 − ǫ − δ(u), kgu−2 − ǫ). Therefore the probability

P(Uu;ǫ+γu−2,ǫ+δ(u),T ∩ Ug) is at most

∑

k:kgu−2∈[ǫ,T]
P({X (kgu−2− ǫ)∧ X (kgu−2)≤ u} ∩ Bk ∩ B′k),

where

Bk = { max
s∈[kgu−2−ǫ−δ(u),kgu−2−ǫ)

X (s)> u}

and

B′k = { max
t∈[kgu−2, kgu−2+δ(u)]

X (t)> u}.

Since X is stationary the latter sum is equal to

�
T − ǫ
gu−2

�
P

�
X (0)∧ X (ǫ)≤ u, max

[−δ(u),0]
X (s)> u, max

[ǫ,ǫ+δ(u)]
X (t)> u

�

≤
�

T − ǫ
gu−2

�
(p1+ p2),

where

p1 = P

�
X (0)≤ u, max

[−δ(u),0]
X (s)> u, max

[ǫ,ǫ+δ(u)]
X (t)> u

�

and

p2 = P

�
X (ǫ)≤ u, max

[−δ(u),0]
X (s)> u, max

[ǫ,ǫ+δ(u)]
X (t)> u

�
.

For any sufficiently small κ > 0 and all sufficiently large u, such that δ(u) ≤ κu−2/α (since α > 1),

we have

p1 ≤ P

�
X (0)≤ u, max

[−κu−2/α,0]
X (s)> u, max

[ǫ,ǫ+κu−2/α]
X (t)> u

�
.

Apply similar steps as for the approximation of (8) with τ = ǫ and take into account that X (0) ≤ u

to derive

p1 ≤
1

2πu2
p

1− r2
exp

�
−

u2

1+ r

�∫ ∞

0

∫ ∞

−∞
exp

�
x + y

1+ r
−

x2− 2r x y + y2

2u2(1− r2)

�
ePud xd y,

where

ePu = P

�
max
[−κ,0]

ξu(s)> x ,max
[0,κ]
ηu(t)> y

����ξu(0) = ηu(0) = 0

�
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with ξu(s) = u(X (u−2/αs)− u) + x and ηu(t) = u(X (τ+ u−2/α t)− u) + y . Now we estimate the

conditional expectations of ξu(t) and ηu(t), as in the proof of Lemma 1 and 2,

Rt = R0+ u2−2/α

�
0 −r ′ t

r ′ t 0

�
+ o(u2−2/α),

and

RtR
−1
0 = I +

u−2/α

1− r2

�
r r ′ t −r ′ t
r ′ t −r r ′ t

�
+ o(u−2/α)

as u→∞. Thus, by (12) and (13)

E

 �
ξu(t)

ηu(t)

������

�
ξu(0)

ηu(0)

�
=

�
0

0

�!
=

u2−2/αr ′ t

1− r2

�
r − 1

1− r

�
+ o(u2−2/α) (39)

as u→∞. The process ξu(s) is considered for s ≤ 0, whereas ηu(t) is considered for t ≥ 0. So

Ẽ(ξu(s)) = E(ξu(s) | ξu(0) = ηu(0) = 0)≤ (1− a)
u2−2/α|r ′|s

1+ r
, s ≤ 0, (40)

Ẽ(ηu(t)) = E(ηu(t) | ξu(0) = ηu(0) = 0)≤ −(1− a)
u2−2/α|r ′|t

1+ r
, t ≥ 0, (41)

for any a ∈ (0,1) and all sufficiently large u. Similar to the derivation in Lemma 2, the conditional

variance of the increments is bounded by the unconditional variance of the increments and the

process converges as u→∞, see Corollary 3. We have therefore,

ePu ≤ P

�
max
[−κ,0]

ξu(s)> x

����ξu(0) = ηu(0) = 0

�

≤ P
�
∃s ∈ [−κ, 0] : (ξu(s)− Ẽξu(s))> x − Ẽξu(s)

��ξu(0) = ηu(0) = 0
�

.

Since for any negative s, Ẽξu(s)→−∞ as u→∞, we have ePu → 0 for any small κ and any x > 0,

y ∈ R. By the domination in the proof of Lemma 1 and 2, we have

ePu d xd y = 0.

