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Abstract

We consider a class of optimal stopping problems for a regular one-dimensional diffusion whose
payoff depends on a linear parameter. As shown in [Bank and Föllmer(2003)] problems of
this type may allow for a universal stopping signal that characterizes optimal stopping times
for any given parameter via a level-crossing principle of some auxiliary process. For regular
one-dimensional diffusions, we provide an explicit construction of this signal in terms of the
Laplace transform of level passage times. Explicit solutions are available under certain concavity
conditions on the reward function. In general, the construction of the signal at a given point
boils down to finding the infimum of an auxiliary function of one real variable. Moreover,
we show that monotonicity of the stopping signal corresponds to monotone and concave (in a
suitably generalized sense) reward functions. As an application, we show how to extend the
construction of Gittins indices of [Karatzas(1984)] from monotone reward functions to arbitrary
functions.
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1 Introduction

In this paper, we study optimal stopping problems of one-dimensional regular diffusions that de-
pend on a parameter. A well-known example is the perpetual American put option written on an
underlying process X with strike k whose discounted payoff at time t is given by e−r t(k − X t)+.
More generally, with S denoting the set of stopping times, one can consider the optimal stopping
problem with value function

V (x)¬ sup
τ∈S

Ex

�

e−rτ(u(Xτ)− k)
�

, k ∈ R,

where r > 0 is a discount rate and the reward function is hk(·)¬ u(·)−k. A general characterization
of the value function in terms of excessive functions was proved by [Dynkin(1963)]. Moreover,
efficient methods for the calculation of the value function are available if X is a one-dimensional
regular diffusion, see e.g. [Dayanik and Karatzas(2003)]. This calculation is reduced to finding the
smallest majorant of the reward function hk which exhibits a suitably generalized form of concavity.
Optimal stopping times can then be identified as the first entrance time of the underlying diffusion
into the set where the value function and the reward function coincide. A purely probabilistic
approach to find optimal stopping times is to compute the Snell envelope of the payoff process; see
e.g. [Shiryayev(1978)], [El Karoui(1981)] or [Karatzas(1988)]. In any case, if the reward function
depends on a parameter k as in the case of an American put option, both approaches outlined above
have to be repeated anew for each choice of the parameter. By contrast, [Bank and Föllmer(2003)]
show how to construct a universal stopping signal from the optional solution K to the representation
problem

e−rT u(XT ) = E





∫ ∞

T

re−r t sup
T≤s≤t

Ks d t

�

�

�

�

�

FT



 .

Optimal stopping times can be obtained from the solution K to the representation problem via a
level-crossing principle: it is optimal to exercise a put with strike k as soon as K passes the threshold
k. While explicit formulas for the signal process K have been found in special cases, this paper
provides an explicit construction of universal stopping signals for general one-dimensional diffusions
and reward functions. Specifically, the computation of the optimal stopping signal at a given point
is reduced to finding the infimum of an auxiliary function of one variable that can be computed
explicitly from the Laplace transforms of level passage times for the underlying diffusion. Moreover,
we show that the infimum can be determined in closed form if the reward function satisfies certain
concavity conditions. We also prove that monotone stopping signals correspond to monotone and
concave (again in a suitably generalized sense) reward functions and provide explicit solutions in
that case. Finally, we illustrate our method by applying them to optimal stopping problems for
American options and to the computation of Gittins indices, extending results of [Karatzas(1984)].

This paper is organized as follows: in Section 2 we outline those results theory of optimal stopping
for one-dimensional regular diffusions which are needed for our approach. In Section 3 we introduce
a class of optimal stopping problems depending on a parameter k in a linear way and discuss how
to compute universal stopping signals in that case. Our results are illustrated by some examples. We
close by pointing out the connection of our results to stochastic representation problems.

Acknowledgements: We thank both anonymous referees for their careful reports and helpful com-
ments and suggestions. We wish to thank Dr. Mikhail Urusov for helpful discussions. Both authors
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2 Optimal stopping of one-dimensional diffusions

In this section, we outline part of the theory of optimal stopping for one-dimensional diffu-
sions with random discounting using the paper of [Dayanik(2008)] as a key reference; see also
[Dayanik and Karatzas(2003)], [Peskir and Shiryaev(2006)], [Dynkin(1963)], [Fakeev(1971)],
[Shiryayev(1978)] and the references therein. We consider a one-dimensional diffusion X speci-
fied by the SDE

dX t = σ(X t) dWt +µ(X t) d t, X0 = x ∈ J , (1)

where J = (a, b) with −∞≤ a < b ≤∞ and W is a Brownian motion.

Assumption 1. The functions µ,σ : J −→ R are Borel-measurable and satisfy the following condi-
tions:

σ2(x)> 0, for all x ∈ J ,

and
∫ b̄

ā

1+ |µ(s)|
σ2(s)

ds <∞, for all a < ā < b̄ < b.

Also, σ2 is locally bounded, i.e.

sup
s∈[ā,b̄]

σ2(s)<∞, for all a < ā < b̄ < b.

Our assumptions are sufficient for the SDE (1) to have a weak solution (Ω,F ,F = (Ft)t≥0, {Px :
x ∈ J }, W, X ) up to an explosion time that is unique in the sense of probability law; see
[Karatzas and Shreve(1991), Section 5.5 C]. Define Ty ¬ inf{t ≥ 0 : X t = y} the first hitting time of
the point y ∈ J . Assumption 1 implies that X is regular, i.e. Px

�

Ty <∞
�

> 0 for all x ∈ J , y ∈ J
(see [Dayanik and Karatzas(2003)]). Throughout this paper, we consider only natural boundaries:

Assumption 2. The boundaries of J are natural for X , i.e.

Px
�

Ta <∞
�

= Px
�

Tb <∞
�

= 0 for any x ∈ J .

Next, we introduce our discounting process (Rt)t≥0 given by

Rt =

∫ t

0

r(Xs) ds, t ≥ 0.

where we impose the following conditions on the function r:

Assumption 3. The function r : J → (0,∞) is Borel-measurable and locally bounded. Moreover, there
is r0 > 0 such that r(x)≥ r0 for all x ∈ J .
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In particular, R is a continuous additive functional of X , i.e. R is a.s. nonnegative, continuous,
vanishes at zero and has the additivity property

Rs+t = Rs + Rt ◦ θs, s, t ≥ 0,

where θs is the usual shift operator: X t ◦θs = X t+s. For an account on additive functionals, see, e.g.,
Chapter X in [Revuz and Yor(1991)]. Moreover, we have Rt →∞ as t →∞. Sometimes we write
R(t) instead of Rt for notational convenience.

Let us now recall how to compute the Laplace transforms of R(Ty) for a < y < b. To this end,
consider the ODE

Aw(x)¬
1

2
σ2(x)w′′(x) +µ(x)w′(x) = r(x)w(x), x ∈ J , (2)

where A is the infinitesimal generator of X . This ODE has two linearly independent, positive
solutions. These are uniquely determined up to multiplication by constants, if we require one of
them to be increasing and the other decreasing. We denote the increasing solution by ψ and the
decreasing one by ϕ. They are continuously differentiable and satisfy

lim
x↓a
ϕ(x) = lim

x↑b
ψ(x) =∞.

We refer to [Johnson and Zervos(2007)] for these results; see also [Dayanik and Karatzas(2003)]
and [Itô and McKean, Jr.(1974)] for the case r(x)≡ r > 0.

Lemma 1. ([Itô and McKean, Jr.(1974)],. . . ) If x , y ∈ J , then

Ex

�

e−RTy
�

=

(

ψ(x)/ψ(y), x ≤ y

ϕ(x)/ϕ(y), x > y.

Remark 2. If r(x) ≡ r, the assumption that the boundaries of J are natural (Assumption 2) is
equivalent to

ϕ(a+) =ψ(b−) =∞ and ψ(a+) = ϕ(b−) = 0,

see e.g. [Dayanik and Karatzas(2003), Itô and McKean, Jr.(1974)].

