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Abstract

We consider a two-type contact process on Z in which both types have equal finite range and
supercritical infection rate. We show that a given type becomes extinct with probability 1 if and
only if, in the initial configuration, it is confined to a finite interval [−L, L] and the other type
occupies infinitely many sites both in (−∞, L) and (L,∞). Additionally, we show that if both
types are present in finite number in the initial configuration, then there is a positive probability
that they are both present for all times. Finally, it is shown that, starting from the configuration
in which all sites in (−∞, 0] are occupied by type 1 particles and all sites in (0,∞) are occupied
by type 2 particles, the process ρt defined by the size of the interface area between the two types
at time t is tight.
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1 Introduction

The contact process on Z is the spin system with generator

Ω f (ζ) =
∑

x

( f (ζx)− f (ζ)) c(x ,ζ); ζ ∈ {0,1}Z

where
¨

ζx(y) = ζ(y) if x 6= y;
ζx(x) = 1− ζ(x); c(x ,ζ) =

¨

1 if ζ(x) = 1;
λ
∑

y ζ(y) · p(y − x) if ζ(x) = 0;

for λ > 0 and p(·) a probability kernel. We take p to be symmetric and to have finite range R =

max{x : p(x)> 0}.
The contact process is usually taken as a model for the spread of an infection; configuration ζ ∈
{0,1}Z is the state in which an infection is present at x ∈ Z if and only if ζ(x) = 1. With this in
mind, the dynamics may be interpreted as follows: each infected site waits an exponential time of
parameter 1, after which it heals, and additionally each infected site waits an exponential time of
parameter λ, after which it chooses, according to the kernel p, some other site to which the infection
is transmitted if not already present.

We refer the reader to [13] for a complete account of the contact process. Here we mention only the
most fundamental fact. Let ζ̄ and 0 be the configurations identically equal to 1 and 0, respectively,
S(t) the semi-group associated to Ω, Pλ the probability measure under which the process has rate λ
and ζ0

t the configuration at time t, started from the configuration where only the origin is infected.
There exists λc , depending on p, such that
• if λ ≤ λc , then Pλ(ζ

0
t 6= 0 ∀t) = 0 and δζ̄S(t)→ δ0;

• if λ > λc , then Pλ(ζ
0
t 6= 0 ∀t) > 0 and δζ̄S(t) converges, as t →∞, to some non-trivial invariant

measure.
Again, see [13] for the proof. Throughout this paper, we fix λ > λc .

The multitype contact process was introduced in [15] as a modification of the above system. Here
we consider a two-type contact process, defined as the particle system (ξt)t≥0 with state space
{0,1,2}Z and generator

Λ f (ξ) =
∑

x:ξ(x) 6=0

( f (ξx ,0)− f (ξ))+

∑

x:ξ(x)=0

�

( f (ξx ,1)− f (ξ)) c1(x ,ξ) + ( f (ξx ,2)− f (ξ)) c2(x ,ξ)
�

; ξ ∈ {0,1,2}Z,

where
¨

ξx ,i(y) = ξ(y) if x 6= y;
ξx ,i(x) = i,
i = 0,1,2;

ci(x ,ξ) = λ
∑

y 1{ξ(y)=i} · p(y − x),

i = 1,2.

(1 denotes indicator function).

This is thought of as a model for competition of two biological species. Each site in Z corresponds
to a region of space, which can be either empty or occupied by an individual of one of the two
species. Occupied regions become empty at rate 1, meaning natural death of the occupant, and
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empty regions become occupied at a rate that depends on the number of individuals of each species
living in neighboring sites, and this means a new birth. The important point is that occupancy is
strong in the sense that, if a site has an individual of, say, type 1, the only way it will later contain
an individual of type 2 is if the current individual dies and a new birth occurs originated from a type
2 individual.

Let us point out some properties of the above dynamics. First, it is symmetric for the two species:
both die and give birth following the same rules and restrictions. Second, if only one of the two
species is present in the initial configuration, then the process evolves exactly like in the one-type
contact process. Third, if we only distinguish occupied sites from non-occupied ones, thus ignoring
which of the two types is present at each site, again we see the evolution of the one-type contact pro-
cess. We also point out that both the contact and the multitype contact processes can be constructed
with families of Poisson processes which are interpreted as transmissions and healings. These fam-
ilies are called graphical constructions, or Harris constructions. Although we will provide formal
definitions in the next section, we will implicitly adopt the terminology of Harris constructions in
the rest of this Introduction.

The first question we address is: for which initial configurations does a given type (say, type 1)
become extinct with probability one? By extinction we mean: for some time t0 (and hence all
t ≥ t0), ξt0

(x) 6= 1 for all x . We prove

Theorem 1.1. Assume at least one site is occupied by a 1 in ξ0. The 1’s become extinct with probability

one if and only if there exists L > 0 such that

(A) ξ0(x) 6= 1 ∀x /∈ [−L, L] and

(B) #{x ∈ (−∞,−L] : ξ0(x) = 2}= #{x ∈ [L,∞) : ξ0(x) = 2}=∞.

(# denotes cardinality). This result is a generalization of Theorem 1.1. in [1], which is the exact
same statement in the nearest neighbour context (i.e., p(1) = p(−1) = 1/2). Although there are
some points in common between our proof and the one in that work, our general approach is
completely different. Additionally, their methods do not readily apply in our setting, as we now
briefly explain. Let L = {ξ ∈ {0,1,2}Z : ξ(x) = 1,ξ(y) = 2 =⇒ x < y}. When the range R = 1,
ξ0 ∈ L implies ξt ∈ L for all t ≥ 0. In [1], the proof of both directions of the equivalence of
Theorem 1.1 rely on this fact (see for example Corollary 3.1 in that paper), which does not hold for
R> 1.

If both types are present in finite number in the initial configuration, there is obviously positive prob-
ability that one of them is present for all times, because the process is supercritical. The following
theorem says that there is positive probability that they are both present for all times.

Theorem 1.2. Assume that

0< #{x : ξ0(x) = 1}, #{x : ξ0(x) = 2}<∞.

Then, with positive probability, for all t ≥ 0 there exist x , y ∈ Z such that ξt(x) = 1, ξt(y) = 2.

Now assume that R> 1. Define the “heaviside” configuration as ξh = 1(−∞,0]+2 ·1(0,∞) and denote
by ξt the two-type contact process with initial condition ξ0 = ξ

h. Define

rt = sup{x : ξt(x) = 1}, lt = inf{x : ξt(x) = 2}, ρt = rt − lt .
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We have ρ0 = −1, and at a given time t both events {ρt > 0} and {ρt < 0} have positive probability.
If ρt > 0, we call the interval [lt , rt] the interface area. The question we want to ask is: if t is large,
is it reasonable to expect a large interface? We answer this question negatively.

Theorem 1.3. The law of (ρt)t≥0 is tight; that is, for any ε > 0, there exists L > 0 such that P(|ρt |>
L)< ε for every t ≥ 0.

There are several works concerning interface tightness in one-dimensional particle systems, the first
of which is [5], where interface tightness is established for the voter model. Others are [3], [4],
[17] and [2].

In [2], it is shown that interface tightness also occurs on another variant of the contact process,
namely the grass-bushes-trees model considered in [8], with both species having same infection
rate and non-nearest neighbor interaction. The difference between the grass-bushes- trees model
and the multitype contact process considered here is that, in the former, one of the two species, say
the 1’s, is privileged in the sense that it is allowed to invade sites occupied by the 2’s. For this reason,
from the point of view of the 1’s, the presence of the 2’s is irrelevant. It is thus possible to restrict
attention to the evolution of the 1’s, and it is shown that they form barriers that prevent entrance
from outside; with this at hand, interface tightness is guaranteed regardless of the evolution of the
2’s. Here, however, we do not have this advantage, since we cannot study the evolution of any of
the species while ignoring the other.

Our results depend on a careful examination of the temporal dual process; that is, rather than
moving forward in time and following the descendancy of individuals, we move backwards in time
and trace ancestries. The dual of the multitype contact process was first studied by Neuhauser in
[15] and may be briefly described as follows. Each site x ∈ Z at (primal) time s has a random
(and possibly empty) ancestor sequence, which is a list of sites y ∈ Z such that the presence of an
infection in (y, 0) would imply the presence of an infection in (x , s) (in other words, such that there
is an infection path connecting (y, 0) and (x , s)). The ancestors on the list are ranked in decreasing
order; the idea is that if the first ancestor is not occupied in ξ0, then we look at the second, and
so on, until we find the first on the list that is occupied in ξ0, and take its type as the one passed
to x . We denote this sequence (ηx

1,s,η
x
2,s, . . .). By moving in time in the opposite direction as that

of the original process and using the graphical representation of the contact process for “negative”
primal times, we can define the ancestry process of x , ((ηx

1,t ,η
x
2,t , . . .))t≥0. The process given by the

first element of the sequence, (ηx
1,t)t≥0, is called the first ancestor process. We point out three key

properties of the ancestry process:

• First ancestor processes have embedded random walks. In [15] it is proven that, on the
event that a site x has a nonempty ancestry at all times t ≥ 0, we can define an increasing
sequence of random renewal times (τx

n)n≥0 with the property that the space-time increments
(ηx

1,τx
n+1
−ηx

1,τx
n
,τx

n+1−τx
n) are independent and identically distributed. This fact enormously

simplifies the study of the first ancestor process, which is not markovian and at first seems
very complicated.

• Ancestries coalesce. If we are to use the dual process to obtain information about the joint
distribution of the states at sites x and y at a given time, we must study the joint behavior of
two ancestry processes, specially of two first ancestor processes. The intuitive picture is that
this behavior resembles that of two random walks that are independent until they meet, at
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which time they coalesce. We give a new approach to formalizing this notion, one that we
believe provides a clear understanding of the picture and allows for detailed results.

In order to follow two first ancestor processes simultaneously, we define joint renewals

(τ
x ,y
n )n≥0 and argue that the law of the processes after a joint renewal only depends on their

initial difference at the instant of the renewal. Thus, the discrete-time process defined by the
difference between the two processes at the instants of renewals is a Markov chain on Z. For
this chain, zero is an absorbing state and corresponds to coalescence of first ancestors. We
also show that, far from the origin, the transition probabilities of the chain become close to
a symmetric measure on Z, and from this fact we are able to show that the tail of the distri-
bution of the hitting time of 0 for the chain looks like the one associated to a simple random
walk on Z. From this construction and estimate we also bound the expected distance between
ancestors at a given time.

• Ancestries become sparse with time. Consider the system of coalescing random walks in
which each site of Z starts with one particle at time 0. The density of occupied sites at time t,
which is equal to the probability of the origin being occupied, tends to 0 as t →∞. We prove
a similar result for our ancestry sequences. Fix a truncation level N and, at dual time t, mark
the N first ancestors of each site at dual time 0 (this gives the set {ηx

n,t : 1 ≤ n ≤ N , x ∈ Z :
the ancestry of x reaches time t}). We show that the density of this random set tends to 0 as
t →∞, and estimate the speed of this convergence depending on N .

From this last fact, we can immediately prove Theorem 1.1 under the stronger hypothesis that all
sites outside [−L, L] are occupied by 2’s in ξ0. To obtain the general case, we then use a structure
called a descendancy barrier, whose existence was established in [2]. Theorem 1.2 is obtained quite
easily from Theorem 1.1. The proof of Theorem 1.3 is more intricate, and follows the main steps of
[5], which studies the voter model.

We believe that our results and general approach may prove useful in other questions concerning the
multitype contact process, in particular those that relate to almost sure properties of the trajectories
t 7→ ξt of the process, as opposed to properties of its limit measures.

2 Ancestry process

We will start describing the familiar construction of the one-type contact process from its graphical
representation. We will then show how the same representation can be used to construct the mul-
titype contact process, present the definition of the ancestry process together with some facts from
[15], and finally prove a simple lemma.

Suppose given a collection of independent Poisson processes on [0,∞):

(Dx)x∈Z with rate 1, (N (x ,y))x ,y∈Z with rate λ · p(y − x).

A Harris construction H is a realization of all such processes. H can thus be understood as a point
measure on (Z∪Z2)× [0,∞). Sometimes we abuse notation and denote the collection of processes
itself by H. Given (x , t) ∈ Z× [0,∞), let θ (x , t)(H) be the Harris construction obtained by shifting
H so that (x , t) becomes the space-time origin. By translation invariance of the space-time construc-
tion, θ (x , t)(H) and H have the same distribution. We will also write H[0,t] to denote the restriction
of H to Z× [0, t], and refer to such restrictions as finite-time Harris constructions.
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Given a Harris construction H and (x , s), (y, t) ∈ Z× [0,∞) with s < t, we write (x , s)↔ (y, t) (in
H) if there exists a piecewise constant, right-continuous function γ : [s, t]→ Z such that
• γ(s) = x ,γ(t) = y;
• γ(r) 6= γ(r−) if and only if r ∈ N (γ(r−),γ(r));
• ∄s ≤ r ≤ t with r ∈ Dγ(r).
One such function γ is called a path determined by H. The points in the processes {Dx} are usually
called death marks, and the points in {N (x ,y)} are called arrows. Thus, a path can be thought of as
a line going up from (x , s) to (y, t) following the arrows and not crossing any death marks.

Given A⊂ Z, (x , t) ∈ Z× [0,∞) and a Harris construction H, put

[ζA
t (x)](H) = 1{For some y∈A,(y,0)↔(x ,t) in H}.

Under the law of H, (ζA
t ) has the distribution of the contact process with parameter λ, kernel p and

initial state 1A; see [6] for details. From now on, we omit dependency on the Harris construction
and write (for instance) ζt instead of ζt(H).

Before going into the multitype contact process, we list some properties of the one-type contact
process that will be very useful. Fix (x , s) ∈ Z× [0,∞) and t > s. Define the time of death and
maximal distance traveled until time t for an infection that starts at (x , s),

T (x ,s) = inf{s′ > s : ∄y : (x , s)↔ (y, s′)},

M
(x ,s)
t = sup{|y − x | : (x , s)↔ (y, s′) for some s′ ∈ [s, t]}

(these only depend on H and are thus well-defined regardless of ξs(x)). When s = 0, we omit it and
write T x , M x

t . If A⊂ Z, we also define TA = inf{t ≥ 0 : ∄ x ∈ A, y ∈ Z : (x , 0)↔ (y, t)}. We start

by observing that M
(x ,s)
t is stochastically dominated by a multiple of a Poisson random variable, so

there exist κ, c, C > 0 such that

P(M x
t > κt)≤ Ce−c t ∀x ∈ Z, t ≥ 0. (2.1)

Remark 2.1. Throughout this paper, letters that denote universal constants whose particular values are

irrelevant, such as c, C ,κ in the above, will have different values in different contexts and will sometimes

change from line to line in equations.

Next, since we are taking λ > λc , we have P(T x =∞) = P(T0 =∞)> 0 for all x , and

P(T x = T y =∞)≥ P(T0 =∞)2 > 0, ∀x , y ∈ Z. (2.2)

This follows from the self-duality of the contact process and the fact that its upper invariant measure
has positive correlations; see [12]. Our last property is that there exist c, C > 0 such that, for any
A⊂ Z and t > 0,

P(t < TA <∞)≤ Ce−c t . (2.3)

For the case R = 1, this is Theorem 2.30 in [13]. The proof uses a comparison with oriented
percolation and can be easily adapted to the case R> 1.

We now turn to our treatment of the multitype contact process and its dual, the ancestry process,
through graphical constructions. We will proceed in three steps.