By symmetry, the same is valid for p2 by using (41), thus we have shown that

lim
u→∞

exp

�
u2

1+ r(ǫ)

�
P(Uu;ǫ+γu−2,ǫ+δ(u),T \ Uu;ǫ,ǫ+γu−2,T ) = 0. (42)

�

6.1.3 Asymptotic behavior of the probability P(Uu;ǫ,ǫ+γu−2,T (S)).

First we study the conditional means and covariance functions of the process

ξu(t) = u(X (u−2 t)− u) + x , ηu(t) = u(X (ǫ+ u−2 t)− u) + y, (43)
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given (ξu(0),ηu(0)) = (0,0). Note that another time scaling is used, u−2, instead of u−2/α as in

section 3.1.2. We have with r = r(ǫ) and r ′ = r ′(ǫ),

Rt = R0+

�
0 −r ′ t

r ′ t 0

�
+ o(1)

and so

RtR
−1
0 = I +

u−2r ′ t

1− r2

�
r −1

1 −r

�
+ o(u−2)

as u→∞. Thus, by (12) and (13),

E

 �
ξu(t)

ηu(t)

������

�
ξu(0)

ηu(0)

�
=

�
0

0

�!
=

r ′ t

1− r2

�
r − 1

1− r

�
+ o(1)

as u→∞. For the conditional covariance matrix Σ of the vector ( ξu(t)− ξu(s),ηu(t1)− ηu(s1))
⊤,

we have

var(ξu(t)− ξu(s)) = var(ηu(t)−ηu(s)) = 2u2(1− r(u−2(t − s))) = O(u2−2α) = o(1)

as u→∞. Using Taylor expansion for r(t) at t = ǫ, one easily gets that cov(ξu(t)− ξu(s),ηu(t1)−
ηu(s1)) = o(1) as u→∞. By the same argument,

cov(ξu(t)− ξu(s),ηu(0)) = −(t − s)r ′+ o(1),

cov(ηu(t1)−ηu(s1),ξu(0)) = (t1− s1)r
′+ o(1),

and by C1,

cov(ξu(t)− ξu(s),ξu(0)) = O(u2−2α), cov(ηu(t1)−ηu(s1),ηu(0)) = O(u2−2α),

thus the elements of Σ are bounded, which implies

Σ cov

�
ξu(0)

ηu(0)

�−1

Σ⊤ =
O(1)

u2(1− r2)
= O(u−2).

Hence,

cov

 �
ξu(t)− ξu(s)

ηu(t1)−ηu(s1)

������

�
ξu(0)

ηu(0)

�!
= o(1)

as u → ∞. Hence, the vector process (ξu(t),ηu(t)) in (43) conditioned on (ξu(0),ηu(0)) = (0,0)

converges weakly to the deterministic process (−r ′ t/(1+ r), r ′ t/(1+ r)). For a large positive L and

any non-negative integer m we have

Pm :=

= P(∃(s, t)∋ t − s ∈ [ǫ,ǫ+ γu−2], s ∈ [mLu−2, (m+ 1)Lu−2]: X (s)> u, X (t)> u)

=
(1+ o(1))

2πu2
p

1− r2
exp

�
−

u2

1+ r

�

×
∫ ∫

exp

�
x + y

1+ r

�
I{∃(s,t):t−s∈[0,γ], s∈[0,L]:−r ′s/(1+r)>x ,r ′ t/(1+r)>y} d xd y = P0,
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where we use the stationarity and the domination, as in the proof of Lemma 2. The probability

has been changed to the indicator function in view of the deterministic limiting behavior. Denoting

