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Abstract
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formula with a correction term that is an ordinary It0 integral with respect to a Brownian motion
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1 Introduction

The Stratonovich integral of X with respect to Y, denoted f OtX (s)odY(s), can be defined as the
limit in probability, if it exists, of
X(t;_1)+X(t;)
R C{GIES (GEW)) (1.1)
tht
as the mesh of the partition {t;} goes to zero. Typically, we regard (L.1) as a process in t, and
require that it converges uniformly on compacts in probability (ucp).

This is closely related to the so-called symmetric integral, denoted by f Ot X(s)d°Y(s), which is the
ucp limit, if it exists, of
1 [("X(s)+X(s+e
- j %(Y(s +¢&)—Y(s))ds, (1.2)
0
as ¢ — 0. The symmetric integral is an example of the regularization procedure, introduced by
Russo and Vallois, and on which there is a wide body of literature. For further details on stochastic
calculus via regularization, see the excellent survey article [[13]] and the many references therein.

&

A special case of interest that has received considerable attention in the literature is when Y = B,
a fractional Brownian motion with Hurst parameter H. It has been shown independently in [2]] and
[5] that when Y = B and X = g(Bf) for a sufficiently differentiable function g(x), the symmetric
integral exists for all H > 1/6. Moreover, in this case, the symmetric integral satisfies the classical
Stratonovich change of variable formula,
t
g(B (1) = g(B"(0) + f g'(B"())d°B"(s).

0
However, when H = 1/6, the symmetric integral does not, in general, exist. Specifically, in [2]] and
[5], it is shown that (T.2)) does not converge in probability when Y = B/ and X = (B'/®)2. It can
be similarly shown that, in this case, (L.1)) also fails to converge in probability.

This brings us naturally to the notion which is the focus of this paper: the weak Stratonovich
integral, which is the limit in law, if it exists, of (L.1)). We focus exclusively on the case Y = B'/°. For
simplicity, we omit the superscript and write B = B!/, Our integrands shall take the form g(B(t)),
for g € C*(R), and we shall work only with the uniformly spaced partition, t; = j/n. In this case,

(1.1I) becomes

[nt] . .
I(g,B,t)= Z g(B(tj_1)) + g(B(t;) .

j>
= 2

where | x| denotes the greatest integer less than or equal to x, and AB; = B(t;) — B(t;_1). We show
that the processes I,,(g,B) converge in law in DR[0,00), the Skorohod space of cadlag functions

from [0, 00) to R. We let f Ot g(B(s))dB(s) denote a process with this limiting law, and refer to this
as the weak Stratonovich integral.

The weak Stratonovich integral with respect to B does not satisfy the classical Stratonovich change
of variable formula. Rather, we show that it satisfies a change of variable formula with a correction
term that is a classical It6 integral. Namely,

t t

1
g'(B(s))dB(s) — ﬁf g (B(s))d[[BIl,. (1.3)

0

g(B(t)) = g(B(O))Jrf

0
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where [[B]] is what we call the signed cubic variation of B. That is, [[B]] is the limit in law of the
sequence of processes V,(B,t) = ZJLEJ AB;’. It is shown in [11]] that [[B]] = kW, where W is a
standard Brownian motion, independent of B, and k ~ 2.322. (See (2.5) for the exact definition of

k.) The correction term in (1.3) is then a standard It6 integral with respect to Brownian motion.

Our precise results are actually somewhat stronger than this, in that we prove the joint convergence
of the processes B, V,(B), and I,,(g, B). (See Theorem [2.13]) We also discuss the joint convergence
of multiple sequences of Riemann sums for different integrands. (See Theorem and Remark
2.13])

The work in this paper is a natural follow-up to [[I]] and [9]. There, analogous results were proven
for B/# in the context of midpoint-style Riemann sums. The results in [1]] and [9] were proven
through different methods, and in the present work, we combine the two approaches to prove our
main results.

Finally, let us stress the fact that, as a byproduct of the proof of (1.3), we show in the present paper
that

L) 1( '
n2Y g(B(tj-1)ha(n'/OAB)) — — f g"(B(s))ds + f g(B())dIBLL,
— 0

Jj=1 0

in the sense of finite-dimensional distributions on [0, c0), where h5(x) = x — 3x denotes the third
Hermite polynomial. (See more precisely Theorem below. Also see Theorem [3.8]) From our
point of view, this result has also its own interest, and should be compared with the recent results
obtained in [7, 8], concerning the weighted Hermite variations of fractional Brownian motion.

2 Notation, preliminaries, and main result

Let B = B'/® be a fractional Brownian motion with Hurst parameter H = 1/6. That is, B is a centered
Gaussian process, indexed by t > 0, such that

R(s,t) = E[B(s)B(t)] = %(tl/e’ +s13 — e —s|3).

Note that E|B(t) — B(s)|*> = |t — s|*/3. For compactness of notation, we will sometimes write B,
instead of B(t). Given a positive integer n, let At = n~! and tj =tj, = jAt. We shall frequently
have occasion to deal with the quantity 8;, = 8; = (B(tj_;) + B(¢t;))/2. In estimating this and
similar quantities, we shall adopt the notation r, = r V 1, which is typically applied to nonnegative
integers r. We shall also make use of the Hermite polynomials,

dn
_ n,x2/2 -x2/2
ha(x) = (—1)"e*/ @(6 X2, 2.1
Note that the first few Hermite polynomials are ho(x) = 1, hy(x) = x, hy(x) = x2 — 1, and h3(x) =
x3 — 3x. The following orthogonality property is well-known: if U and V are jointly normal with
E(U)=E(V)=0and E(U?)=E(V?) =1, then

E[h,(U)hy(V)] =

q i =
{g!(E[UV]) ifp=g, 29)

otherwise.
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If X is a cadlag process, we write X(t—) = limyy, X(s) and AX(t) = X(t) — X(t—). The step func-
tion approximation to X will be denoted by X,,(t) = X(|nt]/n), where |-]| is the greatest integer
function. In this case, AX,(t;,) = X(t;) —X(t;_1). We shall frequently use the shorthand notation
AX; = AX;, = AX,(t;,). For simplicity, positive integer powers of AX; shall be written without
parentheses, so that AXJk = (AXj)k.

The discrete p-th variation of X is defined as

lnt]
VP, 0= |AX;IP,
j=1

and the discrete signed p-th variation of X is

[nt]
VPEX, 1) = Z |AX;[P sgn(AX)).
j=1

For the discrete signed cubic variation, we shall omit the superscript, so that

Lt
VX, ) = VX, )= AxE. (2.3)
=1

When we omit the index t, we mean to refer to the entire process. So, for example, V,(X) = V,(X,-)
refers to the cadlag process which maps t — V,(X,t). We recall the following fact which will be
extensevely used in this paper.

Remark 2.1. Let {p(r)},<; be the sequence defined by
1
p(r)=3(r+ M3+ |r = 113 — 2|r|1/3). (2.4)

It holds that ZreZ lp(r)| < oo and E[AB;AB;] = n_1/3p(i —j)foralli,jeN.

Let k¥ > 0 be defined by

3
2 _ 3.y 2 1/3 —_1(1/3 _ 1/3y3 o
K°=6 E o (r)—4 E (r+11"7°+|r—1| 2|r|*/°)° ~5.391, (2.5)

rez rez

and let W be a standard Brownian motion, defined on the same probability space as B, and indepen-
dent of B. Define [[B]], = kW (t). We shall refer to the process [[B]] as the signed cubic variation
of B. The use of this term is justified by Theorem [2.12]

A function g : R? — R has polynomial growth if there exist positive constants K and r such that
lg(x)| < K(1+ |x|") for all x € R?. If k is a nonnegative integer, we shall say that a function g
has polynomial growth of order k if g € C¥(R?) and there exist positive constants K and r such that
|0%g(x)| < K(1+|x|") forall x € R? and all |a| < k. (Here, a € Ng = (Nu{0}) is a multi-index, and
we adopt the standard multi-index notation: J; =3 /9x;, 3% = 31a1 ---ad“d, and |a| =a;+---+ay.)
Given g : R — R and a stochastic process {X(t) : t > 0}, the Stratonovich Riemann sum will be
denoted by
Lnt]
g§(X(t;-1))+gX(¢;))
I(g.X,0)= > AX;.

j=1
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The phrase “uniformly on compacts in probability" will be abbreviated “ucp." If X,, and Y,, are cadlag
processes, we shall write X, ~ Y, or X,,(t) ~ Y,,(t) to mean that X,, — Y,, — 0 ucp. In the proofs in
this paper, C shall denote a positive, finite constant that may change value from line to line.

2.1 Conditions for relative compactness

The Skorohod space of cadlag functions from [0,00) to R? is denoted by DRa[0,00). Note that
Dga[0,00) and (D [0,00))? are not the same. In particular, the map (x,y) — x + y is continuous
from Dg2[0,00) to Dy [0, 00), but it is not continuous from (D [0, 0))? to Dy [0, 00). Convergence
in Dya[0, 00) implies convergence in (D [0, 00))%, but the converse is not true.

Note that if the sequences {Xr(ll)}, eer, {X,Sd)} are all relatively compact in Dg[0,00), then the se-
quence of d-tuples {(X,SD, e ,X,(ld))} is relatively compact in (Dg [0, 00))¢. It may not, however, be
relatively compact in Dya [0, 00). We will therefore need the following well-known result. (For more
details, see Section 2.1 of [1]] and the references therein.)

Lemma 2.2. Suppose {(Xr(ll), . ..,Xr(ld))}zo:1 is relatively compact in (Dg[0,00))?. If for each j > 2, the
sequence {X,(lj )}?10:1 converges in law in Dy[0,00) to a continuous process, then {(Xr(ll), . ,Xr(ld))},(io:1 is
relatively compact in Dya [0, 00).

Proof. First note that if x,, — x in D [0, 00), y,, — ¥ in D [0, 00), and x and y have no simultaneous
discontinuities, then x,+y,, — x+y in Dy [0, 00). Thus, if two sequences {X,} and {Y,} are relatively
compact in Dy [0, 00) and every subsequential limit of {Y,} is continuous, then {X, +7Y,} is relatively

compact in DR[0,00). The lemma now follows from the fact that a sequence {Xlgl), . ..,X,Sd)} is
relatively compact in D4 [0, 00) if and only if {Xflk)} and {Xflk) +X£f)} are relatively compact in
Dy [0, 00) for all k and £. (See, for example, Problem 3.22(c) in [4]].) O

Our primary criterion for relative compactness is the following moment condition, which is a special
case of Corollary 2.2 in [[]].

Theorem 2.3. Let {X,,} be a sequence of processes in Dya[0,00). Let q(x) = |x| A 1. Suppose that for
each T > 0, there exists v >0, 8 >0, C >0, and 0 > 1 such that sup, E[|X,,(T)|"] < oo and

|nt] — ns]\?
BLaty() - X, < ¢ [ 2.6
forallnand all 0 <s <t < T. Then {X,,} is relatively compact.

Of course, a sequence {X,} converges in law in D4 [0, 00) to a process X if {X,,} is relatively compact
and X,, — X in the sense of finite-dimensional distributions on [0,00). We shall also need the
analogous theorem for convergence in probability, which is Lemma A2.1 in [3]]. Note that if x :
[0,00) — R? is continuous, then x,, — x in Dga [0, 00) if and only if x,, — x uniformly on compacts.

Lemma 2.4. Let {X,},X be processes with sample paths in Dya[0, 00) defined on the same probability
space. Suppose that {X,} is relatively compact in Dya[0,00) and that for a dense set H C [0, 00),
X,(t) = X(t) in probability for all t € H. Then X,, — X in probability in Dy4[0,00). In particular, if
X is continuous, then X, — X ucp.
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We will also need the following lemma, which is easily proved using the Prohorov metric.

Lemma 2.5. Let (E,r) be a complete and separable metric space. Let X, be a sequence of E-
valued random variables and suppose, for each k, there exists a sequence {X,;}>>, such that
limsup,_,, E[r(X;;,X},x)] < 6y, where 6, — 0 as k — oo. Suppose also that for each k, there ex-
ists Yy such that X,, ; — Yj in law as n — oo. Then there exists X such that X,, — X in law and Y}, — X

in law.

