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Abstract

We consider reflecting random walks on the nonnegative integers with drift of order 1/x
at height x . We establish explicit asymptotics for various probabilities associated to such
walks, including the distribution of the hitting time of 0 and first return time to 0, and the
probability of being at a given height k at time n (uniformly in a large range of k.) In
particular, for drift of form −δ/2x+o(1/x) with δ >−1, we show that the probability of a
first return to 0 at time n is asymptotically n−cϕ(n), where c = (3+δ)/2 and ϕ is a slowly
varying function given in terms of the o(1/x) terms.
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1 Introduction

We consider random walks on Z+ = {0,1, 2, . . . }, reflecting at 0, with steps ±1 and transition
probabilities of the form

p(x , x + 1) = px =
1

2

�

1−
δ

2x
+ o
�

1

x

��

as x →∞, p(x , x − 1) = qx = 1− px , (1.1)

for x ≥ 1. We call such processes Bessel-like walks, as their drift is asymptotically the same as
that of a Bessel process of (possibly negative) dimension 1− δ. We call δ the drift parameter.
Bessel-like walks are a special case of what is called the Lamperti problem—random walks with
asymptotically zero drift. A Bessel-like walk is recurrent if δ > −1, positive recurrent if δ > 1,
and transient if δ < −1; for δ = −1 recurrence or transience depends on the o(1/x) terms.
Here we consider the recurrent case, with primary focus on δ > −1, as the case δ = −1 has
additional complexities which weaken our results. Bessel-like walks arise for example when
(reflecting) symmetric simple random walk (SSRW) is modified by a potential proportional to
log x .

Bessel-like walks have been extensively studied since the 1950’s. Hodges and Rosenblatt [25]
gave conditions for finiteness of moments of certain passage times, and Lamperti [32] estab-
lished a functional central limit theorem (with non-normal limit marginals) for δ < 1; for
−1 < δ < 1 our Theorem 2.4 below is a local version of his CLT. In [33] Lamperti related
the first and second moments of the step distribution to finiteness of integer moments of first-
return-time distributions. He worked with a wider class of Markov chains with drift of order
1/x , showing in particular that for return times of Bessel-like walks, moments of order less
than κ= (1+δ)/2 are finite while those of order greater than κ are infinite. Lamperti’s results
were generalized and extended to noninteger moments in [3], [5], and to expected values of
more general functions of return times in [4]. “Upper and lower” local limit theorems were
established in [34] for certain positive recurrent processes which include our δ > 1. Bounds
for the growth rate of processes with drift of order 1/x were given in [35], and the domain of
attraction of the excursion length distribution was examined in [18].

Karlin and McGregor ([28], [29], [30]) showed that, for general birth-death processes, many
quantities of interest could be expressed in terms of a family of polynomials orthogonal with
respect to a measure on [−1,1]. This measure can in principle be calculated (see Section 8
of [29]) but not concretely enough, apparently, for some computations we will do here. An
exception is the case of px =

1
2
(1− δ

2x+δ ) considered in [13] (for δ = 1) and [11]; we will call
this the rational-form case. Birth-death processes dual to the rational form case were considered
in [37]. Further results for birth-death processes via the Karlin-McGregor representation are in
[8], [17].

Our interest in Bessel-like walks originates in statistical physics. These walks were used in [12]
in a model of wetting. Additionally, in polymer pinning models of the type studied in [20] and
the references therein, there is an underlying Markov chain which interacts with a potential at
times of returns to 0. The location of the ith monomer is given by the state of the chain at
time i. There may be quenched disorder, in the form of random variation in the potential as
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a function of the time of the return. Let τ0 denote the return time to 0 for the Markov chain
started at 0. For many models of interest, e.g. SSRW on Zd , the distribution of τ0 for the
underlying Markov chain has a power-law tail:

P(τ0 = n) = n−cϕ(n) (1.2)

for some c ≥ 1 and slowly varying ϕ. Considering even n, for d = 1 one has c = 3/2 and ϕ(n)
converging to

p

2/π; for d = 2 one has c = 1 and ϕ(n) proportional to (log n)−2 [27]; for
d ≥ 3 one has c = d/2 and ϕ(n) asymptotically constant. In general the value of c is central
to the critical behavior of the polymer with the presence of the disorder altering the critical
behavior for c > 3/2 but not for c < 3/2 ([1],[2],[22].) In the “marginal” case c = 3/2, the
slowly varying function ϕ determines whether the disorder has such an effect [21]. As we will
see, for Bessel-like walks, (1.2) holds in the approximate sense that

P(τ0 = n)∼ n−cϕ(n) as n→∞, (1.3)

with c = (3+ δ)/2 and ϕ(n) determined explicitly by the o(1/x) terms. Here ∼ means the
ratio converges to 1. Thus Bessel-like walks provide a single family of Markov chains in (1+1)-
dimensional space-time in which (1.2) can be realized (at least asymptotically) for arbitrary c
and ϕ.

A related model is the directed polymer in a random medium (DPRM), in which the underlying
Markov chain is generally taken to be SSRW on Zd and the polymer encounters a random
potential at every site, not just the special site 0. The DPRM has been studied in both the physics
literature (see the survey [24]) and the mathematics literature (see e.g. [7], [9], [31].) In place
of SSRW, one could use a Markov chain on Zd in which each coordinate is an independent
Bessel-like walk. In this manner one could study the effect on the DPRM of the behavior (1.3),
or more broadly, study the effect of the drift present in the Bessel-like walk. As with the pinning
model, via Bessel-like walks, all drifts and all tail exponents c (not just the half-integer values
occurring for SSRW) can be studied using the same space of trajectories. This will be pursued
in future work.

For the DPRM, an essential feature is the overlap, that is, the value

N
∑

i=1

δ{X i=X ′i }
,

where {X i}, {X ′i} are two independent copies of the Markov chain; see ([7], [9], [31].) To
determine the typical behavior of the overlap one should know the probabilities P(X i = y), y ∈
Zd , as precisely as possible, with as much uniformity in y as possible..

For this paper we thus have two goals: given the transition probabilities px , qx of a Bessel-like
walk, determine

(i) the value c and slowly varying function ϕ for which (1.3) holds, and

(ii) the probabilities P(X i = y), y ∈ Z, asymptotically as i→∞, as uniformly in y as possible.
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We will not make use of the methods of Karlin and McGregor ([28], [29], [30]) due to the
difficulty of calculating the measure explicitly enough, and obtaining the desired uniformity in
y . Instead we take a more probabilistic approach, comparing the Bessel-like walk to a Bessel
process with the same drift, while the walk is at high enough heights. This leads to estimates of
probabilities of form P(τ0 ∈ [a, b]) when a/b is bounded away from 1. Then to obtain (1.3) we
use special coupling properties of birth-death processes which force regularity on the sequence
{P(τ0 = n), n ≥ 1}. These properties, given in Lemma 6.1 and Corollary 6.2, may be of some
independent interest.

2 Main Results

Consider a Bessel-like random walk {Xn} on the nonnegative integers with drift parameter
δ ≥ −1, with transition probabilities px = p(x , x + 1), qx = p(x , x − 1) = 1− px . The walk is
reflecting, i.e. p0 = 1. We assume uniform ellipticity: there exists ε > 0 for which

px , qx ∈ [ε, 1− ε] for all x ≥ 1. (2.1)

Define Rx by

px =
1

2

�

1−
δ

2x
+

Rx

2

�

, (2.2)

where Rx = o(1/x). Note that in the rational-form case we have

Rx =
δ2

2x2 +O
�

1

x3

�

.

The drift at x is

px − qx = 2px − 1=−
δ

2x
+

Rx

2
.

Let λ0 = 1, M0 = 0 and for x ≥ 1,

λx =
x
∏

k=1

qk

pk
, Mx =

x−1
∑

k=0

λk, L(x) = exp
�

R1+ · · ·+ Rx
�

.