δ1 = γ|r ′|/(1+ r)2, L1 = L|r ′|/(1+ r)2 and changing variables x̃ = x/(1+ r), ỹ = y/(1+ r), t̃ =

t|r ′|/(1+ r)2 and s̃ = s|r ′|/(1+ r)2, we get

∫ ∫

{∃(s,t):t−s∈[0,γ], s∈[0,L],−r ′s/(1+r)>x ,r ′ t/(1+r)>y}

exp

�
x + y

1+ r

�
d xd y

= (1+ r)2
∫ ∫

{∃(s̃, t̃): t̃−s̃∈[0,δ1], s̃∈[0,L1], s̃> x̃ ,− t̃> ỹ}, x̃≤0

exp( x̃ + ỹ) d x̃d ỹ

+ (1+ r)2
∫ ∫

{∃(s̃, t̃): t̃−s̃∈[0,δ1], s̃∈[0,L1], s̃> x̃ ,− t̃> ỹ}, x̃>0

exp( x̃ + ỹ) d x̃d ỹ

≤ (1+ r)2

 ∫ 0

−∞

∫ 0

−∞
exp( x̃ + ỹ)d x̃d ỹ +

∫ L1

0

∫ − x̃

−∞
exp( x̃ + ỹ) d x̃d ỹ

!

= (1+ r)2(1+ L1) = (1+ r)2+ L|r ′|. (44)

since t̃ ≥ s̃ ≥ x̃ . Similar to Section 3.1.2 we get

P(Uu;ǫ,ǫ+γu−2,T )≤
T − ǫ+ o(1)

Lu−2
P0

∼
T − ǫ
Lu−2

exp
�
−u2/(1+ r)

�

2πu2
p

1− r2

�
(1+ r)2+ L|r ′|

�
,

and

lim sup
L→∞

lim sup
u→∞

P(Uu;ǫ,ǫ+γu−2,T )exp
�

u2/(1+ r)
�
≤
(T − ǫ)|r ′|

2π
p

1− r2
. (45)

It remains to derive a lower bound of the probability of right hand part of (37). Using stationarity

we write

P(Uu;ǫ,ǫ+γu−2,T (S))≥ P(Uu;ǫ,ǫ,T (S))

≥
T − ǫ
Lu−2


p0(S)−

[(T−ǫ)u2/L]+1∑

m=1

p0,m


 , (46)

where

p0(S) = P(∃t : t ∈ [0, Lu−2] : X (t)≥ u, X (t + ǫ)≥ u, TtS),

p0,m = P(∃(s, t) : s ∈ [0, Lu−2], t ∈ [mLu−2, (m+ 1)Lu−2] :

X (s)≥ u, X (s+ ǫ)≥ u, X (t)≥ u, X (t + ǫ)≥ u).

1853



Further, with some A⊂ A0 and B ⊂ B0

p0(S) = p0(Ω) (47)

−P(∃t : t ∈ [0, Lu−2] : X (t)≥ u, X (t + ǫ)≥ u, Tt{inf
v∈A

X (v)< u} ∪ {sup
v∈B

X (v)> u})

Similarly to (44), as u→∞,

p0(Ω)≥
(1+ o(1))

2πu2
p

1− r2
exp

�
−

u2

1+ r

�∫ ∫

[ x̃ ,− ỹ]∩[0,L1] 6=;
exp
�

x̃ + ỹ
�

d x̃d ỹ

=
(1+ o(1))

2πu2
p

1− r2
exp

�
−

u2

1+ r

�
(1+ r)2(1+ L1), (48)

since ∫ ∫

[ x̃ ,− ỹ]∩[0,L1] 6=;

=

∫ 0

−∞

∫ 0

−∞
+

∫ L1

0

∫ −x

−∞
.

Now we estimate the difference between p0(Ω) and p0(S), the second term in the right hand side of

(47). We have by C1, for all sufficiently large u,

sup
t∈[0,Lu−2]

var(X (t)− X (0))≤ 3|Lu−2|α,

therefore for some C > 0 and any d > 0

P( sup
t∈[0,Lu−2]

|X (t)− X (0)|> d)≤ Cu2/α−1 exp

�
−

d2u2α

6Lα

�
.