It will be convenient to introduce the increasing functions F and G defined by

F(x)¬
ψ(x)
ϕ(x)

, G(x)¬−
ϕ(x)
ψ(x)

, x ∈ J .

Lemma 3. [Dayanik(2008), Lemma 2.3] For every x ∈ [y, z]⊂J , we have

Ex[e
−RTy 1{Ty<Tz}] =

ϕ(x)
ϕ(y)

·
F(z)− F(x)
F(z)− F(y)

=
ψ(x)
ψ(y)

·
G(z)− G(x)
G(z)− G(y)

,

Ex[e
−RTz 1{Ty>Tz}] =

ϕ(x)
ϕ(z)

·
F(x)− F(y)
F(z)− F(y)

=
ψ(x)
ψ(z)

·
G(x)− G(y)
G(z)− G(y)

.

Following [Dayanik and Karatzas(2003)], we use the following generalized notion of concavity.
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Definition 4. Let f : J → R be a strictly monotone function. Then U : J → R is called f -concave if

U(x)≥ U(y)
f (z)− f (x)
f (z)− f (y)

+ U(z)
f (x)− f (y)
f (z)− f (y)

, x ∈ [y, z]⊆J .

We speak of a strictly f -concave function if the inequality above holds in the strict sense whenever
y < x < z.

Clearly, if f (x) = x , then a f -concave function is concave in the usual sense. Some facts about
f -concave functions can be found in [Dynkin(1965)].

Remark 5. Note that by Lemma 3, the function 1/ϕ is strictly F -concave whereas 1/ψ is strictly
G-concave on J .

With these concepts at hand, we may now recall some very useful results of [Dayanik(2008)] that
show how to solve optimal stopping problems in our setting; see [Dayanik and Karatzas(2003)] for
these results in case of a constant discount rate. Let h be a Borel function such that Ex

�

e−Rτh(Xτ)
�

is well defined for every F-stopping time τ and x ∈ J . Moreover, we assume that h is bounded on
every compact subset of J . By convention, we set h(Xτ) = 0 on {τ=∞}. Denote by

V (x)¬ sup
τ∈S

Ex

�

e−Rτh(Xτ)
�

, x ∈ J , (3)

the value function of the optimal stopping problem with reward function h and discount rate r(·),
where the supremum is taken over the set S of F-stopping times.

Proposition 6. [Dayanik(2008), Prop. 3.1 - 3.4, 3.10]

1. The value function V is either finite or infinite everywhere on J . Moreover, V ≡∞ on J if and
only if at least one of the limits

`a ¬ limsup
x↓a

h+(x)
ϕ(x)

and `b ¬ lim sup
x↑b

h+(x)
ψ(x)

is infinite (h+(x)¬max{0, h(x)}).

2. If h is continuous on J and `a = `b = 0, the stopping time

τ? ¬ inf {t ≥ 0 : X t ∈ Γ}

where Γ¬ {x ∈ J : V (x) = h(x)} is optimal, i.e.

V (x) = Ex

�

e−Rτ?h(Xτ?)
�

.

3. If `a and `b are both finite, the value function V is continuous on J . Moreover, V is the smallest
nonnegative majorant of h on J such that V/ϕ is F-concave (equivalently, V/ψ is G-concave)
on J .

4. With W : F(I )→ R denoting the smallest nonnegative concave majorant of the function

H(y)¬ (h/ϕ) ◦ F−1(y), y ∈ F(J ),

the value function V is given by

V (x) = ϕ(x)W (F(x)), x ∈ J .
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3 Parameter-dependent optimal stopping

In many applications, the reward function h of an optimal stopping problem depends on some
parameter k, i.e.

sup
τ∈S

Ex

�

e−Rτhk(Xτ)
�

, x ∈ J , k ∈ R.

A very prominent example is the American put option with strike k, i.e. hk(x) = (k − x)+. In the
previous section, we have seen how to compute the corresponding value function for a fixed value
of k by finding the smallest majorant of the reward function hk which is concave in some suitably
generalized sense. An optimal stopping region Γk is then given by the set where the value function
and the reward function coincide (cf. Proposition 6). If one has to determine optimal stopping rules
corresponding to many different values of k, this approach might be quite tiresome, particularly
if the structure of the stopping region is complex. In such a case, it would be desirable to have a
universal stopping signal γ that characterizes the optimal stopping regions for any given parameter
k, for instance as the level set Γk = {x : γ(x) ≥ k}. In the sequel, we describe a method to compute
such a universal stopping signal for reward functions of the form hk(x) = u(x) − k, i.e. for the
optimal stopping problem

Vk(x)¬ sup
τ∈S

Ex

�

e−Rτ(u(Xτ)− k)
�

, x ∈ J , k ∈ R, (4)

where u satisfies the following assumption:

Assumption 4. The function u: J → R is continuously differentiable and

lim sup
x↓a

u+(x)
ϕ(x)

<∞ and lim sup
x↑b

u+(x)
ψ(x)

<∞.

Remark 7. In view of Proposition 6, Assumption 4 ensures that the value function Vk of (4) is finite
for any k.

3.1 Computation of optimal stopping signals

Let us discuss how to compute a universal stopping signal yielding an optimal stopping time for any
k. To this end, let

Γk ¬ {x : Vk(x) = u(x)− k}

denote the optimal stopping region (cf. Proposition 6).

Assumption 5. For any k, the stopping time

τk ¬ inf{t : X t ∈ Γk}

is optimal, i.e. Vk(x) = Ex

�

e−Rτk (u(Xτk
)− k)

�

.

A sufficient condition for optimality of the stopping times τk was given in Proposition 6. Moreover,
granted there is an optimal stopping time, τk is optimal as well (see e.g. [El Karoui(1981)]).

Remark 8. Recall that we use the convention h(Xτ) = 0 on the set {τ=∞} for any stopping time τ.
The existence of an optimal stopping time τk requires that the supremum in (4) is attained.
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We aim to derive a function γ on J such that the optimal stopping regions Γk can be written as
level sets Γk = {x : γ(x) ≥ k}. In other words, knowledge of the function γ suffices to derive the
optimal stopping regions for any parameter k. Our main result, Theorem 13 below, shows that γ(x)
can be found as the infimum over an auxiliary function ηx(·) of one real variable which is expressed
in terms of the Laplace transforms ϕ and ψ of level passage times. The infimum can be computed
explicitly under specific concavity conditions on the reward function u. In the sequel, we show how
to obtain this result and give an explicit expression for ηx in (12).

Let TU ¬ inf{t ≥ 0 : X t 6∈ U} denote the first exit time from a measurable subset U of (a, b) and

T̃ (x)¬ {TU : U ⊂ (a, b) open, x ∈ U}

the class of all exit times from open neighborhoods of x . The following lemma shows that the
stopping signal γ is the solution to a non-standard optimal stopping problem (cf. equation (25) in
[Bank and Föllmer(2003)], also [El Karoui and Föllmer(2005)]).

Lemma 9. For

γ(x)¬ inf
T∈T̃ (x)

Ex

�

u(x)− e−RT u(XT )
�

Ex
�

1− e−RT
� , x ∈ J , (5)

we have Γk = {x : γ(x)≥ k}.

Proof. For any k, we have x ∈ Γk if and only if

Ex

�

e−RT (u(XT )− k)
�

≤ u(x)− k for any T ∈ T̃ (x).

To see this, note that if x ∈ Γk, then Vk(x) = u(x)−k and the inequality above is true by definition of
the value function. On the other hand, note that the sets Γk are closed in J since Vk is continuous
for all k by Proposition 6. Thus, if x 6∈ Γk, τk = inf{t : X t ∈ Γk} is an exit time from an open
neighborhood of x , i.e. τk ∈ T̃ (x). Since τk is optimal by Assumption 5, we get

u(x)− k < Vk(x) = Ex

�

e−Rτk (u(Xτk
)− k)

�

.

Thus, for any k, we have

x ∈ Γk⇐⇒ inf
T∈T̃ (x)

Ex

�

u(x)− e−RT u(XT )
�

Ex
�

1− e−RT
� ≥ k.