2.2 Elements of Malliavin calculus

In the sequel, we will need some elements of Malliavin calculus that we collect here. The reader is
referred to [|6] or [[10] for any unexplained notion discussed in this section.

We denote by X = {X(¢) : ¢ € $H} an isonormal Gaussian process over §), a real and separable
Hilbert space. By definition, X is a centered Gaussian family indexed by the elements of §) and such
that, for every ¢,y € 9,

E[X(@)X()] = (¢, ).

We denote by %7 and $®9, respectively, the tensor space and the symmetric tensor space of order
q > 1. Let & be the set of cylindrical functionals F of the form

where n > 1, ¢; € $ and the function f € C*(RR") is such that its partial derivatives have polynomial
growth. The Malliavin derivative DF of a functional F of the form (2.7) is the square integrable $-
valued random variable defined as

L
DF :éa—)’;(xupl),...,an))«pi-

In particular, DX(¢) = ¢ for every ¢ € §). By iteration, one can define the mth derivative D™F
(which is an element of L2(, $H®™)) for every m > 2, giving

n amf
D"F= ), ——>—X(p),....X %@ .
12 ax "'3xim( (p1), X))y, ® - ®;

As usual, for m > 1, D™? denotes the closure of % with respect to the norm || - |lm,2> defined by the
relation

m
IFIl,, = EF* + ) JEIID'F2e:.
i=1

The Malliavin derivative D satisfies the following chain rule: if f : R" — R is in C; (that is, the
collection of continuously differentiable functions with a bounded derivative) and if {F;};,—; _,isa

vector of elements of D2, then f(Fy,...,F,) € D? and
n af
Df(Fy,....F) =) o (F. -, F)DE,. (2.8)
i=1 9Xi
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This formula can be extended to higher order derivatives as

n akf
D"f(Fy,....F)= Y. C, >, 5o (P F)D"F, ©: - @D%F,,  (29)

. L=d  Ox; - ;
VED,  iy,ik=1 b U

where &, is the set of vectors v = (vy,...,v) € Nf such that k > 1, v; < --- < v, and v; +
-+ + v, = m. The constants C, can be written explicitly as C, = m!(l_[;.n:1 mj!(j!)mf)_l, where
m; = [{€ : v, = j}I.

Remark 2.6. In (2.9), a ® b denotes the symmetrization of the tensor proguct a ® b. Recall that, in
general, the symmetrization of a function f of m variables is the function f defined by

~ 1
f(t1:~--:tm) = % Z f(to'(l):“')to(m)): (2.10)

‘oe6,,

where &,, denotes the set of all permutations of {1,...,m}.

We denote by I the adjoint of the operator D, also called the divergence operator. A random element
u € L?(Q, $) belongs to the domain of I, noted Dom(I), if and only if it satisfies

|E(DF,u)¢| <c,VEF?> foranyF € %,
9 u

where ¢, is a constant depending only on u. If u € Dom(I), then the random variable I(u) is defined
by the duality relationship (customarily called “integration by parts formula"):

E[FI(u)] = E(DF,u)g, (2.11)

which holds for every F € D'2.

For every n > 1, let 5, be the nth Wiener chaos of X, that is, the closed linear subspace of L2 gen-
erated by the random variables {h,(X(¢)) : ¢ € 9,|¢|s = 1}, where h,, is the Hermite polynomial
defined by (2.1). The mapping

L(¢®") = hy(X () (2.12)

provides a linear isometry between the symmetric tensor product $H°" (equipped with the modified
norm \/%T!” “|lgen) and ,. We set I(f) := I,(f) when f € $®". The following duality formula
holds:

E[FI,(f)] = E(D"F, f)gen, (2.13)

for any element f € $H°" and any random variable F € D™2. We will also need the following
particular case of the classical product formula between multiple integrals: if ¢, € $ and m,n > 1,

then
mAn

oo = 31 () (s O @SNy 204

r=0

Finally, we mention that the Gaussian space generated by B = B'/® can be identified with an isonor-
mal Gaussian process of the type B = {B(h) : h € $}, where the real and separable Hilbert space $)
is defined as follows: (i) denote by & the set of all R-valued step functions on [0, c0), (ii) define
as the Hilbert space obtained by closing & with respect to the scalar product

1
(110,635 L0s1) sy = E[B(s)B(t)] = E(fl/g +513 — |t —s|1/3).
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In particular, note that B(t) = B(1[q 7). To end up, let us stress that the mth derivative D™ (with
respect to B) verifies the Leibniz rule. That is, for any F,G € D™2 such that FG € D™?, we have

D, (FG)= ZD'Jl(F)Dm Vie), tefo,1], i=1,...,m, (2.15)
where the sum runs over all subsets J of {t;,...,t,,}, with |J| denoting the cardinality of J. Note

that we may also write this as

m

D™FG) = Z (TZ) (DKF)®(D™ % G). (2.16)

k=0

2.3 Expansions and Gaussian estimates

A key tool of ours will be the following version of Taylor’s theorem with remainder.
Theorem 2.7. Let k be a nonnegative integer. If g € CX(R?), then
)
g(b)= > 3° s@ = R0,y
lal<k

where

Re(a,b) =k Z f (1-w*[8%(a+u(b—a)) — 3%(a)] du

|a|=k
if k > 1, and Ry(a, b) = g(b) — g(a). In particular, Ry(a, b) = Zlalzk hy(a, b)(b — a)®, where h, is a
continuous function with h,(a,a) = 0 for all a. Moreover,
IRi(a, b < (kv 1) D" M,l(b—a)*,

la|=k

where M, = sup{|d*g(a+u(b—a))—29%g(a)|:0<u<1}.

The following related expansion theorem is a slight modification of Corollary 4.2 in [1]].

Theorem 2.8. Recall the Hermite polynomials h,(x) from (2.1). Let k be a nonnegative integer.
Suppose ¢ : R — R is measurable and has polynomial growth with constants K and r. Suppose
f e C*(RY) has polynomial growth of order k + 1, with constants K and r. Let £ € R and Y € R be
jointly normal with mean zero. Suppose that EY? = 1 and E§]2. < v for some v > 0. Define n € RY by
n; = E[g;Y]. Then

B (©p(N] = 3 —n“E[0"f(EET(V)p(V)] +R

|a|<k
where |R| < CK|n|**! and C depends only on K, r, v, k, and d.

Proof. Although this theorem is very similar to Corollary 4.2 in [[1]], we provide here another proof
by means of Malliavin calculus.
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Observe first that, without loss of generality, we can assume that &; = X(v;), i = 1,...,d, and
Y = X(v441), where X is an isonormal process over £ = R4l and where v;,...,v4,, are some
adequate vectors belonging in §). Since ¢ has polynomial growth, we can expand it in terms of
Hermite polynomials, that is ¢ = .« c,h,. Thanks to (2.2), note that qlcg = E[p(Y)hy(Y)]. We

q=0"~q""q*
set
k 00
o :Zcqhq and @, = Z cqhy
q=0 q=k+1

Of course, we have

E[f(&)p(Y)] =ELf(&)Pr(Y)]+E[f (E)Pr(Y)].
We obtain

k
1
E[f(&)ex(Y)] = Z EE[LP(Y)hq(Y)] E[f(&)hy(Y)]
q=0*"
k
1
—Zq' E[o(Y)h (V)] ELf () (vii)] by @1
q=0
k

1
=2 T ELe R (N ELDUF(E), )] by

q=0

f1 ¢ 99f q
:Z_I Z E[o(Y)hy(Y)]E W(S) l_[ml by (2.9).
=0T i, =1 Xy e 9x, 1

Since the map ¢ : {1,...,d}? — {a € Nd |a| = q} defined by (®(iy,...,i5)); = [{€ : i, = j}[ is a
surjection with |<I>_1(a)| =q!/a!, this gives

k
E[f()@r(Y)] =Z Z —E [o(Y)hg(Y)] E[8°F (£)]n*
=0 1 Ial q
1
= D —Ele(Mh (NI EL2%f (D)]n°
lal<k

On the other hand, the identity (2.2), combined with the fact that each monomial x" can be ex-
panded in terms of the first n Hermite polynomials, implies that E [Y‘“'«,bk(Y)] =0 for all |a| < k.
Now, let U = £ — nY and define g : R? - R by g(x) = E[f(U + xY)¢,(Y)]. Since ¢ (and, con-
sequently, also ¢;) and f have polynomial growth, and all derivatives of f up to order k + 1 have
polynomial growth, we may differentiate under the expectation and conclude that g € C**1(R9).
Hence, by Taylor’s theorem (more specifically, by the version of Taylor’s theorem which appears as
Theorem 2.13 in [[1]]), and the fact that U and Y are independent,

1
E[f (@) =gm)= D, —n“2°g(0) +R

|a|<k

1
= D "E[0°fWIELY I3 (Y)] +R=R,

|a|<k
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where
d(k+1)/2

"
and M =sup{|9®g(un)|: 0 <u <1,|a| =k + 1}. Note that

3%g(un) = E[8%f (U +unY)Y @ (Y)] = E[3%f (£ — n(1 —w)Y)Y ¢, (V)].

IR| < K+,

Hence,
10%g(un)| < KKE[(1+|& —n(1 —wY )Y (1 +|v|")]
< KKE[(1+2"[E]"+2"InI"[Y DAY + [y [1H+7),
Since |n|? < vd, this completes the proof. O

The following special case will be used multiple times.

Corollary 2.9. Let X1,...,X, be jointly normal, each with mean zero and variance bounded by v > 0.
Let m;; = E[X;X;]. If f € CY(R™ 1) has polynomial growth of order 1 with constants K and r, then

ELf (X1,.., X0 1)X0]] < CKcr3r]r_1<a;<|njn|, (2.17)

where o = (EX rzl)l/ 2 and C depends only on r, v, and n.
Proof. Apply Theorem [2.8|with k = 0. O
Finally, the following covariance estimates will be critical.
Lemma 2.10. Recall the notation f3; = (B(t;_1) + B(t;))/2 and r,. =r V 1. For any i, ],
() |E[ABAB;]| < CALY3|j —i]°°,
(i) |E[B(t)AB;]| < CALY3(72/% +|j— i 2,
(i) |E[B;AB;]| < CALYA(2 +|j —if;%%),
(iv) |E[B;AB;]| < CAtY372/3 and
™) Cilt; — ' <E|IB; — Bil* < Cylt; — ;M3
where Cy, Cy, are positive, finite constants that do not depend on i or j.

Proof. (i) By symmetry, we may assume i < j. First, assume j —i > 2. Then
t; tj
E[AB;AB;] = f J 92R(s,t)dtds,
ti-1 VYt

where aj = 9,0,. Note that for s < t, 92R(s, t) = —(1/9)(t —s)~>/>. Hence,

> Ust

|E[AB;AB;]| < CAE?|t;, — t;| P < cat'Blj—i| >3,
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Now assume j — i < 1. By Holder’s inequality, [E[AB; AB;]| < A3 = A3 — ilf/g.
(ii) First note that by (i),
i J
|E[B(t)AB;]| < > [E[ABAB]| < CAt? ) [k —jI°° < cac'l?.
k=1 k=1

This proves the lemma when either j =1 or |j —i|, = 1. To complete the proof of (ii), suppose j > 1
and |j — i| > 1. Note that if t > 0 and s # t, then

1 1
OR(s, t) = Et_Z/B — E't —s|72/3 sgn(t —s).