Step 1: Graphical construction of the multitype contact process. The construction is done as for the
one-type contact process, with the difference that we must ignore the arrows whose endpoints are
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already occupied. This was first done in [15]; there, an algorithmic procedure is provided to find
the state of each site at a given time. Here we provide an approach that is formally different but
amounts to the same. Fix (x , t) ∈ Z× [0,∞), a Harris construction H and ξ0 ∈ {0,1,2}Z. Let Γx

1
be the set of paths γ that connect points of Z × {0} to (x , t) in H. Assume that #Γx

1 < ∞; this
happens with probability one if H is sampled from the processes described above. For the moment,
also assume that Γx

1 6= ;. Given γ,γ′ ∈ Γx
1 , let us write γ < γ′ if there exists s̄ ∈ (0, t) such that

γ(s) = γ′(s) ∀s ∈ [s̄, t] and γ(s̄) 6= γ(s̄−),γ′(s̄) = γ′(s̄−). From the fact that these paths are all
piecewise constant, have finitely many jumps and the same endpoint, we deduce that < is a total
order on Γx

1 . We can then find γ∗1, the maximal path in Γx
1 . Now define Γx

2 = {γ ∈ Γx
1 : γ(0) 6= γ∗1(0)}

and γ∗2 as the maximal path in Γx
2 . Then define Γx

3 = {γ ∈ Γx
2 : γ(0) 6= γ∗2(0)}, and so on, until

Γx
N = ;. For 1≤ n< N , denote ξ̂x

n,t = γ
∗
n(0), and for n≥ N put ξ̂x

n,t =△. We claim that

∀n< N ,∀s such that γ∗n(s−) 6= γ
∗
n(s), we have γ∗n(s) /∈ ζ

{ξ̂x
n+1,t ,...,ξ̂

x
N−1,t}

s− (2.4)

(Here ζ· continues to denote the one-type contact process defined from H). In words, if γ∗n makes a
jump that lands on a space-time point (x , s), then for some positive ε the set {x} × [s− ε, s) cannot
be reached by paths coming from ξ̂x

n+1,t , . . . , ξ̂x
N−1,t , and so the jump is not obstructed. If this were

not the case, we could obtain m < n, s ∈ [0, t] and γ with γ(0) = ξ̂x
n,t and γ∗m(s−) 6= γ∗m(s) = γ(s) =

γ(s−). But we could then construct a path γ′ coinciding with γ on [0, s] and with γ∗m on (s, t], and
γ′ would contradict the maximality that defined γ∗m.

If ξ0(ξ̂
x
n,t) = 0 for all n < N , put ξt(x) = 0. Otherwise, if k = min{n : ξ0(ξ̂

x
n,t) 6= 0}, put ξt(x) =

ξ0(ξ̂
x
k,t). In this second case, using (2.4), we see that there is a path connecting (ξ̂x

k,t , 0) to (x , t)

which is not obstructed by any of the paths connecting {y 6= ξ̂x
k,t : ξ0(y) 6= 0}×{0} to (x , t). Finally,

if Γx
1 = ;, put ξ̂x

n,t =△ for every n and set ξt(x) = 0. We can proceed similarly for every x ∈ Z and
get a configuration (ξt(x))x∈Z. It now follows that (ξt(x))x∈Z has the distribution of the multitype
contact process at time t with initial state ξ0. Additionally, by applying this construction to every
t > 0, we get a trajectory (ξt)t≥0 of the process that is right continuous with left limits. We will
sometimes write ξt(H) to make the dependence on the Harris construction explicit.

Step 2: Ancestry process. This will be our main object of investigation. Fix x ∈ Z, t ∈ [0,∞) and
a Harris construction H. Let Ψx

1 be the set of paths ψ connecting (x , 0) to Z× {t} in H. Assume
for the moment that #Ψx

1 > 0. Given ψ,ψ′ ∈ Ψx
1 , write ψ´ψ′ if there exists s̄ ∈ (0, t) such that

ψ(s) = ψ′(s) ∀s ∈ [0, s̄) and ψ(s̄) 6= ψ(s̄−),ψ′(s̄) = ψ′(s̄−). As before, we can check that ´ is a
total order on Ψx

1 . Let ψ∗1 be the maximal path, define Ψx
2 = {ψ ∈ Ψx

1 : ψ(t) 6= ψ∗1(t)}, let ψ∗2 be
the maximal path in Ψx

2 , and so on, until Ψx
N = ;. For 1 ≤ n < N , we then define ηx

n,t = ψ
∗
n(t). For

n≥ N , we put ηx
n,t =△. Finally, if Ψx

1 = ;, we put ηx
n,t =△ for all n.

Applying this construction for every t > 0, we get a (Z∪ {△})∞-valued process t 7→ (ηx
1,t ,η

x
2,t , . . .).

We call it the ancestry process of x . ηx
n,t is called the nth ancestor of x at time t. Of course, we

may also jointly take, for every x ∈ Z, the processes (ηx
1,t ,η

x
1,t , . . .)t≥0. Finally, we will write ηx

n,t(H)

when we need to make the dependence on the Harris construction explicit.

Given x ∈ Z and 0 ≤ s ≤ t, we define η(x ,s)
n,t = ηx

n,t−s(θ (0, s)(H)) (that is, the nth ancestor in the

graph that grows from (x , s) up to time t). Also, when n= 1, we omit it, writing ηx
t ,η(x ,s)

t instead of

ηx
1,t ,η

(x ,s)
1,t . Finally, we write η(x ,s)

∗,t = {η
(x ,s)
n,t ∈ Z : n ≥ 1} (notice that we are excluding the △ state),

and similarly for ηx
∗,t . The set ηx

∗,t has the same distribution as ζ{x}t , the set of infected sites of a
one-type contact process started from the configuration where only x is infected. For this reason,
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if we ignore the △ state, the process t 7→ (ηx
1,t ,η

x
2,t , . . .) can be seen as a one-type contact process

started from 1{x} and such that at each time, infected sites have numerical ranks.

Step 3: Joint construction of the multitype contact process and the ancestry process. We now ex-
plain the duality relation that connects the two processes described above. Fix t > 0 and let
H = ((Dx), (N (x ,y))) be a Harris construction on Z×[0, t] (this means that the Poisson processes that
constitute H are only defined on [0, t]). Let It(H) be the Harris construction on [0, t] obtained from
H by inverting the direction of time and of the arrows; formally, It(H) = ((D̂

x), (N̂ (x ,y))), where
D̂x(s) = Dx(t − s), N̂ (x ,y)(s) = N (y,x)(t − s), 0 ≤ s ≤ t, x , y ∈ Z. Two immediate facts are that the
laws of H[0,t] and It(H) are equal and that (x , 0)↔ (y, t) in H if and only if (y, 0)↔ (x , t) in
It(H).

Given ξ0 ∈ {0,1,2}Z, we now take the pair

( ξs(H) )0≤s≤t , ( η
x
n,s(It(H)) )n∈N, 0≤s≤t, x∈Z.

We thus have a coupling of the contact process started at ξ0 and the ancestry process of every site,
both up to time t. We should think of time for the multitype contact process as running on the
opposite direction as time for the ancestry processes. This is illustrated on Figure 1.

00 1 00 2 1 1

00 00 00 2 2 1

Time of the multitype contact process

Time of the ancestry process

Figure 1: On the left, we have the multitype contact process starting from ξ0 ∈ {0,1,2}Z and
following a Harris construction H. Time is increasing from bottom to top, thick lines represent the
evolution of the 1’s and dashed lines represent the evolution of the 2’s. On the right, we have the
ancestry process of x ∈ Z following It(H). Time is increasing from top to bottom. The facts that
ξ0(η

x
1,t) = ξ0(η

x
2,t) = 0 and ξ0(η

x
3,t) = 2 imply that ξt(x) = 2.

We now write our fundamental duality relation: for each x ∈ Z,

ξt(x) =

¨

0, if for each n, either ξ0(η
x
n,t) = 0 or ηx

n,t =△;
ξ0(η

x
n∗(x),t), otherwise,

(2.5)

where n∗(x) = inf{n : ξ0(η
x
n,t) 6= 0}. This can be seen at work in Figure 1. Its formal justification

is straightforward and relies on the following. Given x ∈ Z, define a bijection Jt : Γx
1 → Ψx

1 by
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(Jtγ)(s) = γ((t − s)+); Jtγ is thus γ ran backwards and repaired so that we get a right continuous
path. We then have γ < γ′⇔ Jtγ´Jtγ

′, so all maximality properties can be translated from one
space of paths to the other.

The obvious utility of (2.5) is that it allows us to relate properties of the distributions of the multitype
contact process and of the ancestry processes at a fixed time. Let us state two such relations. First,

P(∀x ,ξt(x) 6= 1) = P









∀x , either ηx
∗,t = ;, or

ξ0 is equal to 0 on ηx
∗,t , or

ξ0(η
x
n∗(x),t) = 2









, (2.6)

where n∗(x)was defined after (2.5). This will be useful for our proof of Theorem 1.1. Second, taking
ξ0 = ξ

h (the heaviside configuration defined in the Introduction) and ρt as in the Introduction,

P(|ρt |> L) = P( | sup{x : ηx
1,t ≤ 0} − inf{x : ηx

1,t > 0}|> L ). (2.7)

This will be useful in our proof of Theorem 1.3. We have now concluded Step 3.

Even though the relations of Step 3 will be extremely useful, our standard point of view will be the
one of Step 2. This means that, from now on, unless explicitly stated otherwise, we will have an
infinite-time Harris construction H used to jointly define, for every x ∈ Z, the ancestry processes
((ηx

n,t)n∈N)t≥0. Whenever we mention a function of the Harris construction, such as T (x ,s) or M
(x ,s)
t ,

we mean to apply it to the Harris construction used to define the ancestry process.

The following is an easy consequence of the definition of the ancestry process with the ordering of
paths ´ defined above.

Lemma 2.2. (i.) Let 0< s < t, assume that ηx
s 6=△ and T (η

x
s ,s) > t. Then, ηx

t = η
(ηx

s ,s)
t . In particular,

if T (η
x
s ,s) =∞, then for all s′ > s we have ηx

s′ = η
(ηx

s ,s)

s′
.

(ii.) Let 0≤ s < t, z1, . . . , zN ∈ Z and assume

ηx
i,s 6=△, η

(ηx
i,s ,s)
∗,t = ;, 1≤ i < n

ηx
n,s 6=△, (η

(ηx
n,s,s)

1,t , . . . ,η
(ηx

n,s ,s)

N ,t ) = (z1, . . . , zN )

(that is, the first n−1 ancestors of x at time s do not reach time t, but the n-th one does, with ancestors

z1, . . . , zN at time t). Then, we have (ηx
1,t , . . . ,ηx

N ,t) = (z1, . . . , zN ).

Given x ∈ Z, on {T x =∞}, define

τx
1 = inf{t ≥ 1 : T (η

x
t ,t) =∞},

the first time after 1 at which the first ancestor of x lives forever. It is useful to think of τx
1 as the

result of a sequence of attempts, as we now explain and illustrate on Figure 2. Define σx
1 ≡ 1 and,

for n≥ 1,

σx
n+1 =

(

+∞ if σx
n = +∞;

T

�

ηx

σx
n

, σx
n

�

otherwise.
(2.8)

σx
n is thought of as the time of the n-th attempt to find a first ancestor of x that lives forever. If
(ηx
σx

1
,σx

1 ) = (η
x
1 , 1) lives forever (that is, if T (η

x
1 ,1) = ∞), we have τx

1 = σ
x
1 and say that the first
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attempt succeeds. Otherwise, we must wait until σx
2 = T (η

x
1 ,1) to start the second attempt. This is

because for any t ∈ (σx
1 ,σx

2 ), we have η
(ηx

σx
1

, σx
1 )

t = ηx
t as a consequence of Lemma 2.2(i.), so in

particular (ηx
σx

1
, σx

1 )↔ (ηx
t , t) and then T (η

x
t ,t) ≤ T

(ηx

σx
1

, σx
1 )
<∞. Next, if (ηx

σx
2
,σx

2 ) lives forever,

then the second attempt succeeds and we have τx
1 = σ

x
2 ; otherwise we must wait for (ηx

σx
2
,σx

2 ) to

die, and so on.

On {T x =∞}, also define τx
0 ≡ 0 and, for n≥ 1,

τx
n+1 = τ

x
n +τ

0
1 ◦ θ (η

x
τx

n
,τx

n).

Figure 2: Renewal times. We detail the attempts σx
i

to find the first renewal, τx
1 . The first ancestor

process is given by the thick line. The top of the figure means that (ηx
τx

3
, τx

3) lives forever.

For the sake of readability, we will sometimes write P̃x(·) and Ẽx(·) instead of P(·|T x = ∞) and
E(·|T x = ∞). In Proposition 1 in [15], it is shown that under P̃x , the times τx

n work as renewal
times for the process ηx

t , that is, the (Time length, Trajectory) pairs

(τx
n+1−τ

x
n , t ∈ [0,τx

n+1−τ
x
n] 7→ η

x
τx

n+t −η
x
τx

n
)

are independent and identically distributed. This follows from an idea of Kuczek ([9]) which has be-
come an important tool in the particle systems literature. In our current setting, it can be explained
as follows. The probability P̃x is the original probability for the process conditioned on the event
{(x , 0) lives forever}. But (x , 0) being connected to (ηx

τx
1
,τx

1) and (ηx
τx

1
,τx

1) living forever imply that

(x , 0) lives forever, the event of the former conditioning. This and the fact that, under P, restrictions
of H to disjoint time intervals are independent yield that, under P̃x , the shifted Harris construction
θ (ηx

τx
1
,τx

1)(H) has same law as H. The argument is then repeated for all τx
n , n≥ 1.
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We now list the properties of the renewal times that we will need.

Proposition 2.3. (i.) P̃0(τ0
n <∞) = 1 ∀n.

(ii.) For n≥ 0, let

Hn = H[0,τ0
n(H)]

, Hn+ = θ (η
0
τ0

n

,τ0
n)(H).

Given an event A on finite-time Harris constructions and an event B on Harris constructions, we have

P̃0(Hn ∈ A, Hn+ ∈ B) = P̃0(Hn ∈ A) · P̃0(H ∈ B).

(iii.) Under P̃x , the Z-valued process
�

ηx
τx

n

�

n≥0 is a symmetric random walk starting at x and with

transitions

P(z, w) = P̃0�η0
τ0

1
= w − z

�

.

(iv.) There exist c, C > 0 such that

P̃0�τ0
1 ∨M0

τ1
> r
�

≤ Ce−cr .

Except for part (ii.), the above proposition is contained in Proposition (1), page 474, of [15] ((i.)
and (iv.) are explicitly on the statement of the proposition and (iii.) is a direct consequence of (i.)).
Part (ii.) is an adaption of Lemma 7 in [14] to our context; since its proof also uses ideas similar to
the ones of Proposition (1) in [15], we omit it.

To conclude this section, we prove some simples properties of the first ancestor process.

Remark 2.4. Every time we write events involving a random variable η that may take the value △,

such as {η ≤ 0}, we mean {η 6=△,η ≤ 0}. This applies to part (iii) of the following lemma. Also, by

convention we put E( f (η)) = E( f (η);η 6=△) for every function f : Z→ R.

Lemma 2.5. (i.) There exist c, C > 0 such that, for all 0≤ a < b,

P̃0(∄n : τ0
n ∈ [a, b])≤ Ce−c(b−a).

(ii.) There exists C > 0 such that, for all 0≤ s < t,

Ẽ0� (η0
t )

2− (η0
s )

2 �≤ C + C(t − s).