Let us now discuss how to compute the function γ of (5). The following lemma reduces the optimal
stopping problem of the preceding lemma to finding the infimum of a function of two variables.

Lemma 10. For any x ∈ J ,
γ(x) = inf

a≤y<x<z≤b
f x(y, z) (6)
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where

f x(y, z)¬































































u(x)−u(z)ψ(x)
ψ(z)

1−ψ(x)
ψ(z)

=

u(x)
ψ(x) −

u(z)
ψ(z)

1
ψ(x) −

1
ψ(z)

, a = y < x < z < b,

u(x)
ϕ(x) −

u(y)
ϕ(y)

F(z)−F(x)
F(z)−F(y) −

u(z)
ϕ(z)

F(x)−F(y)
F(z)−F(y)

1
ϕ(x) −

1
ϕ(y)

F(z)−F(x)
F(z)−F(y) −

1
ϕ(z)

F(x)−F(y)
F(z)−F(y)

, a < y < x < z < b,

u(x)−u(y) ϕ(x)
ϕ(y)

1− ϕ(x)
ϕ(y)

=

u(x)
ϕ(x) −

u(y)
ϕ(y)

1
ϕ(x) −

1
ϕ(y)

, a < y < x < z = b,

u(x) y = a, z = b.

Proof. First note that if T ∈ T̃ (x), T = Ty ∧ Tz Px -a.s. for some a ≤ y < x < z ≤ b. Thus,

γ(x) = inf
a≤y<x<z≤b

Ex

h

u(x)− e−RTy∧Tz u(XTy∧Tz
)
i

Ex

�

1− e−RTy∧Tz
�

Assumption 2 implies that Ta = Tb = ∞ a.s. The claim now follows from Lemma 1 and Lemma
3.

Remark 11. According to Lemma 3, the functions ϕ and F may be replaced by ψ and G in the
definition of f x , i.e. for a < y < x < z < b,

f x(y, z) =

u(x)
ψ(x) −

u(y)
ψ(y) ·

G(z)−G(x)
G(z)−G(y) −

u(z)
ψ(z) ·

G(x)−G(y)
G(z)−G(y)

1
ψ(x) −

1
ψ(y) ·

G(z)−G(x)
G(z)−G(y) −

1
ψ(z) ·

G(x)−G(y)
G(z)−G(y)

.

For simplicity of notation, let

αϕ ¬
u

ϕ
, αψ ¬

u

ψ
, βϕ ¬

1

ϕ
, βψ ¬

1

ψ
.

For a < y < x < z < b, simple manipulations yield

f x(y, z) =

αϕ(x)−αϕ(y)
F(x)−F(y) −

αϕ(z)−αϕ(x)
F(z)−F(x)

βϕ(x)−βϕ(y)
F(x)−F(y) −

βϕ(z)−βϕ(x)
F(z)−F(x)

=

αψ(x)−αψ(y)
G(x)−G(y) −

αψ(z)−αψ(x)
G(z)−G(x)

βψ(x)−βψ(y)
G(x)−G(y) −

βψ(z)−βψ(x)
G(z)−G(x)

. (7)

We remark that f x(y, z)→ f x(a, z) if y ↓ a iff u(y)/ϕ(y)→ 0 as y ↓ a and f x(y, z)→ f (y, b) if
z ↑ b iff u(z)/ψ(z)→ 0 as z ↑ b.

Let us discuss next how to compute the infimum of f x(y, z) over y and z for fixed x in order to find
γ(x) in (6). In view of the definition of f x , it seems natural to ask what happens if one lets y ↑ x or
z ↓ x in (7). One notices that a difference quotient similar to the definition of the usual derivative
appears. Let us therefore recall the following definition.
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Definition 12. Let f : J → R be a strictly monotone function. We say that U : J → R is f -
differentiable at x ∈ J if

d f U(x)¬ lim
y→x

U(y)− U(x)
f (y)− f (x)

exists.

For f (s) = s, the definition above is just the usual derivative. Also, if U and f are differentiable
at x , then d f U(x) = U ′(x)/ f ′(x). In particular, under Assumption 4, αϕ and αψ are F - and G-
differentiable. βϕ and βψ are always F - and G-differentiable.

From (7), we find that

lim
y↑x

f x(y, z) =
dFαϕ(x)−

αϕ(z)−αϕ(x)
F(z)−F(x)

dFβϕ(x)−
βϕ(z)−βϕ(x)

F(z)−F(x)

=
dGαψ(x)−

αψ(z)−αψ(x)
G(z)−G(x)

dGβψ(x)−
βψ(z)−βψ(x)

G(z)−G(x)

, x < z < b, (8)

lim
z↓x

f x(y, z) =

αϕ(x)−αϕ(y)
F(x)−F(y) − dFαϕ(x)

βϕ(x)−βϕ(y)
F(x)−F(y) − dFβϕ(x)

=

αψ(x)−αψ(y)
G(x)−G(y) − dGαψ(x)

βψ(x)−βψ(y)
G(x)−G(y) − dGβψ(x)

, a < y < x . (9)

Using l’Hôspital’s rule, one computes

lim
y↑x

f x(y, b) = u(x)− u′(x)
ϕ(x)
ϕ′(x)

=
dFαϕ(x)

dFβϕ(x)
¬ κ(x), (10)

lim
z↓x

f x(a, z) = u(x)− u′(x)
ψ(x)
ψ′(x)

=
dGαψ(x)

dGβψ(x)
¬ ρ(x). (11)

We now define ηx : [a, b] \ {x} → R by

ηx(y)¬































ρ(x), y = a,
dFαϕ(x)−

αϕ (y)−αϕ (x)
F(y)−F(x)

dFβϕ(x)−
βϕ (y)−βϕ (x)

F(y)−F(x)

, x < y < b,

αϕ (x)−αϕ (y)
F(x)−F(y) −dFαϕ(x)
βϕ (x)−βϕ (y)

F(x)−F(y) −dFβϕ(x)
, a < y < x ,

κ(x), y = b.

(12)

ηx(·) can also be written in terms of G,αψ and βψ instead of F,αϕ and βϕ in view of (8) and
(9). In some proofs, it will be more convenient to use this alternative representation. Note that
ηx may fail to be continuous at the boundaries a or b. In fact, we have limy↓a η

x(y) = ρ(x) iff
limy↓a u(y)/ϕ(y) = 0 and limz↑b η

x(z) = κ(x) iff limz↑b u(z)/ψ(z) = 0.
We now show that the computation of the optimal stopping signal γ at a point x ∈ J amounts
to finding the infimum of the function ηx of one real variable instead of the function f x of two
variables.

Theorem 13. Under Assumptions 1 - 5, for any x ∈ J = (a, b), it holds that

γ(x) = inf
y 6=x
ηx(y),

where ηx is given by (12).
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In order to prove Theorem 13, we need the following lemma.

Lemma 14. For any a ≤ y < x < z ≤ b, it holds that

f x(y, z)≥min {ηx(y),ηx(z)}.

Proof. Suppose first that a < y < x < z < b. If f x(y, z) = 0, then either ηx(y) ≤ 0 or ηx(z) ≤ 0.
Indeed, if both expressions were positive, then since f x(y, z) = 0, we would get (considering only
the numerators of f x in (7) and ηx in (12)) that

0=
αϕ(x)−αϕ(y)

F(x)− F(y)
−
αϕ(z)−αϕ(x)

F(z)− F(x)

=
αϕ(x)−αϕ(y)

F(x)− F(y)
− dFαϕ(x) + dFαϕ(x)−

αϕ(z)−αϕ(x)
F(z)− F(x)

> 0,

a contradiction.

If f x(y, z)> 0, assume for the purpose of contradiction that the claim of the lemma is false, i.e.

