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Abstract

We study lattice trees, lattice animals, and percolation on non-Euclidean lattices that correspond

to regular tessellations of two- and three-dimensional hyperbolic space. We prove that critical

exponents of these models take on their mean field values. Our methods are mainly combinato-

rial and geometric.
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1 Introduction

Although discrete models of statistical mechanics are usually based on Euclidean lattices such as

Z
d (the d-dimensional hypercubic lattice), some researchers have studied the properties of stan-

dard models on various non-Euclidean lattices. See for example Grimmett and Newman (1990),

Rietman et al. (1992), Swierczak and Guttmann (1996), Benjamini and Schramm (1996, 2001),

Wu (2000), Lalley (1998, 2001), Benjamini et al. (1999), Jonasson and Steif (1999), Pak and

Smirnova-Nagnibeda (2000), Schonmann (2001, 2002), Madras and Wu (2005), Häggström and

Jonasson (2006), and Tykesson (2007).

In this paper we shall study properties of three standard statistical mechanical models on hyperbolic

lattices. Hyperbolic lattices differ from Euclidean lattices in that the number of sites within distance

N of the origin grows exponentially in N rather than polynomially. In this sense hyperbolic lattices

are like infinite regular trees, but unlike trees they have cycles.

The models from statistical mechanics that we study here are lattice animals (finite connected sub-

graphs of the lattice), lattice trees (lattice animals with no cycles), and percolation (a random graph

model in which bonds of the lattice are randomly “occupied” or “vacant”). Lattice animals and lat-

tice trees model branched polymers (see Vanderzande (1998) or Janse van Rensburg (2000)), while

percolation models a random medium (see Grimmett (1999)). We shall prove that these three mod-

els all exhibit “mean field” scaling behaviour on hyperbolic lattices in two and three dimensions. We

expect that this is true in higher dimensional hyperbolic lattices as well, but, as we shall discuss, our

method falls slightly short of proving this.

The paper is organized as follows. This introductory section contains three subsections. Subsection

1.1 introduces the hyperbolic lattices on which we shall work. Subsection 1.2 introduces lattice

animals and lattice trees and presents our main results about them. Subsection 1.3 introduces

percolation and presents our main result about it. Section 2 presents basic definitions and properties

about hyperbolic lattices and hyperbolic geometry that we will need in subsequent sections. Section

3 proves the basic result that lattice animals and lattice trees grow at a well-defined exponential

rate in the number of sites. The proof requires a fair number of intermediate results and definitions.

Although occasionally cumbersome, the work in Section 3 pays big dividends in Sections 4 and 5,

where it leads to relatively direct proofs of the main scaling results about lattice animals (and trees)

and percolation respectively.

Notation: If u is a real number, then ⌊u⌋ denotes the greatest integer less than or equal to u. If S is a

set, then |S| denotes the cardinality of S. For functions f and g defined on a set S, we write f ≍ g

to mean that there exist positive finite constants K1 and K2 such that K1 f (z) ≤ g(z) ≤ K2 f (z) for

all z ∈ S. And if z0 is a specified limit point of S (possibly ∞), then we write f ∼ g to mean that

f (z)/g(z) converges to 1 as z→ z0.

1.1 Hyperbolic Lattices

In this paper we shall explicitly consider specific two- and three-dimensional hyperbolic lattices (see

Section 2 for explicit definitions of this and other terms), although our general approach should

work for other hyperbolic lattices. For that reason we keep our terminology general in places. There

is one place where our argument does not seem to hold above three dimensions (see the remark
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following Lemma 8), but we believe that there is a “better” argument that will allow the rest of our

work to extend (in principle) above three dimensions.

Our two-dimensional lattices are derived from regular tessellations (tilings) of the hyperbolic plane

H
2. These tessellations are characterized by two integers f and v, both greater than 2, such that

( f − 2)(v − 2) > 4. The integer f is the number of sides (or vertices) on each polygonal tile, and

v is the number of tiles that meet at each vertex. The “Schläfli symbol” for this tessellation is { f , v}
(Coxeter 1963). We shall denote the graph consisting of the edges and vertices in the tessellation as

H ( f , v) (see Figure 1). (In Madras and Wu (2005), we used H (v, f ), but in the present paper we

conform to the standard ordering.)

Figure 1: Part of the hyperbolic graphH (3,8). The two heavy lines correspond to two examples of

lattice-lines (see Section 2).

Our three-dimensional lattice is derived from the regular tessellation of hyperbolic three-space H3

by dodecahedra, with all dihedral angles equal to π/2. Thus eight dodecahedra meet at each vertex,

and four dodecahedra share each edge. (The “Schläfli symbol” for the dodecahedron is {5,3}, since

3 pentagons meet at each vertex. The Schläfli symbol for this tessellation is {5,3,4}. See Coxeter

(1956, 1963).) We shall denote the graph consisting of the edges and vertices in this tessellation by

H (5,3,4).

In the {5,3,4} tessellation, consider an arbitrary facet of some dodecahedron tile, and consider the
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plane in H3 that contains this facet. Because the facets of each dodecahedron meet at right angles,

this plane is the union of infinitely many facets of dodecahedra. Indeed, these facets form a {5,4}
tessellation of the given plane (four pentagons meeting at each vertex). Such a plane is called a

“lattice-plane” below (see Section 2 for the formal definition). The existence of these lattice-planes

make it easy to work with the lattice H (5,3,4); for example, every edge that intersects the lattice-

plane has at least one endpoint in the lattice-plane. For convenience, we shall also work with

two-dimensional lattices that have an analogous property: namely, the line in H2 that contains a

given edge of { f , v} should be the union of edges of { f , v}. This is true if and only if v is even (see

Section 3 of Madras and Wu (2005) for more discussion). Henceforth we shall assume that v is even

inH ( f , v).