(iii.) There exist c, C > 0 such that for all l ≥ 0,

P(|η0
t |> l)≤ Ce−cl2/t + Ce−cl .

Proof. Define on {T0 =∞}, for t ≥ 0,

τt− = sup{τ0
n ≤ t : n ∈ N}, τt+ = inf{τ0

n ≥ t : n ∈ N}, ψt = M

�

ητt− ,τt−
�

τt+
∨ (τt+−τt−).
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Using Proposition 2.3(ii.) and (iv.),

P̃0(ψt > x) =

∞
∑

k=0

P̃0(τ0
k
< t, τ0

k+1 ≥ t, ψt > x)

=

∞
∑

k=0

∫ t

0

P̃0
�

τ0
1 ≥ t − s, M0

τ0
1
∨τ0

1 > x

�

P̃0(τ0
k
∈ ds)

≤
∞
∑

k=0

⌈t⌉
∑

i=1

∫ i

i−1

�

P̃0
�

τ0
1 ≥ t − s

�

∧ P̃0
�

M0
τ0

1
∨τ0

1 > x

��

P̃0(τ0
k
∈ ds)

≤
⌈t⌉
∑

i=1

�

Ce−c(t−i) ∧ Ce−cx
�

∞
∑

k=0

P̃0
�

τ0
k
∈ [i − 1, i]

�

=

⌈t⌉
∑

i=1

�

Ce−c(t−i) ∧ Ce−cx
�

Ẽ0(#{n : τ0
n ∈ [i − 1, i]}). (2.9)

Observe that the above expectation is less than 1, because there is at most one renewal in each unit
interval. (2.9) is thus less than

C

∞
∑

i=1

[e−ci ∧ e−cx]≤ C⌈x⌉e−cx + C

∞
∑

i=⌈x⌉+1

e−ci ≤ Ce−cx ;

since this does not depend on t, we get

P̃(ψt > x)≤ Ce−cx (2.10)

for some c, C > 0 and all t ≥ 0. Let us now prove the two statements of the lemma.

(i.) For 0≤ a < b,

P̃0(∄n : τ0
n ∈ [a, b])≤ P̃0(τa+−τa− > b− a)≤ P̃0(ψa > b− a)≤ Ce−c(b−a).

(ii.) The definition of ψt and (2.10) imply

|η0
t −η

0
τt−
|, |η0

τt+
−η0

t |, |η
0
τt+
−η0

τt−
| ≤ 2ψt ; (2.11)

C̄ := sup
t≥0
Ẽ0((ψt)

2)<∞. (2.12)

Next, for t > 0, since τ0
⌈t⌉ ≥ ⌈t⌉ ≥ t, we have τt+ ∈ {τ0

0,τ0
1, . . . ,τ0

⌈t⌉}, so

Ẽ0
�

(η0
τt+
)2
�

≤ Ẽ0
�

max
1≤i≤⌈t⌉

(η0
τ0

i

)2
�

By the reflection principle (see [7], page 285), the expectation on the right-hand side is less than
2 Ẽ0((η0

τ0
⌈t⌉
)2) = 2 ⌈t⌉ Ẽ0((η0

τ0
1
)2), so we have

Ẽ0((η0
τt+
)2)≤ C · ⌈t⌉ ≤ C · (t + 1). (2.13)
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With (2.11), (2.12) and (2.13) at hand, we are ready to estimate

Ẽ0
�

(η0
t )

2− (η0
s )

2
�

= Ẽ0
�

(η0
t )

2− (η0
τt+
)2
�

+ Ẽ0
�

(η0
τs+
)2− (η0

s )
2
�

+ Ẽ0
�

(η0
τt+
)2− (η0

τs+
)2
�

. (2.14)

Let us treat each of the three terms separately.

Ẽ0
�

(η0
t )

2− (η0
τt+
)2
�

= Ẽ0
�

(η0
t −η

0
τt−
+η0

τt−
)2+ (η0

τt+
−η0

τt−
+η0

τt−
)2
�

= Ẽ0�(η0
t −η

0
τt−
)2+ 2η0

τt−
(η0

t −η
0
τt−
)− (η0

τt+
−η0

τt−
)2− 2η0

τt−
(η0
τt+
−η0

τt−
)
�

= Ẽ0((η0
t −η

0
τt−
)2)− Ẽ0((η0

τt+
−η0

τt−
)2) (2.15)

since, by the independence of increments between different pairs of renewals and symmetry,
Ẽ0(η0

τt−
(η0

t − η0
τt−
)) = Ẽ0(η0

τt−
(η0
τt+
− η0

τt−
)) = 0. Using (2.11), (2.15) can be bounded by

2 Ẽ0((2ψt)
2), then by (2.12) we get

Ẽ0
�

(η0
t )

2− (η0
τt+
)2
�

≤ 2C̄ . (2.16)

Similarly,
Ẽ0((η0

τs+
)2− (η0

s )
2)≤ 2C̄ . (2.17)

Finally,

Ẽ0
�

(η0
τt+
)2− (η0

τs+
)2
�

= Ẽ0
�

(η0
τt+
−η0

τs+
)2+ 2η0

τs+
(η0
τt+
−η0

τs+
)
�

= Ẽ0((η0
τt+
−η0

τs+
)2) =

∫ t

s

Ẽ0((η0
τ(t−r)+

)2) P̃0(τs+ ∈ dr).

By (2.13), this is less than

C

∫ t

s

(t − r + 1) P̃0(τs+ ∈ dr)≤ C(t − s+ 1).

Putting this, (2.16) and (2.17) back in (2.14) completes the proof.

(iii.) For l ≥ 0,

P(|η0
t |> l) = P(t < T0 <∞, |η0

t |> l) + P(T0 =∞) P̃0(|η0
t |> l).

The first term is less than

P(T0 <∞, M0
T0 > l)≤ P(l/κ < T0 <∞) + P(M0

l/κ
> l),

where κ is as in (2.1). Now use (2.1) and (2.3) to get that this last sum is less than Ce−cl . Next, we
have

P̃0(|η0
t |> l)≤ P̃0

�

max
1≤i≤⌊t⌋

|η0
τ0

i

|> l/2

�

+ P̃0(ψt > l/2),

because there are at most ⌊t⌋ renewals until time t. By (2.10), P̃0(ψt > l/2)≤ Ce−cl . By Proposition

2.1.2 in [10], P̃0
�

max
1≤i≤⌊t⌋

|η0
τ0

i

|> l/2

�

≤ Ce−cl2/⌊t⌋ ≤ Ce−cl2/t . This completes the proof.
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3 Pairs and sets of ancestries

In this section, we study the joint behavior of ancestral paths. For pairs of ancestries, we define joint
renewal points that have properties similar to the ones just discussed for single renewals, and then
use these properties to study the speed of coalescence of first ancestors. For sets of ancestries, we
show that, given N > 0, the overall density of sites of Z occupied by ancestors of rank smaller than
or equal to N at time t tends to 0 as t →∞.

Let us define our sequence of joint renewal times. Fix x , y ∈ Z and on {T x = T y =∞} define

τ
x ,y
1 = inf{t ≥ 1 : T (η

x
t ,t) = T (η

y
t ,t) =∞},

the first time after 1 at which both the first ancestor of x and the one of y live forever. In parallel
with (2.8), define σx ,y

1 ≡ 1 and, for n≥ 1,

σ
x ,y
n+1 =







+∞ if σx ,y
n = +∞

T

�

ηx

σ
x ,y
n

, σx ,y
n

�

∧ T

�

η
y

σ
x ,y
n

, σx ,y
n

�

otherwise.

The sequence of attempts in this case works as follows. We start asking if both (ηx

σ
x ,y
1

, σx ,y
1 ) and

(η
y

σ
x ,y
1

, σx ,y
1 ) live forever. If so, we set τx ,y

1 = σ
x ,y
1 . Otherwise, we wait until one of them dies

out; this happens at time σx ,y
2 = T

�

ηx

σ
x ,y
1

, σx ,y
1

�

∧ T

�

η
y

σ
x ,y
1

, σx ,y
1

�

. We then look at (ηx

σ
x ,y
2

, σx ,y
2 ) and

(η
y

σ
x ,y
2

, σx ,y
2 ), and so on.

Also define τx ,y
0 ≡ 0 and, for n≥ 1, on {T x = T y =∞, ηx

τ
x ,y
n

= z, ηy

τ
x ,y
n

= w}, define

τ
x ,y
n+1 = τ

x ,y
n +τ

z,w
1 ◦ θ (0,τx ,y

n ).

For x , y ∈ Z, we write P̃x ,y(·) = P(·|T x = T y = ∞) and Ẽx ,y(·) = E(·|T x = T y = ∞). Note that
P̃x ,x = P̃x , Ẽx ,x = Ẽx and τx ,x

n = τx
n for any x and n. We have the following analog of Lemma 2.3:

Proposition 3.1. (i.) P̃x ,y(τ
x ,y
n <∞) = 1 ∀n, x , y.

(ii.) For n≥ 0, let

Hn = H[0,τx ,y
n (H)], Hn+ = θ (0,τx ,y

n )(H).

Given an event A on finite-time Harris constructions, an event B on Harris constructions and z, w ∈ Z,
we have

P̃x ,y(Hn ∈ A,ηx

τ
x ,y
n
= z,ηy

τ
x ,y
n

= w, H ∈ B) = P̃x ,y(Hn ∈ A,ηx

τ
x ,y
n
= z,ηy

τ
x ,y
n

= w) · P̃z,w(H ∈ B).

(iii.) Under P̃x ,y , the Z2-valued process
�

ηx

τ
x ,y
n

,ηy

τ
x ,y
n

�

n≥0 is a Markov chain starting at (x , y) and with

transitions

P((a, b), (c, d)) = P̃a,b� ηa

τ
a,b
1

= c, ηb

τ
a,b
1

= d
�

.

In particular, if {T x = T y =∞} and ηx

τ
x ,y
m

= η
y

τ
x ,y
m

, then ηx

τ
x ,y
n

= η
y

τ
x ,y
n

for all n≥ m.

(iv.) There exist c, C > 0 such that, for any x , y,

P̃x ,y�max
�

τ
x ,y
1 , M x

τ
x ,y
1

, M
y

τ
x ,y
1

�

> r
�

≤ Ce−cr .
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We omit the proof since it is an almost exact repetition of the one of Lemma 2.3; the only difference
is that, when looking for renewals, we must inspect two points instead of one.

We now study the behavior of the discrete time Markov chain mentioned in part (iii.) of the above
proposition. Our first objective is to show that the time it takes for two ancestries to coalesce has
a tail that is similar to that of the time it takes for two independent simple random walks on Z to
meet. This fact will be extended to continuous time in Lemma 3.3; in Section 5, we will establish
other similarities between pairs of ancestries and pairs of coalescing random walks.

Lemma 3.2. (i.) For z ∈ Z, let πz denote the probability on Z given by

πz(w) = P̃
0,z
�

ηz

τ
0,z
1

−η0
τ

0,z
1

= z +w

�

, w ∈ Z.

There exist a symmetric probability π on Z and c, C > 0 such that

||πz −π||T V ≤ Ce−c|z| ∀z ∈ Z,

where || · ||T V denotes total variation distance.

(ii.) There exists C > 0 such that, for all x , y ∈ Z and n ∈ N,

P̃x ,y� ηx

τ
x ,y
n
6= ηy

τ
x ,y
n

�

≤
C |x − y |
p

n
.

Proof. (i.) Fix z ∈ Z. For simplicity of notation, we will go through the proof in the case z > 0;
however, it will be clear how to treat the case z < 0. Let us take two random Harris constructions
H1 and H2 defined on a common space with probability measure P, under which H1 and H2 are
independent and both have the original, unconditioned distribution obtained from the construction
with Poisson processes. Define H3 as a superposition of H1 and H2, as follows. We include in H3:
• from H1, all death marks in sites that belong to (−∞, ⌊z/2⌋] and all arrows whose starting points
belong to (−∞, ⌊z/2⌋];
• from H2, all death marks in sites that belong to (⌊z/2⌋,∞) and all arrows whose starting points
belong to (⌊z/2⌋,∞).
Then, H3 has same law as H1 and H2. We will write all processes and times defined so far as
functions of these Harris constructions: for i ∈ {1,2,3}, we may take

η
(x ,s)
n,t (H

i) for x ∈ Z, n ∈ N, s < t;

M
(x ,s)
t (H i) and T (x ,s)(H i) for x ∈ Z, s < t;

τ(x ,y)
n (H i) on {T x(H i) = T y(H i) =∞}, for x , y ∈ Z, n ∈ N,

as defined before and nothing new is involved. On the event {T0(H1) = T z(H2) =∞}, define

τ̃0,z = inf{t ≥ 1 : T (η
0
t (H

1),t)(H1) = T (η
z
t (H

2),t)(H2) =∞}.

Our definition of τ̃0,z is similar to the one of first joint renewal time of two first ancestor processes.
However, for τ̃0,z, we follow a different Harris construction for each ancestor process. We can also
think of τ̃0,z as the result of a “sequence of attempts”, and define corresponding stopping times
similar to the ones illustrated on Figure 2. The same proof that establishes Proposition 3.1(iv.) can
be repeated here to show that there exist c, C > 0 such that

P
�

T0(H1) = T z(H2) =∞, τ̃0,z ∨M0
τ̃0,z (H

1)∨M z
τ̃0,z (H

2)> r
�

≤ Ce−cr . (3.1)
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Now define

X 0,z =

(

ηz

τ
0,z
1 (H

3)
(H3)−η0

τ
0,z
1 (H

3)
(H3) if T0(H3) = T z(H3) =∞

△ otherwise;

Y 0,z =

¨

ηz
τ̃0,z (H

2)−η0
τ̃0,z (H

1) if T0(H1) = T z(H2) =∞,
△ otherwise.

Note that
πz(·) = P(X 0,z = z + · | X 0,z 6=△), (3.2)

where πz is defined in the statement of the lemma. Also define

π(·) = P(Y 0,z = z + · | Y 0,z 6=△). (3.3)

By the definition of Y 0,z from independent Harris constructions, π is symmetric and does not depend
on z. To conclude the proof, we have two tasks. First, to show that X 0,z = Y 0,z with high probability
when z is large. Second, to show that this implies that, when z is large, ||πz −π||T V is small.

Let κ be as in (2.1) and define t∗ = z/3κ. Consider the events

L1 = {M0
t∗(H

1)∨M z
t∗(H

2)< z/2},

L2 = {T0(H1)∧ T z(H2)< t∗},

L3 =

¨

T0(H1) = T z(H2) = T0(H3) = T z(H3) =∞,
τ

0,z
1 (H

3)< t∗, τ̃0,z < t∗

«

.

On L1, we have {(x , t) : 0 ≤ t ≤ t∗, (0,0)↔ (x , t) in H1} ⊂ (−∞, ⌊z/2⌋] × [0, t∗]. Since the
restriction of H1 to (−∞, ⌊z/2⌋]× [0, t∗] coincides with the restriction of H3 to the same set and
similar considerations apply to H2 and the set (⌊z/2⌋,∞)× [0, t∗], we get that, on L1,

η0
n,t(H

1) = η0
n,t(H

3), ηz
n,t(H

2) = ηz
n,t(H

3), ∀n ∈ N, 0≤ t ≤ t∗. (3.4)

We now claim that, if the event L := (L1 ∩L2) ∪ (L1 ∩L3) occurs, then X 0,z = Y 0,z . To see this,
assume first that L1 ∩ L2 occurs. Then, by the definition of L2, we either have T0(H1) < t∗ or
T z(H2) < t∗. In any case we have Y 0,z = △ and, also using (3.4), we either get T0(H3) < t∗ or
T z(H3)< t∗, so X 0,z =△. Now assume L1 ∩L3 occurs. Define

t1 = τ̃
0,z, a1 = η

0
t1
(H1), b1 = η

z
t1
(H2);

t2 = τ
0,z
1 (H

3), a2 = η
0
t2
(H3), b2 = η

z
t2
(H3).