Mx is the scale function. Note M1 = 1, and MXn∧τ0
is a martingale. It is easily checked that

the assumption Rx = o(1/x) ensures L is slowly varying. By linearly interpolating between
integers, we can extend L to a function on [1,∞) which is still slowly varying. Let τ j be the
hitting time of j ∈ Z+, let Pj denote probability for the walk started from height j and let

H =max{X i : i ≤ τ0} (2.3)

be the height of an excursion from 0. From the martingale property we have

P0(H ≥ h) = P1(τh < τ0) =
M1

Mh
(2.4)

4



so since M1 = 1,

P0(H = h) =
M1

Mh
−

M1

Mh+1
=

λh

MhMh+1
.

In place of δ, a more convenient parameter is often

κ=
1+δ

2
≥ 0.

We have
px

qx
= 1−

δ

x
+ Rx +O

�

1

x2

�

,

and hence
λx ∼ K0 x2κ−1 L(x)−1 as x →∞, for some K0 > 0, (2.5)

so for κ > 0,

Mx ∼
K0

2κ
x2κL(x)−1. (2.6)

Our assumption of recurrence is equivalent to Mx →∞.

Define the slowly varying function

ν(n) =
∑

l≤n, l even

1

l L(
p

l)
.

Throughout the paper, K0, K1, . . . are constants which depend only on {px , x ≥ 1}, except as
noted; for example, Ki(θ ,χ) means that Ki depends on some previously-specified θ and χ.
Further, to avoid the notational clutter of pervasive integer-part symbols, we tacitly assume
that all indices which appear are integers, as may be arranged by slightly modifying various
arbitrarily-chosen constants, or more simply by mentally inserting the integer-part symbol as
needed.

Theorem 2.1. Assume (2.2) and (2.1). For δ >−1,

P0(τ0 ≥ n)∼
21−κ

K0Γ(κ)
n−κL(

p
n) as n→∞, (2.7)

and for n even,

P0(τ0 = n)∼
22−κκ

K0Γ(κ)
n−(κ+1)L(

p
n). (2.8)

For δ =−1, assuming recurrence (i.e. Mx →∞ as x →∞),

P0(τ0 ≥ n)∼
1

K0ν(n)
. (2.9)
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For the case of SSRW, in contrast to (2.8), the excursion length distribution is easily given
exactly [19]: for n even,

P0(τ0 = n) =
1

n− 1

�

n

n/2

�

2−n ∼
1

2
p
π

n−3/2.

By (2.7) we have for fixed η ∈ (0, 1) that

P0
�

(1−η)n≤ τ0 ≤ (1+η)n
�

∼
22−κ

K0Γ(κ)
ηΥ(η)n−κL(

p
n), (2.10)

where

Υ(η) =
1

2η

�

(1−η)−κ− (1+η)−κ
�

→ κ as η→ 0. (2.11)

Heuristically, one expects that conditionally on the event on the left side of (2.10), τ0 should
be approximately uniform over even numbers in the interval [(1− η)n, (1+ η)n], leading to
(2.8). The precise statement we use is Lemma 5.1.

It follows from (2.4), (2.6) and Theorem 2.1 that τ0 and H2 have asymptotically the same tail,
to within a constant:

P0(H
2 ≥ n)∼ 2κκΓ(κ)P0(τ0 ≥ n)∼ P0

�

2(κΓ(κ))1/κτ0 ≥ n
�

as n→∞. (2.12)

This says roughly that the typical height of an excursion becomes a large multiple of the square
root of its length (i.e. duration), as κ grows, meaning the downward drift becomes stronger. In
this sense the random walk climbs higher to avoid the strong drift.