We may therefore write E[B(t;)AB;] = f:j AR(t;,u) du, giving

j-1

IE[B(t;)AB;] < At sup  |9,R(t;,w)] < CALM3(G™2P +1j — i),

+
uelt;_q,t;]

which is (ii).
(iii) This follows immediately from (ii).
(iv) Note that 28;AB; = B(t;)* — B(t;_1)*. Since EB(t)* = t1/3, the mean value theorem gives

-2/3 _ 1/3:-2/3
E[B;AB;]I < C(AD)E; ™ = CAt /3j=2/3,
(v) Without loss of generality, we may assume i < j. The upper bound follows from

2(8; — Bi) = (B(t;) — B(t;)) + (B(tj—1) — B(t;—1)),

and the fact that E|B(t) — B(s)|?> = |t —s|!/3. For the lower bound, we first assume i < j — 1 and
write

2(B; — ) = 2(B(t;—1) — B(t;)) + AB; + AB,;.
For any random variables a, b, ¢ with a = b + ¢ recall that —E[ac] < (E[|a|*]E[|c|?*])!/? leading to
E[|b]*] = E[la — ¢[’] < ((E[lal* D" + (E[Ic 1)),
Taking the square root in both side of this inequality we get
(E[BPDY? < (E[lalPDY? + (E[IcPDV>.

Letting, a = (8; — B;), b = (B(t;—;) — B(t;)), and ¢ = (AB; + AB;)/2 yields

1
LB — BIPDV2 = Nty — V0 - S (ELIAB; + AB; PV,
Since AB; and AB; are negatively correlated,
E[|AB; + AB;|*] < E[|AB;|*] + E[|AB;[*] = 2A¢1/3,

Thus,
(E[IB; — BilPDY? = Att/6]j — 1 —i|M6 — 2712 A6 > e AL /oj — i1/,

for some C > 0. This completes the proof when i < j — 1.
If i = j — 1, the conclusion is immediate, since 2(; — f8j_1) = B(t;) — B(t;_). O
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2.4 Sextic and signed cubic variations

Theorem 2.11. For each T > 0, we have E[supg<,;<r |Vf(B, t) —15t|?] — 0 as n — oo. In particular,
VE(B,t) — 15t ucp.

Proof. Since Vrf’(B) is monotone, it will suffice to show that Vn6(B, t) — 15t in L? for each fixed t.
Indeed, the uniform convergence will then be a direct consequence of Dini’s theorem. We write

[nt]
VO(B,t)— 15t = » (AB®—15At)+15(|nt]/n — t).
=1

nt)

Since ||nt]/n — t| < At, it will suffice to show that EIZJL.:1

compute

(ABJ.6 — 15A¢t)|?> — 0. For this, we

2 Int](nt]
= ZZE[(AB? — 15AL)(ABS — 15A1)]
i=1 j=1
|nt] [nt]
= (E[ABPABS] - 225A%).
i=1 j=1

Lnt]
E

(AB].6 —15At)
j=1

(2.18)

By Theorem if £,Y are jointly Gaussian, standard normals, then E[& 6y®] = 225 + R, where
IR| < C|E[EY]|?. Applying this with £ = At7/9AB; and Y = At‘1/6ABj, and using Lemma
2.10(1), gives |E[ABPABS] — 225A¢%]| < CAt?|j — i 1973 Substituting this into (2:18), we have

Lne
Z(AB? — 15At)

j=1

2

E < Clnt|At?> <CtAt — 0,

which completes the proof. O

Theorem 2.12. As n — oo, (B, V,(B)) — (B, [[B]]) in law in Dg2[0, 00).

Proof. By Theorem 10 in [[11]], (B, V,,(B)) — (B, kW) = (B, [[B]]) in law in (D [0, 00))?. By Lemma
this implies (B, V,(B)) — (B, [[B]]) in Dy2[0, 00). O

2.5 Main result

Given g € C®(R), choose G such that G’ = g. We then define

t

‘ 1
f g(B(s))dB(s) = G(B(t)) — G(B(0)) + EJ G"'(B(s)) d[[BIl;. (2.19)
0

0

Note that, by definition, the change of variable formula ((1.3)) holds for all g € C*°. We shall use the
shorthand notation f g(B)dB to refer to the process t — fot g(B(s))dB(s). Similarly, f g(B)d[[B]]

and f g(B)ds shall refer to the processes t — f Ot g(B(s))d[[B]]l; and t — f Ot g(B(s))ds, respectively.

Our main result is the following.
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Theorem 2.13. If g € C*°(R), then (B, V,(B),I,(g,B)) — (B, [B]], f g(B)dB) in law in Dgs [0, 00).

We also have the following generalization concerning the joint convergence of multiple sequences
of Riemann sums.

Theorem 2.14. Fix k > 1. Let gj € C*(R) for 1 < j < k. Let J, be the RX-valued process whose
j-th component is (J,,); = I,(g;,B). Similarly, define J by J; = fgj(B)dB. Then (B,V,(B),J,) —
(B, [[B]],J) in law in Dgk+2[0, 00).

Remark 2.15. In less formal language, Theorem states that the Riemann sums I,,(g;,B) con-
verge jointly, and the limiting stochastic integrals are all defined in terms of the same Brownian
motion. In other words, the limiting Brownian motion remains unchanged under changes in the in-
tegrand. In this sense, the limiting Brownian motion depends only on B, despite being independent
of B in the probabilistic sense.

The proofs of these two theorems are given in Section 5]

3 Finite-dimensional distributions
Theorem 3.1. If g € C*(R) is bounded with bounded derivatives, then

B.V.(B), LZ g(B(t;- 1))+g(B(t )

hy(n'/AB)) | — (B, [[Bl, J g(B)d[[B]]),

in the sense of finite-dimensional distributions on [0, 00).

The rest of this section is devoted to the proof of Theorem

3.1 Some technical lemmas

During the proof of Theorem (3.1} we will need technical results that are collected here. Moreover,
for notational convenience, we will make use of the following shorthand notation:

5j = l[tj—l;tj] and 8]- = 1[0;tj]'

For future reference, let us note that by (2.10),

-1
E?G ® 85®(q—a) — (q) Z £, ®...0 €, (3.1
[{j:ij=s}|=q—a
Lemma 3.2. We have
@ |EB(r)(B(t) —B()] = {1j0,75 1s))s| < |t = 5|3 for any r,s,6 > 0;
[nt] [nt]

(i) sup ZlE[B(S)ABk]I = sup ZI 110,57, Ok)sl = O(1) for any fixed t, T > O;
0<s<T f—=3
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Lnt] lnt|

i) D EB(t-)ABI = Y 1651, 80)5] = O(n) for any fixed t > 0;

k,j=1 k,j=1
[nt] Lnt 1

(iv) Z (E[B(tx_1)AB])® + —‘ (sk_1,5k) + P Ofor any fixed t > 0;
k=1

ntJ

1
<8k:5k> - — —>0foranyfucedt>0

o § ety -2 -$ e

Proof.

(i) We have
E(B(r)(B(t)—B(s)))=%(t1/3 1/3)+ (Is—r|1/3—|t r'3).

Using the classical inequality ||b|1/3 — |a|1/3{ < |b — a3, the desired result follows.

(ii) Observe that

E(B(s)ABy) = (k1/3 (k= DY3 =k —ns|"® + |k —ns — 1'/%) .

onl/3
We deduce, for any fixed s < t:

[nt]
Z |E(B(s)ABy)| < —t1/3

( ‘(Lns —ns+ Y3 — (ns — |ns])V/3

onl/3

|ns] [nt]
+Y (s +1-K) = (s — k)P 4+ D]
k=1

k=|ns|+2

(k—ns)/® — (k—ns—1)'/3

)

1
= E(tl/“3 +s3 41t —s|V)+R,,

where |R,| < Cn~1/3, and C does not depend on s or t. The case where s > t can be obtained
similarly. Taking the supremum over s € [0, T] gives us (ii).

(iii) is a direct consequence of (ii).
(iv) We have
3 1 1 1/3 1/3
(E(B(tr-)AB)” + 5| = o= (kP = (k= 1)'?)

x |(K3 = (k= 1)'3)" = 3(kM% — (k — DV/3) + 3|

Thus, the desired convergence is immediately checked by combining the bound 0 < k'/3 —
(k —1)/3 < 1 with a telescoping sum argument.
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(v) The proof is very similar to the proof of (iv). O

Lemma 3.3. Let s > 1, and suppose that ¢ € CO(R®) and g1, g, € C®(R) have polynomial growth of
order 6, all with constants K and r. Fix a,b € [0, T]. Then

|na] |nb]|

sup supZZ|E(¢(B(u1) L B())g1 (B(t,1))g2(B(t,—1 (68)15(58%) |

Ug,.., U, €[0,T] n=1 i=1i,=1
is finite.

Proof. Let C denote a constant depending only on T, s, K, and r, and whose value can change from
one line to another. Define f : R*"3 — R by

FO)=@(xy,. .o, x)81(x511)82(xs12)R3 (X 43)-
Let & = B(w;), i = 1,...,8; &1 = B(tj,—1), &2 = B(ty,—1), Es43 = nl/6ABi1, and n; =
n'/°E[& iAB;,]. Applying Theoremwith k =5, we obtain
E(¢(B(uy),. .., B(u))g1(B(t;, -1))g2(B(t;, -1 DI3(67°)5(55%))

1 1 1
= ;E(qb(B(ul)w--:B(us))gl(B(til—l))gZ(B(tiz—l))hB(ngAB' Jhs(ne AB;, )

R
= - Z —E [0°f ()m +—.

Ial 3¢
where |R| < C|nl®.

By Lemma (i), we have |n;| < n~Y® for any i < s+ 2, and |n,,3] < 1 by Lemma (0).
Moreover, we have

LHGJ Lnb| [na] [nb]
_ZZ”’HB' ZZ||11—12+1|1/3+|11—12—1|1/3—2|l —i'?<c.
i1=1iy=1 11—112_1

Lna]

Therefore, by taking into account these two facts, we deduce + 211_1

) < .
On the other hand, if a € Nf;r?’ is such that |a| = 3 with a,,5 # 0, we have

LnaJ Lan

- Z 2. )E 2%£(£)]|In*]

11—1 12_1

|liy =iy + 1112 + Jiy — iy — 12 = 2]i; — ip|?| < C.

:IQ

|| MF

2

Note that E[3%f ()] < oo since the function d*f has polynomial growth by our assumptions on ¢,
g1, and g,, and since & is a Gaussian vector.

Finally, if a € Nf)+3 is such that |a| = 3 with a,,3 = 0 then 9%f = 9%f ® hy with f : R*2 - R
defined by f(x) = ¢(x1,...,%5)81(%541)82(xs40). Hence, applying Theorem to f = E/w‘fA and
¢ = hy with k = 2, we deduce, for ) € N%Jrz defined by 1; = n;,

|E[0°F(9)]| = |E[0%F (Ehs(n"/°AB; ]| < CI7* < cn™'/2,
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so that

Lna] [nb] Lna] [nb]

1 6 1 6
=3 =B @1Int == Y, > —|ElaF(©)]1F% < C.
i & i &
1 2 1 2
The proof of Lemma [3.3]is done. O

Lemma 3.4. Let g,h € CI(R), q > 1, having bounded derivatives, and fix s, t > 0. Set &, = 1[¢ ;] and
&; = 1[g5)- Then g(B(t))h(B(s)) belongs in D%? and we have

q
q a —a a —a
D (e BDHEED) = 3 () BN (B e @8, 5.2
a=0
Proof. This follows immediately from (2.16]). O

Lemma 3.5. Fix an integer r > 1, and some real numbers sq,...,s, > 0. Suppose ¢ € C*(R")

and g; € C*(R), j = 1,2,3,4, are bounded with bounded partial derivatives. For iy,iy,13,i4 € N,

set ®(iy,1g,13,14) := (p(le,...,Bsr)l_[jzl gj(B¢, _1). Then, for any fixed a,b,c,d > 0, the following
]

estimate is in order:

Lna] Lnb] Lnc| Lnd]

sup DI ’E (<I>(i1,i2, is, i4)13(55?3)13(553)13(553)13(553))’ < 0. (3.3)
N=lii=1i,=1i3=1i,=1

Proof. Using the product formula (2:14), we have that I5(5 23)1 3(55’3) equals
I6(55° ® 55°) +914(55% ® 5°)(5y,, 61, )5 + 1815(8, ® 5;,)(54,, 61,3 + 6(5;,, 8,5,

As a consequence, we get

Lna| |nb] |nc] [nd]
| (2 5, 1 (EEI(EEI(5E)1(55) )|
11:1 12:1 13:1 l4:].
lna] |nb]| nc| [nd]
<33 }E (@Cin, iy, 15, 1)1 (EENL (625 ® 5?;3))\
i1=1iy=1i5=1is=1
Lna] [nb] |nc| [nd]
£93, 30 3 B (#0010 i iGN 52 )| [(65,.51,)5
i1=1iy=1i3=1i,=1
Lna] Lnb] |nc] [nd]
+18 Z Z Z Z ‘E (‘P(il, Iy, i3, i4)I3(5§3)I3(5§3)12(5i3 ® 51'4)). (61,,61,)%
i1=1iy=1i5=1i,=1
[na] |nb]| [nc| [nd]
T62,2,2,2,

i1=1lip=1i3=1i,=1

_. a0 (n) (n) (n)
=:A]" +9A," + 184, +6A4.

