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Abstract

We study models of continuous-time, symmetric, Zd -valued random walks in random
environment, driven by a field of i.i.d. random nearest-neighbor conductances ωx y ∈
[0,1] with a power law with an exponent γ near 0. We are interested in estimating the
quenched asymptotic behavior of the on-diagonal heat-kernel hωt (0, 0). We show that for
γ > d

2
, the spectral dimension is standard, i.e.,

−2 lim
t→+∞

log hωt (0,0)/ log t = d.

As an expected consequence, the same result holds for the discrete-time case.
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1. INTRODUCTION

We study the model of random walk among polynomial lower tail random conductances on
Zd , d ≥ 2. Our aim is to derive estimates on the asymptotic behavior of the heat-kernel in
the absence of uniform ellipticity assumption. This paper follows up recent results of Fontes
and Mathieu [9], Berger, Biskup, Hoffman and Kozma [3], and Boukhadra [5].

1.1 Describing the model.

Let us now describe the model more precisely. We consider a family of symmetric, irreducible,
nearest-neighbors Markov chains taking their values in Zd , d ≥ 2, and constructed in the
following way. Let Ω be the set of functions ω : Zd ×Zd → R+ such that ω(x , y) =ωx y > 0
iff x ∼ y , and ωx y = ωx y ( x ∼ y means that x and y are nearest-neighbors). We call
elements of Ω environments.

Define the transition matrix
Pω(x , y) =

ωx y

πω(x)
, (1.1)

and the associated Markov generator

(Lω f )(x) =
∑

y∼x
Pω(x , y)[ f (y)− f (x)]. (1.2)

X = {X (t), t ∈ R+} will be the coordinate process on path space (Zd)R+ and we use the
notation Pωx to denote the unique probability measure on path space under which X is the
Markov process generated by (1.2) and satisfying X (0) = x , with expectation henceforth
denoted by Eωx . This process can be described as follows. The moves are those of the discrete
time Markov chain with transition matrix given in (1.1) started at x , but the jumps occur after
independent Poisson (1) waiting times. Thus, the probability that there have been exactly n
jumps at time t is e−t tn/n! and the probability to be at y after exactly n jumps at time t is
e−t tnPn

ω(x , y)/n!.

Since ωx y > 0 for all neighboring pairs (x , y), X (t) is irreducible under the “quenched law
Pωx " for all x . The sum πω(x) =

∑

yωx y defines an invariant, reversible measure for the
corresponding (discrete) continuous-time Markov chain.

The continuous time semigroup associated with Lω is defined by

Pωt f (x) := Eωx [ f (X (t))]. (1.3)
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Define the heat-kernel, that is the kernel of Pωt with respect to πω, or the transition density
of X (t), by

hωt (x , y) :=
Pωt (x , y)

πω(y)
(1.4)

Clearly, hωt is symmetric, that is hωt (x , y) = hωt (y, x) and satisfies the Chapman-Kolmogorov
equation as a consequence of the semigroup law Pωt+s = Pωt Pωs . We call “spectral dimension"
of X the quantity

− 2 lim
t→+∞

log hωt (x , x)

log t
, (1.5)

(if this limit exists). In the discrete-time case, we inverse the indices and denote the heat-
kernel by hn

ω(x , y).

Such walks under the additional assumptions of uniform ellipticity,

∃α > 0 : Q(α <ωb < 1/α) = 1,

have the standard local-CLT like decay of the heat kernel as proved by Delmotte [6]:

Pn
ω(x , y)≤

c1

nd/2
exp

¨

−c2
|x − y|2

n

«

, (1.6)

where c1, c2 are absolute constants.