We close this subsection with remarks on other regular hyperbolic lattices; see Coxeter (1956)

for a fuller survey. There are three other regular tessellations of H 3 by bounded tiles: {3,5,3}
has icosahedra with dihedral angles 2π/3; {4,3,5} has “cubes” with dihedral angles 2π/5; and

{5,3,5} has dodecahedra with dihedral angles 2π/5. There are five regular tessellations of H 4

with bounded tiles, but there are none of H d for any d > 4. We do not know if any of these other

tessellations has a nice “lattice-(hyper)plane” structure similar to that of {5,3,4}.
Of course, one could weaken the regularity assumption and consider tessellations of hyperbolic

space in which the tiles are polytopes but not regular. In this case, we would like the union of

all facets of all tiles to be equal to a (countable) union of hyperplanes. (This condition has been

studied in H2 by Bowen and Series (1992) and in higher dimensions by Bourdon (1993), among

others.) We fully expect our methods to extend to all such tessellations of H2 and H3, although it

seems cumbersome to give our proofs in such generality (analogously, authors often work only on

the lattices Zd rather than on general Euclidean lattices).

1.2 Lattice Animals and Lattice Trees

In this paper we shall use G to denote one of the “lattices” that we are considering: the hyperbolic

lattices H ( f , v) and H (5,3,4), and sometimes the Euclidean lattices Zd . One site of the lattice G
is chosen to be called the “origin”.

A lattice animal is a finite connected subgraph of G . A lattice tree is a lattice animal with no cycles.

For each integer N ≥ 1, let aN (respectively, tN ) denote the number of lattice animals (respectively,

trees) that have exactly N sites and contain the origin. Also, for each lattice site x of G , let aN (x)

(respectively, tN (x)) denote the number of lattice animals (respectively, trees) that have exactly N

sites and contain both x and the origin.

Remark: In the case of the d-dimensional integer lattice Zd in Euclidean space, one often works

with a(0)n , the number of n-vertex lattice animals modulo translation. (That is, if we say that two

animals are equivalent when one is a translation of the other, then a(0)n is the number of equivalence

classes of animals having n vertices.) Then a(0)n = an/n. There is no analogous simple equation if

we replace “translation” by “automorphism”, since some animals are mapped onto themselves by a

non-trivial automorphism. Since translation in non-Euclidean geometry is not as well behaved as

Euclidean translation, we shall not define an analogue of a(0)n for hyperbolic graphs (althoughAL n

in Definition 6 will come closest).

The following basic result extends what we know from Euclidean lattices (Klarner, 1967; Klein,

1981; Janse van Rensburg, 2000) to our hyperbolic graphs. We shall prove it in Section 3.
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Proposition 1. Let G be one of the hyperbolic latticesH ( f , v) orH (5,3,4). Then there exist positive

finite constants λa and λt (depending on the lattice) such that

λa = lim
N→∞

a
1/N
N and λt = lim

N→∞
t

1/N
N . (1)

Moreover, there exist positive finite constants Ba and Bt such that

aN ≤ Baλ
N
a and tN ≤ Btλ

N
t for all N ≥ 1. (2)

The number λa (respectively λt) is called the growth constant for lattice animals (respectively trees)

on the given lattice.

It is generally believed that the numbers of lattice animals and lattice trees have the following

asymptotic behaviour:

an ∼ Kan−θaλn
a and tn ∼ Kt n

−θtλn
t as n→∞. (3)

In Euclidean lattices, the relations of (3) are more commonly written in terms of a(0)n (= an/n) and

t(0)n (= tn/n), viz.

a(0)n ∼ Kan−θ
(0)
a λn

a and t(0)n ∼ Kt n
−θ (0)t λn

t as n→∞, (4)

with θ (0)a = θa + 1 and θ
(0)
t = θt + 1. The constants Ka, Kt , λa, and λt depend on the lattice,

but it is believed that the critical exponents θa and θt depend only on the ambient space. Moreover,

lattice animals and lattice trees are believed to be in the same universality class (Lubensky and

Isaacson, 1979), which would imply that θa = θt for every lattice. The common value of θ (0)a

and θ
(0)
t is believed to equal 1 in any two-dimensional Euclidean lattice, and 3/2 in any three-

dimensional Euclidean lattice (Parisi and Sourlas, 1981; Brydges and Imbrie, 2003). The common

value in d-dimensional Euclidean space is believed to increase steadily with d, until d = 8. Lace

expansion methods have been used to prove that θ (0)a = θ
(0)
t = 5/2 for Zd with sufficiently large

d, as well as for specific Euclidean lattices in every dimension above 8 (see Slade (2006) and the

references therein). Madras (1995) proved that θ (0)a and θ
(0)
t are bounded below by (d − 1)/d in

any d-dimensional Euclidean lattice (in the sense that a(0)n ≤ Can−(d−1)/dλn
a for all n and a constant

Ca, and similarly for t(0)n ). It is also known that θ (0)a and θ
(0)
t are bounded above by 5/2 on very

general lattices (Bovier et al., 1986; Tasaki and Hara, 1987), in the sense of a proven bound on the

generating functions; see Equations (19) and (5).

The value θ (0) = 5/2, or equivalently θ = 3/2, has appeared over the years in many similar problems

of asymptotic enumeration of trees. An early landmark paper was Pólya (1937) (see Pólya and Read

(1987) for translation and discussion), which examined the asymptotic enumeration of classes of

“abstract” graphs (in contrast to lattice animals, which are embeddings of graphs into a lattice

in a geometric space). For example, consider the number of topologically different trees with n

vertices of degree 4 and all other vertices of degree 1 (the “degree” of a vertex is the number

of its neighbours); this counts the number of possible structurally different molecules (isomers)

with the formula CnH2n+2. Polya showed that this sequence has asymptotic behaviour of the form

Kn−3/2τn. Otter (1948) proved the same asymptotic form for the number of trees having n vertices

and maximum degree m (fixed). This result also arises in the context of percolation on a tree:

2023



Equation (10.12) in Grimmett (1999) implies that the rooted infinite binary tree has ( 2n
n−1)/n ∼

Kn−3/24n n-node subtrees containing the root. In many ways, abstract trees are easier to deal with

than lattice trees, since the former need not deal with spatial interaction in the form of mutual

avoidance of branches. For this reason, we sometimes refer to abstract trees as a mean field model

for lattice trees, and we refer to 3/2 as the mean field value of the critical exponent θ for trees (or

animals). (See Borgs et al. (1999) for a different mean field model of lattice trees, in which trees

are embedded in the lattice Zd with self-intersections permitted.) Lattice trees share the following

property with many other important models of statistical mechanics in Euclidean space: there is an

“upper critical dimension” above which the critical exponents take on their mean field values. For

lattice trees and animals, the upper critical dimension is 8. In hyperbolic lattices, in contrast, we

shall prove that the mean field value θ = 3/2 occurs in 2 and 3 dimensions (and we expect it to

hold in every dimension above 1).