3

E (@(ll, iz, i3, 14)13(55?3)13(623)) ‘ ‘(51'3, 51'4)57)
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(1) First, we deal with the term A(ln).

na |nb] |nc] nd]

SRR IO I I N CORRRAAC SING DRG0l
i1=1iy=1i3=1i,=1
|na] [nb] |nc]| |nd]

S ‘E (10° (©(i1, b, b5, i (5E)15(62%) ), 53° @ 53°) 300 )

i1=1iy=1i3=114=1

When computing the sixth Malliavin derivative D (<I>(11,12,13,14)13(5®3)I3(5®3)) (using Lemma
[3.4), there are three types of terms:

(1a) The first type consists in terms arising when one only differentiates ®(i, i5,13,14). By Lemma
(1), these terms are all bounded by

lna] |nb]| |nc| [nd]
n—2 Z Z Z Z ’E (‘I’(il,iz;is,i4)13(5§3)13(523)) ,

=1iy=1i3=1i,=1

which is less than

Lna] [nb]
cd sup sup ZZ E(tI)(il,iz,i3,i4)13(6§3)13(523))’.
is=1,...,|nc] iy=1,...,[nd] i=1i,=1

(Here, 5(1’1, is,13,14) means a quantity having a similar form as ®(iy, i,,13,i4).) Therefore, Lemma
shows that the terms of the first type in A(ln) well agree with the desired conclusion (3.3).

(1b) The second type consists in terms arising when one differentiates ®(i;, i, i3,14) and 13(6®3)

but not 13(582’3) (the case where one differentiates ®(iy, i, i3,i,) and 13(6f3) but not 13(5®3) is,
of course, completely similar). In this case, with p defined by (2.4), the corresponding terms are
bounded either by

lna] |nb] |nc] |nd] 2

A IDW I I

i1=1iy=1iz3=1iy,=1a=

(801 25, 1I(EE(ED) 1o s = i),

or by the same quantity with p(i;—i;) instead of p(i;—i;). In order to get the previous estimate, we
have used Lemma 3.2|(i) plus the fact that the sequence {p(r)},<z, introduced in (2:4), is bounded
(see Remark[2.1). Moreover, by (2.13) and Lemma [3.2| (i), observe that

‘E (8 i, 1, i4)1a(5§’a)13(5§3))’ = ‘E (0% (B, 3, 14)1a(589)),68%) 500 ) | < O,

for any a =0, 1, 2. Finally, since

nc] [nd]
sup >, D lplia—inl<nd sup D p(r)]=Cn
11—1 ..... na 13_1 14_1 ..... na re?z

(and similarly for p(i4 — i;) instead of p(i3 —i;)), we deduce that the terms of the second type in
A(ln) also agree with the desired conclusion (3.3).
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(1c) The third and last type of terms consist of those that arise when one differentiates ® (i, i, i3, i),
I5(6;,) and I5(6;,). In this case, the corresponding terms can be bounded by expressions of the type

lna] |nb] |nc| |nd] 2 2

S

i1=1iy=1i3=1i4=1a=0 =0

E (®lin, 12,1, 13252 ) I Ca = n)llpGio = )

with @ = i3 or a = i4. Since
hand, and

E (5(i1, iy, i3,i4)la(5§“)lﬁ(52ﬁ)) is uniformly bounded in n on one

lna] |nb] |nc)
> Z D lpGs = iD)llp(iy — i3)] < ne (Z |p(r)|) =Cn

i1=1i,=1i3=1 rez

on the other hand (by Remark , we deduce that the terms of the third type in A(ln) also agree
with the desired conclusion (3.3).

(2) Second, we focus on the term A(Zn). We have

lna] [nb] |nc]| |nd]

A(n) Z Z Z Z ' ( (q,(il,iz,iB,i4)I3(5§3)Ig(523)) ,522 ® 552) )

i1=1iy=1i3=11i4=1

(51,515

13’

When computing the fourth Malliavin derivative D*(®(iy, iy, is, i4)I5(5 {?3 )5(6 5’3)), we have to deal
with three types of terms:

(2a) The first type consists in terms arising when one only differentiates ®(iy, i,,13,1,). By Lemma
(1), these terms are all bounded by

Lna| |nb] |nc] [nd]

33155

11:1 12:1 13:1 14:1

E (8001, ., i1 (521(689) ) Ipis = i),

which is less than

[na] [nb]
Ccn~ 2/32 lp(r)|  sup sup Z Z ‘E (q>(11, iy, ia, 14)13(5®3)13(5®3))‘
rez, iz=1,...,[nc] iy=1,...,[nd] ; i=1i,=1

Hence, by Lemma we see that the terms of the first type in A(Zn) well agree with the desired
conclusion (3.3)).

(2b) The second type consists in terms arising when one differentiates ®(iy, i, i3,i4) and 13(55’3)

but not 13(515?3) (the case where one differentiates ®(iy, iy, is,14) and 13(523) but not 13(515?3) is
completely similar). In this case, the corresponding terms can be bounded either by

lna] |nb] |nc] |nd] 2

om0 2. 2 |F

i1=1iy=1i3=1i4=1a=

(801 i 618 DIE) [ I s — i)l s — i)

or by the same quantity with p(i4 —i;) instead of p (i3 —i;). By Cauchy-Schwarz inequality, we have
& (8001, 5, 15265 | < Cn ™8 < 12
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Since, moreover, Remark [2.1] entails that

|nc] |nd]
sip > > Iplis — inllplis — i) < (Zm(rn)

i1=1,...,lna] iz=11i4=1 rez
(and similarly for p(i4 — i;) instead of p(i3 —i;)), we deduce that the terms of the second type in

A(zn) also agree with the desired conclusion ([3.3)).

(2¢) The third and last type of terms consist of those that arise when one differentiates ®(iy, iy, i3, i4),
I5(6;,) and I5(6;,). In this case, the corresponding terms can be bounded by expressions of the type
|na] [nb] |nc] |nd]

551513 35

2
i1=1i,=1i3=1i,=1a=0p=

E (?Ii(il, iy, is, i4)1a(5{?a)1ﬁ(5iﬁ)) ’

x |p(a—i)llp(iz = b)llp(is = is)l.

E (5(1'1, in, i3, i4)1a(5§“)1/3(5§ﬁ))

with a,b € {is,i4}. Since is uniformly bounded in n on one

hand, and

na] [nb] |nc] |nd]
D220 D Ipla—i)llpGy— b)llp(is — is)| < nd (an) =Cn

i1=1iy=1i3=1i4=1 rez

on the other hand (still using Remark , we deduce that the terms of the third type in A(") also
agree with the desired conclusion (3.3).

(3) Using exactly the same strategy as in point (2), we can show as well that the terms Ag”) agree
with the desired conclusion ([3.3)). Details are left to the reader.

(4) Finally, let us focus on the last term, that is AD we have, using successively the fact that
Y 4 g y
> s lp(r)]? < oo and Lemma

|na] |nb] |nc] |nd]
AP=2.2.2.2,
1=1iy=1i3=114=1

na] |nb] |nc] |nd]
EDIIIPI
i1=1i,=1i3=1i4=1

lna] nb]

<C sup sup Z Z

15i3SLTlCJ 1§i4§anJ i1=1i,=1

B (90, i, 5, iBGPI6E) |[(61,, 5,0

B (8001, i, i5E(680) ) I Gis — 10)P

E (q)(il:iZ;i37i4)13(5§3)IB(5§3))’ <C

Hence, the terms AE‘“) agree with the desired conclusion (3.3) and the proof of Lemma is now
complete. O

Lemma 3.6. Let A = (A4,...,4,) ER™, uy,...,uy, >0, u, > 0 and suppose g1,...,g&n € C*(R) are
bounded with bounded derivatives. Define V,, € R™ by

|_nukJ
= ( Z gk(B(ti—l))I3(51®3)) ’
= k=1,....m

,,,,,
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so that

[ |
ZAk > Bt )(65°)  (see BIS) below). (3.4)
k=1 i=1
Then there exists C > 0, independent of n, such that
sup  E((D(A,V,),5,)3) < Cn™?? (3.5)
j=1,...,lnup]
Lnup]
D E((D(A,V,),6)2) <Cn 2 (3.6)
j=1
[nu, ]
le E({DX(A,V,),69%2,,) < Cn2, 3.7)
]:
Proof. We have
[y ]
(D(2,V,) Zxk D kBt )58 (e, 5,)
i=1
[nug ]

+32Ak ng(B(q DNI(682)(5,,6;)5. (3.8)

k=1

Hence, with p defined by (2.4),

m Lnuy |
<2m A7 ) |E(er(Blti1))gp(B(t DIs(EEI5(57))||(ei-1, 575 | (601,55
k=1 i,{=1
L

+18mZAZZ|E(gk(B(tl-_l))gk(B(te_l))12(5?2)12(5?2))1| 08105 (8e,87)s]

[Tlukl

<cn?P sup Z |E(8r(B(t;-1))gr(B(t—1 DI3(52)13(55°))]
1em

[y |
+Cn 43 Z lo(i — NIlp(@ —j)I by Lemma[3.2](i) and Cauchy-Schwarz
=

2
<cn 2P 4cn 43 (Z Ip(r)l) by Lemma 3.3|and Remark [2.1]
rez

<cn?3,

which is (3.5). Moreover, combining the first inequality of the previous estimate with Lemma
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(ii) and Lemma 3.3} we also have

Lnuy )

D> TE(D(A,V,),6)2)

j=1
Lnuy |

< Cn-1/3k sup D B (B(tio))g (Bt D (58)5(58%))|
=1,..., m l,Z=1

L, |

2
X sup Z ~<8i_1,5]~>5| + Cn—1/3 (Z |p(r)|) < Cn—l/B’

i=1,...,[nuy] =1 rez

which is (3.6). The proof of (3.7) follows the same lines, and is left to the reader. O

3.2 Proof of Theorem [3.1]

We are now in position to prove Theorem For g : R — R, let

[nt]
B 1
G- (g,B,t):= ﬁzllg(B(tj_l))hg(nl/ﬁABj), t>0, n>1.
J:

We recall that hy(x) = x3 — 3x, see (2.1)), and the definition (2.3) of V,(B, t). In particular, observe
that
Vo(B,t) = G (1,B,t)+3n Y/3B(|nt]/n). (3.9)

Our main theorem which will lead us toward the proof of Theorem [3.1|is the following.

Theorem 3.7. If g € C®(R) is bounded with bounded derivatives, then the sequence
(B,G,(1,B),G, (g,B)) converges to (B, [[B]],—(1/8)fg”’(B)ds + fg(B)d[[B]]) in the sense of
finite-dimensional distributions on [0, 00).