Once the assumption of uniform ellipticity is relaxed, matters get more complicated. The
most-intensely studied example is the simple random walk on the infinite cluster of super-
critical bond percolation on Zd , d ≥ 2. This corresponds to ωx y ∈ {0,1} i.i.d. with Q(ωb =
1) > pc(d) where pc(d) is the percolation threshold (cf. [10]). Here an annealed invari-
ance principle has been obtained by De Masi, Ferrari, Goldstein and Wick [7, 8] in the late
1980s. More recently, Mathieu and Remy [15] proved the on-diagonal (i.e., x = y) version
of the heat-kernel upper bound (1.6)—a slightly weaker version of which was also obtained
by Heicklen and Hoffman [11]—and, soon afterwards, Barlow [1] proved the full upper and
lower bounds on Pn

ω(x , y) of the form (1.6). (Both these results hold for n exceeding some
random time defined relative to the environment in the vicinity of x and y). Heat-kernel
upper bounds were then used in the proofs of quenched invariance principles by Sidoravicius
and Sznitman [16] for d ≥ 4, and for all d ≥ 2 by Berger and Biskup [2] and Mathieu and
Piatnitski [14].

Let Bd denote the set of (unordered) nearest-neighbor pairs in Zd . We choose in our case the
family ω = {ω(x , y) : x ∼ y, (x , y) ∈ Zd × Zd} = (ωb)b∈Bd ∈ (0,∞)B

d
i.i.d according to a

law Q on (R∗+)
Zd

such that

ωb ≤ 1 for all b;
Q(ωb ≤ a)∼ aγ when a ↓ 0,

(1.7)
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where γ > 0 is a parameter. In general, given functions f and g, we write f ∼ g to mean
that f (a)/g(a) tends to 1 when a tends to some limit a0.

Our work is motivated by the recent study of Fontes and Mathieu [9] of continuous-time
random walks on Zd with conductances given by

ωx y =ω(x)∧ω(y)

for i.i.d. random variables ω(x) > 0 satisfying (1.7). For these cases, it was found that
the annealed heat-kernel,

∫

dQ(ω)Pω0 (X (t) = 0), exhibits opposite behaviors, standard and
anomalous, depending whether γ ≥ d/2 or γ < d/2. Explicitly, from ([9], Theorem 4.3) we
have

∫

dQ(ω)Pω0 (X (t) = 0) = t−(γ∧
d
2
)+o(1), t →∞. (1.8)

Further, in a more recent paper [5], we show that the quenched heat-kernel exhibits also
opposite behaviors, anomalous and standard, for small and large values of γ. We first prove
for all d ≥ 5 that the return probability shows an anomalous decay that approaches (up to
sub-polynomial terms) a random constant times n−2 when we push the power γ to zero. In
contrast, we prove that the heat-kernel decay is as close as we want, in a logarithmic sense,
to the standard decay n−d/2 for large values of the parameter γ, i.e. : there exists a positive
constant δ = δ(γ) depending only on d and γ such that Q− a.s.,

limsup
n→+∞

sup
x∈Zd

log Pn
ω(0, x)

log n
≤−

d

2
+δ(γ) and δ(γ)−−−→

γ→+∞
0, (1.9)

These results are a follow up on a paper by Berger, Biskup, Hoffman and Kozma [3], in which
the authors proved a universal (non standard) upper bound for the return probability in a
system of random walk among bounded (from above) random conductances. In the same
paper, these authors supplied examples showing that their bounds are sharp. Nevertheless,
the tails of the distribution near zero in these examples was very heavy.

1.2 Main results.

Consider random walk in reversible random environment defined by a family (ωb) ∈ Ω =
[0, 1]B

d
of i.i.d. random variables subject to the conditions given in (1.7), that we refer to as

conductances, Bd being the set of unordered nearest-neighbor pairs (i.e., edges) of Zd . The
law of the environment is denoted by Q.

We are interested in estimating the decay of the quenched heat-kernel hωt (0, 0), as t tends to
+∞ for the Markov process associated with the generator defined in (1.2) and we obtain, in
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the quenched case, a similar result to (1.8). Although our result is true for all d ≥ 2, but it is
significant when d ≥ 5.