We shall prove that θ = 3/2 in the context of generating functions, which is slightly weaker than

Equation (3). To this end, we now define generating functions for trees and animals, as functions

of a continuous variable z. In general, we permit z to be complex, but in the present paper we shall

only deal with real positive values of z.

Definition 2. In the following, z is a complex variable and x is a vertex. The two-point functions are

Ga(x; z) :=

∞
∑

N=1

aN (x) z
N ,

Gt(x; z) :=

∞
∑

N=1

tN (x) z
N for x ∈ V (G ).

The susceptibility functions are

χa(z) :=
∑

x∈V

Ga(x; z) =

∞
∑

N=1

N aN zN ,

χt(z) :=
∑

x∈V

Gt(x : z) =

∞
∑

N=1

N tN zN .

Finally, denote the radii of convergence of χa and χt respectively as

zac :=
1

λa

and ztc :=
1

λt

.

Observe that if the scaling behaviour (3) holds, then we also have

χa(z) ∼ K̃a

�

zac − z
�θa−2

as zր zac = λa, (5)

if θa < 2 (with an analogous assertion for χt).

In Section 4 we shall prove the following result, which implies that if Equation (3) is true in our

hyperbolic lattices, then θa = θt = 3/2.

Theorem 3. For the hyperbolic latticesH ( f , v) in H2 andH (5,3,4) in H3, we have

χa(z) ≍
�

zac − z
�−1/2

(6)

for all z in (zac/2, zac). The corresponding assertion for trees also holds.
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1.3 Percolation

We shall focus on bond percolation here, although changes needed for site percolation seem mini-

mal.

Consider a lattice G and a parameter p ∈ [0,1]. For each bond e of G , let Be be an independent

Bernoulli random variable that equals 1 (respectively 0) with probability p (respectively 1− p). We

say that e is occupied if Be = 1, and vacant if Be = 0. The set of occupied edges induces a subgraph

of G , and the connected components of this random subgraph are called the percolation clusters.

The interesting objects in this model are the large clusters; in particular, can clusters be infinite?

We write Pp to denote the probability measure of the above model (i.e. of the collection of all Be ’s),

and Ep to denote the corresponding expectation. For a vertex x ∈ V , we write C (x) to denote the

percolation cluster containing x . A fundamental quantity is the function

θ (p) := Pp{ |C (0)| = ∞},

the probability that the origin is connected to infinitely many sites via paths of open bonds. We

define the critical probability pc by

pc := inf{ p ∈ [0,1] : θ (p)> 0 }.

Standard arguments (see for example Section 1.4 of Grimmett (1999)) show that 0< pc < 1 for hy-

perbolic lattices (as well as many other lattices). In addition, we define the percolation susceptibility

function

χ(p) := Ep(|C (0)|),
and, for q ∈ (0,1), the function

θ (p,q) := Ep

�

1− (1− q)|C (0)|
�

. (7)

It is of major interest to understand the scaling properties of the above functions for p near pc . The

scaling behaviours are described by critical exponents γ, ∆, δ, and β , among others (see Grimmett

(1999) for a full discussion). The critical exponent γ may be defined by the property χ(p) ∼
(pc − p)−γ as p ↑ pc; we shall use the slightly weaker definition

χ(p) ≍ (pc − p)−γ for p ∈ (0, pc). (8)

In particular, the assertion “γ = 1” means “the scaling relation (8) holds with γ = 1”. Similarly, we

define β , δ, and ∆ by

θ (p) ≍ (pc − p)β for p ∈ (pc , 1); (9)

θ (pc ,q) ≍ q1/δ for 0< q < 1; and (10)

Ep(|C (0)|m+1)/Ep(|C (0)|m)≍ (pc − p)∆ for p ∈ (0, pc), m= 1,2, . . .. (11)

Our results about scaling behaviour of percolation are contained in the following result, which we

shall prove in Section 5. It says that percolation in our hyperbolic lattices takes on its mean field

values (i.e., values corresponding to percolation on a tree—see Theorem 10.52 of Grimmett (1999)).

In contrast, percolation in Euclidean lattices only takes on mean field values above 6 dimensions (see

Slade (2006) for discussion and references).
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Theorem 4. For the hyperbolic lattices H ( f , v) in H2 and H (5,3,4) in H3, we have γ = 1, β = 1,

δ = 2, and ∆= 2.

Schonmann (2002) proved this result for percolation on a large class of planar graphs that includes

our lattices H ( f , v), but his methods relied heavily on planarity. In contrast, our methods apply

equally to two- and three-dimensional hyperbolic lattices, and may well apply in four or more di-

mensions. However, our methods make substantial use of hyperbolic geometry, and it is not clear

whether they will extend to general non-amenable graphs that do not have a nice embedding in

hyperbolic space.

Our percolation proofs are very geometric and combinatorial, and focus on sets of lattice animals. In

a sense, we treat percolation functions like certain kinds of generating functions of lattice animals.

Indeed, it is interesting to note that our percolation proofs do not use any correlation inequalities

(such as FKG or BK—see Grimmett (1999)). Rather, they are modelled closely on the lattice animal

proofs of Section 4.

2 Definitions and Basic Hyperbolic Geometry

Let S be a subset of Hd or Rd . The convex hull of S, denoted conv(S), is the intersection of all

closed half-spaces containing S. We say that a polytope is the convex hull of a finite set of points

(elsewhere, this is often called a bounded convex polytope). Aăface of a convex set C is a convex

subset F of C with the following property: if a line segment in C has an interior point in F , then the

line segment must be entirely contained in F . A zero-dimensional face is called an extreme point; a

one-dimensional face is called an edge; and a (d − 1)-dimensional face of a d-dimensional convex

set is called a facet.