ηx(z) =
dFαϕ(x)−

αϕ(z)−αϕ(x)
F(z)−F(x)

dFβϕ(x)−
βϕ(z)−βϕ(x)

F(z)−F(x)

>

αϕ(x)−αϕ(y)
F(x)−F(y) −

αϕ(z)−αϕ(x)
F(z)−F(x)

βϕ(x)−βϕ(y)
F(x)−F(y) −

βϕ(z)−βϕ(x)
F(z)−F(x)

= f x(y, z),

ηx(y) =

αϕ(x)−αϕ(y)
F(x)−F(y) − dFαϕ(x)

βϕ(x)−βϕ(y)
F(x)−F(y) − dFβϕ(x)

>

αϕ(x)−αϕ(y)
F(x)−F(y) −

αϕ(z)−αϕ(x)
F(z)−F(x)

βϕ(x)−βϕ(y)
F(x)−F(y) −

βϕ(z)−βϕ(x)
F(z)−F(x)

= f x(y, z).

Strict F -concavity of βϕ implies that all denominators are positive and the numerator of the right-
hand side is also positive since f x(y, z)> 0. Thus, we can rewrite the inequalities above as

dFαϕ(x)−
αϕ(z)−αϕ(x)

F(z)−F(x)
αϕ(x)−αϕ(y)

F(x)−F(y) −
αϕ(z)−αϕ(x)

F(z)−F(x)

>
dFβϕ(x)−

βϕ(z)−βϕ(x)
F(z)−F(x)

βϕ(x)−βϕ(y)
F(x)−F(y) −

βϕ(z)−βϕ(x)
F(z)−F(x)

,

αϕ(x)−αϕ(y)
F(x)−F(y) − dFαϕ(x)

αϕ(x)−αϕ(y)
F(x)−F(y) −

αϕ(z)−αϕ(x)
F(z)−F(x)

>

βϕ(x)−βϕ(y)
F(x)−F(y) − dFβϕ(x)

βϕ(x)−βϕ(y)
F(x)−F(y) −

βϕ(z)−βϕ(x)
F(z)−F(x)

.

If we add both equations, we obtain 1> 1, which is absurd.

The case f x(y, z)< 0 can be handled analogously.

The proof in the case a < y < x , z = b is also along similar lines. Assume again that

ηx(b) = κ(x) =
dFαϕ(x)

dFβϕ(x)
>
αϕ(x)−αϕ(y)
βϕ(x)− βϕ(y)

= f x(y, b),

ηx(y) =

αϕ(x)−αϕ(y)
F(x)−F(y) − dFαϕ(x)

βϕ(x)−βϕ(y)
F(x)−F(y) − dFβϕ(x)

>
αϕ(x)−αϕ(y)
βϕ(x)− βϕ(y)

= f x(y, b).
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If f x(y, b) = 0, then αϕ(x) = αϕ(y), so we are led to the contradictory statement

dFαϕ(x)> 0 and − dFαϕ(x)> 0.

If f x(y, b) 6= 0, rearranging terms and adding the resulting equations as before, we also obtain a
contradiction.

If y = a and z < b, assume again that the claim of the lemma is false, i.e.

ηx(a) = ρ(x) =
dGαψ(x)

dGβψ(x)
>
αψ(x)−αψ(z)
βψ(x)− βψ(z)

= f x(a, z),

ηx(z) =
dGαψ(x)−

αψ(z)−αψ(x)
G(z)−G(x)

dGβψ(x)−
βψ(z)−βψ(x)

G(z)−G(x)

>
αψ(x)−αψ(z)
βψ(x)− βψ(z)

= f x(a, z).

Here we have used the representation of ηx involving G and ψ stated in (8). Since βψ = 1/ψ is
G-concave and G is decreasing, this leads to a contradiction as before. Finally, if y = a, z = b, since
ψ′ > 0 and ϕ′ < 0, clearly

min{ηx(a),ηx(b)}=min
�

u(x)− u′(x)
ψ(x)
ψ′(x)

, u(x)− u′(x)
ϕ(x)
ϕ′(x)

�

≤ u(x).

Proof. (Theorem 13). By Lemma 10 and Lemma 14, it is immediate that for all x ∈ (a, b)

γ(x) = inf
a≤y<x<z≤b

f x(y, z)≥ inf
y 6=x
ηx(y).

To see the reverse inequality, note that for z > x ,

ηx(z) = lim
u↑x

f x(u, z)≥ inf
a≤u<x

f x(u, z)≥ γ(x).

Similarly, for y < x ,
ηx(y) = lim

u↓x
f x(y, u)≥ inf

x<u≤b
f x(y, u)≥ γ(x).

Thus,
inf
y 6=x
ηx(y)≥ γ(x).

3.2 Concave envelopes

According to Theorem 13, the computation of the universal stopping signal γ amounts to minimizing
the function ηx given by (12) for every x ∈ J . In the sequel, we show that under certain concavity
conditions on u, the infimum of ηx is attained at the boundaries a or b of J which yields a closed
form solution for γ(x) since ηx(a) = κ(x) (see (10)) and ηx(b) = ρ(x) (see (11)). To this end, if
ς: J → R is a strictly monotone function, denote by buς the ς-concave envelope of u, i.e.

buς(x) = inf{ f (x) : f ≥ u and f ς-concave}.
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Provided that buς is finite, buς is itself ς-concave. We remark that buς(x) =Ùu ◦ ς−1(ς(x)) where bu= buid

refers to the usual concave envelope. With this concept at hand, we may now state the main result
of this section.

Theorem 15. Let x ∈ J . Under Assumptions 1 - 5, we have

{γ= ρ}= {u= buψ} ∩ {u′ ≥ 0},

and
{γ= κ}= {u= buϕ} ∩ {u′ ≤ 0}.

In other words, γ(x) = ρ(x) (resp. γ(x) = κ(x)) iff the ψ-concave (resp. ϕ-concave) envelope of u
coincides with the function u itself and u′(x) ≥ 0 (resp. u′(x) ≤ 0). Note that ρ(x) = κ(x) = u(x)
if u′(x) = 0. In order to prove Theorem 15, we need the following lemma.

Lemma 16. Let ς: J → R be differentiable and strictly monotonic.

1. Then u is ς-concave iff for all x , y ∈ J

u(x) + dςu(x)(ς(y)− ς(x))≥ u(y).

2. Let x ∈ J . Then x ∈ {u= buς} if and only if

u(y)≤ u(x) + dςu(x)(ς(y)− ς(x)) for all y ∈ J . (13)

Proof. 1. Note that u is ς-concave on J if and only if u ◦ ς−1 is concave on ς(J ). This is equivalent
to

u(ς−1(x)) +
�

d

d x
u(ς−1(x))

�

· (y − x)≥ u(ς−1(y)) for all x , y ∈ ς(J ).

The claim follows upon noting that for all x ∈ ς(J )

d

d x
u(ς−1(x)) =

u′(ς−1(x))
ς′(ς−1(x))

=
�

dςu
�

(ς−1(x)).

2. Assume that x ∈ {u = buς}. By definition of the ς-concave envelope, the differentiability of u and
ς and the first part of the lemma, it must hold for all y that

u(y)≤ buς(y)≤ buς(x) + dςbu
ς(x)(ς(y)− ς(x)) = u(x) + dςu(x)(ς(y)− ς(x)).

On the other hand, the ς-concave function f (y)¬ u(x)+ dςu(x)(ς(y)− ς(x)) satisfies f (x) = u(x)
and f ≥ u if (13) holds. This implies u(x) = buς(x).

Proof. (Theorem 15) Let x , y ∈ J . For y < x , ηx(y)≥ κ(x) is equivalent to

αϕ(x)−αϕ(y)
F(x)− F(y)

− dFαϕ(x)≥ κ(x) ·
�

βϕ(x)− βϕ(y)
F(x)− F(y)

− dFβϕ(x)

�

.

1982



We have used the fact that βϕ = 1/ϕ is F -concave (Remark 5), F is increasing and part 1 of Lemma
16. Since κ(x) = dFαϕ(x)/dFβϕ(x), we may write

ηx(y)≥ κ(x)⇐⇒
αϕ(x)−αϕ(y)

F(x)− F(y)
≥ κ(x) ·

βϕ(x)− βϕ(y)
F(x)− F(y)

.