By reversing paths we see that

Pk(Xn = 0) = pkλkP0(Xn = k). (2.13)

Hence to obtain an approximation for P0(Xn = k), we need an approximation for Pk(Xn = 0),
and for that we first need an approximation for Pk(τ0 = m). In this context, keeping in mind
the similarity between τ0 and H2, for a given constant χ < 1 we say that a starting (or ending)
height k is low if k <

p
χm, midrange if

p
mχ ≤ k ≤

p

m/χ and high if k >
p

m/χ.

Theorem 2.2. Suppose δ > −1. Given θ > 0, for χ > 0 sufficiently small, there exists m0(θ ,χ)
as follows. For all m≥ m0 and 1≤ k <

p
χm (low starting heights) with m− k even,

(1− θ)
22−κκ

K0Γ(κ)
m−(1+κ)L(

p
m)Mk ≤ Pk(τ0 = m) (2.14)

≤ (1+ θ)
22−κκ

K0Γ(κ)
m−(1+κ)L(

p
m)Mk.

For all
p

mχ ≤ k ≤
p

m/χ (midrange starting heights) with m− k even,

(1− θ)
2

Γ(κ)m

�

k2

2m

�κ

e−k2/2m ≤ Pk(τ0 = m)≤ (1+ θ)
2

Γ(κ)m

�

k2

2m

�κ

e−k2/2m. (2.15)
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For all k >
p

m/χ (high starting heights) with m− k even,

Pk(τ0 = m)≤
1

m
e−k2/8m. (2.16)

In general, for high starting heights, as in (2.16) we accept upper bounds, rather than sharp
approximations as in (2.14) and (2.15).

Note that by (2.6), when k is large (2.14) and (2.15) differ only in the factor e−k2/2m, which is
near 1 for low starting heights. (Here “large” does not depend on m.) Further, by (2.8), one
can replace (2.14) with

(1− θ)P0(τ0 = m)Mk ≤ Pk(τ0 = m)≤ (1+ θ)P0(τ0 = m)Mk. (2.17)

We will see below that the left and right sides of (2.15) represent approximately the proba-
bilities for a Bessel process, with the same drift parameter δ and starting height k, to hit 0 in
[m− 1, m+ 1]. But the Bessel approximation is not necessarily valid for low starting heights,
where (2.14) holds, because the analog of Mk for the Bessel process may be quite different
from its value for the Bessel-like RW, and because L(

p
m)/L(k) need not be near 1, whereas

the analog of L(·) for the Bessel process is a constant. Even if a RW has asymptotically constant
L(·), the constant K0 may be different from the related Bessel case.

From (2.15), for midrange starting heights the distribution of τ0 is nearly the same as for the
approximating Bessel process. For low starting heights, this is not true in general—the Bessel-
like RW in this case will typically climb to a height of order

p
m for paths with τ0 = m, and

this climb is what is affected by the dissimilarity between the two processes, as reflected in the
errors Rx .

If δ > 1 (i.e. κ > 1), or if δ = 1 and E0(τ0)<∞, then

P0(Xn = 0)→
2

E0(τ0)
as n→∞ (n even), (2.18)

and of course when it is finite, E0(τ0) can be expressed explicitly in terms of the transition
probabilities px and qx , by using reversibility. If −1< δ < 1 (i.e. 0< κ < 1), then by (2.8) and
a result of Doney [15],

P0(Xn = 0)∼
2κK0

Γ(1−κ)
n−(1−κ)L(

p
n)−1 (n even), (2.19)

and if δ = 1 (i.e. κ= 1) with E0(τ0) =∞, then by (2.8) and a result of Erickson [16],

P0(Xn = 0)∼
2

µ0(n)
(n even), (2.20)

where µ0(n) is the truncated mean:

µ0(n) =
n
∑

l=1

l P0(τ0 = l)∼
2

K0

∑

l≤n, l even

L(
p

l)
l

,
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which is a slowly varying function.

The next theorem, approximating the left side of (2.13), is based on Theorem 2.2 and (2.18)—
(2.20), together with the fact that

Pk(Xn = 0) =
n
∑

j=0

Pk(τ0 = n− j)P0(X j = 0). (2.21)

Theorem 2.3. Given θ > 0, for χ sufficiently small there exists n0(θ ,χ) such that for all n≥ n0,
the following hold.