Proof. We have to prove that, for any { +m > 1 and any uy,...,uy,, = 0:

(Ba G;(]-:Baul))"UG;(]-)B; uf)) G;(g;B)ul-i-l))" -,G;(g:B:uZ-i-m))

i—tg(B,[[B]]ul,-u,[[B]]ug,—gf g”’(B(s))ds+f CIOVEIIL)
0 0

1 Ugtm Ugtm
- §J ¢ (B(s))ds +f g(B(S))d[[B]]s)'
0

0

Actually, we will prove the following slightly stronger convergence. For any m > 1, any uy, ..., U, =
0 and all bounded functions g,..., g, € C*(R) with bounded derivatives, we have

(B, G;(g13B7u1): [ERS) G;(gm,B,um))

aw 1 u1 n
e (B’—gf gi”(B(s))dHf g1(B(s)d[[BIl;,...,
0 0

1 Up, U,
—gf g,';’(B(s))dwf en(BE)BLL ). (310)
0 0
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Using (2.12]), observe that
[nt]

G, (g,B,6) =Y g(B(t;_1)I5(6%%). (3.11)

=1

The proof of (3.10) is divided into several steps, and follows the methodology introduced in [[7].

Step 1.- We first prove that:

lim E (G, (g1,B,w1),, G (gm: B, u))

1 [ 1
- (_gf E(g{ (BE) s, —3 f E(g{,ﬁ’(B(s)))ds),
0 0

(3.12)
lim E (”(G (g1,B,uq),.. G;(gm’B’um))Hﬂzam)

n—oo

i u; 2
= Z (Kzf E(2(B(s))ds + E U ’”(B(s))ds) ) :
i=1 0 64 0

For g as in the statement of the theorem, we can write, for any fixed t > 0:

[nt]
E (G, (g,B,0) =y, (g(B(t;)13(6%)) by G-I
j=1

Lnt)
= > E((D%(B(t;1)),68%)ges ) by

j=1
|nt]

_ZE(g/,,(B(tJ D(ej_1,6,)3 by @B)
|nt] Int]

1
Z__ZE(g'"(B(% D)+ D EGE (B 0 (tey-1.3 + 5

j=

n—oo

- —% f E(g"”'(B(s)))ds by Lemmal3.2](iv).
0

Now, let us turn to the second part of (3.12). We have

m
E||(G, (81,B.11)), ..., Gy (8m: B,y DIEn = D L E(G, (81, B,1)?).
i=1

By the product formula (2.14)), we have

I3(6°)5(68%) = 16(55° ® 5¢°) + 914(55% ® 5°)(5, 1)
+181,(5,; ® 5,)(5,51)7 +6(8;, k)3
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Thus, for any fixed t > 0,

Lnt]
E(Gy(2,B,00) = Y, E (8Bt )gBlt Da(68)1:(68%))

jk=1
Lnt]
= > E (8Bt ))gB(t))(52° © 55 )

jk=1
[nt]

+9 3 E (8(B(510)8Bt (552 @ 582)) (51,605
j.k=1

lnt]

+18 Y E (g(B(t;1)8(B(ti1)2(5; ® 5,)) (55,6103
jk=1
|nt]

+6 Y E (g(B(t;_1)g(B(t;-1))) (6;,5)3

j,k=1
=:A,+B,+C,+D,.
We will estimate each of these four terms using the Malliavin integration by parts formula (2.13)).
For that purpose, we use Lemma 3.4 and the notation of Remark [2.6]
First, we have

Lnt]
A= E (<D6[g(B(tj_l))g(B(tk_l))J, 537 55 0 )

jk—l

( ) (9B O B) 5 €55, 57 058

(Bt Y B(t-1)))

Il MO\ I MG‘\

5®3 ® 5®3>f)®6.

lg? J

x Z (6,®...0¢
i), emig€li—1,k—1}
|{Ci=j-1}1=a

Actually, in the previous double sum with respect to a and i;,...,is, only the following term is
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non-negligible:

[nt]
D E(” (B(tj—1))8" (B(te—)))ej-1.6;)3 (exor, 513

Jk=1
Lne] 2
:E( E g///(B(fj_1))<£j—1’5j>%)

=
Lnt] |nt] 1 2
_E(__Zg”’(g(t] 1))+ng(3(t1 1))(( =15 J>%+§D

1 t 2
m,6_4]5(L g”’(B(s))ds) by Lemma [3.2 (iv).

Indeed, the other terms in A, are all of the form

[nt] 5
D EEOB OB o)1 605 | [(m1,8,)55 (3.13)
jk=1 i=1

where x; and y; are for j or k. By Lemma (iii), we have thnkt 1 (€21, 61) 6| = O(n) as n — oo.
By Lemma (D), SUD; k=1 [ni] I, [(€,-1,8,, )5l = O(n™>/®) as n — co. Hence, the quantity in

(3.13) tends to zero as n — co. We have proved

1 ‘ 2
A, —— —E "(B(s))ds | .
" oo 64 (L g7 (B(s)) S)

Using the integration by parts formula (2.13)) as well as Lemma we have similarly that

lnt] 4

Bl <9 > Z( )|E(g(“)(B(tJ DBt )2, @ P, 552 ® 582) ou (5, 51 )s

j,k=1a=0
Lt
<cn ™ 37 [(5;,6¢)5 by Lemma[3:2|(i)
j k=1
|nt]

— 5/3 AN 2/3 —
=Cn” kzlmo Rl <cn” ém(rn cn?? —s0,
J>

with p defined by (2.4).

Using similar computations, we also have

o0
|C,| < cn1/3 Z p3(r)=cnY?® —o,
= n—o00
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while

6 [nt]
Dy =~ > E(g(B(t;-1))gB(ti-))p’(j = k)

j,k=1
6 |nt]A(lnt]—r)

==Y > E(@B(t;j-1),)gB(t;r-1))P%(r)
rezZ j=1v(1-r)

— 6Zp3(r)f E(g*(B(s)))ds = Kzf E(g*(B(s)))ds,
rez 0 0

the previous convergence being obtained as in the proof of (3.27) below. Finally, we have obtained
t 1 t 2
E(G,(g,B,0)*) — Kzf E(g%(B(s)) ds + 6—4EU g’”(B(s))ds) , (3.14)
0 0
and the proof of (3.12)) is done.

Step 2.- By Step 1, the sequence (B, G, (g1,B,u1),...,G, (gn,B,uy)) is tight in Dg[0,00) x R™.
Consider a subsequence converging in law to some limit denoted by

(B; Go_o(gl)B: ul)) [N Go_o(gm,B, um))

(for convenience, we keep the same notation for this subsequence and for the sequence itself).
Recall V,, defined in Lemma [3.6] and note that by (3:11]), we have

V,:=(G,(g,B,u1),...,G,(gm,B,uy)), neNU{oo}. (3.15)

Let us also define

u

1 (™"
W= (_ §J g/ (B(s))ds +J g1(B(s))d[[B]l;;--.,
0

0

1 Upy, U,
- §J g,’,ﬁ’(B(S))dS+J gm(B(S))d[[B]]s)-
0 0

We have to show that, conditioned on B, the laws of V, and W are the same.

Let A =(A4,...,A,,) denote a generic element of R™ and, for A, u € R™, write (A, u) for 2111 Ailhi.
We consider the conditional characteristic function of W given B:

®(A) :=E (e'»™|B). (3.16)

Recall that [[B]] = kW, where W is a Brownian motion independent of B. Hence, if we condition on
111

B, then W has the same law as u+ N, where yu € R™ has components y; := —(1/8) f:k g, (B(s))ds,
and N is a centered Gaussian random vector in R™ with covariance matrix Q = (g;;) given by

qij = Kzf 8i(B(s))g;(B(s)) ds.
0
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Thus, (1) = elAi)=3(1QA)  The point is that & is the unique solution of the following system of
PDEs (see [[12]):

o¢ N
()= w)(lup - Zxkqpk), p=1...m, (3.17)
p k=1

where the unknown function ¢ : R™ — C satisfies the initial condition ¢(0) = 1. Hence, we have to
show that, for every random variable & of the form y)(B(s;),...,B(s,)), with ¢ : R" — R belonging
to C,°(R") and s4,...,s, = 0, we have

iE (ei(A’V“)E) - L upE ( ”/(B(s))gem’vm)) ds
or, s, T\&

Uup Al .
- Kzzkkf E (g,(B(s))gx(B(s)Ee™*">)) ds  (3.18)
0
forallp € {1,...,m}.

Step 3.- Since (V,, B) is defined as the limit in law of (V,,, B) on one hand, and V,, is bounded in L?
on the other hand, note that

. 0
_ AVe) £ — R (AV,)
" (e777e) = Jim, %" ()
Let us compute %E (ei(’mmi ) We have
P
o . .
—E (e“Wn)g) =1iE(G, (gp,B, up)el(x’vn)é). (3.19)

o2,

Moreover, see (3.11) and use (2.13)), for any t > 0:
[nt]

E(G;(g,B,t)el* V) = ZE (g(B(tj_l))lg(é?s)ei(l,Vn)g)

j=1
Lne] (3.20)

=>E (<D3 (sB(t;_1))ei ") ,5;@3)5@3) .
=1

The first three Malliavin derivatives of g(B(t j_l))eiM’V")§ are respectively given by
D(g(B(t;_1))e'*"n &)
= g'(B(tj_1))e'M"E &,y +ig(B(tj_1))e" MW ED(A, V,)
+ g(B(tj-1))e'™"'DE,

D2(g(B(t;_1))e"™"g)
= g"(B(t;-1)e' e e +2ig'(B(t; 1)) E DA, V,) @6
+2¢'(B(t;_1))e"*"") DE@e;_; — g(B(tj_1))e' ™" E D(A, V)2
+2ig(B(t;_1))e'™"" DE®D(A,V,) +ig(B(t;_))e'™ & D*(A,V,)
+ g(B(t;_1))e!™"n) D2g,
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and

D3(g(B(t;_1))e!*Vn)
= g"/(B(tj_1))e*Vn 68 |+ 3ig” (B(tj_1))e!* ) §6®2 ®D(A, V)
+3g"(B(tj-1))e' ™" £2% ® DE — 3¢'(B(t;_1))e' > E D(A,V,)** @ ¢;_4
+6ig'(B(t;_1))e'*"") DE@D(A,V,)®¢;_,
—ig(B(t;_1))e' & D(,V,)® — 3g(B(t;_1))e" >V D(2,V,)®* @ DE (3.21)
+ig(B(tj1)e' e D2, V,) + g(B(tj-1))e' P D3¢
+3ig(B(t;_1))e"™") D2E@D(A,V,) + 3ig(B(t;_,))e'*Vn) DE®@D*(A,V,)
+ 38/(3(%—1))@“1’%) D’ ® gj_1t 3ig/(B(tj—1))€i(A’V”)§ €j1 ®D*(,V,)
—3g(B(t;_1))e"™"E D(A,V,) ® D*(2,V,).