Some algebra shows that this is further equivalent to

u(x) + dϕu(x)(ϕ(y)−ϕ(x))≥ u(y).

If y > x , a similar calculation leads to the same result showing that ηx(y) ≥ κ(x) = ηx(b) for all
y ∈ J if and only if

u(x) + dϕu(x)(ϕ(y)−ϕ(x))≥ u(y) for all y ∈ J . (14)

In view of part 2 of Lemma 16, we deduce from (14) that κ(x) ≤ ηx(y) for all y ∈ J if and only if
x ∈ {u= buϕ}. Now κ(x)≤ ηx(a) = ρ(x) if and only if

u(x)− u′(x)
ϕ(x)
ϕ′(x)

≤ u(x)− u′(x)
ψ(x)
ψ′(x)

which is equivalent to u′(x)≤ 0. This proves the first assertion of the theorem.

The proof of the second claim is along the same lines. For a < y < x , ηx(y)≥ ρ(x) is equivalent to

αψ(x)−αψ(y)
G(x)− G(y)

− dGαψ(x)≥ ρ(x) ·
�

βψ(x)− βψ(y)
G(x)− G(y)

− dGβψ(x)

�

.

Since ρ = dGαψ/dGβψ, ηx(y)≥ ρ(x) for y < x is further equivalent to

αψ(x)−αψ(y)≥ ρ(x)(βψ(x)− βψ(y)).

One can show that ηx(y)≥ ρ(x) for all y ∈ J if and only if

u(x) + dψu(x)(ψ(y)−ψ(x))≥ u(y) for all y ∈ J . (15)

Since ρ(x)≤ κ(x) = ηx(a) iff u′(x)≥ 0, the proof is complete in view of (15) and Lemma 16.

We can now prove that a monotone stopping signal γ is equal either to κ or to ρ. Thus, by Theorem
15, a nondecreasing (resp. nonincreasing) signal corresponds to a nondecreasing (resp. nonincreas-
ing) reward function u that is ψ-concave (resp. ϕ-concave). In order to prove this claim, we first
show that γ is upper semi-continuous.

Lemma 17. The function γ is upper semi-continuous on J .

Proof. For fixed k, Vk(·) is continuous on J . Moreover, for fixed x ∈ J , k 7→ Vk(x) is Lipschitz con-
tinuous with Lipschitz constant 1 which in turn yields that (k, x) 7→ Vk(x) is continuous. Therefore,
the hypograph {(x , k) : γ(x)≥ k}= {(x , k) : Vk(x) = u(x)− k} (Lemma 9) is closed or equivalently,
γ is upper semi-continuous.
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Corollary 18. Under Assumptions 1 - 5, γ is nonincreasing on J if and only if γ = κ and γ is
nondecreasing on J if and only if γ= ρ.

Proof. Assume that γ is nonincreasing. By Lemma 17, γ must be left-continuous. Let x ∈ J and set
k = γ(x).

If {γ > k}= ;, we have that γ(y) = k for all y ∈ (a, x] and

Vl(y) =

(

u(y)− l, l ≤ k = γ(y),
0, l > γ(y).

Since k 7→ Vk(y) is continuous for any y ∈ J , we deduce that u(y)− k = 0 for all y ∈ (a, x]. In
particular, u′(x) = 0 and therefore, κ(x) = u(x) = k = γ(x).

Assume next that {γ > k} 6= ;. If {γ= k}= {x}, then for y > x , we have due to Lemma 1 that

Vk(y) = Ey

�

e−RTx (u(XTx
)− k)

�

=
ϕ(y)
ϕ(x)

(u(x)− k)

= sup
v<y

Ey

�

e−RTv (u(XTv
)− k)

�

= sup
v<y

ϕ(y)
ϕ(v)

(u(v)− k).

Set g(v) ¬ ϕ(y)/ϕ(v)(u(v)− k) for v ≤ y . Note that g(y) = u(y)− k < Vk(y) since y /∈ Γk. Thus,
g attains its maximum at the interior point x and x must satisfy g ′(x) = 0 which is equivalent to
κ(x) = k. By definition, also γ(x) = k.

Next, consider the case {γ = k} = (x1, x2] where a < x1 < x2 < b and x ∈ (x1, x2]. For all
y ∈ (x1, x2], we have that Vk(y) = u(y) − k since γ(y) = k amounts to stopping immediately.
Moreover, we claim that

τ̂k ¬ inf{t : γ(X t)> k}= Tx1

is also an optimal stopping time for the parameter k if the diffusion is started at y ∈ (x1, x2]. Indeed,
since {γ > k} 6= ;, there is â such that γ(â) > k. Set ε = γ(â)− γ(x) > 0. Then τk+ε/n ↓ τ̂k Py -a.s.
for any y ∈ J and Xτk+ε/n

∈ [â, x) Py -a.s. for any y > â. Applying Fatou, we obtain

Vk(y) = limsup
n→∞

Vk+ε/n(y) = lim sup
n→∞

Ey

�

e−R(τk+ε/n)(u(Xτk+ε/n
)− (k+

ε

n
))
�

≤ Ey

�

e−R(τ̂k)(u(X τ̂k
)− k)

�

≤ Vk(y),

which proves the claim that τ̂k is optimal.

Thus, for any y ∈ (x1, x2], we have that

Vk(y) = u(y)− k = Ey

h

e−R(Tx1
)(u(XTx1

)− k)
i

=
ϕ(y)
ϕ(x1)

(u(x1)− k),

showing that u is an affine transformation of ϕ on (x1, x2], i.e. u(y) = c ·ϕ(y)+k for some constant
c = c(x1)> 0. Now

κ(x) = u(x)− u′(x)
ϕ(x)
ϕ′(x)

= k = γ(x).

The same reasoning applies in the remaining case {γ= k}= (x1, b).
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On the other hand, if γ = κ on J , u must be nonincreasing and ϕ-concave on J due to Theorem
15. By Lemma 16, we have for all x , y ∈ J that

u(x) + dϕu(x)(ϕ(y)−ϕ(x))≥ u(y)

which we may rewrite as

κ(x) = u(x)− dϕu(x)ϕ(x)≥ u(y)− dϕu(x)ϕ(y). (16)

Note that dϕu(x) = (u ◦ ϕ−1)′(ϕ(x)). Since u ◦ ϕ−1 is concave, its derivative is nonincreasing
showing that dϕu(·) is nondecreasing. Thus, if x ≤ y , we see from (16) that κ(x)≥ κ(y). The proof
of the second assertion is similar.

Let us further investigate the structure of the stopping signal γ if the reward function u is monotone.
For instance, if u is nonincreasing, we know from Theorem 15 that γ(x) = κ(x) iff u(x) = buϕ(x).
Since the set {buϕ > u} is open, it is the countable union of disjoint open intervals which we denote
by (ln, rn), n ∈ N. In this setting, we have the following result:

Proposition 19. If u is nonincreasing on J and [ln, rn]⊂J , then

γ(ln) = κ(ln) = κ(rn) = γ(rn)

and γ(x)< κ(ln) for all x ∈ (ln, bn).

Proof. By Theorem 15, we have γ(ln) = κ(ln) and γ(rn) = κ(rn). From the definition of the ϕ-
concave envelope, we see that

dϕu(ln) = dϕu(rn), buϕ(x) = u(ln) + dϕu(ln)(ϕ(x)−ϕ(ln)), x ∈ [ln, rn].

This implies that κ(ln) = κ(rn).

It remains to show that γ(x) < κ(ln) for all x ∈ (ln, bn). Indeed, if γ(x) ≥ κ(ln) or equivalently,
x ∈ Γκ(ln) for some x ∈ (ln, bn), then

Vκ(ln)(x) = u(x)−κ(ln)≥ Ex

h

e−R(Tln )(u(XTln
)−κ(ln))

i

=
ϕ(x)
ϕ(ln)

(u(ln)−κ(ln)) = dϕu(ln)ϕ(x).