By (3.4) and the fact that t1, t2 ≤ t∗, if we show that t1 = t2, we get a1 = a2 and b1 = b2, hence
Y 0,z = b1− a1 = b2− a2 = X 0,z . Assume t1 ≤ t2. Again by (3.4) and the fact that t1 ≤ t∗, we have

η0
t1
(H3) = η0

t1
(H1) = a1, ηz

t1
(H3) = ηz

t1
(H2) = b1. (3.5)

The definition of t1 implies that T (a1,t1)(H1) = T (b1,t1)(H2) = ∞, and then we obviously have
(a1, t1)↔ Z× {t∗} in H1 and (b1, t1)↔ Z× {t∗} in H2; since we are assuming L1 occurs, the
paths that make these connections are also available in H3. This gives

T (a1,t1)(H3)> t∗, T (b1,t1)(H3)> t∗. (3.6)
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We now use (3.5), (3.6) and the definition of a2, b2 in Lemma 2.2(i.) to conclude that

η
(a1,t1)
t2

(H3) = a2, η
(b1,t1)
t2

(H3) = b2. (3.7)

By the definition of t2, we also have T (a2,t2)(H3) = T (b2,t2)(H3) =∞; together with (3.7) this yields

T (a1,t1)(H3) = T (b1,t1)(H3) =∞. (3.8)

Since t2 = τ
0,z
1 (H

3) is defined as the infimum over all times t ≥ 1 that satisfy T (η
0
t ,t)(H3) =

T (η
z
t ,t)(H3) = ∞, we see from (3.5) and (3.8) that t2 ≤ t1, so t2 = t1. A similar set of arguments

show that t2 ≤ t1 implies t1 = t2. This completes the proof of the claim.

Now note that the event L c is contained in the union of:

{M0
t∗(H

1)> z/2}, {M z
t∗(H

2)> z/2},

{t∗ < T0(H1)<∞}, {t∗ < T0(H3)<∞}, {t∗ < T z(H2)<∞}, {t∗ < T z(H3)<∞},
{T0(H1) = T z(H2) =∞, τ̃0,z > t∗}, {T0(H3) = T z(H3) =∞,τ0,z

1 (H3)> t∗}.
Using our choice of t∗, (2.1), (2.3), Proposition 3.1(iii.) and (3.1), the probability of any of these
events decreases exponentially with z.

We thus have P(X 0,z 6= Y 0,z)≤ Ce−cz , so
∑

w∈Z∪{△}
|P(X 0,z = w)− P(Y 0,z = w)| ≤ Ce−cz . (3.9)

Then,

||πz −π||T V =
1

2

∑

w∈Z
|πz(w)−π(w)|=

1

2

∑

w∈Z

�

�

�

�

�

P(X 0,z = w)

P(X 0,z 6=△) −
P(Y 0,z = w)

P(Y 0,z 6=△)

�

�

�

�

�

≤
1

2P(X 0,z 6=△)
∑

w∈Z
|P(X 0,z = w)− P(Y 0,z = w)|

+
1

2

�

�

�

�

1

P(Y 0,z 6=△) −
1

P(X 0,z 6=△)

�

�

�

�

∑

w∈Z
P(Y 0,z = w)

≤
1

P(X 0,z 6=△) Ce−cz +
|P(X 0,z 6=△)− P(Y 0,z 6=△)|
P(X 0,z 6=△) · P(Y 0,z 6=△)

≤
1

P(X 0,z 6=△) Ce−cz +
1

P(X 0,z 6=△)
1

P(Y 0,z 6=△) Ce−cz ,

where we have applied (3.2) and (3.3) in the second equality and (3.9) in the last two inequalities.
We have P(X 0,z 6= △) = P(T0(H3) = T z(H3) = ∞) and P(Y 0,z 6= △) = P(T0(H1) = T z(H2) =

∞), and these probabilities are bounded away from zero uniformly in z by (2.2). We thus get
||πz − π||T V ≤ Ce−cz . Adapting the proof to the case z < 0, we get ||πz − π||T V ≤ Ce−c|z| for any
z ∈ Z.
(ii.) For n≥ 0, x , y ∈ Z, define

X x ,y
n =

¨

η
y

τ
x ,y
n

−ηx

τ
x ,y
n

, if T x = T y =∞
△, otherwise.
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Using Proposition 3.1(iii.) and translation invariance, we see that under P̃x ,y , X
x ,y
n is a Markov

chain that starts at y − x and has transitions

P̃x ,y(X
x ,y
n+1 = z +w | X x ,y

n = z) = P̃0,z(X
0,z
1 = z +w) = πz(w).

In particular, 0 is an absorbing state. (ii.) follows from Theorem 6.1 in Section 6. Here, let us ensure
that the four conditions in the beginning of that section are satisfied by πz and π. Conditions (6.1)
and (6.4) are already established. Condition (6.2) is straightforward to check and (6.3) follows
from (3.1) and Proposition 3.1(iv.).

We now want to define a random time J x ,y that will work as a “first renewal after coalescence” for
the first ancestors of x and y , a time after which the two processes evolve together with the law of
a single first ancestor process. Some care should be taken, however, to treat the cases in which the
ancestries of x or of y die out. With this in mind, we put

J x ,y =



















inf{τx ,y
n : ηx

τ
x ,y
n

= η
y

τ
x ,y
n

} on {T x = T y =∞};

inf{τx
n : τx

n > T y} on {T x =∞, T y <∞};
inf{τy

n : τy
n > T x} on {T y =∞, T x <∞};

0 on {T x <∞ and T y <∞}.

This definition is symmetric: J x ,y = J y,x .

Lemma 3.3. (i.) There exists C > 0 such that, for any x , y ∈ Z and t ≥ 0,

P( J x ,y > t )≤
C |x − y |
p

t
.

(ii.) Conditioned to {T x =∞}, the process t 7→ (η0
1,t ,η

0
2,t , . . .) ◦ θ (ηx

J x ,y , J x ,y) is independent of J x ,y .

Additionally, the law of t 7→ (η0
1,t ,η

0
2,t , . . .)◦θ (ηx

J x ,y , J x ,y) conditioned to {T x =∞} is equal to the law

of t 7→ (η0
1,t ,η

0
2,t , . . .) conditioned to {T0 =∞}.

Proof. (i.) By Proposition 3.1(iv.), there exists γ > 0 such that β := supz,w Ẽ
z,w(eγ τ

z,w
1 ) <∞. Using

Chebyshev’s inequality, for every x , y ∈ Z and t ≥ 0 we have

P̃x ,y(τx ,y
n > t)≤ e−γt Ẽ x ,y(eγ τ

x ,y
n ) = e−γt

∑

z,w∈Z
Ẽ x ,y

�

eγ τ
x ,y
n ·1{ηx

τ
x ,y
n−1
= z, ηy

τ
x ,y
n−1
= w}

�

.

By Proposition 3.1(ii.), this is equal to

e−γt
∑

z,w∈Z
Ẽ x ,y

�

eγ τ
x ,y
n−1 ·1{ηx

τ
x ,y
n−1
= z,ηy

τ
x ,y
n−1
= w}

�

· Ẽ z,w
�

eγ τ
z,w
1

�

≤ βe−γt Ẽ x ,y(eγ τ
x ,y
n−1).

Iterating, we get P̃x ,y(τ
x ,y
n > t) ≤ e−γtβn, so, putting n∗ = n∗(t) = ⌊ γ

2 logβ
t⌋, we have

P̃x ,y
�

τ
x ,y
n∗ > t

�

≤ e−γt/2. This together with Lemma 3.2 gives

P̃x ,y(J x ,y > t)≤ P̃x ,y
�

ηx

τ
x ,y
n∗
6= ηy

τ
x ,y
n∗

�

+ P̃x ,y
�

τ
x ,y
n∗ > t

�

≤
C |x − y |
p

t
(3.10)
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for some C > 0.

Note that if T x =∞, T y < t/2 and there exists some n such that τx
n ∈ [t/2, t], then J x ,y ≤ t, and

similarly exchanging the roles of x and y . Using (2.3), Lemma 2.5(i.) and (3.10), we thus have

P(J x ,y > t)

≤ P(T x =∞, T y <∞, J x ,y > t) + P(T x <∞, T y =∞, J x ,y > t) + P(T x = T y =∞, J x ,y > t)

≤ P(t/2< T y <∞) + P(T x =∞,∄n : τx
n ∈ [t/2, t])

+ P(t/2< T x <∞) + P(T y =∞,∄n : τy
n ∈ [t/2, t])

+ P(T x = T y =∞) · P̃x ,y(J x ,y > t)≤
C |x − y |
p

t
.

(ii.) Let A be a borelian of [0,∞) and B be an event in the σ-field of Harris constructions. Using
Proposition 2.3 (ii.),

P̃x(J x ,y ∈ A, T y <∞, θ (ηx
J x ,y , J x ,y)(H) ∈ B) =

∞
∑

n=1

P̃x(τx
n−1 < T y ≤ τx

n , τx
n ∈ A, θ (ηx

τx
n
,τx

n)(H) ∈ B) =

P̃0(H ∈ B) ·
∞
∑

n=1

P̃x(τx
n−1 < T y ≤ τx

n ,τx
n ∈ A) = P̃0(H ∈ B) · P̃x(J x ,y ∈ A, T y <∞)

Using Proposition 3.1 (ii) and the fact that P̃z,z = P̃z for any z,

P̃x(J x ,y ∈ A, T y =∞, θ (ηx
J x ,y , J x ,y)(H) ∈ B) =

P(T x = T y =∞)
P(T x =∞)

∞
∑

n=1

∑

z∈Z
P̃x ,y







ηx

τ
x ,y
n−1
6= ηy

τ
x ,y
n−1

, ηx

τ
x ,y
n

= η
y

τ
x ,y
n

= z,

τ
x ,y
n ∈ A, θ (z,τx ,y

n )(H) ∈ B






=

P(T x = T y =∞)
P(T x =∞) P̃0(H ∈ B) · P̃x ,y(J x ,y ∈ A) = P̃0(H ∈ B) · P̃x(J x ,y ∈ A, T y =∞).

Putting things together we get

P̃x(J x ,y ∈ A, θ (ηx
J x ,y , J x ,y)(H) ∈ B) = P̃0(H ∈ B) · P̃x(J x ,y ∈ A).

The claim is a direct consequence of this equality.

Lemma 3.4. There exist c, C > 0 such that, for any x , y ∈ Z, N ≥ 1 and t ≥ 0,

P(T x , T y > t, (ηx
1,t , . . . ,ηx

N ,t) 6= (η
y

1,t , . . . ,ηy

N ,t))≤ CeCN−c t +
C |x − y |
p

t
.

Proof. There exists δ > 0 such that, given a finite set A⊂ Z, we have

P(TA <∞)> δ|A|. (3.11)

We can for instance take δ as the probability of a particle dying out before having any children, an
observe that this occurs independently for different sites. Define

σN = sup{s ≥ 0 : 0< #η0
∗,s ≤ N}; σ̃N = inf{s > t : 0< #η0

∗,s ≤ N},
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with the convention inf; =∞. Then, σ̃N is a stopping time and {σN > t} = {σ̃N <∞}. Using this,
(3.11) and the Strong Markov Property, we have

P(t < T0 <∞)≥
∑

A⊂Z, 0<#A≤N

P(σ̃N <∞, η0
∗,σ̃N
= A) · P(TA <∞)

≥ δN
∑

A⊂Z, 0<#A≤N

P(σ̃N <∞, η0
∗,σ̃N
= A) = δNP(σ̃N <∞) = δNP(σN > t).

We then have P(σN > t)≤ δ−NP(t < T0 <∞); also using (2.3), we obtain

P(σN > t)≤ C1eC2N−c1 t . (3.12)

for some C1, c1, C2 > 0.

Let x , y ∈ Z; assume that T x = T y = ∞ and J x ,y +σN ◦ θ (ηx
J x ,y , J x ,y) ≤ t. This means that first,

(ηx) and (ηy) have the first joint renewal at some space-time point (ηx
J x ,y , J x ,y) = (η

y

J x ,y , J x ,y) with
J x ,y ≤ t, and second, that the ancestry process of (ηx

J x ,y , J x ,y) never has less than N elements after
time t. We must then have z1, . . . , zN ∈ Z such that

η0
n,t−J x ,y ◦ θ (ηx

J x ,y , J x ,y) = η0
n,t−J x ,y ◦ θ (ηy

J x ,y , J x ,y) = zn, 1≤ n≤ N .

Lemma 2.2 then implies that ηx
n,t = η

y
n,t = zn, 1≤ n≤ N , and we have thus shown that

{T x = T y =∞, J x ,y +σN ◦ θ (ηx
J x ,y , J x ,y)≤ t}

⊂ {T x = T y =∞, (ηx
1,t , . . . ,ηx

N ,t) = (η
y

1,t , . . . ,ηy

N ,t)}.

Then,
P( T x = T y =∞, (ηx

1,t , . . . ,ηx
N ,t) 6= (η

y

1,t , . . . ,ηy

N ,t) )

≤ P( T x = T y =∞, J x ,y +σN ◦ θ (ηx
1,J x ,y , J x ,y)> t )

≤ P( J x ,y > t/2 ) + P( σN ◦ θ (ηx
1,J x ,y , J x ,y)> t/2

�

� T x =∞ )

≤
C |x − y |
p

t
+ CeCN−c t ,

where in the last inequality we used Lemma 3.3(i.) in the first term and Lemma 3.3(ii.) and (3.12)
in the second.

Finally, we have

P(T x , T y > t, (ηx
1,t , . . . ,ηx

N ,t) 6= (η
y

1,t , . . . ,ηy

N ,t))

≤ P(t < T x <∞) + P(t < T y <∞) + P(T x = T y =∞, (ηx
1,t , . . . ,ηx

N ,t) 6= (η
y

1,t , . . . ,ηy

N ,t))

≤ 2Ce−c t + CeCN−c t +
C |x − y |
p

t
≤ CeCN−c t +

C |x − y |
p

t
.

Proposition 3.5. There exist C ,γ > 0 such that, for any N ≥ 1 and t ≥ 0,

P(0 ∈ {ηx
n,t : x ∈ Z, 1≤ n≤ N})≤ C

N

tγ
.
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Proof. Fix a real t ≥ 0 and a positive integer l with l > N . Define Γ = {0, . . . , l − 1} and

Λ =
⋂

{x ,y}⊂Γ

�

{T x ≤ t} ∪ {T y ≤ t} ∪ {(ηx
1,t , . . . ,ηx

N ,t) = (η
y

1,t , . . . ,ηy

N ,t)}
�

,

that is, for all sites in Γ that have non-empty ancestry at time t, the first N terms of the ancestor
sequence at time t must coincide. We can use Lemma 3.4 to bound the probability of Λc:

P(Λc)≤
∑

{x ,y}⊂Γ
P(T x , T y > t, (ηx

1,t , . . . ,ηx
N ,t) 6= (η

y

1,t , . . . ,ηy

N ,t))≤
Cl3

p
t
+ Cl2eCN−c t (3.13)

since there are less than l2 choices for {x , y} and for any of them, |x − y | ≤ l.