The main result of this paper is as follows:

Theorem 1.1 For any γ > d/2, we have

lim
t→+∞

log hωt (0,0)

log t
=−

d

2
, Q− a.s. (1.10)

Our arguments are based on time change, percolation estimates and spectral analysis. In-
deed, one operates first a time change to bring up the fact that the random walk viewed
only on a strong cluster (i.e. constituted of edges of order 1) has a standard behavior. Then,
we show that the transit time of the random walk in a hole is “negligible" by bounding the
trace of a Markov operator that gives us the Feynman-Kac Formula and this by estimating its
spectral gap.

An expected consequence of this Theorem is the following corollary, whose proof is given in
part 3.3 and that gives the same result for the discrete-time case. For the random walk associ-
ated with the transition probabilities given in (1.1) for an environment ω with conductances
satisfying the assumption (1.7), we have

Corollary 1.2 For any γ > d/2, we have

lim
n→+∞

log h2n
ω (0,0)

log n
=−

d

2
, Q− a.s. (1.11)

Remark 1.3 As it has been pointed out in [4], Remark 2.2, the invariance principle (CLT)
(cf. Theorem 1.3 in [13]) and the Spatial Ergodic Theorem automatically imply the standard
lower bound on the heat-kernel under weaker conditions on the conductances. Indeed, let C
represents the set of sites that have a path to infinity along bonds with positive conductances.
Forωx y ∈ [0,1] and the conductance law is i.i.d. subject to the condition that the probability
of ωx y > 0 exceeds the threshold for bond percolation on Zd , we have then by the Markov
property, reversibility of X and Cauchy-Schwarz

hωt (0,0) ≥
1

2d

∑

x∈C
|x |≤
p

t

Pω0 (X (t/2) = x)2

≥
1

2d

Pω0
�

|X (t/2)| ≤
p

t
�2

|C ∩ [−
p

t,+
p

t]d |

≥
c(ω)

td/2
,
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with c(ω) > 0 a.s. on the set {0 ∈ C} and t large enough. Note that, in d = 2,3, this
complements nicely the “universal” upper bounds derived in [3], Theorem 2.1. Thus, for
d ≥ 2, we have

lim inf
t→+∞

log hωt (0, 0)

log t
≥−

d

2
Q− a.s. (1.12)

and for the cases d = 2, 3,4, we have already the limit (1.11) under weaker conditions on
the conductances (see [3], Theorem 2.2). So, under assumption (1.7), it remains to study
the cases where d ≥ 5 and prove that for γ > d/2,

limsup
t→+∞

log hωt (0,0)

log t
≤−

d

2
Q− a.s.

or equivalently, since the conductances are Q− a.s. positive by (1.7),

limsup
t→+∞

log Pωt (X (t) = 0)

log t
≤−

d

2
Q− a.s. (1.13)

2. A TIME CHANGED PROCESS

In this section we introduce a concept that is becoming a standard fact in the fields of random
walk in random environment, namely random walk on the infinite strong cluster.

Choose a threshold parameter ξ > 0 such that Q(ωb ≥ ξ) > pc(d). The i.i.d. nature of the
measure Q ensures that for Q almost any environment ω, the percolation graph (Zd , {e ∈
Bd ;ωb ≥ ξ}) has a unique infinite cluster that we denote with C ξ =C ξ(ω).

We will refer to the connected components of the complement of C ξ(ω) in Zd as holes. By
definition, holes are connected sub-graphs of the grid. The sites which belong to C ξ(ω) are
all the endvertices of its edges. The other sites belong to the holes. Note that holes may
contain edges such that ωb ≥ ξ.

First, we will give some important characterization of the volume of the holes, see Lemma
5.2 in [13]. C denotes the infinite cluster.

Lemma 2.1 There exists p̄ < 1 such that for p > p̄, for almost any realization of bond perco-
lation of parameter p and for large enough n, any connected component of the complement of
the infinite cluster C that intersects the box [−n, n]d has volume smaller than (log n)5/2.

For the rest of the section, choose ξ > 0 such that Q(ωb ≥ ξ)> p̄.