This is equivalent to u(x) ≥ u(ln) + dϕu(ln)(ϕ(x) − ϕ(ln)) = buϕ(x), which is impossible since
x ∈ {buϕ > u}.

In particular, the function κ : J → R defined by

κ(x) =

(

κ(x), x ∈ {u= buϕ},
κ(ln), x ∈ (ln, rn) for some n,

defines a nonincreasing majorant of γ and coincides with the optimal stopping signal on {u = buϕ}.
Note that if the diffusion starts at x0 ∈ {u = buϕ}, optimal stopping times can be derived directly
from κ. Thus, the computation of γ on the intervals (ln, rn) as the infimum of ηx as suggested by
Theorem 13 is not required in that case.

Of course, an analogous result holds if u is nondecreasing. Again, {buψ > u} is the countable union
of disjoint open intervals denoted by (ln, rn) and we have
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Proposition 20. If u is nondecreasing on J and [ln, rn]⊂J , then

γ(ln) = ρ(ln) = ρ(rn) = γ(rn)

and γ(x)< ρ(ln) for all x ∈ (ln, bn).

4 Applications and illustrations

For simplicity, we illustrate our results for a constant discount rate r > 0 which implies
that Rt = r t. Examples with random discounting can be found in [Dayanik(2008)] and
[Beibel and Lerche(2000)].

4.1 Optimal stopping

Example 21. Let us consider the well-known example of a perpetual put option written on an un-
derlying whose dynamics are given by a geometric Brownian motion with volatility σ > 0 and drift
µ ∈ R, i.e. consider the diffusion

dX t = σX t dBt +µX t d t

on J = (0,∞). The functions ϕ and ψ are the solutions to the ODE (2) which is

1

2
σ2 x2w′′(x) +µxw′(x) = rw(x), x ∈ (0,∞).

One finds that ϕ(x) = xα and ψ(x) = xβ , x ∈ J where α < 0 and β > 0 are the roots of
q(x) = 1

2
σ2 x(x − 1) +µx − r.

Let us show how to compute the optimal stopping signal for the family of American put options
whose payoff profile is given by hk(x) = (k− x)+ where k > 0. The corresponding optimal stopping
problem is

Vk(x) = sup
τ∈S

Ex

�

e−rτ(k− Xτ)
+
�

.

Clearly, the quantities `0 and `∞ defined in Proposition 6 are equal to zero for any k since hk is
bounded. Thus, the stopping times τk ¬ inf{t : X t ∈ Γk} where Γk = {x : Vk(x) = (k− x)+} are op-
timal by Proposition 6 for any strike k. Note that Vk > 0 since X reaches the point k/2 with positive
probability which in turn leads to a positive payoff. It follows that Vk(x) = Ex

�

e−rτk(k− Xτk
)
�

=
Ex

�

e−rτk(u(Xτk
)− (−k))

�

for any k > 0, u(x) = −x and x ∈ J . Since u is decreasing and
u ◦ϕ−1(x) =−x1/α is concave on J , i.e u is ϕ-concave, we deduce from Theorem 15 that

γ(x) = κ(x) = u(x)− u′(x) ·
ϕ(x)
ϕ′(x)

= x · (
1

α
− 1).

Example 22. This example considers a reward function u that is not monotone. Nonetheless, u is ϕ-
and ψ-concave and the optimal stopping signal can be computed explicitly in view of Theorem 15.

Assume that X is a standard Brownian motion and r ≤ 1. The functions ϕ and ψ are given by

ϕ(x) = exp(−
p

r x), ψ(x) = exp(
p

r x), x ∈ R.
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Consider the reward function u(x) =− cosh(x). Then

u ◦ψ−1(x) = u ◦ϕ−1(x) =−
1

2

�

x1/
p

r + x−1/
p

r
�

, x ∈ (0,∞).

One checks that u ◦ψ−1 and u ◦ϕ−1 are concave if r ≤ 1. Since {u′ ≥ 0}= (−∞, 0] and {u′ ≤ 0}=
[0,∞), we deduce from Theorem 15 that

γ(x) =

(

ρ(x) =− cosh(x) + sinh(x)p
r

, x ≤ 0

κ(x) =− cosh(x)− sinh(x)p
r

, x > 0.

Note that γ(−x) = γ(x) for all x ∈ R which is clear by symmetry.

Example 23. Finally, we provide an example of a diffusion and a decreasing reward function u such
that u is not ϕ-concave. The optimal stopping signal γ is computed numerically on the interval
where u and its concave envelope do not coincide. To this end, consider a diffusion X specified by
the SDE

dX t = σX t dBt +µ · sign(X t − c)X t d t, X0 = x0 ∈ J = (0,∞)

forσ,µ, c > 0. We would like to derive the optimal stopping signal related to the perpetual American
put option, i.e. u(x) =−x . The functions ψ and ϕ must solve the ODE (2), i.e.

1

2
σ2 x2w′′(x)−µxw′(x) = rw(x), x ∈ (0, c),

1

2
σ2 x2w′′(x) +µxw′(x) = rw(x), x ∈ (c,∞).

One computes

ϕ(x) =







cβ1−α1

�

β1−α2

α1−α2

�

· xα1 + cβ1−α2

�

α1−β1

α1−α2

�

· xα2 , x ∈ (0, c],

xβ1 , x ∈ [c,∞),

and

ψ(x) =







xα2 , x ∈ (0, c],

cα2−β1

�

α2−β2

β1−β2

�

· xβ1 + cα2−β2

�

β1−α2

β1−β2

�

· xβ2 , x ∈ (c,∞),

where α1 < 0,α2 > 0 are the roots of q1(x) =
1
2
σ2 x(x − 1)− µx − r and β1 < 0,β2 > 0 are the

roots of q2(x) =
1
2
σ2 x(x − 1) + µx − r. In order to compute the universal stopping signal, we

apply Theorem 15. Since u is decreasing, let us check whether u is ϕ-concave which is equivalent
to convexity of ϕ. Clearly, the restriction of ϕ to [c,∞) is convex. One can show that ϕ′′ has a root
on (0, c) iff

σ2

2
+

rσ2

µ
< µ+

r

(
σ2

2
−µ)2+ 2rσ2.

Note that the right-hand side of the inequality above is increasing in µ. Thus, if the drift coefficient
µ is sufficiently large compared to σ and r, ϕ changes its curvature and is not convex on (0,∞).
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Figure 1: The function ϕ (solid thin line), its convex envelope ϕ̂ (dashed line) and the universal
stopping signal γ (bold line) for the parameters r = 0.05, σ = 0.15, c = 1.

For simplicity, assume that c = 1 and r = µ. Then u ◦ϕ−1 is not concave (or equivalently, ϕ is not
convex) if σ2/2< r, see Figure 1.

It is now easy to determine the set {u= buϕ}. In view of Lemma 16, we find that x ∈ {u= buϕ} if and
only if

ϕ(y)≥ ϕ(x) +ϕ′(x)(y − x) for all y.

The equation above has an obvious graphical interpretation: If (and only if) the tangent that touches
the graph of ϕ at x remains below the graph of ϕ everywhere, then x ∈ {u= buϕ}; see Figure 1. We
see that {buϕ > u}= (â, b̂) for unique 0< â < c < b̂. According to Theorem 15, we have γ(x) = κ(x)
for x /∈ (â, b̂) whereas the value of γ(x) can be computed numerically as the infimum over ηx given
by (12) for x ∈ (â, b̂). The resulting stopping signal is shown in Figure 1. Note that not all the
optimal stopping regions Γk are connected in this case.