Let ηΓn,t = {ηx
n,t ∈ Z : x ∈ Γ} and ηΓN−,t = {ηx

n,t ∈ Z : x ∈ Γ, 1≤ n≤ N}. We have

l−1
∑

r=0

N
∑

n=1

P(Λ, {ηΓn,t ⊂ (r + lZ)})≤
N
∑

n=1

P(Λ)≤ N .

A consequence of the above inequality is that there exists r∗ ∈ {0, . . . , l − 1} such that

N
∑

n=1

P
�

Λ, {ηΓn,t ⊂ (r
∗+ lZ)}

�

≤
N

l
. (3.14)

Finally, for z ∈ Z let Γz = −r∗ + lz +Γ. The idea is that 0 seen from Γ0 is the same as r∗ seen from
Γ. Let Λz ,ηΓz

n,t and ηΓz

N−,t be defined from Γz as Λ,ηΓn,t and ηΓN−,t are defined from Γ. We can now
proceed to our upper bound:

P
�

0 ∈ {ηx
n,t : x ∈ Z, 1≤ n≤ N} )≤

∑

z∈Z
P
�

0 ∈ ηΓz

N−,t

�

=
∑

z∈Z
P
�

{0 ∈ ηΓz

N−,t}, Λz

�

+
∑

z∈Z
P
�

{0 ∈ ηΓz

N−,t}, Λc
z

�

≤
∑

z∈Z

N
∑

n=1

P
�

Λz , {ηΓz

n,t = {0}}
�

+
∑

z∈Z

∑

x∈Γz

N
∑

n=1

P
�

Λc
z, {ηx

n,t = 0}
�

=

N
∑

n=1

∑

z∈Z
P
�

Λ, {ηΓn,t = {r
∗ + lz}}

�

+
∑

x∈Γ

N
∑

n=1

∑

z∈Z
P
�

Λc , {ηx
n,t = r∗+ lz}

�

. (3.15)

Noting that

∪z∈Z
�

Λ∩ {ηΓn,t = {r
∗ + lz}}

�

= Λ∩ {ηΓn,t ∈ (r
∗+ lZ)}, ∪z∈Z{ηx

n,t = r∗ + lz} = {ηx
n,t ∈ r∗ + lZ}

and the unions are disjoint, (3.15) is equal to

N
∑

n=1

P
�

Λ, {ηΓn,t ∈ (r
∗+ lZ)}

�

+
∑

x∈Γ

N
∑

n=1

P
�

Λc; {ηx
n,t ∈ r∗+ lZ}

�

≤
N
∑

n=1

P
�

Λ, {ηΓn,t ∈ (r
∗+ lZ)}

�

+
∑

x∈Γ

N
∑

n=1

P(Λc)≤
N

l
+

CNl4

p
t
+ CNl3eCN−c t .
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We now put l = t
1
9 ; we have thus obtained

P
�

0 ∈ {ηx
n,t : x ∈ Z, 1≤ n≤ N}

�

≤
�

N

t1/9
+

CN t4/9

t1/2
+ CN t1/3eCN−c t

�

∧ 1

≤
N

t1/9
+

CN

t1/18
+ (CN t1/3eCN−c t)∧ 1.

The first two terms are already in the form we want, and it is straightforward to show that, for some
C ′ > 0, we have (CN t1/3eCN−c t)∧ 1≤ C ′N/t for all N , t.

4 Extinction, Survival and Coexistence

In this section we prove Theorems 1.1 and 1.2. Our three key ingredients will be a result about
extinction under a stronger hypothesis (Lemma 4.1), an estimate for the edge speed of one of the
types when obstructed by the other (Lemma 4.2) and the formation of “descendancy barriers” for
the contact process on Z (Lemma 4.3).

We recall our notation from the Introduction: the letters ξ and η will be used for the multitype
contact process and the ancestry process, respectively. Throughout this section, in contrast with the
rest of the paper, Harris constructions and statements related to them, such as “(x , s)↔ (y, t)”,
refer to the construction for ξ rather than the one for η.

Lemma 4.1. For the process (ξt) with initial state ξ0 such that there exists A> 0 such that ξ0(x) = 2
for all x with |x | ≥ A, the 1’s almost surely die out, i.e. almost surely there exists t such that ξt(x) 6=
1 ∀x.

Proof. Using (2.6), for any t0 > 0 we have

P(∃t : ∀x ,ξt(x) 6= 1)≥ P(∀x ,ξt0
(x) 6= 1) = P









∀x , either ηx
∗,t0
= ;, or

ξ0 is equal to 0 on ηx
∗,t0

, or
ξ0(η

x
n∗(x),t0

) = 2









≥ P
�

∀x , either ηx
∗,t0
= ; or

ηx
1,t0
∈ (−A,A)c

�

≥ 1−
A
∑

i=−A

P(∃x : ηx
1,t0
= i).

By (3.5) each of the probabilities in the last sum converges to 0 as t0→∞.

Lemma 4.2. Fix β > 0. For any ε > 0, there exists K > 0 such that, if ξ0 = ξ
H = 1(−∞,0]+ 2 ·1(0,∞),

then

P(sup{x : ξt(x) = 1} ≤ K + β t ∀t)> 1− ε.

Proof. For K > 0, consider the events

An = {ξn(x) = 1 for some x ≥ K/2+ βn/2},
Bn = {(x , n)↔ (y, t) for some x < K/2+ βn/2, y ≥ K + βn, t ∈ [n, n+ 1]},
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n ∈ {0,1,2, . . .}. Now, using Lemma 2.5 (iii.),

P(∪∞n=0An)≤
∞
∑

n=0

∞
∑

x=K/2+βn/2

P(ηx
1,n ≤ 0)≤

∞
∑

n=0

∞
∑

x=K/2+βn/2

P(|η0
1,n| ≥ x)

≤
∞
∑

n=0

∞
∑

x=K/2+βn/2

(Ce−cx2/n+ Ce−cx)

≤ C

∞
∑

n=0

∞
∑

i=0

e
− c

n

�

K

2
+
βn

2
+i
�2

+ C

∞
∑

n=0

∑

i=0

e
−c
�

K

2
+
βn

2
+i
�

≤ C

∞
∑

n=0

∞
∑

i=0

e
−c
�

β

2
+ K

2n
+ i

n

��

K

2
+
βn

2
+i
�

+ C

∞
∑

n=0

∑

i=0

e
−c
�

K

2
+
βn

2
+i
�

≤ C

∞
∑

n=0

∞
∑

i=0

e
−c

β

2

�

K

2
+
βn

2
+i
�

+ Ce−
cK

2

 ∞
∑

n=0

e−
cβn

2

! ∞
∑

i=0

e−ci

!

K→∞−→ 0.

Next, event Bn requires the existence of a path that advances a distance of at least K/2+ βn/2 in
a unit time interval; by a comparison with a multiple of a Poisson random variable as in (2.1), this

occurs with probability smaller than Ce−c(K/2+βn/2) for some c, C > 0, so P(∪nBn)≤
∑

n P(Bn)
K→∞−→ 0

as well. This gives P(∩n(A
c
n∩Bc

n))→ 1 as K →∞, and to conclude the proof note that on ∩n(A
c
n∩Bc

n),
the set {(x , t) : ξt(x) = 1} is contained in {(x , t) : x < K + β t}.

For ρ > 0, define V (ρ) = {(x , t) ⊂ Z × [0,∞) : −ρ t ≤ x ≤ ρ t}. We say that site 0 forms a ρ-
descendancy barrier (according to the Harris construction H) if

(D1) for any x , y ∈ Z and t ≥ 0 with (x , 0)↔ (y, t) and (y, t) ∈ V (ρ), we have (0,0)↔ (y, t);
(D2) for any x , y ∈ Z with opposite signs and t ≥ 0 such that (x , 0)↔ (y, t), we have (0,0)↔
(y, t).

Say that x ∈ Z forms a ρ-descendancy barrier if the origin forms a ρ-descendancy barrier according
to θ (x , 0)(H).

Lemma 4.3. For any ε > 0, there exists β , K > 0 such that

P(∃x ∈ [0, K] : x forms a β -descendancy barrier)> 1− ε.

The proof is in [2]; see Proposition 2.7 and the definition of the eventH2 in page 10 of that paper.

Before the proof of Theorem 1.1, we state two more lemmas. Their proofs are straightforward and
we omit them. For the following, as is usual, we abbreviate {x : ξt(x) = i} as {ξt = i}.

Lemma 4.4. Let (ξ′t), (ξ
′′
t ) be two realizations of the multitype contact process built with the same

Harris construction and such that

{ξ′0 = 1} ⊃ {ξ′′0 = 1}, {ξ′0 = 2} ⊂ {ξ′′0 = 2}.

Then,

{ξ′t = 1} ⊃ {ξ′′t = 1}, {ξ′t = 2} ⊂ {ξ′′t = 2} ∀t ≥ 0.
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This can be verified by looking at the generator of the multitype contact process. It is an attractive-
ness property: defining the partial order ξ′ ≺ ξ′′⇔ {ξ′ = 1} ⊃ {ξ′′ = 1}, {ξ′ = 2} ⊂ {ξ′′ = 2}, the
above lemma says that the set {(ξ′,ξ′′) : ξ′ ≺ ξ′′} is invariant under the coupled dynamics we are
considering.

Lemma 4.5. Assume at least one site is occupied by a 1 in ξ0 and let K ∈ N.

(i.) If conditions (A) and (B) of Theorem 1.1 are satisfied, then almost surely there exist (random)

L′, a1, a2 ∈ Z with L′ > 0, a1 <−L′, a2 > L′ such that

(A′) ξ1(x) 6= 1 ∀x /∈ [−L′, L′];
(B′) #{x ∈ (−∞, L′] : ξ1(x) = 2}= #{x ∈ [L′,∞) : ξ1(x) = 2}=∞;
(C ′) ξ1(x) = 2 ∀x ∈ [a1− K , a1]∪ [a2, a2+ K].

(ii.) Assume condition (A) of Theorem 1.1 is satisfied but condition (B) is not (say, with finitely many

2’s in [0,∞)) and, for a given a ∈ Z, we have ξ0(a) = 1. Then, with positive probability,

(A′′) ξ1(x) = 1 ∀x ∈ [a, a+ K];
(B′′) ξ1(x) 6= 2 ∀x > a+ K .

(iii.) Assume the hypotheses of Theorem 1.2 are satisfied and, for given b, c ∈ Z with b < c, we have

ξ0(b) = i, ξ0(c) = j, where {i, j} = {1,2}. Then, with positive probability,

(A′′′) ξ1(x) 6= j ∀x ∈ (−∞, c − K);
(B′′′) ξ1(x) = i ∀x ∈ [c − K , c);
(C ′′′) ξ1(x) = j ∀x ∈ [c, c + K);
(D′′′) ξ1(x) 6= i ∀x ∈ [c + K ,∞).

Proof of Theorem 1.1. We first prove that, if conditions (A) and (B) in the statement of the theorem
are satisfied, then the 1’s almost surely become extinct. Fix ε > 0. As in Lemma 4.3, choose β , K1

corresponding to ε, then as in Lemma 4.2, choose K2 corresponding to ε and β . Let K = K1+K2+2R.
Using Lemma 4.5(i.) with this value of K and relabeling time so as to start looking at the process
at time 1, we may assume that there exist a1, a2, L′ such that (A′), (B′) and (C ′) are satisfied by ξ0

(rather than by ξ1).

Let (ξ1
t ), (ξ

2
t ), (ξ

12
t ) and (ξ21

t ) be realizations of the multitype contact process all built using the
same Harris construction as the original process (ξt) and having initial configurations

ξ1
0 = 1(a1,a2)

+ 2 ·1[a1−K ,a1]
+ 2 ·1[a2,a2+K];

ξ2
0 = 1(a1,a2)

+ 2 ·1(a1,a2)
c ;

ξ12
0 = 1(−∞,a2)

+ 2 ·1[a2,∞);

ξ21
0 = 2 ·1(−∞,a1]

+1(a1,∞).

By a series of comparisons and uses of the previous lemmas, we will show that in ξ1, the 1’s become
extinct with high probability. An application of Lemma 4.4 to the pair ξ1,ξ then implies that in ξ,
the 1’s become extinct with high probability.

Define the events

G1 = {∀t, inf{ξ21
t = 1}> a1− K2− β t}, G2 = {∀t, sup{ξ12

t = 1}< a2+ K2+ β t}}.
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By the choice of K2, we have P(G1),P(G2) > 1 − ε. Defining W = {(x , t) : a1 − K2 − β t < x <

a2+ K2+ β t} and applying Lemma 4.4 to the pairs ξ12,ξ2 and ξ21,ξ2, we get that

on G1 ∩G2, {(x , t) : ξ2
t (x) = 1} ⊂W. (4.1)

Also define

G3 = {∃b1 ∈ [a1− K , a1− K + K1] : b1 forms a β -descendancy barrier};

G4 = {∃b2 ∈ [a2+ K − K1, a2+ K] : b2 forms a β -descendancy barrier}.
The choice of K1 and β gives P(G3),P(G4) > 1− ε. Put W+ = {(x , t) : a1 − K2 − 2R− β t < x <

a2+ K2+ 2R+ β t}; a consequence of the definition of descendancy barriers is that

on G3 ∩G4, ∀(x , t) ∈W+, ξ1
t (x) = 0⇒ ξ2

t (x) = 0. (4.2)

Indeed, assume that G3 ∩ G4 occurs, (x , t) ∈ W+ and ξ2
t (x) 6= 0. Then, there exist y ∈ Z with

ξ2
0(y) 6= 0 and a path γ : [0, t]→ Z determined by the graphical construction and connecting (y, 0)

to (x , t), as explained in the beginning of Section 2. We can also choose b1, b2 as in the definition
of G3,G4. Using the facts that (x , t) ∈W+, b1 ∈ [a1−K , a1−K+K1], b2 ∈ [a2+K−K1, a2+K], we
see that at least one of the following five cases hold:

• y ∈ [a1− K , a2+ K]. Then, ξ1
0(y) 6= 0, so ξ1

t (y) 6= 0.

• (x , t) ∈ V (b1). Then, by (D1) in the definition of descendancy barrier we must have (b1, 0)↔
(x , t); since ξ1

0(b1) 6= 0 also holds, we get ξ1
t (x) 6= 0.

• (x , t) ∈ V (b2). We get ξ1
t (x) 6= 0 as in the previous case.

• y − b1, x − b1 have opposite signs. Then, by (D2) we have (b1, 0)↔ (x , t), so ξ1
t (x) 6= 0.

• y − b2, x − b2 have opposite signs. We get ξ1
t (x) 6= 0 as in the previous case.