A tessellation is a covering of space by a countable collection of polytopes with pairwise disjoint

interiors, with all polytopes congruent to one another. We shall use the term tile to refer to any

one of the polytopes in a given tessellation. In particular, each tile is a closed set. We shall focus on

regular tessellations, in which each tile is a regular polytope and any non-empty intersection of a pair

of tiles is a face (of some dimensionality) of both tiles. We define a hyperbolic lattice corresponding

to a given tessellation to be the infinite graph whose edges and vertices are the edges and extreme

points of the tiles of the tessellation.

Although some of our discussion will be in terms of hyperbolic space in general dimensions, we will

mostly focus on the tessellations { f , v} in H2 and {5,3,4} in H3, as described in Section 1.1, and

their associated latticesH ( f , v) andH (5,3,4).

We write dH(x , y) to denote the usual hyperbolic distance between the points x and y inHd (Iversen

1992, Ratcliffe 1994). There is a unique possible value λe for the side length (as measured by dH)

of a regular pentagon with five right angles (in fact, λe ≈ 1.0612 because λe is the positive root

of sinh2λe = coshλe, which equals λe = ln(τ+
p
τ) where τ = (1+

p
5)/2; this may be deduced

from p. 112 of Iversen (1992) or p. 97 of Ratcliffe (1994)). If we view the graphH (5,3,4) as being

embedded in H3, so that each edge of the graph corresponds to an edge of a dodecahedron in the

tessellation {5,3,4}, then λe is the hyperbolic length of each edge.

A “lattice-hyperplane” is a hyperplane in Hd which contains a facet of some tile in the tessellation.

(These are also called “lattice-lines” in H2 and “lattice-planes” in H3. See Figure 1.) In the tessel-

lations we consider ({ f , v} with even v, and {5,3,4}), every lattice-hyperplane is the union of an
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infinite collection of facets in the tessellation. A “lattice-half-space” is a half-space whose boundary

is a lattice-hyperplane. (We will be careful not to omit the “lattice” prefix when it is needed, since

the possibility of confusion is quite real.)

We denote the set of vertices of the lattice G by V (G ), or simply V . Fix one of the vertices of G to

be the origin, and denote it 0. The graph distance between two vertices u and v of G is defined to

be the fewest number of edges on a path in G from u to v, and we denote it dG(u, v). If v ∈ V and

A⊂ Hd , then dG(v,A) is the minimum value of dG(v, w) among all w ∈ V ∩ A.

We denote the cardinality of a set S by |S|. We shall extend this notation to the situation that S is a

subgraph of G , in which case |S| shall denote the number of vertices in S.

Let S be any subset of Hd . For a given tessellation, the neighborhood of S, denoted N (S), is the

union of all tiles that have nonempty intersection with S.

We shall frequently refer to automorphisms of the graph G . A (graph) automorphism is a bijection

of V (G ) with itself that preserves adjacency; in particular, an automorphism extends naturally to a

bijection on the set of edges. Also, we can view each automorphism of G as the restriction to V (G )
of a particular isometry of Hd . We shall write K ′ for the number of automorphisms φ such that

φ(0) = 0. It follows that for any two vertices x and y , there are exactly K ′ automorphisms of G
such that φ(x) = y .

Lemma 5. There exists positive finite constants KGH and KHG with the following property: For all

vertices u and v of V (G ),

1

KGH

dG(u, v) ≤ dH(u, v) ≤ KHG dG(u, v) .

Proof: Clearly we can take KHG = λe, the length of an edge of a tile. For the other inequality,

observe that the dH -distance between any two disjoint tiles is at least λe. Let α be the number of

tiles that intersect a fixed tile. Then the number of tiles intersecting an arbitrary segment uv is

at most α+ α⌊dH(u, v)/λe⌋, which is at most 2αdH(u, v)/λe for distinct vertices u and v (because

dH(u, v) ≥ λe in this case). Since there is a path connecting vertices u and v that only uses edges of

N (uv), it follows that we can take KGH to be 2α/λe times the number of edges on a single tile. �

3 Basic Properties of Lattice Animals and Lattice Trees

Our first task is to prove that the limits

lim
N→∞

a
1/N
N and lim

N→∞
t

1/N
N

exist and are finite. The general idea is the same as in Euclidean lattices, but some complications

arise due to lack of translation (as alluded to in the Remark of Section 1.2). We shall concentrate

on the case of lattice animals. The proofs for lattice trees are essentially the same.

This section requires some hard work and attention to detail, but fortunately this makes for smooth

sailing in the rest of the paper.
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Definition 6. Fix a lattice-half-space Ĥ0 that has the origin on its boundary. For each positive integer

N, define the following sets of lattice animals:

AN = { C : C is an N-site animal containing 0 };
AEN = { C : C is an N-site animal, and

0 is an extreme point of conv(N (C)) };
AL N = { C ∈AN : 0 ∈ C ⊂ Ĥ0 }.

In particular, we have aN = |AN | for every N .

Proposition 7. (a) There exists a strictly positive real number εE such that

εE aN ≤ |AEN | for all N ≥ 1.

(b) There exist a positive real number UL and a positive integer r such that

|A EN | ≤ UL |AL N+r | ≤ UL aN+r for all N ≥ 1.

Before we can prove Proposition 7, we need two geometric lemmas for H3 that are analogues of

results for H2 in Madras and Wu (2005).

Lemma 8. Fix a tessellation in H3 (with bounded tiles). There exist εV > 0 and εE > 0 with the

following property: For every N ≥ 1 and every subset S of V that contains exactly N vertices, the

volume of conv(N (S)) is at least εV N, and conv(N (S)) has at least εEN extreme points.

Proof: Let nTile be the number of vertices of one tile (20 for the dodecahedron). The first assertion

holds with εV = 1/nTile, since N (S) contains at least |S|/nTile tiles.