Let us compute the term D3(A,V,). Recall that

Lnuy ]
ZAkG e uk)—ZAk D Bt (58°).
k=1 (=1

Combining the Leibniz rule (2.15) with D (I,(f®)) = qu_l(f®(q_1))f for any f € §), we have

Lnuy |

Zkk Z [ v (Bt DI(5F)ef®, + 98 (Bt 1)) (552e? ®6,
188 Bt DI (651 ® 57 + 6gk(B(tg_1))6é®3] . (3.22)

Combining relations ([3.19), ([3.20), ([3.21), and ([3.22) we obtain the following expression:

[nu, ]

a . . 111
a_ka (el(A’V'I)g):lE( 1A, Va) izg (B(t) 1)) ] 1,5]>%)

lnup] m [nug ] [nu, ]
G LRI WACCEN AN LN JREDIPFEED

j=1 k= (=1

with

m nuy |
= IZAk Z (85(B(t;-1)gy (Bt I (58%)e! MV E) (1,553
(=1
m Lnuy |
+9i > A Y E(gy(B(ti)gl (Bt (58 W) (201, 8,)3(5¢,8))

+1&ZAk E (8,(B(t;—1))gi(B(tr—))(8)e" " E) (5,,67)% (€-1,65)s,
=1
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+ 3iE (g (B(t; 1 )e P I EDIRY,), 6)) ) (ej-1,5))3

+3E (/(B(t;1))e! ™" (DE, 5} ) (&1, 6,)2

—3E (&) (Bt ))e " E(D(AV,), )2 ) 621,65

+6iE ( gy (B(t; 1)) ™) (D(2,V,), 6,05 (DE, 5,5 ) (e-1,6)s
+3E (g (B(t;-1))e! ™) (D2E, 58%) o2 ) (£1_1,6)s,

—iE (g,(B(t;_1))e!*"E(D(A,V,),6))3)

—3E (g,(B(tj_1))e""(D(2,V,),5;)% (DE,5;) )

+ 3E () (B(tj_1))e! VW EDA(A,V,)), 682502 ) (211, 6))
—3E (g,(B(t; 1)) VI ED(A,,), 6)) (D22, V,), 582) g )
+3iE (2,(B(tj-1)e! ™V (DE,5,)5 (DX, V), 552) o)

+ 3E (,(B(tj 1)) (D(2, V), 6,)(D2E, 582) o)

+E (gp(B(tj_l))ean (D3¢, 5$3>ﬁ®3)

= ZR(“) (3.24)

Assume for a moment (see Steps 4 to 8 below) that

Ly

D rja——0. (3.25)
— " n—oo

]_

By Lemma [3.2](iv) and since e!»Vx), & and g;’ ” are bounded, we have

. Ly ) ' (=1 %)
E(el%w Zl g;,”(B(tj_l)xej_l,sJ-%) —E(em’% X2 D, g;“(B(tj_l)))‘ -0
J:

j=1

Moreover, by Lebesgue bounded convergence, we have that

vy, o (&1 s " vy (&1 v
B e 35 (5t ) (4798 x T2 | g nas )| <o

Finally, note that (B,V,) — (B,V,,) in law in Dp[0,00) x R™. By the Skorohod representation
theorem (see, for example, Theorem 2.1.8 in [[4]), we may construct a version of this sequence
which converges a.s., so that again by Lebesgue bounded convergence, we have

E(eiwn)g x % JO ! g;”(B(s))ds) —E (e“”’w)é X (_81) JO p g{,”(B(s))ds)-
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Putting these convergences together, we obtain:

Lnup ]

(e £Zg”'(3(tj Dlej-1.513 | = (e e x ¢ )f HUOTNCED

Similarly, let us show that

[nu, ] [nuy |
HEAEY L UREAC RTINS )

j=1 (=1
— k2E (eiWVoo)g N J gp(B(s))gk(B(s))ds) . (3.27)
0

We have, see (2.4) for the definition of p:

Lnup | | nuy )

6 Z Z gp(B(tj_1))gk(B(t;—1))(8¢,6;)3
=1 =1
6 [nup ] [nuy

== D 8Bt 1)gkB(tg—1))p*( — )
3 =

[y -1 Ly IA(Lng | =r)

6
== 2, P D BB ). (328)

r=1-[nup] j=1v(1-r)

For each fixed integer r > O (the case r < 0 being similar), we have

1 L, IA(Lnug | —1) [, IA(Lnug ] —1)
‘E Z 8p(B(t;-1))8k(B(tr1j-1)) — - Z gp(B(tj—1))gr(B(t;-1))
j=1v(1-r) j=1v(1-r)
<Cligyllos sup  |gk(B(t,4j-1)) — gx(B(tj—1))]
1<j<(nu, |

< Cllgplloollgilloe sup [B(s+r/n)— B(S)|—>0

s€[0,u,]
since the Brownian paths are uniformly continuous on compact intervals. Hence, for all fixed r € Z,

Lnup JA(Lnug | =r)

— D &BE)IgB ) J 8p(B(s))gx(B(s))ds.
0

j=1v(1-r)

By combining a bounded convergence argument with (3.28) (observe in particular that x? =
6., p>(r) < 00), we deduce that

LnupJ |_TlleJ

6> > &p(B(t; 1 DBt 1))(6,6))f — f &p(B())gk(B(s)) ds.
0

=1 ¢=1
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Since (B,V,) — (B,V) in DR[0,00) x R™, we deduce that

[nup ] [nuy
(V086 3 3, @Bl a5 )
=1 = =1,..,m

=1,...,

LA (Voo,é K J ’ kgp(B(s))gk(B(s)) ds) in R x R x R™,
0

k=1,....m

By boundedness of eiM’Vn), & and g;, we have that (3.27) follows. Putting ([3.25)), (3.26)), and (3.27)
into ([3.23), we deduce (3.18).
Now, it remains to prove ([3.25).

Step 4.- Study of RS, R®) and R''*) in (3:24). Let k € {1,2,3}. Since

s

.. asik (lej-. "Bsr)l[o;sil] ® e ® l[o’sik],

with ¢ € C;°(R"), we have ZLMJ |(DkE, 5®k) | < cn~*=1/3 by Lemma (1) and (ii). Moreover,
{ej_1,6,) <n 71/ by Lemma 2/(i). Hence, ZLMJ |R(p)| o(n~%/*) —— 0 for p € {5,8,15}.
n—oo

Step 5.- Study of R(23 and R(Bg in (3.24). We can write, using Lemma (i), Cauchy-Schwarz

inequality and the deﬁn1t1on of p:

L, |

>

j=1
Lnu, | [ nuy |
<182|xk| Z Z |E (8,B(t;—1)gr(B(tim D5 )e' ™" E) [(8,87)2| (g1, 8))s]
Lnup ] [nuy
<cn77/® Z Zp(6—1)2<Cn 1/62:,()&)2 cn! mo.
j=1 (=1 rez

. 2 . ..
Concerning RS. 3, we can write similarly:

[nu, ]

>
TlllpJ [nug ]

<9Z|zk| Z Z |E (8,B(t;-1))gy (Bt D582 E) ||(5¢, 85| (er—1, 5,2
[nup ] [y |

<cn 3y Z [p(e =] = cn™ ) o] = ¢t —o0.

j=1 rez
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Step 6.- Study of R, RO RUO anq Rg.lnz). First, let us deal with Rglg. In order to lighten the

jn? i jn
notation, we set &, = g,(B(t;_1))g} (B(t;_1))E. Using I5(6%%) = I,(68H)11(5,) — 2n~ /31, (5,)
(see e.g. Proposition 1.1.2 from [[10]) and then integrating by parts through (2.11)), we get
E (ei(l’vn)gj,ﬂs(5z®3)) —E (ei(A’V’J51,412(52@2)11(54)) —on~ 183 (ei(x,vn)gj’ﬂl(5€))
=E (™ 1,(68%)(DE; 1, 6¢))
+iE (e MV 1,(58)E; ((D(A, V,), 8¢) ) -

Due to Lemma [3.2] (i) and Cauchy-Schwarz inequality, we have

sup sup ‘E (e {AVn) (5®2)(D§Jg,5g 5)‘ <cn?3,
£=1,...,|nu | j=1,..., nup|

By (3.5) and Cauchy-Schwarz inequality, we also have

sup sup [E (TI(GEE, DO, ), 50| < o
=1,..,[ny] j=1,...,[nu, |

Hence, combined with Lemma [3.2] (i) and (ii), we get:

Lnu,, | Lnup | | nuy |

Z R <Z|Ak| Z Z |E (8,(B(t;-1))g} (Bt DIs(582)e M E) ||(er-1, 8} |

Lnuy |

< sup Y (e, 8))g[ < —o0.
0=1,...,| nuy | j=1

A

Now, let us concentrate on Rgég. Since e!*Vr) £ and gl’) are bounded, we have that

Lnup] [nu, ]

Z R <c Z ((D(2, V), 8)2) ej-1,85) ]

j=

Lnu, )

<cn 23 E((D(A,V,),6;)%) by Lemma[3.2|(i)

j=1
<cn?® —0 by @.6).
n—oo
Similarly,

[nup ]

[, ]
Z CHESDY & (8B ED 2, 7,0, 8,0 (D22, ,), 582 502
J:

[nup ]

<c >’ (E ((D(A,V,),6))2) +E ((DZ(A,V ), 5®2)ﬁ®2) )

j=1
<cn'®* —0 by @.6) and B.7).
n—o0
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1 .
For RS. ,?), we can write:

[nu, |

ZIR

E (g (Bt e 7 (D(3,,),5)3 (D8, 5,),)|

Ly
<cn Py E(<D<A,Vn>,5j)g)‘ by Lemma[3:2] (i)
=

<cn?® —0 by @6).
n—oo

Step 7.- Study of RW RV RUD RU3) anq Rglf).

jn i i 2 T 2

Using (3.8)), and then Cauchy-Schwarz inequality and Lemma (i), we can write

Ly |

Z | R(4)

j=1
Lnuy |

<3 Z ’E(g”(B(t] DMV E(D(A, V), 67)5) | (8j-1, 6,03

Lnup | | nuy )

m
3Y Il D] Z
k=1 j=1
m Lnuy | | nuy |
92 Ak
k=1 =1 i=1
LnupJ |_TlLlpJ [nukJ

<cn Vo sup Y [(eii1, 8| +Cn Y N pli— )| < eV —o.

1<is|nuy) 5= j=1 i=1 e

A

E(g)/(B(t; 1))g;(B(ti_1))ei<l’Vn>513(6?3))]\<ei_1,5j>ﬁ|<ej_1,6j>g

1E(g;’(B(tj_l))gk(B(ri_l))e“w512(5?2))\| 0:61)5|(8j-1, 83

Using the same arguments, we show that 3 _| plie |R(7) —— 0 and Zlnu" |R(14) ——0.
Differentiating in (3.8]), we get
(DA, V), 592) o2 = Z Z (Bt I5(62%)(ei-1,6,)2
Ly |
+6Zlk > g Bl L(58) (Ei-1,5,)5(5:.6))s,
k=1 i=1
m [nuy |
+6> X Z g(B(t1))1(5,)(5:,5,)2.

k=1
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Hence, using Cauchy-Schwarz inequality and Lemma 3.2|(i)-(ii), we can write

Lru, |

>

Lnu, |
<3 ) |E(gyB(t;_))e' " EDHA,V,), 582) o) | (821, 6)s,
j=1
m nUpJ [nug]
<3 Ml )] Z E(g)(B(t;-1))gy (B(ti_1)e" (611,83 |(€j-1,8))s]
k=1 j=1

[nup ] [nuy

+182|;\k| Z Z

j=

(g5 (B(t; 1 )g{ (Bt 1 )e T EL(592))

X|(81 1 ]~‘f3|| €j-1 JfJH i 0j)s |
[nup ] [ nuy

F18Y 12l Y 2 |8y Bl DBl ) P ER (6)] [(e51,87)5(6:,5)
k=1

j=1 i=1

nupJ [nuy |

U,
<cn Y% sup Z| €i_1 Jﬁ|+Cn_4/3Z Z|p(l—])|

1<i<|nu] =

nupJ [nuy |

+Cn /0 Z Z o — )|

<cn Yo —o.
n—o00

Lty | R —o.

Using the same arguments, we show that Z
n—o0

¢ ) {A,V,)
Step 8.- Now, we consider the last term in , thatis R Since e!AVn) £ and gp are bounded,
we can write

Lnup] [nu, ]
D RY<c Z E({D(2,V,), 6,5 %)
j=1
Lnup
<C Z E((D(A, V,),8,)2) + E({D(A,V,), 8,)8).
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In addition we have, see (3.8)), that

Lnup]

D EUDIA,V,),6))%)
j=1

lnup] m Lnuy | [nug | [nug ] [nuy (

LD DRDIIPIOW.

j=1 k=1 i1=1 i,=1 iz=1 iy=1

4
l_[(gtia: 5j>i)g]/<(B(tial))13(5?;3))

e
£
Dgs
™M
INg
™M
M

l_[ () Jﬁgk(B(tia—l))Iz((s?;z))
a=1

4
(]_[g (B(t; _1))13(5“))‘

a=1

4
1ol T Jentetes 522 ) H .
a=1

By Lemma [3.5| we have that

Lnug ] [nug ] [nuy | [nuy |

22

i1=1 iy=1 iz=1 i;=1

4
E (]_[g,i(B(tia_l)ﬂgwgB)) <c
a=1

so that

Lnup | [ nuy ] Lnuy ) Lnug ] Lnuy | 4
I ) OO el
J=1 1=1 ;=1 iz=1 iy=1 a=1
On the other hand, by Cauchy-Schwarz inequality, we have
4
’E(]_[gk(s(tia_l))b(afz)) <c
a=1
so that, with p defined by (2.4),
Lnup | [nuy | [nug | [nug ] [nuy ) 4
IS ]_[| i 85) E(]_[gk(B(tia_l))lz(ag?))‘
j=1 11=1 iy=1 i3=1 iy=1 a= =1
Lnup ] [ nuy | [nug ] [nug ] [nug ]
<scn B 3 i —DIx Y el = DI x D 1pls =) x D lplis— i)l
j=1 i;=1 ir=1 i3=1 iy=1

<cn 3 (Z |p(r)|) =cn /3,

rez

As a consequence, combining the previous estimates with (3.6]), we have shown that

[nup ]

D RO <cn P —o,
—! n—o0
]_

and the proof of Theorem [3.7]is done.
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Theorem 3.8. If g € C®(R) is bounded with bounded derivatives, then the sequence
(B,G;(1,B),G;(g,B)) converges to (B, [[B]],(1/8) [ g"(B)ds + [ g(B)d[[B]]) in the sense of finite-
dimensional distributions on [0, 00), where

|nt]

G'(g,B,t) —fZg(B(t Nhy(n'/°AB)), >0, n>1.