We now claim that, on ∩4
i=1Gi , {(x , t) : ξ1

t (x) = 1} = {(x , t) : ξ2
t (x) = 1}. This claim, together

with Lemma 4.1, will imply that with probability larger than 1− 4ε, the 1’s die out in ξ1, and we
will be done. To prove the claim, we start observing that {(x , t) : ξ1

t (x) = 1} ⊃ {(x , t) : ξ2
t (x) = 1}

always holds by Lemma 4.4. To establish the opposite inclusion in the occurrence of the good events,
suppose to the contrary that for some t, {ξ1

t = 1} * {ξ2
t = 1}. Then we can find (x∗, t∗) such that

ξ1
t∗(x
∗) = 1,ξ2

t∗(x
∗) 6= 1 and {ξ1

t = 1} = {ξ2
t = 1} ∀t ∈ [0, t∗). We must then have ξ1

t∗−(x
∗) = 0,

since ξ1
t∗−(x

∗) = 2 would be incompatible with ξ1
t∗(x
∗) = 1 and ξ1

t∗−(x
∗) = 1 would imply, by the

choice of t∗,ξ2
t∗−(x

∗) = 1 and then ξ2
t∗(x
∗) = 1, a contradiction. Now, since ξ1

t∗−(x
∗) = 0 and

ξ1
t∗(x
∗) = 1 there must exist y∗ with |y∗ − x∗| ≤ R such that ξ1

t∗−(y
∗) = ξ1

t∗(y
∗) = 1 and there

exists an arrow from (y∗, t∗) to (x∗, t∗). But then, again by the choice of t∗,ξ1
t∗−(y

∗) = 1 implies
ξ2

t∗−(y
∗) = 1, so ξ2

t∗(y
∗) = 1. Using (4.1), we can then conclude that (y∗, t∗) ∈W , so (x∗, t∗) is in

the interior of W+. This, (4.2) and ξ1
t∗−(x

∗) = 0 imply that ξ2
t∗−(x

∗) = 0, so ξ2
t∗(x
∗) = 1, another

contradiction. This completes the proof.

To prove the converse, we start noting that the case where there are infinitely many 1’s in ξ0 is
trivial because then, at any t ≥ 0 there almost surely exists some x ∈ Z such that ξ0(x) = 1 and
no death mark is present on {x} × [0, t], so the 1’s are almost surely always present. We must thus
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show that, if condition (A) of the theorem is satisfied but condition (B) is not, then the 1’s have
positive probability of surviving. We will first treat the case of ξ0 = ξ

21K
0 := 2 · 1(−∞,0) + 1[0,K]; let

us show that
lim

K→∞
P(∀t, {ξ21K

t = 1} 6= ;) = 1. (4.3)

Fix ε > 0 and choose β , K1 and K2 as before. We will need another constant K3 whose choice will
depend on the following. Let α > 0 be the edge speed for our contact process (i.e., the almost sure
limit as t → ∞ of 1

t
sup{y : ∃x ∈ (−∞, 0] : (x , 0)↔ (y, t)}. See Theorem 2.19 in [12] for the

existence of the limit; the proof is easily seen to apply to our non-nearest neighbor context). Given
α′ ∈ (0,α), we have

lim
K ′→∞
P(∀t, ∃x ∈ [0, K ′], y > α′ t : (x , 0)↔ (y, t)) = 1. (4.4)

This is a consequence of the definition of α and the fact that limK ′→∞ P(∀t, ∃x ∈ [0, K ′], y ∈ Z :
(x , 0)↔ (y, t)) = 1; we omit the details. We may assume that the β we have chosen is strictly
smaller than α: it is readily verified that if x ∈ Z forms a β -descendancy barrier, then it forms a β ′-
descendancy barrier for any β ′ < β ; hence, we may decrease β if required. We choose K3 such that,
putting K ′ = K3 and α′ = β , the probability in (4.4) is larger than 1− ε. Set K = K1+ K2+ K3+2R.

Recycling some of the notation from before, define (ξ21
t ) with the same Harris construction as that

of (ξt), with
ξ21

0 = 2 ·1(−∞,0)+1[0,∞)

and the events

G1 = {∀t, sup{ξ21
t = 2}< K2+ β t};

G2 = {∃x ∈ (K2+ 2R, K2+ 2R+ K1] : x forms a β -descendancy barrier};
G3 = {∀t, ∃x ∈ (K2+ 2R+ K1, K], y > K2+ 2R+ K1+ β t : (x , 0)↔ (y, t)}.

By the choices of K1, K2 and K3, we get P(∩3
i=1Gi) > 1− 3ε. We can argue as before to the effect

that, on G1∩G2, {ξ21
t = 2}= {ξt = 2} holds for all t, so sup{ξt = 2}< K2+β t for all t. Additionally,

on G3, for every t there exists y > K+β t such that ξt(y) 6= 0, so it must be the case that ξt(y) = 1.
This shows that for all t, {ξt = 1} 6= ;. The proof of (4.3) is now complete.

Now assume that ξ0 ∈ {0,1,2}Z is a general configuration containing at least one 1 and satisfying
(A) but not (B) in the statement of the theorem. Reflecting ξ0 about 0 if necessary, we may assume
that there are finitely many 2’s in [0,∞) (such a reflection does not alter the property we want
to prove, since the law of the Harris construction is invariant by it). Choose K > 0 such that
P(∀t, {ξ21K

t = 1} 6= ;) > 0; this is possible by (4.3). Next, choose a ∈ Z such that ξ0(a) = 1. Then,
with positive probability, ξ1 satisfies (A′′) and (B′′) in Lemma 4.5 corresponding to the chosen a and
K . On this event, we can use Lemma 4.4 with ξ1,ξa,21K , where ξa,21K = 2 · 1(−∞,a) + 1[a,a+K] to
conclude that the 1’s survive with positive probability. Together with the Markov property, this gives

P(∀t, {ξt = 1} 6= ;)≥ P(ξ1 satisfies (A′′), (B′′)) · P(∀t, {ξa,21K = 1} 6= ;)> 0.

Proof of Theorem 1.2. Choose K such that the probability in (4.3) is larger than 2/3. Using the
Markov property and Lemma 4.5(iii.) as in the end of the above proof, it suffices to prove the
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statement for ξ0 = i ·1[−K−1,−1]+ j ·1[0,K], with {i, j} = {1,2}. Let ξi jK

0 = i ·1(−∞,0)+ j ·1[0,K], ξ
Ki j

0 =

i · 1[−K−1,−1] + j · 1[0,∞); again we will consider the processes (ξi jK
t ), (ξ

Ki j
t ), (ξt) defined with the

same Harris construction. By the choice of K , the event {∀t, {ξi jK
t = j} 6= ;} ∩ {∀t, {ξKi j

t = i} 6= ;}
has positive probability. Comparing the two pairs ξi jK ,ξ and ξKi j ,ξ via Lemma 4.4, we see that
{∀t, {ξi jK

t = j} 6= ;} ∩ {∀t, {ξKi j
t = i} 6= ;} ⊂ {∀t, {ξt = j} 6= ;} ∩ {∀t, {ξt = i} 6= ;}, completing the

proof.

5 Interface tightness

We now carry out the proof outlined at the end of the Introduction. It is instructive to restate
Theorem 1.3 in its dualized form, which follows from (2.7):
Theorem 1.3, dual version For any ε > 0, there exists L > 0 such that

P(| sup{x : ηx
t ≤ 0} − inf{x : ηx

t > 0}|> L)< ε for every t ≥ 0.

We start with two Lemmas concerning the expectation of the distance between two first ancestors.
Lemma 5.1 shows a resemblance to the case of two random walks that evolve independently until
they meet, at which time they coalesce. Lemma 5.2 is a generalization that allows us to integrate
over the event of death of a preassigned set of sites.

Lemma 5.1. There exists C > 0 such that, for all x < y ∈ Z and t ≥ 0,

(i.) E
�

|ηy
t −ηx

t | )≤ C(y − x);

(ii.) E
�

(η
y
t −ηx

t )
−)≤ C , where z− =−(z ∧ 0).

Proof. By translation invariance, it suffices to treat x = 0 < y . It also suffices to prove (i.) and (ii.)
for t sufficiently large (not depending on x , y), because

E
�

|ηy
t −η0

t |
�

≤ y +E
�

|η0
t |
�

+E
�

|ηy
t − y |

�

≤ y +E(M0
t ) +E(M

y
t ) = y + 2E(M0

t );

E
�

(η
y
t −η0

t )
−)≤ E( (η0

t )
+ ) +E( (ηy

t − y)− )≤ E(M0
t ) +E(M

y
t ) = 2E(M0

t ),

and these expectations grow polynomially in t, by comparisons with Poisson random variables.
Finally,

E
�

|η0
t −η

y
t |
�

=
∑

z,w

|z −w| P
�

η0
t = z, ηy

t = w
�

=
∑

z,w

|z −w| P
�

η0
t = z, ηy

t = w, T (z,t) = T (w,t) =∞
�

P
�

T (z,t) = T (w,t) =∞
�−1

≤ C E
�

|η0
t −η

y
t |, T0 = T y =∞

�

;

the second equality follows from independence of H[0,t] and θ (0, t)(H), and the inequaility follows
from (2.2). We can treat E

�

(η
y
t − η0

t )
−) similarly, so it suffices to prove (i.) and (ii.) on the event

{T0 = T y =∞}.
(i.) We have

E
�

|ηy
t −η0

t |; T0 = T y =∞
�

≤ y +E
�

|η0
t |; T0 = T y =∞, J0,y > t

�

+E
�

|ηy
t − y |; T0 = T y =∞, J0,y > t

�

= y + 2E
�

|η0
t |; T0 = T y =∞, J0,y > t

�

(5.1)

2246



by symmetry. By Cauchy-Schwarz, this last expectation is less than

�

E
�

(η0
t )

2; T0 = T y =∞, J0,y > t
�

· P(T0 = T y =∞, J0,y > t)
�

1
2 . (5.2)

Let us estimate the expectation.

E
�

(η0
t )

2; T0 = T y =∞, J0,y > t
�

<
1

P(T0 =∞) ·E
�

(η0
t )

2; T0 = T y =∞, J0,y > t
�

≤ Ẽ0� (η0
t )

2; J0,y > t
�

= Ẽ0((η0
t )

2)− Ẽ0� (η0
t )

2; J0,y ≤ t
�

= Ẽ0�(η0
t )

2�− Ẽ0� (η0
t −η

0
J0,y )

2+ (η0
J0,y )

2+ 2η0
J0,y (η

0
t −η

0
J0,y ); J0,y ≤ t

�

. (5.3)

By Lemma 3.3(ii.), we have

Ẽ0� (η0
t −ηJ0,y )2; J0,y ≤ t

�

=

∫ t

0

Ẽ0�(η0
t−s)

2 � · P̃0(J0,y ∈ ds), (5.4)

Ẽ0� η0
J0,y (η

0
t −η

0
J0,y ); J0,y ≤ t

�

= 0. (5.5)

Using (5.4) and (5.5) and ignoring the term (η0
J0,y )

2, the expression in (5.3) is less than

Ẽ0�(η0
t )

2 �−
∫ t

0

Ẽ0�(η0
t−s)

2 � · P̃0(J0,y ∈ ds)

≤ Ẽ0�(η0
t )

2� · P̃0(J0,y > t) +

∫ t

0

Ẽ0�(η0
t )

2− (η0
t−s)

2� · P̃0(J0,y ∈ ds)

≤ (C1 t + C2)
C y
p

t
+

∫ t

0

(C1s+ C2) P̃(J
0,y ∈ ds)

by Lemma 2.5(ii.) and Lemma 3.3(i.). Now we can continue as in Lemma 1 in [5]: the above is less
than

C y
p

t +
C y
p

t
+ C

∫ t

0

P̃(J0,y > u) du+ C ≤ C y
p

t + C

∫ t

0

y
p

u
du≤ C y

p
t

when t ≥ 1. This and another application of Lemma 3.3(i.) show that (5.2) is less than
q

C y
p

t · C yp
t
≤ C y; going back to (5.1), we get

E
�

|η0
t −η

y
t |; T0 = T y =∞

�

≤ C y.

(ii.) To treat the expectation on the event {T0 = T y =∞}, we will separately consider two cases,
depending on whether or not the ancestor processes of 0 and y had a joint renewal in inverted order
before time t. To this end, define

τ∗ = inf
§

τn : ηy

τ
0,y
n

< η0
τ

0,y
n

ª
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(we set τ∗ =∞ if the set is empty). Now,

E
�

(η
y
t −η0

t )
−; T0 = T y =∞, τ∗ ≤ t

�

≤
∑

z<w

∫ t

0

Ẽz,w� |ηw
t−s −η

z
t−s|

�

· P
�

T0 = T y =∞, ηy

τ∗ = z, η0
τ∗ = w, τ∗ ∈ ds

�

(5.6)

For each z, w, we have Ẽz,w(|ηw
t−s − ηz

t−s|) ≤ P(T z = T w =∞)−1 · C |w − z| ≤ C |w − z| by part (i.)
and (2.2). Then, (5.6) is less than

C
∑

z<w

∫ t

0

(w− z) P
�

T0 = T y =∞, ηy

τ∗ = z, η0
τ∗ = w ;τ∗ ∈ ds

�

≤ C
∑

z<w

(w− z) P
�

T0 = T y =∞, ηy

τ∗ = z, η0
τ∗ = w, τ∗ <∞

�

= C E
�

(η
y

τ∗ −η
0
τ∗)
−; T0 = T y =∞, τ∗ <∞

�

, (5.7)

which is bounded by Lemma 6.6.

Finally, as in Lemma 2.5, define on the event {T0 = T y =∞} the random variables τ0,y
t− ,τ0,y

t+ and

φt = M

�

η0

τ
0,y
t−

, τ0,y
t−

�

τ
0,y
t+

∨M

�

η
y

τ
0,y
t−

, τ0,y
t−

�

τ
0,y
t+

.

We then have
�

�

�

�

η0
t −η

0
τ

0,y
t−

�

�

�

�

,

�

�

�

�

η
y
t −η

y

τ
0,y
t−

�

�

�

�

≤ φt

on {T0 = T y =∞}. Since on {T0 = T y =∞,τ∗ > t}, η0
τ

0,y
t−
≤ ηy

τ
0,y
t−

also holds, we have

E
�

(η
y
t −η0

t )
−; T0 = T y =∞, τ∗ > t

�

≤ E
�

2φt ; T0 = T y =∞, τ∗ > t
�

. (5.8)

As in the proof of Lemma 2.5, we can then show that E(φt ; T0 = T y =∞) is bounded uniformly in
y and t. Putting together (5.7) and (5.8), we get the result.

Lemma 5.2. There exist c, C > 0 such that, for all x < y ∈ Z, t ≥ 0 and finite A⊂ Z,
(i.) E( |ηy

t −ηx
t |; TA < t )≤ C(y − x)e−c|A|;

(ii.) E( (ηy
t −ηx

t )
−; TA < t )≤ Ce−c|A|.

Proof. Since both estimates are treated similarly, we will only show part (ii.):

E( (ηy
t −ηx

t )
−; TA < t )

=

∞
∑

k=1

E
�

(η
y
t −ηx

t )
−; TA < t, M x

TA ∨M
y

TA = k
�

≤
∞
∑

k=1

k
∑

i=−k

k
∑

j=−k

E
�
�

η
(y+ j,TA)

t−TA −η(x+i,TA)

t−TA

�−
; TA < t, M x

TA ∨M
y

TA = k

�

≤
∞
∑

k=1

∫ t

0







k
∑

i=−k

k
∑

j=−k

E((ηy+ j
t−s −ηx+i

t−s )
−)






P( TA ∈ ds, M x

TA ∨M
y

TA = k )
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If x + i < y + j, then E
� �

η
y+ j
t−s − ηx+i

t−s

�− � ≤ C by Lemma 5.1(ii.). If x + i > y + j, since we also

have (x + i)− (y+ j)< 2k, we get E
�

�

�

�η
y+ j
t−s −ηx+i

t−s

�

�

�

�

≤ 2Ck by Lemma 5.1(i.). Hence, in all cases

the expectation is less than Ck, and the above sum is less than

C

∞
∑

k=1

k3 P( TA < t, M x
TA ∨M

y

TA = k )≤ C E
�

(M x
TA ∨M

y

TA)
3; TA <∞

�

≤ C E
�

(M x
TA)

3; TA <∞
�

+ C E
�

(M
y

TA)
3; TA <∞

�

. (5.9)

Now, by Cauchy-Schwarz,

E
�

(M x
TA)

3; TA <∞
�

≤
�

E
�

(M x
TA)

6; TA <∞
�

· P
�

TA <∞
�
�1/2

. (5.10)

The probability in the right-hand side decreases exponentially with |A| (see Section 11b in [6]).
Using the bound

P
�

M x
TA > l, TA <∞

�

≤ P
�

l

σ
< TA <∞

�

+ P
�

M0
l/σ
> l
�

with large σ and using (2.3) again, we see that the expectation on the right-hand side of (5.10) is

uniformly bounded in x and A. This and the same bound applied to E
�

(M
y

TA)
3; TA <∞

�

in (5.9)

complete the proof.