The second assertion holds because of the following two facts. First, any 3-dimensional polytope

with n extreme points can be decomposed into the union of at most 2n − 4 tetrahedra, as we

shall prove in the next paragraph. Secondly, Haagerup and Munkholm (1981) proved that for any

dimension d ≥ 2 there is a constant Vd such that no d-simplex in Hd has volume greater than Vd (a

“d-simplex” in Hd or Rd is the convex hull of d + 1 points that do not all lie in a hyperplane). A

3-simplex is a tetrahedron. Therefore, if |S|= N and conv(N (S)) has n extreme points, then

εV N ≤ volume of conv(N (S)) ≤ (2n− 4)V3 .

Thus we can take εE = εV/(2V3).

Finally, we must prove the first fact in the preceding paragraph. Consider a 3-dimensional polytope

with n extreme points. Subdivide each polygonal facet of the polytope into triangles (if the polygonal

facet has k edges, then it gets subdivided into k − 2 triangles). Let e (respectively, f ) denote the

number of edges (respectively, triangular facets) in the resulting triangulation of the surface of the

polytope. Then 3 f = 2e. Using this in Euler’s formula n − e + f = 2, we find that f = 2n − 4.

Next pick a point w in the polytope’s interior, and for each triangular facet, construct a tetrahedron

which is the convex hull of that facet and w. This gives 2n− 4 tetrahedra whose union is the whole

polytope, and we are done. �

Remark: While we believe that Lemma 8 should also be true in 4 or more dimensions, we do not

have a proof. The above proof uses the fact that a 3-dimensional polytope with n vertices has at
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most O(n) facets. The analogue is false in d dimensions for d > 3, where counterexamples are

provided by the class of “cyclic polytopes” (see Grünbaum, 2003). For example, in 4 dimensions,

there exist polytopes with n vertices and (n2 − 3n)/2 3-dimensional facets. This seems to be the

only real barrier to direct extension of our work to 4 or more dimensions.

The following result is only proven here forH (5,3,4), but the analogue for other hyperbolic lattices

and dimensions should also be true (with “hyperplane” instead of “plane”). The analogue for the

planar latticesH ( f , v) was proven in Lemma 3.2 of Madras and Wu (2005).

Lemma 9. There is a constant D with the following property for the lattice H (5,3,4): Let P be any

plane in H3, and let x ∈ V be a vertex whose distance from P is at least D. Then there is a lattice-plane

through x that does not intersect P.

Proof: Consider a plane P and point x not on P. Let y be the closest point of P to x . Let z be any

other point of P, and consider the triangle x yz. Write θx , θy , and θz for the angles of the triangle.

Then the hyperbolic Law of Cosines [p. 108 of Iversen (1992) or p. 87 of Ratcliffe (1994)] says that

cosh(dH(x , y)) =
cosθx cosθy + cosθz

sinθx sinθy

.

Since θy = π/2 by the definition of y , and since 0 < θz < π/2, it follows that cosh(dH(x , y)) <

1/ sinθx . Therefore, for any plane Pi containing x that intersects P, the angle θ[i] between Pi and

the segment x y satisfies

sin(θ[i]) <
1

cosh(dH(x , y))
.

Now suppose x ∈ V and let P1, P2, and P3 be the three lattice planes through x . Assume that each

Pi intersects P. Define the angles θ[i] as above (i = 1,2,3). Then

1 =

3
∑

i=1

sin2(θ[i]) <
3

cosh2(dH(x , y))
.

This implies cosh(dH(x , y)) <
p

3, i.e. dH(x , y) < ln(
p

3+
p

2). Therefore we see that the assertion

of the Lemma holds with D = ln(
p

3+
p

2). �

Proof of Proposition 7: (a) Consider the collection of all 4-tuples (C , y, Ĉ ,φ) such that C ∈AN , y

is an extreme point of conv(N (C)), Ĉ ∈AEN , and φ is an automorphism of G such that φ(y) = 0

and Ĉ = φ(C) [i.e., Ĉ is the image of C under φ]. How many such 4-tuples are there? For each

given Ĉ ∈ AEN , there exist N possible choices for the vertex φ(0), namely the N vertices of Ĉ

[notice that φ(0) must be in Ĉ because 0 ∈ C]. If we know Ĉ and φ(0), then there are exactly K ′

possibilities for φ, where K ′ is the number of automorphisms of G that fix the origin. Since φ is

invertible, the choice of Ĉ and φ determines C and y . Therefore

(number of 4-tuples containing Ĉ) = K ′N for each Ĉ ∈AEN , (12)

which implies that

(number of 4-tuples) = K ′N |A EN | . (13)
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Next, for each C ∈AN , there exist at least εEN choices for y (by Lemma 8). Given y , there exist K ′

choices for φ. Then C and φ determine Ĉ . Hence

(number of 4-tuples containing C) ≥ K ′εEN for each C ∈AN , (14)

which implies that

(number of 4-tuples) ≥ K ′εEN |AN | . (15)

Part (a) of Proposition 7 now follows from (13) and (15).

(b) The right-hand inequality is trivial. To prepare for the proof of the left-hand inequality, fix D as

in Lemma 9 and let DTile be the dH -diameter of a tile (i.e. the largest value dH(u, v) where u and v

are points in the same tile).

Let Ĉ ∈ AEN . Since 0 is an extreme point of conv(N (Ĉ)), 0 must be a point of N (Ĉ). Therefore

dG(0, Ĉ) < nTile (where nTile is the number of vertices on one tile). Let H1 be a closed (not neces-

sarily lattice) half-space that has 0 on its boundary and contains conv(N (Ĉ)). Let H⊥1 be the line

through the origin that is perpendicular to the boundary of H1, and let ũ be the point on H⊥1 such

that dH(ũ, H1) = D+ DTile (and hence dH(ũ, 0) = D+ DTile also).