Define the conditioned measure

Qξ0( · ) =Q( · | 0 ∈ C
ξ).
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Consider the following additive functional of the random walk :

Aξ(t) =

∫ t

0

1{X (s)∈C ξ}ds,

its inverse (Aξ)−1(t) = inf{s; Aξ(s)> t} and define the corresponding time changed process

X ξ(t) = X ((Aξ)−1(t)).

Thus the process X ξ is obtained by suppressing in the trajectory of X all the visits to the
holes. Note that, unlike X , the process X ξ may perform long jumps when straddling holes.

As X performs the random walk in the environment ω, the behavior of the random process
X ξ is described in the next

Proposition 2.2 Assume that the origin belongs to C ξ. Then, under Pω0 , the random process
X ξ is a symmetric Markov process on C ξ.

The Markov property, which is not difficult to prove, follows from a very general argument
about time changed Markov processes. The reversibility of X ξ is a consequence of the re-
versibility of X itself as will be discussed after equation (2.2).

The generator of the process X ξ has the form

Lω
ξ f (x) =

1

ηω(x)

∑

y
ωξ(x , y)( f (y)− f (x)), (2.1)

where

ωξ(x , y)
ηω(x)

= lim
t→0

1

t
Pωx (X

ξ(t) = y)

= Pωx (y is the next point inC ξ visited by the random walk), (2.2)

if both x and y belong to C ξ and ωξ(x , y) = 0 otherwise.

The function ωξ is symmetric : ωξ(x , y) = ωξ(y, x) as follows from the reversibility of X
and formula (2.2), but it is no longer of nearest-neighbor type i.e. it might happen that
ωξ(x , y) 6= 0 although x and y are not neighbors. More precisely, one has the following
picture : ωξ(x , y) = 0 unless either x and y are neighbors and ω(x , y)≥ ξ, or there exists a
hole, h, such that both x and y have neighbors in h. (Both conditions may be fulfilled by the
same pair (x , y).)

Consider a pair of neighboring points x and y , both of them belonging to the infinite cluster
C ξ and such that ω(x , y)≥ ξ, then

ωξ(x , y)≥ ξ. (2.3)
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This simple remark will play an important role. It implies, in a sense that the parts of the
trajectory of X ξ that consist in nearest-neighbors jumps are similar to what the simple sym-
metric random walk on C ξ does. Precisely, we will need the following important fact that
X ξ obeys the standard heat-kernel bound :

Lemma 2.3 There exists a constant c such that Qξ0 − a.s. for large enough t, we have

Pω0 (X
ξ(t) = y)≤

c

td/2
, ∀y ∈ Zd (2.4)

For a proof, we refer to [13], Lemma 4.1. In the discrete-time case, see [3], Lemma 3.2.

3. PROOF OF THEOREM 1.1 AND COROLLARY 1.2

The upper bound (1.13) will be discussed in part 3.2 and the proof of Corollary 1.2 is given
in part 3.3. We first start with some preliminary lemmata.

3.1 Preliminaries.

First, let us recall the following standard fact from Markov chain theory :

Lemma 3.1 The function t 7−→ Pω0 (X (t) = 0) is non increasing.

Proof. This is an immediate consequence of the semigroup property of the family of bounded
self-adjoint operators (Pωt )t≥0 in the space L2(Zd ,πω) endowed with the inner product de-
fined by




f , g
�

ω =
∑

x∈Zd

f (x)g(x)πω(x).

Next, let Br = [−r, r]d be the box centered at the origin and of radius r that we choose as a
function of time such that t ∼ r2(log r)−b when t →∞, with b > 1, and let Br denote the
set of nearest-neighbor bonds of Br , i.e.,Br = {b = (x , y) : x , y ∈ Br , x ∼ y}. We have

Lemma 3.2 Under assumption (1.7),

lim
r→+∞

log infb∈Br
ωb

log r
=−

d

γ
, Q− a.s. (3.1)
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Thus, for arbitrary µ > 0, we can write Q− a.s. for r large enough,

inf
b∈Br

ωb ≥ r−(
d
γ
+µ). (3.2)

Proof. This is a restatement of Lemma 3.6 of [9].