4.2 Gittins indices

The approach described in this section can also be applied to the class of optimal stopping problems
that appears in [Karatzas(1984)], namely

Vk(x)¬ sup
τ∈S

Ex

�
∫ τ

0

e−r tu(X t) d t + ke−rτ

�

. (17)

These stopping problems arise in the context of multi-armed bandit problems where one seeks
to dynamically allocate limited resources among several independent projects in order to max-
imize the discounted reward generated by these projects. The evolution of each project is
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modeled by a stochastic process such as a one-dimensional diffusion or a Lévy process (see
[Kaspi and Mandelbaum(1995)]) and u(x) specifies the reward generated by allocating resources
to a project in state x . Optimal allocation rules can be found by the projects’ Gittins indices, see
e.g. [Gittins(1979), Gittins and Jones(1979)]. An optimal strategy is to engage in the project
whose index is maximal. Specifically, the Gittins index of a project with diffusion dynamics X as in
[Karatzas(1984)] and reward function u can be derived from the solution to (17). This optimal stop-

ping problem can be reduced to a problem of type (4). To this end, set p(x)¬ Ex

h

∫∞
0

e−r tu(X t) d t
i

.

It follows from the strong Markov property that e−rτp(Xτ) = Ex

h

∫∞
τ

e−r tu(X t) d t|Fτ
i

Px -a.s. Thus,

Vk(x) = sup
τ∈S

�

p(x)− Ex

�
∫ ∞

τ

e−r tu(X t) d t

�

+ Ex

�

ke−rτ
�

�

= p(x) + sup
τ∈S

Ex

�

e−rτ(−p(Xτ)) + ke−rτ
�

.

This is now an optimal stopping problem of type (4). Note that the function p is a particular
solution to the non-homogeneous linear ODE A f − r f = u on J since p = Uru where U denotes
the resolvent corresponding to the diffusion X .

If the state of each project is given by a one-dimensional regular diffusion, one can show (Theorem
4.1 in [Karatzas(1984)], also [Gittins and Glazebrook(1977)]) that the Gittins index M is given by

M(x) = sup
τ>0

p(x)− Ex

h

∫∞
τ

e−r tu(X t) d t
i

1− Ex
�

e−rτ� = sup
τ>0

p(x)− Ex
�

e−rτp(Xτ)
�

1− Ex
�

e−rτ�

=− inf
τ>0

−p(x)− Ex
�

e−rτ(−p(Xτ))
�

1− Ex
�

e−rτ� .

This show that the Gittins index is basically the optimal stopping signal γ associated with the optimal
stopping problem (4) for the reward function −p.

In [Karatzas(1984)], the function u is assumed to be increasing, continuously differentiable and
bounded. Then p inherits the same properties. Note that adding a positive constant c to the re-
ward function u only shifts M upwards by the amount c/r. Thus, we may assume without loss of
generality that u and p are positive. Using that (A − r)p = u and (A − r)ϕ = 0, one can check
that −p ◦ϕ−1 is strictly concave in that case. Therefore, we apply Theorem 15 to deduce that the
optimal stopping signal is given by γ(x) = −p(x) + p′(x) · (ϕ(x)/ϕ′(x)) recovering Lemma 3.1 of
[Karatzas(1984)]. We may also use Theorem 15 to compute the Gittins index if u is not increasing.

4.3 A stochastic representation problem

Let us now consider the stochastic representation problem

e−rT u(XT ) = Ex





∫ ∞

T

re−r t sup
T≤s≤t

Ks d t

�

�

�

�

�

FT



 , T ∈ S , (18)

i.e. for a given function u and a constant r > 0, find an optional process K such that the equation
above holds. If the representation above holds for some K , then for any k ∈ R and any stopping
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time T , we have

Ex

�

e−rT (u(XT )− k)
�

= Ex

�
∫ ∞

T

re−r t sup
T≤s≤t

(Ks − k) d t

�

≤ Ex

�
∫ ∞

T

re−r t sup
T≤s≤t

(Ks − k)+ d t

�

.

Moreover, if we choose T k ¬ inf{t : Kt ≥ k}, the inequality above becomes an equality pro-
vided that the process K has upper semicontinuous paths (ensuring that KT k ≥ k if T k is finite).
Thus, the process K characterizes optimal stopping times for any parameter k just as the process
(γ(X t))t≥0 in the previous section. Hence, there is a close relation of optimal stopping and stochas-
tic representation problems and we refer to [Bank and Föllmer(2003)] for an overview, see also
[Bank and El Karoui(2004)].

Note that if (18) holds, then choosing T = 0 yields

u(x) = Ex

�
∫ ∞

0

re−r t sup
0≤s≤t

Ks d t

�

. (19)

On the other hand, if (19) is satisfied, then by the strong Markov property, it holds for any T ∈ S
that

e−rT u(XT ) = e−rT Ex





∫ ∞

0

re−r t sup
0≤s≤t

Ks+T d t

�

�

�

�

�

FT





= Ex





∫ ∞

0

re−r(t+T ) sup
T≤s≤t+T

Ks d t

�

�

�

�

�

FT



= Ex





∫ ∞

T

re−r t sup
T≤s≤t

Ks d t

�

�

�

�

�

FT



 .

Therefore, solving (18) is equivalent to solving (19). The latter problem was considered by
[El Karoui and Föllmer(2005)] in a more general setting without discounting. One can proceed
in an analogous fashion in order to prove that (Kt)t≥0 defined by Kt ¬ γ(X t) solves the representa-
tion problem (18) if the diffusion X satisfies some additional uniform integrability assumptions. Let
us just briefly outline the main ideas.

Let T (x) denote the class of all exit times from relatively compact open neighborhoods of x . Recall
that any T ∈ T (x) is Px -a.s. finite [Revuz and Yor(1991), Prop. VII.3.1]. Using the notation of
El-Karoui and Föllmer, we set

Du(x)¬ inf
T∈T (x)

u(x)− Ex

�

e−rT u(XT )
�

Ex
�

1− e−rT� , G f (x)¬ Ex

�
∫ ∞

0

re−r t sup
0≤s≤t

f (Xs) d t

�

.

As in [El Karoui and Föllmer(2005)], we say that a measurable function u: J → R is of class (D) if
the family {e−rT u(XT ) : T ∈ T (x)} is uniformly integrable with respect to Px for all x ∈ J .

Assumption 6. The function u is continuous on J , of class (D) and for all x ∈ J , it holds that

lim
t→∞

e−r tu(X t) = 0 Px -a.s.

Lemma 24. Under Assumption 6, it holds that γ= Du on J where γ is given by (5).
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Proof. The inequality γ(x) ≤ Du(x) is clear since T (x) ⊂ T̃ (x). In order to prove the reverse
inequality, denote by (Un)n a sequence of relatively compact open sets increasing to J , and denote
by Sn the exit time from the set Un. For T ∈ T̃ (x), the stopping times T n ¬ T ∧ Sn ∈ T (x) increase
to T , and so we have Ex

�

1− e−rT n�

↑ Ex

�

1− e−rT
�

.

Moreover, since u is of class (D) by Assumption 6, it follows that

lim
n→∞

Ex

�

e−rT n
u(XT n)

�

= Ex

�

e−rT u(XT )
�

.

Therefore, for any T ∈ T̃ (x),

Ex

�

u(x)− e−rT u(XT )
�

Ex
�

1− e−rT� = lim
n→∞

Ex

�

u(x)− e−rT n
u(XT n)

�

Ex
�

1− e−rT n� ≥ Du(x),

proving that

γ(x) = inf
T∈T̃ (x)

Ex

�

u(x)− e−rT u(XT )
�

Ex
�

1− e−rT� ≥ Du(x).

We can now prove the following uniqueness result which corresponds to Theorem 3.1 of
[El Karoui and Föllmer(2005)] in our modified setting.

Proposition 25. Under Assumption 6, suppose that the function f : J → R is upper-semicontinuous
and

u(x) = G f (x) = Ex

�
∫ ∞

0

re−r t sup
0≤s≤t

f (Xs) d t

�

.

Then f (x) = Du(x).