Proof. The proof is exactly the same as the proof of Theorem 3.7, except ¢;_; must be everywhere
replaced ¢;, and Lemma (v) must used instead of Lemma [3.2] (iv). O

Proof of Theorem [3.1} We begin by observing the following general fact. Suppose U and V are
cadlag processes adapted to a filtration under which V is a semlmartlngale Similarly, suppose
U and V are cadlag processes adapted to a filtration under which V is a semlmartlngale If the
processes (U,V) and (U, V) have the same law, then U(0)V(0) + fo U(s—)dV(s) and U(0)V(0) +

fé U(s—)dV(s) have the same law. This is easily seen by observing that these integrals are the limit
in probability of left-endpoint Riemann sums.

Now, let G, and G: be as defined previously in this section. Define

1
G (g,B,t)=—=
(g,B,t) SL

1 t
G*(g,B,t)=—
(g,B,t) 8J

0

t t

g’”(B(S))ds+J g(B(s))d[[B]l;,
0

g"'(B(s))ds + f g(B(s))d[[B]l;.

0

Lett=(ty,...,t3), where 0 <t; <:-- < t4. Let

G;(g,B,t) = (G;(gJBJ tl),..,G;(g,B, td)):

and similarly for G!, G~, and G*. By Theorems|2.12] and the sequence

{(B,V,(B),G, (g,B,1),G, (g,B,)}re,

is relatively compact in Dg2[0,00) x R? x RY. By passing to a subsequence, we may assume it
converges in law in Dy2[0,00) x RY x RY to (B, [[B]],X,Y), where X,Y € R,

By Theorems and {(B,V,(B),G, (g,B,1))} is relatively compact in Dg2[0,00) X RY, and
converges in the sense of finite-dimensional distributions to (B, [[B]], G~ (g,B,t)). It follows that
(B,Vo(B),G, (g,B,1)) — (B,[[B]],G"(g,B,t)) in law in Dg2[0,00) X R?. Hence, (B, [[B]],X) and
(B, [[B]],G~(g,B,t)) have the same law in Dg2[0, 00) x RY. By the general fact we observed at the
beginning of the proof, (G™(g,B),X) and (G~ (g,B),G (g, B,t)) have the same law. This can be
seen, for example, by letting

_(—28"B(t) gB(t) 0 ~ o [—2g"(B(t) gB(1) 0
U(t)_( ° 0 0 X/’ =1 ¢ 0 0 G (g,B,t) )’

t
V(t)=V(t)= | [[Bl
1
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In particular, (G~ (g,B,t),X) and (G (g,B,t),G"(g,B,t)) have the same law. But this implies
G~ (g,B,t) — X has the same law as the zero random variable, which gives G™(g,B,t) — X =0
a.s.

We have thus shown that X = G~ (g, B, t) a.s. Similarly, Y = G (g, B, t) a.s. It follows that
(B,V,(B),G, (g,B),G;(g,B)) — (B, [[B]l,G (g,B),G*(g,B)),

and therefore

_ . . X
(B,VH(B), G,(g,B)+G; (g,B)) _ (B, [[B]]’G (g,B)+G (g,B)),

2 2

in the sense of finite-dimensional distributions on [0, co), which is what was to be proved. O

4 Moment bounds

The following four moment bounds are central to our proof of relative compactness in Theorem

2.13l

Theorem 4.1. There exists a constant C such that
2
nt|—|ns
E|V,(B,t) = Vu(B,s)|* < C (—L i J) ,
n

foralln, s, and t.

Proof. The calculations in the proof of Theorem 10 in [[11]] show that

R

n

Lnt]

S, o

j=|ns]+1

E

forall n, s, and ¢t. O

Theorem 4.2. Let g € C'(R) have compact support. Fix T > 0 and let ¢ and d be integers such that
0<t., <ty <T. Then

d

> (BB

j=c+1

2

E < Cligl} oat"ltg — t[*?,

where ||g|l1,0 = l1€lloo + Ig’llc0, and C depends only on T.

Proof. Note that

d 2 d d
E| > g(BABY| = D > Ey, 4.1)
j=c+1 i=c+1 j=c+1

where E;; = E[g([a’i)ABfg([o’j)AB;’]. Let K = ||gll;,00, and define f : R® — R by f(x) =
K _zg(xl)g(xz)xg. Note that f has polynomial growth of order 1 with constants K =1 and r = 5.
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Let & = B, & = Bj, &3 = AtVOAB;, Y = At7V®AB;, and ¢(y) = y°. Then E; =

K2AtSBE[f(E)e(Y)]. By Theoremwith k=0, [E[f(§)e(Y)]| < CInl, where n; = E[&;Y].
Using Lemma |2.10} we have

1] < CAEYOG2 4 | — 127,
Iyl < CAL/Oj=2/3,

Insl < Clj—il;>".
Hence,

|Ejl = K2ASPIE[f()p(T)]] < CRAALWVO(™23 4+ |j — i 1) + APl — i),

Substituting this into (4.1) gives

d 2
E| Y g(BABY| < CKAAtM/(d — o) + At%3(d - ¢))
j=c+1
which completes the proof. O

Theorem 4.3. Let g € C2(R) have compact support. Fix T > 0 and let c and d be integers such that
0<t. <ty <T. Then

d
D &(B)AB?

j=c+1

2

2
E =< ||g||2,oo|td - tcl:

where [|gll5,00 = I8 lloo + 18"llcc + 18" lloo, and C depends only on T.

Proof. Note that ;

D &(B)ABS
j=c+1

where E;; = E[g([j'i)AB?g([J’j)AB?]. Let K = ||glly,, and define f : R® — R by f(x) =
K _zg(xl)g(xz)xg . Note that f has polynomial growth of order 2 with constants K = 1 and r = 3.
Let & = B, & = Bj, & = At7VOAB, v = At7Y9AB;, and ¢(y) = y*. Then E; =
K2AtE[f(£)@(Y)]. By Theorem 2.8 with k = 1, E[f (§)(Y)]| = m E[8,f (§)] + n2E[8of (E)] +R,

where [R| < C(|ns| + [n[*). By @17, if j = 1 or j = 2, |[E[9;f(£)]] < C(IE[&1&5]1 + |E[E2E51D).
Therefore, using |n3|? < |ns| and |ab| < |a|? + |b|?,

2 d d
=Y > E; (4.2)

i=c+1j=c+1

E

|Eyjl < CK2At(Ins| + 011> + Inaf” + |E[£15]1° + |E[£28511°).
Using Lemma [2.10, we have

|E[E285]] < CALYS(2/3 4 1j — 172/,
|E[£,&5]] < CALY/6i2/3,
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Together with the estimates from the proof of Theorem this gives

:— . . .1—4/3 . .-5/3
|Eyjl < CRA(APER + 74 +1j = i1 7Y% + aclj - 117°7).

Substituting this into (4.2)) gives

d

Z g(ﬁj)AB?

j=c+1

2

E < CK?At(d —¢) = CK?|ty — t.|,

which completes the proof. O

Theorem 4.4. Suppose g € C3(R) has compact support. Fix T > 0 and let ¢ and d be integers such
that 0<t. <ty <T. Then

2
< Cltd - tc|4/3:

d
> (2(B) — g(BAB?

j=c+1

E

where C depends only on g and T.

Proof. Let Y; = g(f3;) — g(f8.), and note that

> v

Jj=c+1

2 d d
=Y > E; (4.3)

i=c+1j=c+1

E

where E;; = E[Y;AB?YJ.AB]?]. For fixed i, j, define f : R* — R by

f(X)=(

4
(o} O']

g(x; +0ixy) —g(X1)) (8(X1 —I—G]-x3)—g(x1)) 2

where U? =E|B; — BB.|?. Note that f has polynomial growth of order 2 with constants K and r that
do not depend on i or j.

Let & = fic, &2 = 07 (B — Bc), &3 = 07 (B — Be), €4 = At7V/°AB;, Y = At7V/°AB;, and
¢(y) = y*. Note that E;; = 0;0;AtE[f (§)¢(Y)], so that by Lemma [2.10{(v),

|Eijl < CAL)i — [ V0]j — c[VOIELF (E)p (Y]I. 4.4)

By Theorem 2.8 with k = 1, E[f (£)p(Y)] = 33, meE[df ()] + R, where [R| < C(Iny| + |n/?).
Using |ab| < |a]* + |b|? and the fact that Ifr]jl2 < |n|?, this gives

3
ELFE)p(N]I < C (Z B[ f(E)2+Imal + |n|2).
k=1
By (2.17), for each k < 3, |[E[f (£)]] < CZ?Zl |E[£,&4]]. Therefore, since n; = E[£;Y], we have
3
ELF (V)11 < € IBLEY I+ Y SOBLEYIP + IBLEEP) ). “5)
k=1
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To estimate these covariances, first note that d —c = n(t;—t.) < nT. Hence, At =n"! < C(d—c)'.
Now, using Lemma [2.10}

IE[E1Y]| < CAtYS|j— |3 < Cld — | HO|j — |22 < Cj — c|°/8,
E[E,Y]] < Cli — | 7Yo(lj — c| 723 + |j — iI;2),
IE[E5Y]| < Clj— Y8 — |2 =Clj — c| /6,
E[E,Y] < clj—il;™>.
Similarly,

SCAt°li—c| @ SCld—c| "Pli—=c| " <ZCli—c| 77,
|E[E1E4]1 < CAtY®li — |22 < C|d — | Vli — |2 < Cli — | >/®
IE[E,84]1 < Cli —c|"Y0li — |23 = Cli — c| 7%/,

E[E5E4]1 < Clj —c|7Vo(li — |2 +|j — i1 /*).

Substituting these estimates into (4.5)) and using (4.4) gives

. . . 5/3
|Eyjl < CAEY3(|i — e[ VO] — |0 — i]
—I—|i—C|1/6|j—C|_3/2+|i—C| 1/6|j—c|_7/6+|i—C|_1/6|j—C|1/6|j l|+

i =2 = e Mo i — | /O — e TYO i — | VOl — e VOl — il V).

4/3

We can simplify this to

. 43
|E;j] < CAL3(|i — [0 — Vol — il

. . . . —4/3
+|l—c|1/6|1—c| 76 4 |j — M) — i Y
i —c|T70)j — c|MO  |i — VO] — i),

Using |ab| < |a|? + |b|?, this further simplifies to

. . .1—4/3 . 4/3
|Eij| <CAt4/3(|l—C|1/3|] l|+ / lj — |1/3|] | /
+|l—C|1/6|j—C|_7/6 |i C|_7/6|j C|1/6).