Let u be an extreme point of the tile containing ũ. Then dH(u, 0) ≥ dH(ũ, 0)− dH(ũ,u) ≥ D. By

Lemma 9, there exists a lattice-(hyper-)plane Lu containing u such that Lu ∩ H1 = ;. Let Hu be the

closed half-space with boundary Lu that contains H1. Observe that

dG(u, Ĉ) ≤ KGH dH(u, Ĉ) (using Lemma 5)

≤ KGH[dH(u, ũ) + dH(ũ, 0) + dH(0, Ĉ)]

≤ KGH(D+ 3DTile) .

So there exists a path π1 (in G) from Ĉ to u that is contained in Hu and has at most r edges, where

r = ⌊KGH(D+ 3DTile)⌋. Then Ĉ ∪π1 is an animal in Hu with fewer than N + r vertices. Finally, let

π2 be a path in Lu sharing exactly one vertex with π1 such that

|Ĉ ∪π1 ∪π2| = N + r .

For brevity, let π denote the animal π1 ∪ π2. Let φ be an automorphism of the lattice that takes

u to 0 and Hu to Ĥ0 (where the half-space Ĥ0 is specified in Definition 6). Let C∗ be the animal

consisting of the image of Ĉ ∪π under φ. Clearly, C∗ ∈ AL N+r . We claim that there is a constant

UL (independent of N and C∗) such that no more than UL different Ĉ ’s in AEN could give rise to

the same C∗. To see this, observe that there is a bounded number of possible choices for φ(π) and

φ(0) (the bound depends on r, but r is fixed). Given φ(π) and C∗, we know φ(Ĉ); and given φ(0),

there are exactly K ′ possible choices for φ. Since Ĉ = φ−1(φ(Ĉ)), this proves the claim, and part

(b) follows. �

Proof of Proposition 1: The boundedness of a
1/N
N (and hence of t

1/N
N ) follows from a general

percolation argument, as described on pages 81–82 of Grimmett (1999).

We shall show the existence of the limit λa; the proof for λt is essentially the same. Let xA and

x be vertices of G such that xA is a neighbour of the origin, xA is in the complement of Ĥ0 (from

Definition 6), and xA is the midpoint of the line segment 0x . We claim that there exists a lattice-

half-space Ĥx which does not intersect Ĥ0 and whose boundary contains x (and is perpendicular to
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0x). In H (5,3,4), 0x must be perpendicular to the boundary plane of Ĥ0, so the boundary plane

of Ĥx is the lattice plane containing x that is perpendicular to 0x . In H ( f , v), it is not hard to see

that x is not in N (Ĥ0), so the existence of Ĥx follows from Lemma 3.2 of Madras and Wu (2005).

Thus the claim holds for all choices of G .

Let φ be an automorphism of G such that φ(0) = x and φ(Ĥ0) = Ĥx .

Consider positive integers m and n. Let C1 be an animal inAL m and let C2 be an animal inAL n.

Then φ(C2) is an animal contained in Ĥx that contains the vertex x . Let C12 be the animal that is

the union of C1, φ(C2), and 0x . Then C12 ∈ Am+n+1. Moreover, since φ is fixed, any animal C12

obtained in this way uniquely determines C1 and C2; that is, the mapping we have constructed from

AL m×AL n intoAm+n+1 is clearly one-to-one. Therefore

am+n+1 ≥ |AL m| |AL n| .

Combining this with Proposition 7 shows that

am+n+1 ≥
�

εE

UL

�2

am−r an−r for all m, n≥ r + 1. (16)

If we rewrite i = m− r and j = n− r, and let ãk = (εE/UL)
2ak, then (16) becomes

ãi+ j+2r+1 ≥ ãi ã j for all i, j ≥ 1. (17)

This is a variation on the usual super-multiplicative relation which holds for Euclidean lattice ani-

mals (e.g. see Section 6.1.1 of Janse van Rensburg 2000). This variation has been treated by Wilker

and Whittington (1979), whose results imply our relations (1) and (2) for animals. �

4 Critical Behaviour of Lattice Animals and Lattice Trees

The goal of this section is to prove Theorem 3. To this end, we begin by defining the half-space

susceptibility χAL,

χAL(z) :=

∞
∑

N=1

N |AL N | zN ,

which is the analogue of χa for animals in ∪NAL N (recall Definitions 2 and 6). The proof of

Theorem 3 relies on the following result, which says that χAL is within a constant factor of χa. It is

an immediate consequence of Proposition 7.

Proposition 10. There exists a strictly positive constant CAL such that

CAL χa(z) ≤ χAL(z) ≤ χa(z) (18)

for all z ∈ (zac/2, zac).

Proof of Theorem 3: The inequality

KL (zac − z)−1/2 ≤ χa(z) (19)
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(for some constant KL) is a known “mean field bound” that holds on fairly general lattices. Indeed,

the proofs of Bovier et al. (1986) and Tasaki and Hara (1987) apply directly to hyperbolic lattices.

The key is the establishment of the differential inequality

d χa(z)

dz
≤ K χa(z)

3 (20)

(for some constant K); the integration of this inequality leads to the lower bound. We shall show

that the reverse inequality holds in hyperbolic space, and that this leads to the desired upper bound.

Consider three mutually disjoint lattice-half-spaces H1, H2, and H3, none of which contains the

origin. For each i = 1,2,3, let πi be a self-avoiding walk from the origin to a vertex ui on the

boundary of Hi, such that ui is the only point of H1 ∪ H2 ∪ H3 on πi , and such that no two of the

walks have any point in common besides the origin (see Figure 2). It is always possible to choose
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Figure 2: Proof of Theorem 3

the Hi ’s so that these πi ’s exist; assume that we have done so. The Hi ’s and the πi ’s will remain

fixed for the rest of this proof.

For each i = 1,2,3, let A [i] be the set of pairs (Ci , wi) where Ci is an animal containing ui and

contained in Hi , and wi is a vertex of Ci . Observe that
∑

(C ,w)∈A [i]
z|C | = χAL(z) . (21)

Define the set S6 :=A [1]×A [2]×A [3], consisting of 6-tuples (C1, w1, C2, w2, C3, w3).