Proof. By the strong Markov property, it holds for any T ∈ T (x) that

G f (XT ) = Ex





∫ ∞

0

re−r t sup
0≤s≤t

f (Xs+T ) d t

�

�

�

�

�

FT





= erT Ex





∫ ∞

0

re−r(t+T ) sup
T≤s≤t+T

f (Xs) d t

�

�

�

�

�

FT





= erT Ex





∫ ∞

T

re−r t sup
T≤s≤t

f (Xs) d t

�

�

�

�

�

FT



 .

It follows that

u(x)− Ex

�

e−rT u(XT )
�

= G f (x)− Ex

�

e−rT G f (XT )
�

= Ex





∫ T

0

re−r t sup
0≤s≤t

f (Xs) d t +

∫ ∞

T

re−r t

�

sup
0≤s≤t

f (Xs)− sup
T≤s≤t

f (Xs)

�

d t





≥ Ex





∫ T

0

re−r t sup
0≤s≤t

f (Xs) d t



≥ f (x)Ex





∫ T

0

re−r t d t



= f (x)Ex

�

1− e−rT
�

.

(20)
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This implies that Du(x)≥ f (x).

To prove the reverse inequality, fix α > f (x) and denote by Tα the exit time from the set { f < α}.
Since lim supy→x f (y) ≤ f (x) for all x by upper-semicontinuity of f , the set { f ≥ α} is closed.
Thus, Tα is indeed an exit time from an open neighborhood of x . For t ≥ Tα, it holds Px -a.s. that

sup
0≤s≤t

f (Xs) = sup
Tα≤s≤t

f (Xs)

and the first inequality in (20) becomes an equality for T = Tα. Thus,

Ex

�

u(x)− e−rT u(XTα)
�

= Ex





∫ Tα

0

re−r t sup
0≤s≤t

f (Xs) d t



≤ αEx

�

1− e−rTα
�

.

Now take a sequence αn ↓ f (x) to conclude that

γ(x) = inf
T∈T̃ (x)

u(x)− Ex

�

e−rT u(XT )
�

Ex
�

1− e−rT� ≤ f (x).

The proof is complete due to Lemma 24.

In order to prove that the process (γ(X t))t≥0 does indeed solve (18) under Assumption 6 or equiva-
lently, u(x) = GDu(x) for x ∈ J , one can proceed in the spirit of [El Karoui and Föllmer(2005)].

References

[Bank and El Karoui(2004)] P. Bank and N. El Karoui. A stochastic representation theorem with
applications to optimization and obstacle problems. Annals of Applied Probability, 32(1B):
1030–1067, 2004. MR2044673

[Bank and Föllmer(2003)] P. Bank and H. Föllmer. American options, multi-armed bandits, and op-
timal consumption plans: A unifying view. In Paris-Princeton Lectures on Mathematical Finance,
Lecture Notes in Mathematics, Vol. 1814, pages 1–42. Springer, Berlin, 2003. MR2021789

[Beibel and Lerche(2000)] M. Beibel and H. Lerche. Optimal stopping of regular diffusions un-
der random discounting. Theory of Probability and Its Applications, 45:657–669, 2000.
MR1968720

[Dayanik(2008)] S. Dayanik. Optimal stopping of linear diffusions with random discounting. Math-
ematics of Operations Research, 33(3):645–661, 2008. MR2442645

[Dayanik and Karatzas(2003)] S. Dayanik and I. Karatzas. On the optimal stopping problem for
one-dimensional diffusions. Stochastic Processes and their Applications, 107:173–212, 2003.
MR1999788

[Dynkin(1963)] E. Dynkin. Optimal choice of the stopping moment of a Markov process. Doklady
Akademii Nauk SSSR, 150:238–240, 1963. MR0154329

[Dynkin(1965)] E. Dynkin. Markov Processes. Vol. II. Academic Press Inc., Publishers, New York,
1965.

1992

http://www.ams.org/mathscinet-getitem?mr=2044673
http://www.ams.org/mathscinet-getitem?mr=2021789
http://www.ams.org/mathscinet-getitem?mr=1968720
http://www.ams.org/mathscinet-getitem?mr=2442645
http://www.ams.org/mathscinet-getitem?mr=1999788
http://www.ams.org/mathscinet-getitem?mr=0154329


[El Karoui(1981)] N. El Karoui. Les aspects probabilistes du contrôle stochastique. In Ecole d’Eté
de Probabilités de Saint-Flour IX-1979, Lecture Notes in Mathematics no. 876. Springer, Berlin,
1981. MR0637471

[El Karoui and Föllmer(2005)] N. El Karoui and H. Föllmer. A non-linear Riez representation in
probabilistic potential theory. Ann. Inst. H. Poincaré Probab. Statist., 41(3):269–283, 2005.

[Fakeev(1971)] A. Fakeev. Optimal stopping of a Markov process. Theory of Probability and its
Applications, 16:694–696, 1971. MR0292162

[Gittins(1979)] J. Gittins. Bandit processes and dynamic allocation indices. Journal of the Royal
Statistical Society, 41(2):148–177, 1979. MR0547241

[Gittins and Glazebrook(1977)] J. Gittins and K. Glazebrook. On bayesian models in stochastic
scheduling. Journal of Applied Probability, 14(3):556–565, 1977. MR0452716

[Gittins and Jones(1979)] J. Gittins and D. Jones. A dynamic allocation index for the discounted
multiarmed bandit problem. Biometrika, 66(3):561–565, 1979.

[Itô and McKean, Jr.(1974)] K. Itô and H. McKean, Jr. Diffusion processes and their sample paths.
Springer-Verlag, Berlin, 1974. MR0345224

[Johnson and Zervos(2007)] T. Johnson and M. Zervos. A the solution to a second order linear
ordinary differential equation with a non-homogeneous term that is a measure. Stochastics,
Vol. 79, Issue 3&4, pages 363–382, 2007. MR2308081

[Karatzas(1984)] I. Karatzas. Gittins indices in the dynamic allocation problem for diffusion pro-
cesses. The Annals of Probability, 12(1):173–192, 1984. MR0723737

[Karatzas(1988)] I. Karatzas. On the pricing of American options. Applied Mathematics and Opti-
mization, 17:37–60, 1988. MR0908938

[Karatzas and Shreve(1991)] I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus.
Springer, Berlin, 1991. MR1121940

[Kaspi and Mandelbaum(1995)] H. Kaspi and A. Mandelbaum. Lévy bandits: multi-armed bandits
driven by Lévy processes. The Annals of Applied Probability, 5(2):541–565, 1995. MR1336882

[Peskir and Shiryaev(2006)] G. Peskir and A. Shiryaev. Optimal Stopping and Free-Boundary Prob-
lems. Birkhäuser, Basel, 2006. MR2256030

[Revuz and Yor(1991)] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion.
Springer Verlag, Berlin, Heidelberg, New York, 1991. MR1083357

[Shiryayev(1978)] A. Shiryayev. Optimal stopping rules. Springer-Verlag, New York, 1978.
MR0468067

1993

http://www.ams.org/mathscinet-getitem?mr=0637471
http://www.ams.org/mathscinet-getitem?mr=0292162
http://www.ams.org/mathscinet-getitem?mr=0547241
http://www.ams.org/mathscinet-getitem?mr=0452716
http://www.ams.org/mathscinet-getitem?mr=0345224
http://www.ams.org/mathscinet-getitem?mr=2308081
http://www.ams.org/mathscinet-getitem?mr=0723737
http://www.ams.org/mathscinet-getitem?mr=0908938
http://www.ams.org/mathscinet-getitem?mr=1121940
http://www.ams.org/mathscinet-getitem?mr=1336882
http://www.ams.org/mathscinet-getitem?mr=2256030
http://www.ams.org/mathscinet-getitem?mr=1083357
http://www.ams.org/mathscinet-getitem?mr=0468067

	1 Introduction
	2 Optimal stopping of one-dimensional diffusions
	3 Parameter-dependent optimal stopping
	3.1 Computation of optimal stopping signals
	3.2 Concave envelopes

	4 Applications and illustrations
	4.1 Optimal stopping
	4.2 Gittins indices
	4.3 A stochastic representation problem

	References