(i) For k <
p
χn (low starting heights) with n− k even,

(1− θ)P0(X ñ = 0)≤ Pk(Xn = 0)≤ (1+ θ)P0(X ñ = 0), (2.22)

where ñ= n if n is even, ñ= n+ 1 if n is odd.

(ii) If E0(τ0) < ∞ (which is always true for δ > 1), then for
p

nχ ≤ k ≤
p

n/χ (midrange
starting heights) with n− k even,

2− θ
E0(τ0)

∫ ∞

k2/2n

1

Γ(κ)
uκ−1e−u du≤ Pk(Xn = 0) (2.23)

≤
2+ θ
E0(τ0)

∫ ∞

k2/2n

1

Γ(κ)
uκ−1e−u du,

and for k >
p

n/χ (high starting heights) with n− k even,

Pk(Xn = 0)≤
8

E0(τ0)
e−k2/8n. (2.24)

(iii) If −1< δ < 1, then for
p

nχ ≤ k ≤
p

n/χ (midrange starting heights) with n− k even,

(1− θ)2κK0

Γ(1−κ)
n−(1−κ)L(

p
n)−1e−k2/2n ≤ Pk(Xn = 0) (2.25)

≤
(1+ θ)2κK0

Γ(1−κ)
n−(1−κ)L(

p
n)−1e−k2/2n,

and there exists K1(κ) such that for k >
p

n/χ (high starting heights) with n− k even,

Pk(Xn = 0)≤ K1e−k2/8nn−(1−κ)L(
p

n)−1. (2.26)

(iv) If δ = 1 and E0(τ0) =∞, then for
p

nχ ≤ k ≤
p

n/χ (midrange starting heights) with n− k
even,

2− θ
µ0(n)

∫ ∞

k2/2n

1

Γ(κ)
uκ−1e−u du≤ Pk(Xn = 0) (2.27)

≤
2+ θ
µ0(n)

∫ ∞

k2/2n

1

Γ(κ)
uκ−1e−u du,
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and for k >
p

n/χ (high starting heights) with n− k even,

Pk(Xn = 0)≤
8

µ0(n)
e−k2/8n. (2.28)

From [23], the integral that appears in (2.23) and (2.27) is the probability that the approxi-
mating Bessel process started at k hits 0 by time n.

We may of course replace P0(Xn = 0) with the appropriate approximation from (2.18)—(2.20),
in (2.22).

We now combine (2.13) with Theorem 2.3 to approximate the left side of (2.13).

Theorem 2.4. Given θ > 0, for χ > 0 sufficiently small, there exists n0(θ ,χ) such that for all
n≥ n0, the following hold.

(i) For 1≤ k <
p
χn (low ending heights) with n− k even,

1− θ
λkpk

P0(Xn = 0)≤ P0(Xn = k)≤
1+ θ
λkpk

P0(Xn = 0). (2.29)

(ii) If E0(τ0)<∞ (which is always true for δ > 1), then for
p

nχ ≤ k ≤
p

n/χ (midrange ending
heights) with n− k even,

(1− θ)
4

K0E0(τ0)
k1−2κL(k)

∫ ∞

k2/2n

1

Γ(κ)
uκ−1e−u du (2.30)

≤ P0(Xn = k)≤ (1+ θ)
4

K0E0(τ0)
k1−2κL(k)

∫ ∞

k2/2n

1

Γ(κ)
uκ−1e−u du,

and for k >
p

n/χ (high ending heights) with n− k even,

P0(Xn = k)≤
32

K0E0(τ0)
k1−2κL(k)e−k2/8n. (2.31)

(iii) If −1< δ < 1, then for
p

nχ ≤ k ≤
p

n/χ (midrange ending heights) with n− k even,

(1− θ)
2κ+1

Γ(1−κ)