Before proceeding, we make the following graph-theoretical definition. Let Q be a connected graph,

and let v1, v2, and v3 be vertices of Q (not necessarily distinct). We say that the vertex v̂ is a
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(v1, v2, v3)-articulation point of Q if v̂ is on every path from v1 to v2, and every path from v1 to v3,

and every path from v2 to v3. Note that a (v1, v2, v3)-articulation point of Q may not exist, but if it

does exist then it is not hard to see that it must be unique.

Next, consider the set S3 of all triples (D, y1, y2), where D is an animal containing the origin, and

y1 and y2 are vertices in D. Observe that

∑

(D,y1,y2)∈S3

z|D| =
∞
∑

N=1

N2aN zN = z
d χa(z)

dz
. (22)

Now, for any 6-tuple (C1, . . . , w3) in S6, let φ be an automorphism of G such that φ(w3) = 0. If we

now write

y1 = φ(w1), y2 = φ(w2), and D = φ(C1 ∪ C2 ∪ C3 ∪π1 ∪π2 ∪π3) ,

then (D, y1, y2) ∈ S3. By construction, we have

|D| = |C1| + |C2| + |C3| + q where q = |π1 ∪π2 ∪π3| − 3 .

We claim that no triple (D, y1, y2) in S3 could arise from more than K ′ 6-tuples in S6, where K ′ is

the number of automorphisms of G that fix the origin. Indeed, for any 6-tuple (C1, . . . , w3) in S6,

let C ′ be the animal C1 ∪ C2 ∪ C3 ∪π1 ∪π2 ∪π3. Observe that the origin is the unique (w1, w2, w3)-

articulation point of C ′. (See Figure 2.) If D = φ(C ′) for some automorphism φ, then we know

that there is a unique (y1, y2, 0)-articulation point of D, and that point must be φ(0). Thus there

are only K ′ possible choices for the φ that transforms a 6-tuple into (D, y1, y2). Since φ determines

the 6-tuple (via w1 = φ
−1(y1), w2 = φ

−1(y2), w3 = φ
−1(0), and Ci = Hi ∩φ−1(D)), this proves the

claim. Therefore

d χa(z)

dz
=

1

z

∑

(D,y1,y2)∈S3

z|D|

≥
1

zK ′

∑

(C1,w1,C2,w2,C3,w3)∈S6

z|C1|+|C2|+|C3|+q

=
zq−1

K ′

3
∏

i=1







∑

(Ci ,wi)∈A [i]
z|Ci |







=
zq−1

K ′
χAL(z)

3 [by Equation (21)]

≥
zq−1(CAL)

3

K ′
χa(z)

3 [by Proposition 10].

Thus we have proven the reverse inequality of (20), namely

d χa(z)

dz
≥ K χa(z)

3 for all z ∈ (zac/2, zac). (23)

Divide by χa(z)
3 to obtain

−
d χa(z)

−2

dz
≥ 2K for all z ∈ (zac/2, zac).
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For zac/2< z1 < z2 < zac , we integrate the above from z1 to z2 and obtain

χa(z1)
−2−χ−2

a (z2) ≥ 2K(z2− z1) .

Now let z2 increase to zac . Since χa(z2)> 0, we obtain

χa(z1)
−2 ≥ 2K(zac − z1) .

Finally, take square roots of both sides of this inequality. Together with the bound (19), this com-

pletes the proof of (6). �

5 Critical Behaviour of Percolation

We begin by adding some notation to what we introduced in Section 1.3, following Grimmett (1999,

Section 5.3) and Schonmann (2002). For A, B ⊂ V (G ), we write {A↔ B} to denote the event that

there exists an occupied path from some point of A to some point of B. If A is a singleton {x}, then

we simply write {x ↔ B}. Observe that {0↔ y} = {y ∈ C (0)}. The complement of {A↔ B}
is written {A 6↔ B}. We also introduce a “ghost field” by saying that each site of G is painted

green with probability q, independently of everything else. We write Pp,q and Ep,q for the probability

measure and expectation in this enlarged probability space. Let Q be the (random) set of green

sites. Then the function θ (p,q) defined in Equation (7) may also be written as

θ (p,q) = Pp,q{0↔ Q} .

We also introduce the modified susceptibility function

χ(p,q) = Ep,q(|C (0)|; C (0)∩Q = ;} =
∑

y∈V

Pp,q{ y ∈ C (0), 0 6↔ Q}.

To prove Theorem 4, we shall use the following lemmas from Schonmann (2002), applied to our

hyperbolic graphs G .

Lemma 11. Suppose there exist ε > 0 and c > 0 and vertices x1, x2 such that for every p ∈ (pc−ε, pc),
∑

y1,y2∈V

Pp{ x1↔ y1, x2↔ y2, x1 6↔ x2 } ≥ c(χ(p))2. (24)

Then γ= 1 and ∆= 2.

Lemma 12. Suppose there exist ε > 0 and c > 0 and vertices u1,u2,u3 such that for every p ∈
(pc − ε, pc) and every q ∈ (0,ε),
∑

y∈V

Pp,q{u1↔ y, u1 6↔ Q, u2↔ Q, u3↔ Q, u2 6↔ u3 } ≥ cχ(p,q)(θ (p,q))2. (25)

Then β = 1 and δ = 2.

The following lemma contains the key argument. It says that in the definition of susceptibility, we

don’t lose too much if we restrict our attention to the event that the origin lies on the boundary of

(the convex hull of) its cluster. This is reasonable in hyperbolic space, where the boundary of a set

is a nonvanishing fraction of the entire set. This lemma is an analogue of Proposition 10.
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Lemma 13. Let p1 ∈ (0, pc). Let Ĥ0 be a lattice-half-space that has the origin on its boundary. Then

there is an εP > 0 such that

εPχ(p) ≤
∑

y∈Ĥ0

Pp{ y ∈ C (0), C (0)⊂ Ĥ0 } =
∞
∑

N=1

∑

C∗∈AL N

N Pp{C (0) = C∗ } (26)

for every p ∈ (p1, pc).

Proof: We use results for various classes of lattice animals, as developed in Proposition 7. Any

animal C could be a cluster; that is, there is a non-zero probability that all edges in C are occupied,

and all edges incident to C but not in C are vacant. Let π(C) be the probability that C is a cluster.