One may select d = c̃u1−α since α > 1, with sufficiently large c̃ such that the above probability

is smaller than exp
�
− 2u2

1+r(ǫ)

�
, for all sufficiently large u. The same is valid for the difference

X (t + ǫ)− X (ǫ). Therefore, for all sufficiently large u,

P(∃t : t ∈ [0, Lu−2] : X (t)≥ u, X (t + ǫ)≥ u, inf
v∈t+A

X (v)< u, sup
v∈t+B

X (v)> u)

≤ 2 exp

�
−

2u2

1+ r(ǫ)

�
+ P(X (0)≥ u− d, X (ǫ)≥ u− d, inf

s∈A
lu−2

X (s)< u)

+ P(X (0)> u− d, X (ǫ)> u− d, sup
v∈t+B

lu−2

X (v)> u)

with the extended sets Alu−2 and Blu−2 of A and B, respectively. The estimation of the last two

probabilities is based on the same methods as for the proof of Lemma 2. The first probability equals

1

ũ2

∫ ∞

0

∫ ∞

0

f (ũ+
x

ũ
, ũ+

y

ũ
)P( inf

s∈A
lu−2

X (s)< u | X (0) = ũ+
x

ũ
, X (ǫ) = ũ+

y

ũ
)d xd y,

where ũ = u − d and f is the Gaussian two-dimensional density with means zero, variances one

and covariance r(ǫ). The density contributes exp
�
− ũ2

1+r(ǫ)

�
. Since the conditional mean in the
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above conditional probability is uniformly greater than one and d → 0, the probability contributes

exp
�
−aũ2

�
with some a > 0. Thus the probability has order exp

�
− bu2

1+r(ǫ)

�
with some b > 1.

Similarly for the second probability, since the conditional mean on Blu−2 is uniformly less than one.

Together, the second term of the right hand side of (47) is at most of the same order, and of smaller

order than (48).

Now we derive a bound for the sum in (46). First note that for any τ > ǫ,

exp

�
−

u2

1+ r(τ)

�
≤ exp

�
−

u2

1+ r(ǫ)

�
exp

�
−

u2κ(τ− ǫ)
(1+ r(ǫ))2

�
, (49)

where

κ= inf
t∈[0,T−ǫ]

r(ǫ)− r(ǫ+ t)

t
> 0.

We have

p0,m ≤ P(∃(s, t) : s, t ∈ [0, Lu−2], X (s)> u, X (t + ǫ+mLu−2)> u).

The above right-hand side can be bounded similarly to the derived bound of Pm (see (44) and (45)),

but by using τ= ǫ+mLu−2 instead of ǫ. We have,

p0,m ≤
(1+ o(1))

2πu2
p

1− r2
exp

�
−

u2

1+ r(τ)

�∫ ∫
Im exp

�
x + y

1+ r(τ)

�
d xd y (50)

with the indicator function

Im = I{∃(s,t):s∈[0,L]:t∈ǫ+[mL,(m+1)L],−r ′(τ)s/(1+r(τ))>x ,r ′(τ)t/(1+r(τ))>y}

Since Im ≤ I{x≤−r ′(τ)L/(1+r(τ)), y≤r ′(τ)(ǫ+mL)/(1+r(τ)}, the double integral in (50) is bounded for all

large u by (1+ r(τ))2 ≤ (1+ r)2. Thus for sufficiently large u, using (49), we have

∑

m≥1

p0,m ≤
∑

m≥1

P(∃(s, t) : s, t ∈ [0, Lu−2], X (s)> u, X (t + ǫ+mLu−2)> u)

≤
(1+ r)2(1+ o(1))

2πu2
p

1− r(ǫ)2
exp

�
−

u2

1+ r(ǫ)

�∑

m≥1

exp

�
−
κmL

1+ r(ǫ)

�

≤ o

�
u−2 exp

�
−

u2

1+ r(ǫ)

��
= o(p0(S)) (51)

as L→∞. Combining the bounds (46), (48) and (51), we get

lim inf
L→∞

lim inf
u→∞

P(Uu;ǫ,ǫ+γu−2,T )exp
�

u2/(1+ r)
�
≥
(T − ǫ)|r ′|

2π
p

1− r2
.

Hence the statement of Theorem 1, part 1(i) follows.
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6.2 Proof of Theorem 2(ii).

In this case α= 1. By the same arguments as in (36) and (37) we have

P(Uu;ǫ,ǫ+δ(u),T (S))≤ Pu;ǫ,T (S)≤ P(Uu;ǫ,ǫ+δ(u),T ) + Pu;ǫ+δ(u),T , (52)

where δ(u) = cu−2 log u, c > 0. The second probability in the right hand side of (52) is bounded by

(38), for any sufficiently large c.