�

k
p

n

�1−2κ

e−k2/2nn−1/2 (2.32)

≤ P0(Xn = k)≤ (1+ θ)
2κ+1

Γ(1−κ)

�

k
p

n

�1−2κ

e−k2/2nn−1/2,

and for k >
p

n/χ (high ending heights) with n− k even, for K1 of (2.26),

P0(Xn = k)≤
4K1

K0
e−k2/8nn−1/2. (2.33)
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(iv) If δ = 1 and E0(τ0) =∞, then for
p

nχ ≤ k ≤
p

n/χ (midrange ending heights) with n− k
even,

(1− θ)
4

K0µ0(n)
L(k)

k

∫ ∞

k2/2n

1

Γ(κ)
uκ−1e−u du (2.34)

≤ P0(Xn = k)≤ (1+ θ)
4

K0µ0(n)
L(k)

k

∫ ∞

k2/2n

1

Γ(κ)
uκ−1e−u du,

and for k >
p

n/χ (high ending heights) with n− k even,

P0(Xn = k)≤
44

K0µ0(n)
L(k)

k
e−k2/8n. (2.35)

A version of (2.32) for the RW dual to the rational-form case, with δ =−1, was proved in [37],
with the statement that the proof works for general δ < 1.

For large k we can use the approximation (2.5) in (2.29). For example, in the case −1< δ < 1,
there exists k1(θ) such that for n≥ n0 and k1 ≤ k <

p
χn we have

(1− θ)
22−κ

Γ(1−κ)
n−(1−κ)k−δ

L(k)
L(
p

n)
(2.36)

≤ P0(Xn = k)≤ (1+ θ)
22−κ

Γ(1−κ)
n−(1−κ)k−δ

L(k)
L(
p

n)
.

We can use Theorem 2.4 to approximately describe the distribution of Xn only because its
statement gives uniformity in k. This requires uniformity in k in Theorems 2.2 and 2.3, which
points us toward our probabilistic approach.

The factors 8 in the exponent in (2.31), (2.33) and (2.35) is not sharp. For −2< δ < 0, bounds
on tail (not point) probabilities with sharper exponents are established in [6].

We are unable to extend our results to random walks with drift which is asymptotically 0 but
not of order 1/x , because we rely on known properties of the Bessel process.

3 Coupling

Let us consider the random walk with steps ±1 imbedded in a Bessel process Yt ≥ 0 with drift
−δ/2Yt :

dYt =−
δ

2Yt
d t + dBt ,

where Bt is Brownian motion. (We need only consider this process until the time, if any, that
it hits 0, which avoids certain technical complications.) The imbedded walk is defined in the
standard way: we start both the RW and the Bessel process at the same integer height k. The
first step of the RW is to k ± 1, whichever the Bessel process hits first, at some time S1. The
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second step is to YS1
± 1, whichever the Bessel process hits first starting from time S1, and so

on.

Let g(x) = x1+δ; then g(Yt) is a martingale, in fact a time change of Brownian motion (see
[36].) Write PBe for probability for the Bessel process, PBI for the imbedded RW and Psym for
symmetric simple random walk (not reflecting at 0.) For the imbedded RW, for x ≥ 1, the
downward transition probability is

qBI
x = PBe

x (τx−1 < τx+1) =
g(x + 1)− g(x)

g(x + 1)− g(x − 1)
=

1

2

�

1+
δ

2x
+
δ2(1−δ)

12x3 +O
�

1

x4

�

�

so the corresponding value of Rx is

RBI
x =−

δ2(1−δ)
6x3 +O

�

1

x4

�

.

We write {Xn}, {X BI
n } and {X sym

n } for the Bessel-like RW, imbedded RW, and symmetric simple
RW, respectively, and τ j ,τ

BI
j ,τsym

j for the corresponding hitting times.