Observe that for any automorphism φ of G and any animal C , we have π(C) = π(φ(C)).

We shall use the notation
∑[N]

to denote the sum over all 4-tuples (C , y, Ĉ ,φ) constructed in the

proof of part (a) of Proposition 7, where C ∈AN and so on.

χ(p) =

∞
∑

N=1

∑

C∈AN

N π(C)

≤
∑

[N]
1

K ′εE

π(C) [by Eq. (14)]

=
∑

[N]
1

K ′εE

π(Ĉ) [since π(C) = π(Ĉ) when C and Ĉ

are in the same 4-tuple]

=
1

εE

∞
∑

N=1

∑

Ĉ∈AEN

N π(Ĉ) [by Eq. (12)].

Next, recall the proof of part (b) of Proposition 7. There, a construction was defined for each cluster

Ĉ ∈AEN that joined Ĉ to an animal with r new vertices, and then applied a lattice automorphism,

to obtain an animal C∗ inAL N+r (where r is a fixed constant). It was observed that no more than

UL different Ĉ ’s could give rise to the same C∗. Also, it is not hard to see that since r is fixed, there

is a constant B such that π(Ĉ)≤ Bπ(C∗) for all p ∈ (p1, pc). From this discussion, we see that

1

εE

∞
∑

N=1

∑

Ĉ∈AEN

N π(Ĉ) ≤
UL

εE

∞
∑

N=1

∑

C∗∈AL N+r

N Bπ(C∗)

≤
ULB

εE

∞
∑

M=1

∑

C∗∈AL M

M π(C∗) .

Combining this with the preceding inequalities proves the result, with εP = εE/(ULB). �

Proof of Theorem 4 for γ and ∆: We shall verify the hypotheses of Lemma 11. Let L1 and L2 be

any two lattice-planes whose neighborhoods are disjoint [i.e. N (L1)∩N (L2) = ;], and let x1 and

x2 be vertices such that x1 ∈ L1 and x2 ∈ L2. Let H1 and H2 be the two disjoint (closed) half-spaces

whose boundaries are L1 and L2 respectively.

For i = 1,2, and yi ∈ Hi , we define the event

Di[yi] = { yi ∈ C (x i), C (x i)⊂ Hi }.
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Then D1[y1] is independent of D2[y2], since Di[yi] depends only on the states of the bonds in

Hi ∪N (Li). Let p ∈ (p1, pc), where p1 is chosen as in Lemma 13. We have
∑

y1,y2∈V

Pp{ x1↔ y1, x2↔ y2, x1 6↔ x2 }

≥
∑

y1∈H1, y2∈H2

Pp(D1[y1]∩ D2[y2] )

=
∑

y1∈H1, y2∈H2

Pp(D1[y1] ) Pp(D2[y2] )

≥ (εPχ(p))
2 [by Lemma 13].

This proves (24), and hence we have shown that γ= 1 and ∆= 2. �

Now we prepare for Lemma 12. We begin with the following analogue of Lemma 13.

Lemma 14. Let p1 ∈ (0, pc) and let q1 ∈ (0,1). Let H be a lattice-half-space whose boundary contains

the origin. Then there exist constants εQ > 0 and εθ > 0 such that

εQχ(p,q) ≤
∑

y∈H

Pp,q{ y ∈ C (0), C (0)⊂ H, 0 6↔Q } (27)

and

εθ θ (p,q) ≤ Pp,q{C (0)⊂ H, 0↔Q } (28)

for every p ∈ (p1, pc) and q ∈ (0,q1).

Proof: Most of the work has already been done in the proof of Lemma 13. First, we have

χ(p,q) =

∞
∑

N=1

∑

C∈AN

N π(C) (1− q)N

≤
ULB

εE

∞
∑

N=1

∑

C∗∈AL N+r

N π(C∗) (1− q)N

[as in the proof of Lemma 13]

≤
ULB

εE

∞
∑

M=1

∑

C∗∈AL M

M π(C∗) (1− q)M (1− q)−r .

Therefore Equation (27) holds with εQ = (1− q1)
rεE/ULB.

Similarly, we have

θ (p,q) =

∞
∑

N=1

∑

C∈AN

N π(C)

�

1− (1− q)N

N

�

≤
ULB

εE

∞
∑

N=1

∑

C∗∈AL N+r

N π(C∗)

�

1− (1− q)N

N

�

≤
ULB

εE

∞
∑

M=1

∑

C∗∈AL M

π(C∗)(1− (1− q)M )

[since 1− (1− q)N ≤ 1− (1− q)N+r].
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This proves Equation (28). �

We are now ready to complete the proof of Theorem 4.

Proof of Theorem 4 for β and δ: We shall verify the hypotheses of Lemma 12. Similarly to the

proof of Theorem 3, let H1, H2, and H3 be three lattice-half-spaces whose neighbourhoods are

pairwise disjoint [i.e. N (H j) ∩N (Hk) = ; for 1 ≤ j < k ≤ 3]. Let u1, u2 and u3 be vertices such

that, for each i, ui is contained in the boundary plane of Hi .

For y ∈ H1, we define the event

E1[y] = { y ∈ C (u1), C (u1)⊂ H1, u1 6↔ Q }.

For i = 2,3, define the events

Ei = {C (ui)⊂ Hi , ui↔ Q }.

Then, for any y ∈ H1, the three events E1[y], E2, and E3 are independent, since they depend only

on events in N (H1), N (H2), and N (H3) respectively. For p and q as in Lemma 14, we have

∑

y∈V

Pp,q{u1↔ y, u1 6↔Q, u2↔ Q, u3↔ Q, u2 6↔ u3 }

≥
∑

y∈H1

Pp,q( E1[y]∩ E2 ∩ E3 )

=
∑

y∈H1

Pp,q( E1[y] ) Pp,q( E2 ) Pp,q( E3 )

≥ εQχ(p,q) (εθθ (p,q))2 [by Lemma 14].

This proves (25), and hence we have shown that β = 1 and δ = 2. �
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