Let z ∈ Z, z > 0 and t ≥ 0. The following lemma shows that the expected number of x ∈ Z such that
ηx

t > 0≥ ηx+z
t is bounded uniformly in z and t. It also illustrates the usefulness of Lemma 5.2.

Lemma 5.3. There exist c, C > 0 such that, for any integer z ≥ 1, real t ≥ 0 and finite A⊂ Z,

(i.)
∑

x∈Z
P( ηx

t > 0≥ ηx+z
t , T x+A < t )≤ Ce−c|A|;

(ii.)
∑

x∈Z
P( ηx

t ≤ 0< ηx+z
t , T x+A < t )≤ C |z|e−c|A|.

Proof. We start proceeding like in Lemma 4 in [5], noticing that, by translation invariance,

P( ηx
t > 0≥ ηx+z

t , T x+A < t ) = P( η0
t >−x ≥ ηz

t , TA < t ),

P( ηx
t ≤ 0< ηx+z

t , T x+A < t ) = P( η0
t ≤−x < ηz

t , TA < t )

and summing over x to obtain
∑

x∈Z
P( ηx

t > 0≥ ηx+z
t , T x+A < t ) = E

�

(ηz
t −η

0
t )
−; TA < t ),

∑

x∈Z
P( ηx

t ≤ 0< ηx+z
t , T x+A < t ) = E

�

|η0
t −η

z
t |; TA < t

�

;

see Lemma 4 in [5] for more details. Also recall our conventions about the △ state in Remark 2.4.
Now, it suffices to apply Lemma 5.2.
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Fix 0< s < t. Given integers x < y , we say that x and y make an [s, t]-inversion if η(x ,s)
t > 0≥ η(y,s)

t .
Given A⊂ Z, we say that A contains an [s, t]-inversion if there is some pair x , y ∈ A such that x and
y make an [s, t]-inversion. Of course,

∃ x , y ∈ A, x < y : η(x ,s)
t > 0≥ η(y,s)

t ⇔
∃ x , y ∈ A, x < y : η(x ,s)

t > 0≥ η(y,s)
t , T (z,s) < t ∀z ∈ (x , y)∩ A.

or, in other words,

Lemma 5.4. A ⊂ Z contains an [s, t]-inversion if and only if there exist x , y ∈ A, x < y such that x

and y make an [s, t]-inversion and T (z,s) < t for every z ∈ (x , y)∩ A.

Again fix 0 < s < t. For x ∈ Z such that ηx
∗,t 6= ;, let n be the smallest integer such that (ηx

n,s, s)
survives up to time t (as in the statement of Lemma 2.2(ii.)). Define Rx

s,t = η
x
n,s. Then define

Rs,t = {Rx
s,t : x ∈ Z,ηx

∗,t 6= ;}. This will be understood as a set of “relevant” sites. The reason is that,

by Lemma 2.2 we have ηx
t = η

(Rx
s,t ,s)

t for all x such that ηx
∗,t 6= ;, hence η(y,s)

t is relevant to determine
the values of {ηx

t : x ∈ Z} if and only if y ∈ Rs,t .

Finally define
Gs,t =

¦

Rs,t contains no [s, t]-inversions
©

. (5.11)

The following is a direct consequence of the equality ηa
t = η

(Ra
s,t , s)

t .

Lemma 5.5. Let a, b ∈ Z, a < b. On Gs,t ∩ {T a > t} ∩ {T b > t}, a and b make a [0, t]-inversion if

and only Ra
s,t > Rb

s,t and η
(Ra

s,t , s)

t > 0≥ η
�

Rb
s,t , s

�

t .

Proposition 5.6. lim
s→∞

inf
t≥s
P(Gs,t) = 1.

Proof. We fix s < t and an integer N to be chosen later. We will write G ,R instead of Gs,t ,Rs,t , and
in general omit the dependence on s, t, N .

Fix d with 1 > d ≥ P(0 ∈ {ηx
n,s : x ∈ Z, 1 ≤ n ≤ N}) and let X be a random variable with uniform

distribution on {0, . . . , ⌈1/d⌉ − 1} and independent of the Harris construction. Define

R̂= {ηx
n,s : x ∈ Z, 1≤ n≤ N} ∪ (X + ⌈1/d⌉Z).

R̂ is a random subset of Z; its law is invariant with respect to shifts in Z and P(0 ∈ R̂) ≤ 2d.
Additionally, it only depends on the Harris construction on times in [0, s], and of course on X . Put
S = {x ∈ Z : η(x ,s)

∗,t 6= ;}. Note that by the definition of R, we have R⊂ S ; also, by our conventions,

when we say for example η(x ,s)
t ≥ 0, we are implying that x ∈ S .

We will proceed in three steps.

Step 1. We start establishing an upper bound for the probability of R̂ containing an [s, t]-inversion.
Using Lemma 5.4, we have

¨

R̂ contains an
[s, t]-inversion

«

⊂
¨

∃x , y ∈ R̂, x < y : (x , y)∩ R̂∩S = ;,
x , y make an [s, t]-inversion

«

,
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so that

P

�

R̂ contains an
[s, t]-inversion

�

≤
∑

x<y

P( [x , y]∩ R̂∩S = {x , y}, η(x ,s)
t > 0≥ η(y,s)

t )

≤
∑

x∈Z,z≥1

∑

A⊂(0,z)

P
�

[x , x + z]∩ R̂= {x , x + z} ∪ (x + A), x + A⊂ S c , η(x ,s)
t > 0≥ η(x+z,s)

t

�

=
∑

z,A

P
�

[0, z]∩ R̂= {0, z} ∪ A
�

·
∑

x∈Z
P
�

T x+A < t − s, ηx
t−s > 0≥ ηx+z

t−s

�

,

where we have written y = x + z, used the facts that {[x , x + z] ∩ R̂ = {x , x + z} ∪ (x + A)} and
{x+A⊂ S c , η(x ,s)

t > 0≥ η(x+z,s)
t } are independent and that P([x , x+z]∩R̂ = {x , x+z}∪(x+A)) =

P([0, z] ∩ R̂ = {0, z} ∪ A) by translation invariance. Applying Lemma 5.3 to the inner sum, we get
that the above is less than

C
∑

z,A

e−c(#A) P
�

[0, z]∩ R̂= {0, z} ∪ A
�

≤ C
∑

k≥0

e−ck
∑

z≥k+1

∑

A⊂(0,z):#A=k

P
�

[0, z]∩ R̂= {0, z} ∪ A
�

≤ C
∑

k≥0

e−ckP(0 ∈ R̂)≤ Cd.

We thus have
P( R̂ contains an [s, t]-inversion )≤ Cd. (5.12)

Step 2. Our next goal is to bound the probability of

{R∪ R̂ contains an [s, t]-inversion, R̂ contains no [s, t]-inversion} (5.13)

We claim that this event is contained in
¨

∃x < y, x ∈ R− R̂, (x , y)∩ R̂∩S = ;,
x , y make an [s, t]-inversion

«

⋃

¨

∃x < y, y ∈ R− R̂, (x , y)∩ R̂∩S = ;,
x , y make an [s, t]-inversion

«

. (5.14)

Indeed, assume that (5.13) occurs. Then, by Lemma 5.4, there exist x < y in R ∪ R̂ such that
(x , y) ∩ R̂ ∩ S ⊂ (x , y) ∩ (R ∪ R̂) ∩ S = ; and x and y make an [s, t]-inversion. We cannot have
x , y ∈ R̂, because this would imply that R̂ contains an [s, t]-inversion, contradicting the definition
of the event in (5.13). Hence, at least one of x , y is in R− R̂, so at least one of the events in (5.14)
occurs.
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The probability of the first event in (5.14) is less than
∑

x<y

P
�

x ∈ R− R̂, (x , y)∩ R̂∩S = ;, η(x ,s)
t > 0≥ η(y,s)

t

�

≤
∑

x∈Z,z≥1

∑

A⊂(0,z)

∑

a∈Z,m>N

∑

(a1,...,am−1)∈Zm−1

P







ηx+a
m,s = x , ηx+a

i,s = x + ai ∀i < m,
(x , x + z)∩ R̂= x + A,

x + ai /∈ S ∀i < m, x + A⊂ S c , η(x ,s)
t > 0≥ η(x+z,s)

t







≤
∑

z,A,a,m,(ai)

P
�

ηa
m,s = 0, ηa

i,s = ai ∀i < m, (0, z)∩ R̂= A
�

·
∑

x∈Z
P
�

T x+ai < t − s ∀i < m, T x+A < t − s, ηx
t−s > 0≥ ηx+z

t−s

�

≤ C
∑

z,A,a,m,(ai)

e−c((#A)∨m) P
�

ηa
m,s = 0, ηa

i,s = ai ∀i < m, (0, z)∩ R̂= A
�

≤ C
∑

z,A,a,m

e−c((#A)∨m) P
�

ηa
m,s = 0, (0, z)∩ R̂= A

�

= C
∑

k≥0

∑

m>N

e−c(k∨m)
∑

a∈Z

∑

z≥k+1

∑

A⊂(0,z):#A=k

P
�

0= ηa
m,s, (0, z)∩ R̂= A

�

= C
∑

k≥0

∑

m>N

e−c(k∨m)
∑

a∈Z

∑

z≥k+1

P
�

0= ηa
m,s, #((0, z)∩ R̂) = k

�

. (5.15)

Now note that, since X + ⌈1/d⌉Z ⊂ R̂, there are no intervals of length larger than ⌈1/d⌉ that do not
intersect R̂. Hence, when z > k+2

d
, we have #((0, z)∩ R̂)> k, hence P(#((0, z)∩ R̂) = k) = 0. When

z ≤ k+2
d

, we use the bound P(0= ηa
m,s,#((0, z)∩ R̂) = k)≤ P(0= ηa

m,s). So the expression in (5.15)
is less than

C
∑

k≥0

∑

m>N

k+ 2

d
e−c(k∨m)

∑

a∈Z
P
�

0= ηa
m,s

�

. (5.16)

The inner sum is less than
∑

a∈Z
P
�

0 ∈ ηa
∗,s
�

= E #{a ∈ Z : 0 ∈ ηa
∗,s}.

By a routine comparison with a Poisson random variable, the latter is less than Cs for some C > 0.
Hence the expression in (5.16) is less than

Cs

d

∑

k≥0

∑

m≥N

(k+ 2)e−c(k∨m) ≤
Cs

d

∑

k≥0

(k+ 2)e−(c/2)k
∑

m≥N

e−(c/2)m ≤ C
s

d
e−cN

for some c, C > 0.

By symmetry, the same bound applies to the second event in (5.14), so we have:

P
�

R∪ R̂ contains an [s, t]-inversion, R̂ contains no [s, t]-inversion
�

≤ C
s

d
e−cN . (5.17)
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Step 3. From (5.12) and (5.17), we have

P(G c)≤ P
�

R∪ R̂ contains an
[s, t]-inversion

�

≤ P
�

R̂ contains an
[s, t]-inversion

�

+ P

�

R∪ R̂ contains an [s, t]-inversion,
R̂ contains no [s, t]-inversion

�

≤ C̄d + C̄
s

d
e−c̄N

for some c̄ > 0,0< C̄ <∞. Since these bounds are uniform in t,

sup
t≥s

P(Gs,t)≤ C̄d + C̄
s

d
e−c̄N .

Take C ,γ as in Proposition 3.5 and set N = ⌈sγ/2⌉. Recall from the beginning of this proof that d

must satisfy
P(0 ∈ {ηx

n,s : x ∈ Z, 1≤ n≤ N})≤ d < 1.

By Proposition 3.5, we may put d = C N

sγ
(provided that s is large enough so that this is less than 1).

We then conclude that sup
t≥s

P(G c
s,t)≤ C̄C

⌈sγ/2⌉
sγ

+ C̄
s1+γ

C⌈sγ/2⌉
e−c̄⌈sγ/2⌉ −→ 0 as s→∞.

Following the terminology in [5], define Bt = #{(x , y) : x < y,ηx
t > 0 ≥ ηy

t }. Our next-to-last
result before the proof of Theorem 1.3 will be

Proposition 5.7. The process (Bt)t≥0 is tight.

Proof. Let ε > 0. By Proposition 5.6, there exists s such that P(G c
s,t) < ε/2 for any t > s. Fix t > s.

Using Lemma 5.5, we have

E(Bt ;Gs,t) =
∑

a<b

P
�

ηa
t > 0≥ ηb

t , Gs,t
�

≤
∑

a<b

∑

x<y

P
�

Ra
s,t = y, Rb

s,t = x , η(x ,s)
t ≤ 0< η(y,s)

t

�

≤
∑

a<b

∑

x<y

P
�

y ∈ ηa
∗,s, x ∈ ηb

∗,s, η
(x ,s)
t ≤ 0< η(y,s)

t

�

≤
∑

z≥1

∑

x∈Z
P
�

η
(x ,s)
t ≤ 0< η(x+z,s)

t

�

∑

a<b

P
�

x + z ∈ ηa
∗,s, x ∈ ηb

∗,s
�

. (5.18)

The inner sum is equal to
∑

a<b P
�

z ∈ ηa
∗,s, 0 ∈ ηb

∗,s
�

by translation invariance. By (2.1), there exist
c (that depends on s) such that

P
�

z ∈ ηa
∗,s
�

∧ P
�

0 ∈ ηb
∗,s
�

≤ P(M0
s > |a− z|)∧ P(M0

s > |b|)≤ e−c(|a−z|∨|b|),

so
∑

a<b

P
�

z ∈ ηa
∗,s, 0 ∈ ηb

∗,s
�

≤
∑

a<b

(e−c(|a−z|∨|b|)).
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We write a = (i − j)/2, b = (i + j)/2 with i, j ∈ Z, j ≥ 0 and use the bound e−c|z−a| if i ≤ z/2 and
e−c|b| if i > z/2; the above is less than

∑

i≤z/2

∑

j≥0

e−c(z−(i− j)/2)+
∑

i>z/2

∑

j≥0

e−c((i+ j)/2) ≤ C







∑

i≤z/2

e−c(z−i/2)+
∑

i>z/2

e−ci/2






≤ Ce−cz .

Using this and Lemma 5.3, we see that the expression in (5.18) is less than

C
∑

z≥1

e−cz
∑

x∈Z
P
�

η
(x ,s)
t ≤ 0< η(x+z,s)

t

�

≤ C
∑

z≥1

ze−cz <∞.

Recall that the choice of t in (s,∞) was arbitrary, so the above derivation shows that we can choose

L large enough that
E(Bt ;Gs,t )

L
< ε

2
for all t > s, and thus

P(Bt > L)≤ P(G c
s,t) + P(Bt > L,Gs,t)≤

ε

2
+
E(Bt ;Gs,t)

L
< ε,

Noticing that the trajectories of (Bt) are right continuous with left limits, we can increase L if
necessary so that this inequality also holds for t ≤ s, completing the proof.