We must now make use of (4.3]). Note that

d
A 3T S el i a3 e
i=c+1 j=c+1 i=c+1
<CAtY3(d - )P =Clty —t.|¥5.
Similarly,
d d
AR TN =Rl =il < Cleg — e 4.
j=c+1i=c+1
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Also,

d d d
AT N fi—c[Voj—c| TP < Cart? DT fi— VO < cartP(d - c)/®

i=c+1 j=c+1 i=c+1
< CAtY3(d - )P =Clty —t|*3,

and similarly;,

d d
A Y D li— el T = MO < Cleg — £,
j=c+1li=c+1

d

It follows, therefore, that Z?: 41 ijc 1 |Eijl < Cltg — t.|*3. By (@.3), this completes the proof. O

5 Proof of main result

Lemma 5.1. If g € C!(R) has compact support, then ZJL':lJ g(/g’j)ABf — 0 ucp.

Proof. Let X,,(g,t) = Z]Litlj g(ﬁj)AB?. Fix T > 0and let 0 <s <t < T be arbitrary. Then

d

X,(8, ) = Xu(g,5) = Y g(BABS,

j=c+1

where ¢ = |ns| and d = |nt]. By Theorem 4.2}

n

5/3
nt| —|ns
ElX,(g,t) = Xa(g,5)> < CAtYPty —t [*° < Cltg -t ]?P=C (M) ’

where C depends only on g and T. This verifies condition of Theorem By Theorem
sup, E|X,(g, T)|* < CT*? < 0. Hence, by Theorem {X,,(g)} is relatively compact in Dy [0, 00).
By Lemma it will therefore suffice to show that X,(g,t) — 0 in probability for each fixed t.
But this follows easily by taking s = 0 above, which gives E|X,(g, t)|> < CAt'/3 and completes the
proof. O

We recall that we shall write X,,(t) ~ Y,(t) to mean that X,, — Y, — 0 uniformly on compacts in
probability.
Lemma 5.2. If g € C®(R) has compact support, then

Lnt]

I(g',B, 1)~ g(B(1)) — g(BO) + ;g”’(ﬁj)ABf.
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Proof. Fix a,b € R. Let x = (a + b)/2 and h = (b — a)/2. By Theorem[2.7]
g(b) —gla) =(g(x +h) — g(x)) — (g(x —h) — g(x))

6 W & (—hY
=280 WL J.,) + Ry, h) = Ry (x, =)
j=1 Coj=L ‘
&1 .
= 2 a8 Cb — @Y + Ry ) = Ry (x, =h)
o
o b 1 1 b 3 1 (5) b 5 b
=g'()(b ~ @)+ 58" ()b — ) + =78V (x)(b — a)° +Ry(a, b),

where Ry(a, b) =R;(x,h) — Ry(x,—h) and

6 1
Ry(x,h) = % J (1-uw)’[g®(x +uh) — g©(x)] du.
*Jo

Similarly,

’ (b 1 1
HORS SONpR 5@ G +R) =g () + (8" —h) — g'(x))

2 2
1< W o1& (=hy
=3 Zg(”l)(x),—' +3 ZgUH)(X).—, +Ry(a, b)
=1 J: =1 J:
1 1
= gg’”(x)(b —a)*+ 4'7g(5)(x)(b —a)*+Ry(a, b),

where R4(a, b) = R3(x,h) +R3(x,—h) and

5 1
Ry(x,h) = % f (1-u)’[g®(x +uh) — g©(x)] du.
S JO0

Combining these two expansions gives

/ / b 1
g(b)—g(a) = M(b — @)= 758" ()(b — @) +ygP)(b - a)° +Ry(a, b),

where y = (5!12*)71 — (412)71 and
Re(a,b) =Ry(a, b) —Ry(a, b)(b — a).
Note that Rg(a, b) = h(a, b)(b — a)®, where

|h(a,b)| < C sup |g®(x +uh)— g®(x)|.

0<u<1

Taking a = B(t;_;) and b = B(t;) gives

g'(B(tj_1))+ g’(B(tj))A

g(B(t;)) — g(B(tj_1)) = 7

1
B; — 58" (B)AB] + g (B;)AB]

+h(B(t;_1), B(t;))AB?
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Recall that B,(t) = B(|nt]/n), so that

/ 1 LntJ 11 3
g(B(1)) ~ g(B(0)) = I,(¢',B,t) = = D 18" (B)AB} + (g, 1),
j=1

where
[nt] |nt]

en(g: ) =71 8% (B)ABS + Y h(B(t;_,),B(t;)ABS + g(B(t)) — g(B(1)).
j=1 j=1

It will therefore suffice to show that ¢,(g,t) — 0 ucp.

By the continuity of g and B, g(B(t)) — g(B,(t)) — 0 uniformly on compacts, with probability one.
By Lemma since g® € C1(R), yz]ti? g(s)(ﬁj)ABf — 0 ucp. It remains only to show that

[nt]
> h(B(t;_1).B(t;))ABS -0 ucp. (5.1)
=1
Fix T > 0. Let {n(k)};2, be an arbitrary sequence of positive integers. By Theorem [2.11, we may
find a subsequence {m(k)}??, and a measurable subset Q" C Q such that P(Q*) =1, t — B(t, w) is

continuous for all w € Q*, and
[m(k)t]

D ABj (@)’ — 15t (5.2)
=1

as k — oo uniformly on [0, T] for all w € Q*. Fix w € Q*. We will show that

[m(k)t]

k k
> BN, ), BT, ) ABj 1o (0)® — 0,
Jj=1

as k — oo uniformly on [0, T], which will complete the proof.

For this, it will suffice to show that

[m(k)T| © ©
D B, @), B, 0)|ABj o (@)® — 0,
j=1

as k — oo. We begin by observing that, by (5.2), there exists a constant L such that

Z}ng)“ ABj’m(k)(w)é’ < L for all k. Now let ¢ > 0. Since g has compact support, g© is uni-
formly continuous. Hence, there exists & > 0 such that |b — a| < & implies |h(a, b)| < ¢/L for all
t. Moreover, there exists k, such that k > k, implies |AB; ,qy(w)| < 6 for all 1 < j < [m(k)T].

Hence, if k > k,, then

[m()T| © ® o mioT]
Y. BEY, ), B, @) AB; ng(@)° < = D) ABj ()’ <e,
j=1 j=1
which completes the proof. O

As a corollary to this result, we find that although we do not have a bound on the second moments of
I,,(g,B), we can instead approximate I,,(g, B), in the ucp sense, by processes whose second moments
can be uniformly bounded.
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Corollary 5.3. If g € C®(R) has compact support, then there exists a sequence of cadlag processes X,,
such that I,(g’,B, t) ~ X,,(t) and, for any T > 0,

sup sup E[X,(t)]? < oo.
n tef0,T]
Proof. This follows immediately from Lemma and Theorem by taking X, (t) = g(B(t)) —
1 Nolntl
g(B(0) + 55 2557 8" (B)AB. m
Lemma 5.4. If g € C®(R) has compact support, then {I,(g’,B)} is relatively compact in Dg [0, 00).

Proof. Define
1 [nt]
X, (t):=— "(BH)AB3
() 12;g (B)AB,

Y(¢t) :=g(B(t)) — g(B(0))

en(t) :=1I,(g",B,t) = Y (£) = X, ().
Since (x,y,2) — x + y + z is a continuous function from Dys[0,00) to Dy[0,00), it will suffice
to show that {(X,,Y,e,)} is relatively compact in Dgs[0,00). By Lemma €, — 0 ucp, and
therefore in Dy [0, 00). Hence, by Lemma it will suffice to show that {X} is relatively compact
in D [0, ).
For this, we apply Theorem [2.3|with § = 4. Fix T >0 and let 0 <s <t < T. Let ¢ = |ns] and
d = |nt]. Note that g(a + b)* < C(]a|? + |b|*). Hence, since g has compact support and, therefore,
g””" is bounded,

1 & 4
BLoCa() - X, = o 15 3 ()} |

j=c+1
d 2 d 4
<CE| > (g"(B)—¢"(B.)AB| +CE| > g"”(B.)AB?
j=c+1 j=c+1
d 2 d 4
<CE| > (8"(B)~ 8" (BDAB}| +CE| > ABj| .
j=c+1 j=c+1

Since g/ € C3(R), we may apply Theorems |4.4|and which give
nt] —ns|\*?
BLAG,(0) X, (6)'] = Cltg = 4 Cleg = e < o)

which verifies condition (2.6) of Theorem As above,

nT| 2 |nT| 2
E|X,(T)]? < CE| Y (8”(B;) - ¢"/(B.))AB}| +CE| > AB?
=1 =
T 9 |nT]| 45 1/2
<CE| > (8"(B)— " (BNAB}| +C (E D, AB] )
=1 =
<CT*34CT.

Hence, sup,, E|X,,(T)|*> < co. By Theorem {X,,} is relatively compact, completing the proof. O

2159



Lemma 5.5. If g € C°(R) has compact support, then

| 1 &Y g”(B(t; 1))+ g"(B(t)))
I,(g",B,t) ~ g(B(t)) — g(B(0)) + 12ﬁ; 2

h3(n1/6ABj).

Proof. Using the Taylor expansions in the proof of Lemma together with Lemma 5.1} we have

|nt] |nt] /// "
Zg///(/g])ABg ~ Z (B(tl 1))+g (B(t ) AB3

i

By Lemma since h(x) = x3 — 3x, it therefore suffices to show that

e i g (Bt ) +8"(B(E))

2 =0 (g, B, )~ 0

j=1

Since g’ € C®(R), this follows from Lemma Corollary and Lemma O

Proof of Theorem We first assume that g (and also G) has compact support. By Lemma
and Theorem (3.1}, we need only show that {(B, V,(B),I,(g,B))} is relatively compact in Dgs [0, 00).
By Lemma it will suffice to show that {I,(g,B)} is relatively compact in Di[0,00). But this
follows from Lemma [5.4] completing the proof when g has compact support.

Now consider general g. Let
2, = (B,V,(B),1,(¢,B)) and ==(B,[[B], [ g(B)dB).

For T > 0, define Eg(t) = Eu(t)1jr<7} and =l(t) = E(t)1g<7}. Using the definition of the Skorohod
metric r on Dya[0, 00) (formally given by (3.5.2) in [4] that we will not recall for simplicity), it holds
that

r(x,y)< J e “(sup|x(t Au)— y(t Au)|Al)du,
0

t=0

for any elements x and y in D4 [0, 00). Hence, if two cadlag functions x and y agree on the interval

[0,T), then r(x,y) < f “Udu=-e"T. Hence, by Lemma | it will suffice to show that EI — =T
in law, where T > 0 is fixed.

Let H : Dyp3[0,00) — R be continuous and bounded, with M = sup |H(x)|. Define X,, = H(E,{), SO
that it will suffice to show that X,, — H(Z") in law. For each k > 0, choose G; € C®(R) with compact
support such that G, = G on [—k, k]. Let g, = G,

Enx = (B, Vy(B),I,(gr,B)),  Ex=(B,[[BI, [ gx(B)dB),

Xox = H(._. k) and Y, = H(:Z) Note that since I,(gx,B) = I,(g,B) on {w € Q
SUPg</<T IB(t)(co)I <k}, we have E|X, — X, x| < 0y, where

6 =2MP ( sup |B(t)| > k) .

0<t<T
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Also note that that 6, — 0 as k — oco. Since G; has compact support, we have already proven that
X,k — Y, in law. Hence, by Lemma the sequences {X,} and {Y;} are both convergent in law,
and they have the same limit. Thus, to show that X,, — H(Z") in law, it will suffice to show that
Y, — H(ET) in law. However, it is an immediate consequence of that £ — 27 ucp, which

completes the proof. O

Proof of Theorem As in the proof of Theorem {(B,V,(B),J,)} is relatively compact. Let
(B,X,Y) be any subsequential limit. By Theorem X = kW, where W is a standard Brownian
motion, independent of B. Hence, (B,X,Y) = (B,[[B]],Y). Fix j € {1,...,k}. By Theorem [2.13]
(B, [[B1],Y;) has the same law as (B, [[B]], f g;j(B)dB). Using the general fact we observed at the
beginning of the proof of Theorem 3.1} together with and the definition of [[B]], this implies
(f g;j(B)dB,Y;) and (f gj(B)dB,@B)dB) have the same law. Hence, Y; = fgj(B)dB a.s., so
(B,X,Y)=(B,[[B]],]). O
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