Consider now the following formula

Rωt f (x) = Eωx
h

f (X (t))e−λAξ(t)
i

, t ≥ 0,λ≥ 0, x ∈ Zd (3.3)

This object will play a key role in our proof of Theorem 1.1. Let L2
b(Z

d ,πω) denote the set of
bounded functions of L2(Zd ,πω). We have

Proposition 3.3 R = {Rωt , t ≥ 0} defines a semigroup (of symmetric operators) on
L2

b(Z
d ,πω), with generator

Gω f =Lω f −λϕ f (3.4)

where ϕ = 1{·∈C ξ}. One also has the perturbation identities

Rωt f (x) = Pωt f (x)−λ
∫ t

0

Pωt (ϕRωt−s f )(x)ds

= Pωt f (x)−λ
∫ t

0

Rωs (ϕPωt−s f )(x)ds,

t ≥ 0, x ∈ Zd , f ∈ L2
b(Z

d ,πω).

(3.5)

Proof. The proof, that we give here, very closely mimics the arguments of [17], Theorem 1.1.
Indeed, we begin with the proof of (3.5). Observe that Pωx − a.s., for every x ∈ Zd , the time

function t 7→ e−λAξ(t) is continuous, and

lim
h→0

1

h

�

e−λAξ(s+h)− e−λAξ(s)
�

=−λϕ(X (s))e−λAξ(s), ∀s ∈ [0, t], t > 0,

except possibly for a countable set {αi}i∈I ⊂ (0, t], |I | ⊂ N∗. Then, for t ≥ 0, we have

e−λAξ(t) = 1−λ
∫ t

0

ϕ(X (s))e−λAξ(s)ds

= 1−λ
∫ t

0

ϕ(X (s))exp

¨

−
∫ t

s

λϕ(X (u))du

«

ds. (3.6)

2077



Multiplying both sides of the first equality of (3.6) by f (X (t)) and integrating we find :

Rωt f (x) = Pωt f (x)−λ
∫ t

0

Eωx

�

ϕ(X (s))exp

¨

−λ
∫ t

s

ϕ(X (u))du

«

f (X (t))

�

ds

= Pωt f (x)−λ
∫ t

0

Pωs (ϕRωt−s f )(x)ds, (Markov property),

which is the first identity of (3.5). Analogously we find the second identity of (3.5) with the
help of the second line of (3.6). This completes the proof of (3.5).

Clearly ||Rωt f ||22 ≤ c(t,ϕ)||Pωt f ||22, then Rωt f ∈ L2
b(Z

d ,πω), for f ∈ L2
b(Z

d ,πω). Moreover for
s, t ≥ 0,

Rωs+t f (x) = Eωx



e−λAξ(s) exp

(

−λ
∫ s+t

s

ϕ(X (u))du

)

f (X (t))





= Rωs (R
ω
t f )(x), (Markov property).

We thus proved that Rωt defines a semigroup on L2
b(Z

d ,πω). The strong continuity of this
semigroup follows readily by letting t tend to 0 in (3.5).

Let us finally prove (3.4). To this end notice that for f ∈ L2
b(Z

d ,πω) :

1

t

∫ t

0

Pωt (ϕRωt−s f )(x)ds −−→
t→0

ϕ(x) f (x), uniformly in x ,

since ϕ(X (t)) 7→ ϕ(x), Pωx − a.s. Coming back to the first line of (3.5), this proves that the
convergence of 1

t
(Rωt − f ) or 1

t
(Pωt − f ) as t tends to 0, are equivalent and (3.4) holds.