UPPER BOUND

We derive now an upper bound of P(Uu;ǫ,ǫ+δ(u),T ). We split the set {(s, t) : s, t ∈ [0, T], ǫ ≤ t − s ≤
ǫ+δ(u)} into small parallelograms Kk,m = Kk,m(λ,µ), λ,µ > 0, defined as

Kk,m :=
¦
(s, t) : kµu−2 ≤ s ≤ (k+ 1)µu−2,ǫ+mλu−2 ≤ t − s ≤ ǫ+ (m+ 1)λu−2

©
,

m= 0,1, ..., Mu =

�
δ(u)

λu−2

�
, k = 0,1, ..., Nu,m =

�
T − (ǫ+mλu−2)

µu−2

�
.

We have

P(Uu;ǫ,ǫ+δ(u),T )≤
Mu+1∑

m=0

Nu,m+1∑

k=0

P(∃(s, t) ∈ Kk,m : X (s)> u, X (t)> u). (53)

As in (49) with τ= ǫ+mλu−2 and r = r(ǫ), r ′ = r ′(ǫ), ρ = (1+ r)−2, we get

exp

�
−

u2

1+ r(ǫ+mλu−2)

�
≤ exp

�
−

u2

1+ r

�
exp
�
−mλρ|r ′|(1+ o(1))

�
(54)

as u→∞, where o(1) in the right-hand side is uniform in m because mλu−2 ≤ cu−2 log u. By Lemma

2, with α= 1 and τ= ǫ+mλu−2, using (54) and the stationarity of X , we have

pk,m := P
�⋃

(s,t)∈Kk,m
{ X (s)> u, X (t)> u}

�
≡ p0,m

≤ hα(λ,µ)e−mλρ|r ′|(1+o(1))Ψ2(u, r)(1+ o(1))

as u→∞, where

hα(λ,µ) =

∫ ∫
ex+y P

� ⋃

(s,t)∈K̃

{
p

2B1(s)− (1+r ′)s > x ,
p

2eB1(t)− (1−r ′)t > y}
�
d xd y,

with K̃ = {(s, t) : 0≤ t − s ≤ ρλ, 0≤ s ≤ ρµ}. For some γu, with γu ↓ 0 as u ↑ ∞, we have

µu−2P(Uu;ǫ,ǫ+δ(u),T )

hα(λ,µ)Ψ2(u, r)(T − ǫ) ≤ (1+ γu)

 
1+

Mu+1∑

m=1

T − ǫ−mλu−2

T − ǫ e−mλρ|r ′|

!
+O(u−1)

≤ (1+ γu)
�

1− e−λρ|r
′|)
�−1
+O(u−1). (55)

which tends to
�

1− e−λρ|r
′|�−1

as u→∞, and then to 1 as λ→∞.
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LOWER BOUND

We consider a lower bound of P(Uu;ǫ,ǫ+δ(u),T (S)). We need to introduce another set of parallelo-

grams,

Kl = Kl(λ,µ) :=
¦
(s, t) : lµu−2 ≤ s ≤ ((l + 1)µ−pµ)u−2,ǫ ≤ t − s ≤ ǫ+λu−2

©
,

l = 0,1,2, ..., Lu =
�
(T − (ǫ+λu−2))/µu−2

�
, where again µ and λ are large with µ > λ > 1.

Observe that there is a gap of width
p
µ between any neighboring parallelograms Kl and Kl+1.

Denote for S ∈ S ,

q0 := P




⋃

(s,t)∈K0

{ X (s)≥ u, X (t)≥ u, TsS}


 .

and

ql := P




⋃

(s,t)∈K0

{ X (s)≥ u, X (t)≥ u} ∩
⋃

(s,t)∈Kl

{ X (s)≥ u, X (t)≥ u}


 , l ≥ 1.