Proof of Theorem 1.3. We separately show that (ρt ∧ 0) and (ρt ∨ 0) are tight. We start with the
first. Given L > 0, for the event {ρt > L} to occur, there necessarily exist two sites x , y such that
y − x > L and ηy

t ≤ 0 < ηx
t . If N < L and {Bt < N} also occurs, then we cannot have more than N

sites z ∈ (x , y) such that ηz
∗,t 6= ;, because every such site makes a [0, t]-inversion either with x or

with y and thus increases Bt by one. So we have, for all t ≥ 0,

P(Bt < N ,ρt > L)≤
∑

x<y,y−x>L

P
�

ηx
t > 0≥ ηy

t , T̂ (x ,y)\A < t for some A⊂ (x , y),#A< N
�

≤
∑

z>L

∑

A⊂(0,z):#A<N

∑

x∈Z
P
�

ηx
t > 0≥ ηx+z

t , T̂ (x ,x+z)\(x+A) <∞
�

.

Using Lemma 5.3 on the innermost sum and counting the possible choices of A, the above is less
than

C
∑

z>L

��

z

0

�

+ . . .+

�

z

N − 1

��

e−c(z−N),

which tends to 0 as L → ∞. So, given ε > 0, choose N > 0 such that P(Bt ≥ N) < ε/2 ∀t, then
choose L such that P(Bt < N ,ρt > L) < ε/2 ∀t, so that P(ρt > L) ≤ P(Bt ≥ N) + P(Bt < N ,ρt >

L)< ε ∀t, and we are done.

Now we treat (ρt ∨0). This is easier: given L > 0, for {ρt <−L} to occur we must have x < y such
that ηx

t < 0≤ ηy
t and ηw

∗,t = ; ∀w ∈ (x , y). Then, for any t,

P(ρt <−L)≤
∑

x<y,y−x>L

P
�

ηx
t ≤ 0< ηy

t , T̂ (x ,y) < t
�

≤
∑

z>L

∑

x∈Z
P
�

ηx
t ≤ 0< ηx+z

t , T̂ (x ,x+z) < t
�

≤ C
∑

z≥L

ze−cz ,

which tends to zero as L −→∞.
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6 Estimate for a perturbed random walk

In what follows, π and (πz)z∈Z are probability distributions on Z. We assume:

π is symmetric (i.e. π(−x) = π(x) ∀x); (6.1)

π(x),πz(x)> 0 for all x ∈ Z, z ∈ Z− {0}; (6.2)

There exist f , F > 0 such that π(x),πz(x)< Fe− f |x | for all x ∈ Z, z ∈ Z; (6.3)

There exist g, G > 0 such that ||πz −π||T V < Ge−g|z| for all z ∈ Z. (6.4)

Given x ∈ Z, let Px be a probability under which a process (Xn) is a Markov chain with transitions
P(z, w) = πz(w− z) and Px(X0 = x) = 1. Define H0 = inf{n≥ 0 : Xn = 0}.

Theorem 6.1. There exists C > 0 such that, for x ∈ Z,

Px(H0 > N)<
C |x |
p

N
.

The proof of Theorem 6.1 will be carried out in a series of results. Fix L > 0 such that Ge−g L < 1
and let I = [−L, L]. Put εz = Ge−g|z| for z ∈ I c and εz = 1 for z ∈ I . A consequence of (6.4) is that,
for all z ∈ Z, there exist probabilities gz , b1

z , b2
z on Z such that

πz = εz b1
z + (1− εz)gz; (6.5)

π= εz b2
z + (1− εz)gz. (6.6)

(Of course, if z ∈ I we must have b1
z = πz , b2

z = π).

We will construct the process (Xn) coupled with other processes of interest. Let (Xn, Zn) be a Markov
chain on Z× {0,1} with transitions

Q((x , i), (y, j)) =

¨

εx · b1
x(y − x) if j = 1;

(1− εx) · gx(y − x) if j = 0.
(6.7)

We write Px to represent any probability for this chain with X0 = x , regardless of the law of Z0.
This abuse of notation is justified by the fact that Z0 has no influence on the distribution of the other
variables of the chain, nor on the random variables to be defined below. Let (Fn) be the natural
filtration of the chain, and T = inf{n≥ 1 : Zn = 1}.
Let (Ψz)z∈Z be random variables defined on the same probability space as the chain above, indepen-

dent of the chain and with laws Ψz
d
= b2

z . Additionally, let (Φn)n≥0 be a random walk with increment
law π, initial state 0, also defined on the same space as the previous variables and independent of
them. For n≥ 0, define

Yn =

¨

Xn, if n< T ;
XT−1+ΨXT−1

+Φn−T , if n≥ T.
(6.8)

We can use (6.5) and (6.6) to check that under Px , (Xn) is a Markov chain with transitions P(z, w) =

πz(w − z) and initial state x , and (Yn) is a random walk with increment distribution π and initial
state x . They satisfy Xn = Yn on {T > n}.
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We now define some more stopping times. Let HY
0 = inf{n ≥ 0 : Yn = 0}, HI = inf{n ≥

0 : Xn ∈ I},τ0 ≡ 0,τ1 = HI ∧ T and τk+1 = τk + τ1 ◦ θτk
for k ≥ 1, where θt denotes

the shift operation θt((Xn, Zn)n≥0) = (X t+n, Zt+n)n≥0. Note that {τ1 = n} occurs if and only if
X0, . . . , Xn−1 /∈ I , Z1, . . . , Zn−1 = 0 and either Xn ∈ I or Zn = 1 (or both). Also, τk ≤ HI for all k and,
if τk = HI and m > k, then τm = HI . Finally, we have τ1 ≤ HY

0 , because if Yn = 0 for some n, then
either Xn = 0, in which case τ1 ≤ HI ≤ H0 ≤ n, or Xn 6= 0, in which case τ1 ≤ T < n.

We will need the following standard facts about random walk on Z:

Lemma 6.2. (i.) Px(H
Y
0 > N)≤ C |x |p

N
for some C > 0 and all x ∈ Z;

(ii.) E x(#{n< HY
0 : Yn = y})≤ C |y | for some C > 0 and all x , y ∈ Z.

Proof. (i) is in [16]: see P4 in Section 32 and Section 29. For (ii), we have Ex(#{n < HY
0 : Yn =

y}) ≤ Ey(#{n < HY
0 : Yn = y}) = Py(H

Y
0 < HY

y+)
−1, where HY

y+ = inf{n ≥ 1 : Yn = y}, so it suffices

to show that Py(H
Y
0 < HY

y+)> c/y for some c > 0 and all y ∈ Z. This can be done using Thomson’s
Principle for electric networks (see for example [11], Theorem 9.10 and Section 21.2 for the infinite
network case): if y > 0, take the unit flow θ (−→zw) = 1 if z ∈ {1, . . . , y}, w = z − 1 and θ (−→zw) = 0
otherwise, and similarly if y < 0.

Lemma 6.3. (i.) Px(τ1 =∞) = 0 ∀x ∈ Z.
(ii.) There exist c, C > 0 such that Px(|Xτ1

|> r,τ1 < HI)≤ Ce−cr for all x ∈ Z, r ≥ 0.

(iii.) A := supx∈ZE x(|Xτ1
|)<∞.

Proof. For (i.), since τ1 ≤ HY
0 , Px(τ1 > N) ≤ Px(H

Y
0 > N)

N→∞−→ 0 by Lemma 6.2(i.). For (ii.), note
that if x ∈ I , then τ1 = HI = 0 and the stated inequality is trivial. If x /∈ I ,

Px(|Xτ1
|> r,τ1 < HI) = Px(|Xτ1

|> r,τ1 <∞,τ1 < HI)

=

∞
∑

n=0

∑

z∈I c

Px(X0, . . . , Xn ∈ I c , Xn = z, Z1, . . . , Zn = 0, Zn+1 = 1, Xn+1 ∈ I c , |Xn+1|> r)

=

∞
∑

n=0

∑

z∈I c

Px(Y0, . . . , Yn ∈ I c , Yn = z, Z1, . . . , Zn = 0, Zn+1 = 1, Xn+1 ∈ I c , |Xn+1|> r),

simply because the events are the same. This is further equal to

∞
∑

n=0

∑

z∈I c

Px(Y0, . . . , Yn ∈ I c , Yn = z, Z1, . . . , Zn = 0) · Pz(Z1 = 1, X1 ∈ I c , |X1|> r)

≤
∞
∑

n=0

∑

z∈I c

Px(Y0, . . . , Yn ∈ I c , Yn = z) · εz · b1
z {w : |w| ≥ |r − z|},

using (6.7). Since εz b1
z (E) ≤ πz(E) for any event E, we have εz b1

z (E) ≤ εz ∧ πz(E). The above is
less than

∑

z∈I c

�

εz ∧πz{w : |w| ≥ |r − z|}
�

E x(#{n< HY
0 : Yn = z})

≤ C
∑

z∈Z
|z|((Ge−g|z|)∧ (Fe− f |r−z|))≤ Ce−cr ;
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we have used Lemma 6.2(ii.) to bound the expectation. This finishes the proof of (ii.). Finally, we
have

∀x , E x(|Xτ1
|) = E x(|Xτ1

|; τ1 < HI) +E x(|Xτ1
|; τ1 = HI);

the first term can be bounded uniformly in x by summing the two sides of the inequality in (ii.) and
the second term is less than L, so (iii.) is proved.

Corollary 6.4. Increasing L if necessary,

(i.) σ := infx∈Z Px(τ1 = HI <∞)> 0;

(ii.) For all x ,Px(τk < HI)≤ (1−σ)k;

(iii.) For all x ,Px(HI =∞) = 0.

Proof. For (i.), note that

Px(τ1 = HI <∞) = 1− Px(τ1 = HI =∞)− Px(τ1 <∞,τ1 < HI)

= 1− 0− Px(τ1 <∞, |Xτ1
|> L)≥ 1− Ce−cL ,

which can be made positive by increasing L. Now, if k ≥ 1,

Px(τk < HI) = E x(1{τk−1<HI }PXτk−1
(τ1 < HI))≤ (1−σ)Px(τk−1 < HI)

by (i.), and continuing we get (ii.) Finally, note that

Px(HI =∞)≤ Px(HI =∞,τk <∞∀k) +

∞
∑

k=1

Px(HI =∞,τk =∞).

The first term is zero by (ii.) and, using Lemma 6.3(i.),

Px(τk =∞) =
k−1
∑

i=0

Px(τi <∞,τi+1 =∞) =
k−1
∑

i=0

E x(1{τi<∞}PXτi
(τ1 =∞)) = 0,

so (iii.) follows.

Lemma 6.5. There exists C > 0 such that, for all x ∈ Z,

Px(HI > N)≤
C |x |
p

N
.

Proof. If x ∈ I , the left-hand side is zero. Assume that x /∈ I .

Px(HI > N) =Px(HI =∞) +
∞
∑

k=0

Px(HI > N ,τk < τk+1 = HI <∞)

=

∞
∑

k=0

Px

 

k+1
∑

i=1

(τi −τi−1)> N ,τk < τk+1 = HI <∞
!

≤
∞
∑

k=0

k+1
∑

i=1

Px

�

τi −τi−1 >
N

k+ 1
,τk < HI

�
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We will show that, for k ≥ 0 and 1≤ i ≤ k+ 1,

Px(τi −τi−1 > l,τk < HI)≤
C |x |
p

l
(1−σ)k−2 (6.9)

for some C > 0. So the above sum is less than

∞
∑

k=0

k+1
∑

i=1

C |x |
r

k+ 1

t
(1−σ)k−2 ≤

C ′|x |
p

t

as required. To get (6.9), note that, if i ≤ k, by Corollary 6.4(ii.),

Px(τi −τi−1 > l,τk < HI) = E x(1{τi−τi−1>l}PXτi
(τk−i < HI))≤ (1−σ)k−i Px(τi −τi−1 > l),

so for any i ∈ {1, . . . , k+ 1},

Px(τi −τi−1 > l,τk < HI)≤ (1−σ)k−i Px(τi −τi−1 > l). (6.10)

(the bound for i = k+ 1 is trivial, since (1−σ)−1 > 1). Now, using the fact that τi − τi−1 can only
be positive when τi−1 < HI , the inequality τ1 ≤ HY

0 and Lemma 6.2(i.),

Px(τi −τi−1 > l) = E x(1{τi−1<HI } PXτi−1
(τ1 > l))≤ E x(1{τi−1<HI } PXτi−1

(HY
0 > l))

≤ (C/
p

l)E x(1{τi−1<HI } |Xτi−1
|).

If i = 1, the above expectation is equal to |x |1{x∈I c}; if i > 1 it is equal to

E x(1{τi−2<HI } E x

�

|Xτi−1
| ·1{τi−1<HI }|Fτi−2

)
�

= E x

�

1{τi−2<HI } E Xτi−2
(|Xτ1
| ·1{τ1<HI })

�

≤ APx(τi−2 < HI)≤ A(1−σ)i−2

by Lemma 6.3 (iii.) and Corollary 6.4 (ii.). So, for any i ∈ {1, . . . , k+ 1},

Px(τi −τi−1 > l)≤ AC
|x |
p

l
(1−σ)i−2. (6.11)

Putting together (6.10) and (6.11), we get (6.9).

From here to the proof of Theorem 6.1, it is a matter of reapplying the ideas that established Corol-
lary 6.4 and Lemma 6.5, so we simply sketch the main steps.

Define T ′ = inf{n ≥ 0 : {X0, . . . , Xn} ∩ I 6= ;, {X0, . . . , Xn} ∩ I c 6= ;},λ0 = 0,λ1 = T ′ ∧ H0,λk+1 =

λk +λ1 ◦ θλk
for k ≥ 1. From (6.2), we get

δ := inf
x∈I

P(x , 0) = inf
x∈I
πx(−x)> 0. (6.12)

Two consequences are
sup
x∈I

Px(λ1 > N)≤ (1− δ)N (6.13)

and
inf
x∈I
Px(λ1 = H0 <∞)≥ δ. (6.14)
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Now, (6.13) and Corollary 6.4(iii.) together imply

∀x ∈ Z,Px(λ1 =∞) = 0. (6.15)

Also, (6.14) gives
∀x ∈ Z,Px(λk < H0)≤ (1−δ)⌊k/2⌋; (6.16)

this is justified by the fact that, if λk < H0, then at least ⌊k/2⌋ times Xn must have left I without
touching the origin. As in the proof of Corollary 6.4 (iii.), (6.15) and (6.16) are used to establish

∀x ,Px(H0 =∞) = 0. (6.17)

The last ingredient is an analog of Lemma 6.3 (iii.),

B := sup
x∈I

Ex(|Xλ1
|) = sup

x∈I

Ex(|Xλ1
|;λ1 < H0)<∞, (6.18)

which follows from (6.3) and the fact that I is finite.

We can now write

Px(H0 > N) = Px(H0 =∞) +
∞
∑

k=0

Px(H0 > N ,λk < λk+1 = H0 <∞)

and then, as in the preceeding proof, use (6.15), Lemma 6.5, (6.13), (6.16), and (6.18) to show
that the above sum is less than C |x |p

N
for some C > 0.

To conclude, we mention the following result, for use in the proof of Lemma 5.1. We omit its proof
since it is simply a repetition of the above arguments.

Lemma 6.6. Let H(−∞,0) = inf{n : Xn < 0}. Then,

sup
x>0
Ex( |XH(−∞,0)

|; H(−∞,0) < H0 )≤ sup
x>0
Ex |XH(−∞,0)

|<∞.
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