LetLω
r and Gωr be respectively the restrictions of the operatorsLω and Gω (cf. (1.2)–(3.4))

to the set of functions on Br with Dirichlet boundary conditions outside Br , that we denote by
L2(Br ,πω) (that is, Lω

r and Gωr are respectively the generators of the process X and of the
semigroup R, which coincide with the ones given by Lω and Gω until the process X leaves
Br for the first time, and then it is killed). Then −Lω

r and −Gωr are positive symmetric
operators and we have

Gωr f =Lω
r f −λϕ f ,

with associated semigroup defined by

(Rω,r
t f )(0) := Eω0

h

f (X (t))e−λAξ(t); t < τr

i

.
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where τr is the exit time for the process X from the box Br .

Let {λωi (r), i ∈ [1, #Br]} be the set of eigenvalues of −Gωr labelled in increasing order, and
{ψω,r

i , i ∈ [1,#Br]} the corresponding eigenfunctions with due normalization in L2(Br ,πω).

3.2 Proof of the upper bound.

In this last part, we will complete the proof of Theorem 1.1 by giving the proof of the upper
bound (1.13).

Proof of Theorem 1.1.

Assume that the origin belongs to C ξ. By lemma 3.1, we have

Pω0 (X (t) = 0)≤
2

t

∫ t

t/2

Pω0 (X (s) = 0)ds =
2

t
Eω0





∫ t

t/2

1{X (s)=0}ds



 .

The additive functional Aξ being a continuous increasing function of the time, so by operating
a variable change by setting s = (Aξ)−1(u) (i.e. u= Aξ(s)), we get

Eω0





∫ t

t/2

1{X (s)=0}ds



 = Eω0





∫ t

t/2

1{X (s)=0}ϕ(X (s))ds





= Eω0







∫ Aξ(t)

Aξ(t/2)
1{X ξ(u)=0}du






,

which is bounded by

Eω0





∫ t

Aξ(t/2)
1{X ξ(u)=0}du



 ,

since Aξ(t)≤ t.

Therefore, for ε ∈ (0, 1)

Pω0 (X (t) = 0)≤
2

t
Eω0





∫ t

Aξ(t/2)
1{Aξ(t/2)≥tε}1{X ξ(u)=0}du





+
2

t
Eω0





∫ t

Aξ(t/2)
1{Aξ(t/2)≤tε}1{X ξ(u)=0}du





≤
2

t

∫ t

tε
Pω0 (X

ξ(u) = 0)du+
2

t

∫ t

0

Pω0 (A
ξ(t/2)≤ tε)du
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and using lemma 2.3,

Pω0 (X (t) = 0) ≤
c

t

∫ t

tε
u−d/2du+

2

t
Pω0 (A

ξ(t/2)≤ tε)t

≤
c

tε
d
2
−ε+1

+ 2Pω0 (A
ξ(t/2)≤ tε) (3.7)

It remains to estimate the second term in the right-hand side of the last inequality, i.e.
Pω0 (A

ξ(t/2) ≤ tε) or more simply Pω0 (A
ξ(t) ≤ 2ε tε), but we can neglect the constant 2ε

in the calculus as one will see in (3.15).

For each λ≥ 0, Chebychev inequality gives

Pω0 (A
ξ(t)≤ tε) = Pω0 (A

ξ(t)≤ tε; t < τr) + Pω0 (A
ξ(t)≤ tε;τr ≤ t)

≤ Pω0
�

e−λAξ(t) ≥ e−λtε; t < τr

�

+ Pω0 (τr ≤ t)

≤ eλtεEω0
h

e−λAξ(t); t < τr

i

+ Pω0 (τr ≤ t). (3.8)

From the Carne-Varopoulos inequality, it follows that

Pω0 (τr ≤ t)≤ C trd−1e−
r2

4t + e−c t , (3.9)

where C and c are numerical constants, see Appendix C in [15]. With our choice of r such
that t ∼ r2(log r)−b (b > 1), we get that Pω0 (τr ≤ t) decays faster than any polynomial as t
tends to +∞.