We have by the stationarity of X ,

P(Uu;ǫ,ǫ+δ(u),T (S))≥ P




Lu⋃

l=0

⋃

(s,t)∈Kl

{ X (s)≥ u, X (t)≥ u, TsS}




≥ Luq0−
Lu+1∑

l=1

(Lu+ 1− l)ql . (56)

By Lemma 2,

q0 ≥ (1− γu)hα(λ,µ−pµ)Ψ2(u, r),

where γu ↓ 0 as u ↑ ∞ and hα(λ,µ −pµ) denotes the factor hα(Λ/(1+ r)2) of the Lemma with

Λ = {(s, t) : 0≤ s ≤ µ−pµ, 0≤ t − s ≤ λ}. Thus

Luq0 ≥ (1− γu)u
2
(T − ǫ)−λu−2

µ
hα(λ,µ−pµ)Ψ2(u, r). (57)

We show at the end of this proof that the right-hand side is asymptotically equal to the upper bound

(55), as u tends to infinity and also µ→∞ and λ→∞. So it remains to show that the second term

in the right-hand side of (56) is of smaller order. Let δ̃ > 0 be such that δ̃ < T − ǫ − λµ−2 and

r ′(ǫ+ t) < 0 for all t ∈ [0, δ̃]. Set l0 = [δ̃/µu−2] + 1. We derive upper bounds for ql separately for

l ≤ l0 and for l > l0.

We have max{(r(t), t ≥ ǫ + δ̃} < r − ϑ for some ϑ > 0. Therefore by Fernique’s inequality we get

for l > l0

ql ≤ P

�
max

(s,t)∈[0,µu−2]×[ǫ+lµu−2,ǫ+(λ+(l+1)µ)u−2]
(X (s) + X (t))≥ 2u

�

≤ C exp

�
−

u2

1+ r − ϑ

�

1857



for some positive constant C . For any R> 0, it follows

Lu+1∑

l>l0

Luql ≤ C L2
u exp

�
−

u2

1+ r(ǫ)− ϑ

�
= o
�

u−R)Ψ2(u, r(ǫ)
�

(58)

as u→∞.

For l ≤ l0, we write

ql ≤ P




⋃

s∈[0,(µ−pµ)u−2]

⋃

t∈[ǫ+lµu−2,ǫ+(λ+(l+1)µ−pµ)u−2]

{X (s)> u, X (t)> u}


 .

Applying again Lemma 2 for τ = ǫ + (l − 1)µu−2 ∈ [ǫ,ǫ + δ̃] ⊂ Cǫ, we get using for short r =

r(τ), r ′ = r ′(τ), for sufficiently large u,

ql ≤ 2b(λ,µ)Ψ2(u, r(τ))

with

b(λ,µ) =

∫ ∫
ex+y P

�
max

0≤s≤ρ̃(µ−pµ)
{
p

2B1(s)− (1+ r ′)s}> x ,

max
ρ̃µ≤t≤ρ̃(λ+2µ−pµ)

{
p

2eB1(t)− (1− r ′)t}> y

�
d xd y,

ρ̃ := 1/(1+ r2)). Note that b(λ,µ) depends on l through τ. Since r ′ < 0, the probability under the

integral is at most

P

�
max

0≤s≤ρ̃(µ−pµ)
{
p

2B1(s)− s}> x − |r ′|ρ(µ−pµ),

max
ρ̃µ≤t≤ρ̃(λ+2µ−pµ)

{
p

2eB1(t)− t}> y + |r ′|ρ̃µ
�

.

Changing x by x − |r ′|ρ̃(µ−pµ) and y by y + |r ′|ρ̃µ and using the independence of the Brownian

motions B and eB, we get that

b(λ,µ)≤ e−|r
′|ρ̃pµ

∫
ex P

�
max

0≤s≤ρ̃(µ−pµ)
{
p

2B1(s)− s}> x

�
d x

×
∫

e y P

�
max

µ≤t≤ρ̃(λ+2µ−pµ)
{
p

2B̃1(t)− t} > y

�
d y

≤ e−|r
′|ρ̃pµH1(ρ̃(µ−

p
µ))H1(ρ̃(λ+ 2µ−pµ))

≤ Cµ(λ+ 2µ)e−|r
′|ρ̃pµ ≤ Cµ(λ+ 2µ)e−|r

′|pµ/(1+r)2 .

where we applied the inequality H1(T )≤ C T , see (1). Furthermore, using (49), we derive

Ψ2(u, r(τ)) = Ψ2(u, r(ǫ+ (l − 1)µu−2))≤ CΨ2(u, r)exp

�
−
κ(l − 1)µ

(1+ r)2

�
,

1858



for some C , where κ is a positive number with κ <mint∈[ǫ,ǫ+δ̃] |r ′(t)|. Thus

ql ≤ Cµ(λ+ 2µ)Ψ2(u, r)exp

�
−
κ(l − 1)µ

(1+ r)2
−
κ
p
µ

(1+ r)2

�

and therefore

l0∑

l=1

(Lu+ 1− l)ql ≤ C Luµ(λ+ 2µ)Ψ2(u, r)

l0∑

l=1

exp

�
−
κ(l − 1)µ

(1+ r)2
−
κ
p
µ

(1+ r)2

�

≤ C
T − ǫ
µu−2

µ2Ψ2(u, r)exp
�
−κpµ/(1+ r)2

�
(59)

since λ < µ. Combining the bounds (56), (57), (58) and (59), it follows that

lim inf
u→∞

P(Uu;ǫ,ǫ+δ(u),T (S)

(T − ǫ)u2Ψ2(u, r)
≥

hα(λ,µ−pµ)
µ

− Cµexp
�
−κpµ/(1+ r)2

�

=
hα(λ,µ−pµ)

µ
(1− γ̃µ), (60)

with 0< γ̃µ→ 0 as µ→∞.

ASYMPTOTIC EQUIVALENCE

Finally, with the upper and the lower bounds we derive the asymptotic behavior of Pu;ǫ,T (S). From

(55) we have for large λ and µ

lim sup
u→∞

Pu;ǫ,T (S)

(T − ǫ)u2Ψ2(u, r)
≤

hα(λ,µ)

µ
(1− e−λρ|r

′|)−1 ≤
hα(λ,µ)

µ
(1+ e−δλ),

for some positive δ. From (60) we get for any sufficiently large µ1 and λ1 with µ1 > 1 and λ1 < µ1

lim inf
u→∞

Pu;ǫ,T (S)

(T − ǫ)u2Ψ2(u, r)
≥

hα(λ1,µ1−
p
µ1)

µ1

(1− γ̃µ1
).

It remains to show that the two bounds are asymptotically equivalent. We have for any λ,µ and

λ1,µ1, with µ1 > 1

hα(λ,µ)

µ
(1+ e−δλ)≥

hα(λ1,µ1−
p
µ1)

µ1

(1− γ̃µ1
). (61)

Since hα(λ1,µ1 −
p
µ1) ≥ hα(0,0) = 1, for any λ1 > 0, one can find some µ1 > 1 such that the

right-hand side of (61) is positive. Fixing these λ1, µ1, we get for any λ

lim inf
µ→∞

hα(λ,µ)

µ
> 0.

Fixing now λ and µ we get by (61)

lim sup
µ1→∞

hα(λ1,µ1−
p
µ1)

µ1

= lim sup
µ1→∞

hα(λ,µ1)

µ1

<∞,
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and thus

∞ > lim inf
µ→∞

hα(λ,µ)

µ
(1+ e−δλ)≥ lim sup

µ1→∞

hα(λ1,µ1)

µ1

> 0.

Consequently,

∞ > lim inf
λ→∞

lim inf
µ→∞

hα(λ,µ)

µ
≥ lim sup
λ1→∞

lim sup
µ1→∞

hα(λ1,µ1)

µ1

> 0,

so that

h= lim inf
λ→∞

lim inf
µ→∞

hα(λ,µ)

µ
= lim sup

λ→∞
lim sup
µ→∞

hα(λ,µ)

µ
∈ (0,∞), (62)

and Theorem 2(ii) follows.

6.3 Proof of Theorem 2(iii).

Now α < 1. This proof is similar to the proof of Theorem 1. The relations (52) and (38) are still

valid with the same δ = δ(u) = cu−2 log u, (with c > 0), and we immediately turn to the probability

P(Uu;ǫ,ǫ+δ(u),T (S)). Let ∆= λu−2/α, λ > 0, and define the intervals

∆k = [k∆, (k+ 1)∆], 0≤ k ≤ N , N = [T/∆] .

We cover the set D = {s, t ∈ [0, T] : 0≤ t−s−ǫ ≤ δ}with squares∆k×∆l = (0, (l−k)∆)+∆k×∆k.