Thus Theorem 1.1 will be proved if we can check, for a particular choice of λ > 0 that may
depend on t, that

limsup
t→+∞

log
�

eλtεEω0
h

e−λAξ(t); t < τr

i�

log t
≤−

d

2
. (3.10)

That will be true if eλtεEω0
h

e−λAξ(t); t < τr

i

decays faster than any polynomial in t as t tends
to +∞.

The Dirichlet form of −Lω
r on L2(Br ,πω) endowed with the usual scalar product (see

Lemma 3.1), can be written as

Eω,r( f , f ) =
¬

−Lω
r f , f

¶

ω
=

1

2

∑

b∈Br+1

(d f (b))2ωb,
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where d f (b) = f (y)− f (x) and the sum ranges over b = (x , y) ∈ Bω
r+1. By the min-max

Theorem (see [12]) and (3.4), we have

λω1 (r) = inf
f 6≡0

Eω,r( f , f ) +λ
∑

x∈C ξr
f 2(x)πω(x)

πω( f 2)
. (3.11)

where C ξr is the largest connected component of C ξ ∩ Br , and the infimum is taken over
functions with Dirichlet boundary conditions. (Recall that λω1 (r) is the first eigenvalue of
−Gωr .)

To estimate the decay of the first term in the right-hand side of (3.8), we will also need to
estimate the first eigenvalue λω1 (r). Recall that µ denotes an arbitrary positive constant.

Lemma 3.4 Under assumption (1.7), for any d ≥ 2 and γ > 0, we have Q− a.s. for r large
enough,

λω1 (r)≥ (8d)−1r−(
d
γ
+µ)(log n)−5, (3.12)

for λ proportional to r−(
d
γ
+µ).

Proof. For some arbitrary µ > 0, let r be large enough so that (3.2) holds. Let h be a hole
that intersects the box Br , and for notational ease we will use the same notation for h∩ Br .
Define ∂ h to be the outer boundary of h, i.e. the set of sites in C ξr which are adjacent to
some vertex in h. Let us associate to each hole h a fixed site h∗ ∈ C ξr situated at the outer
boundary of h and for x ∈ h call κ(x , h∗) a self-avoiding path included in h with end points x
and h∗, and let |κ(x , h∗)| denote the length of such a path.

Now let f ∈ L2(Br ,πω) and letBω(h) denote the set of the bonds of h. For each x ∈ h, write

f (x) =
∑

b∈κ(x ,h∗)

d f (b) + f (h∗)

and, using Cauchy-Schwarz

f 2(x)≤ 2|κ(x , h∗)|
∑

b∈κ(x ,h∗)

|d f (b)|2+ 2 f 2(h∗).

In every path κ(x , h∗), we see each bond only one time. Multiply the last inequality by πω(x)
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and sum over x ∈ h to obtain
∑

x∈h

f 2(x)πω(x)

≤ 2
∑

x∈h

|κ(x , h∗)|
∑

b∈κ(x ,h∗)

|d f (b)|2πω(x) + 2
∑

x∈h

f 2(h∗)πω(x)

≤ 4d max
x∈h
|κ(x , h∗)| max

b∈Bω(h)

1

ωb
#h

∑

b∈Bω(h)

|d f (b)|2ωb

+ 2
∑

x∈h

f 2(h∗)πω(x),

(3.13)

which, by virtue of lemma 2.1, (1.7), (3.2) and since πω(h∗)≥ ξ, is bounded by

4dr
d
γ
+µ(log r)5

∑

b∈Bω(h)

|d f (b)|2ωb +
4d

ξ
#hf 2(h∗)πω(h

∗),

Thus,

∑

x∈h

f 2(x)πω(x)≤ 4dr
d
γ
+µ(log r)5

∑

b∈Bω(h)

|d f (b)|2ωb +
4d

ξ
#hf 2(h∗)πω(h

∗).