We apply Lemma 2 with τ= (l − k)∆ and Λ = [kλ, (k+ 1)λ]× [kλ, (k+ 1)λ]. Since these sets are

squares and the Brownian motions are independent, the double integral in the definition of hα(Λ) is

factorized into two integrals which are both equal to Hα,0(λ/(1+ r(τ))2/α). Since τ→ ǫ uniformly

for all k, l such that ∆k ×∆l ∩ D 6= ;, we have, writing again r = r(ǫ), r ′ = r ′(ǫ),

P(Uu;ǫ,ǫ+δ(u),T (S))≤
∑

(k,l): ∆k×∆l∩D 6=;
P

�
max
s∈∆k

X (s)≥ u, max
t∈∆l

X (t)≥ u

�

≤
∑

(k,l): ∆k×∆l∩D 6=;

(1+ γ(u))(1+ r(τ))3/2

2πu2
p

1− r(τ)
H2
α,0

�
λ

(1+ r)2/α

�

× exp

�
−

u2

1+ r((l − k)∆)

�

≤
(1+ γ(u))(1+ r)3/2

2πu2
p

1− r
H2
α,0

�
λ

(1+ r)2/α

�

×
∑

(k,l): ∆k×∆l∩D 6=;
exp

�
−

u2

1+ r((l − k)∆)

�
, (63)

where γ(u) ↓ 0 as u ↑ ∞. Using that −∆≤ (l − k)∆− ǫ ≤ δ+∆→ 0, it follows

1

1+ r((l − k)∆)
=

1

1+ r
− (1+ γ1(u))

r((l − k)∆)− r

(1+ r)2

=
1

1+ r
+ (1+ γ1(u))

|r ′|((l − k)∆− ǫ)
(1+ r)2

=
1

1+ r
+ (1+ γ1(u))R((l − k)∆− ǫ),
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where γ1(u) ↓ 0, as u ↑ ∞, and R= |r ′|/(1+ r)2. Therefore the sum Σ in the right-hand side of (32)

equals

Σ = exp

�
−

u2

1+ r

� ∑

(k,l): ∆k×∆l∩D 6=;
exp
�
−Ru2((l − k)∆− ǫ)

�
.

In the sum, the index k varies between 0 and (T − ǫ)/∆+ θ , as u→∞, where |θ | ≤ 1, depending

of u. The index n = (l − k) varies between ǫ/∆+ θ1 and (ǫ + δ)/∆+ θ2 as u → ∞, where θ1,θ2

have the same properties as θ . Let xn = (n∆− ǫ)u2 and note that xn+1 − xn = u2∆→ 0 as u→∞,

since α < 1. It implies that

Σ = (1+ o(1))exp

�
−

u2

1+ r

�
T − ǫ
u2∆2

u2δ+o(1)∑

xn=o(1)

e−Rxn(xn+1− xn)

= (1+ o(1))exp

�
−

u2

1+ r

�
T − ǫ
u2∆2

∫ ∞

0

e−Rx d x . (64)

Since the integral equals 1/R, it follows by (63) and the properties of Pickands’ constants for large

λ, that

P(Uu;ǫ,ǫ+δ(u),T (S))

≤
(1+ γ2(u))(1+ r)3/2

2πu2
p

1− r
H2
α

�
λ

(1+ r)2/α

�
exp

�
−

u2

1+ r

�
T − ǫ

u2∆2R

=
(1+ γ2(u))(T − ǫ)(1+ r)2−4/α

u2−4/α|r ′|
(1+ γ3(λ))H

2
αΨ2(u, r) (65)

where γ2(u) ↓ 0 as u ↑ ∞ and γ3(λ) ↓ 0 as λ ↑ ∞. Letting u and then λ → ∞, this bound is

asymptotically equal to the term of the statement.

The estimation of the probability P(Uu;ǫ,ǫ+δ(u),T (S)) from below repeats word-by-word the corre-

sponding estimation from the proof of Theorem 1.

6.4 Proof of the second part of Theorem 2

This proof is the same as the proof of the second part of Theorem 1. �

Acknowledgement: We are grateful to the reviewers on their comments to improve the presentation

of the technical proof.
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