Let C c
r (ξ) denote the complement of C ξr in the box Br and sum over h to obtain

∑

x∈C c
r (ξ)

f 2(x)πω(x)≤ 8dr
d
γ
+µ(log r)5Eω,r( f , f ) +

8d2

ξ
#h

∑

x∈C ξr

f 2(x)πω(x),

where in the last term, we multiply by 2d since we may associate the same h∗ to 2d different
holes. Then

∑

x∈Br

f 2(x)πω(x)

≤ (1+ 8d2(log r)5/2ξ−1)
∑

x∈C ξr

f 2(x)πω(x) + 8dr
d
γ
+µ(log r)5Eω,r( f , f ).

≤ 8d2(log r)5ξ−1
∑

x∈C ξr

f 2(x)πω(x) + 8dr
d
γ
+µ(log r)5Eω,r( f , f ).

So, according to (3.11) and for λ= dξ−1r−(
d
γ
+µ), we get

λω1 (r)≥ (8d)−1r−(
d
γ
+µ)(log r)−5. (3.14)
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Let us get back to the proof of the upper bound. Let

λ= dξ−1r−(
d
γ
+µ); m(r) := (8d)−1r−(

d
γ
+µ)(log r)−5.

For f ≡ 1, observe that

(Rω,r
t f )(0) = Eω0

h

e−λAξ(t); t < τr

i

=
∑

i

e−λ
ω
i (r)t

¬

1,ψω,r
i

¶

ψω,r
i (0),

and

(Rω,r
t f )2(0)πω(0) ≤

∑

x∈Br

(Rω,r
t f )2(x)πω(x)

=
∑

i

e−2λωi (r)t
¬

1,ψω,r
i

¶2

≤ e−2λω1 (r)t
∑

x
12(x)πω(x)

≤ 2d+2drd e−2λω1 (r)t .

Then, for large enough t and by (3.14), we have

eλtεEω0
h

e−λAξ(t); t < τr

i

≤ (2d+2d)1/2eλtεe−tλω1 (r)rd/2

≤ (2d+2d)1/2rd/2 exp {λtε− tm(r)}

≤ (2d+2d)1/2rd/2e−
t
2

m(r), (3.15)

since ε < 1.

By our choice of t ∼ r2(log r)−b (b > 1), we deduce

eλtεEω0
h

e−λAξ(t); t < τr

i

≤ (2d+2d)1/2rd/2 exp
§

−[16d(log r)b+5]−1r2r−(
d
γ
+µ)
ª

� t−
d
2 if γ >

d

2−µ
, (3.16)

which yields (3.10).

In conclusion, as µ is arbitrary and according to (3.9)–(3.10), we obtain

lim sup
t→+∞

log Pω0 (A
ξ(t)≤ tε)

log t
≤−

d

2
for γ >

d

2
,
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and finally, by (3.7)

lim
ε→1

limsup
t→+∞

log Pω0 (X (t) = 0)

log t
≤−

d

2
for γ >

d

2
,

which gives (1.13).

We conclude that for any sufficiently small ξ, then Qξ0−a.s. (1.11) is true and since
Q
�

∪ξ>0{0 ∈ C ξ(ω)}
�

= 1, it remains true Q-a.s.

3.3 Proof of the discrete-time case.

Proof. In the same way, the lower bound holds by the Invariance Principle (cf. [4]) and the
Spatial Ergodic Theorem (see Remark 1.3).
For the upper bound, let (Nt)t≥0 be a Poisson process of rate 1. Set n = btc. P2n

ω (0, 0) being
a non increasing function of n (cf. Lemma 3.1), then

Pω0 (X (t) = 0) = e−t
∑

k≥0

tk

k!
Pk
ω(0, 0)

≥ e−t
2n
∑

k=0

tk

k!
Pk
ω(0, 0)

≥ P2n
ω (0, 0)



e−t
2n
∑

k=0

tk

k!





= P2n
ω (0, 0)Prob(Nt ≤ 2n).

By virtue of the LLN, we have

Prob(Nt ≤ 2n)−−−→
t→+∞

1.

From here the claim follows.
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