Here is a special construction of {Xn} that couples it to {X sym
n }, when px ≤ qx for all x . (A

similar construction works in case px ≥ qx for all x .) Let ξ0,ξ1, . . . be i.i.d. uniform in [0,1].
For each i ≥ 0 we have an alarm independent of ξi . If X i = x , the alarm sounds with probability
qx − px =

δ
2x
− Rx

2
. If there is no alarm, X i+1 = x + 1 if ξi > 1/2, and X i+1 = x − 1 if ξi ≤ 1/2.

If the alarm sounds, then X i+1 = x − 1, regardless of ξi . {X
sym
n } ignores the alarm and always

takes its step according to ξi .

A second special construction, coupling {Xn} to {X BI
n }, is as follows; a related coupling appears

in [10]. If X i = x , the alarm sounds independently with probability a(x) given by

a(x) =







px−pBI
x

qBI
x
= Rx

2
+ δ2(1−δ)

12x3 +O
�

|Rx |
x
+ 1

x4

�

if px ≥ pBI
x ,

qx−qBI
x

pBI
x
=−Rx

2
− δ2(1−δ)

12x3 +O
�

|Rx |
x
+ 1

x4

�

if px < pBI
x .

Whenever the alarm sounds, {X i} takes a step up in the case px ≥ pBI
x , and down in the case

px < pBI
x . If there is no alarm, {Xn} goes up if ξi > qBI

x and down if ξi ≤ qBI
x . By contrast, {X BI

n }
ignores the alarm and always takes its step according to ξi . Under this construction, if px ≥ pBI

x ,
the probability of an up step for {X i} from x is

(1− a(x))pBI
x + a(x) · 1= px ,

and if px < pBI
x , the probability of a down step for {X i} is

(1− a(x))qBI
x + a(x) · 1= qx ,

which shows that this second construction does indeed couple {Xn} to {X BI
n }. Note that in the

second construction, unlike the first, the frequency of alarms is o(1/x). The coupling to {X BI
n }

is more complicated because the transition probabilities for {X BI
n } depend on location. Even

11



when no alarm sounds, the two walks may take opposite steps if X i = x , X BI
i = y and ξi falls

between qBI
x and qBI

y . When (i) there is no alarm, (ii) X i = x , X BI
i = y for some x , y , and (iii)

ξi falls between qBI
x and qBI

y , we say a discrepancy occurs at time i. A misstep means either an
alarm or a discrepancy. For h sufficiently large, for x ≥ h, y ≥ h, conditioned on X i = x , X BI

i = y
and no alarm, the probability of a discrepancy is

|qBI
x − qBI

y | ≤
δ

2h2 |x − y|. (3.1)

We let N(k) denote the number of missteps which occur up to time k.

Note that if δ = 0, the imbedded RW is symmetric and there are no discrepancies.

When we couple {Xn} and {X BI
n } in the above manner, with both processes starting at k, we

denote the corresponding measure by P∗k . Where confusion seems possible, for hitting times we
then use a superscript to designate the process that the hitting time refers to, e.g. τBe

0 and τBI
0

for the Bessel process and its imbedded RW, respectively.

4 Proof of the tail approximation (2.7)

Recall that for (2.7) we have δ > −1. Let θ > 0, 0 < ρ < 1/8, 0 < ε1 < ε2 <
p
ρ and

hi = εi
p

m. Let 0 < η < ε1/4 and h1± = (ε1 ± 2η)
p

m. To prove (2.7) we will show that
provided ρ,θ are sufficiently small, one can choose the other parameters so that the following
sequence of six inequalities holds, for large m:

1− 3θ

Mh2

PBe
h2

�

τ0 ≥ (1+ 2ρ)m
�

(4.1)

≤
1− θ
Mh2

PBI
h2
(τh1+

≥ m)

≤
1

Mh2

Ph2
(τh1

≥ m)

≤ P0(τ0 ≥ m)

≤
1+ θ
Mh2

Ph2
(τh1

≥ (1− 2ρ)m)

≤
1+ 2θ

Mh2

PBI
h2

�

τh1−
≥ (1− 2ρ)m

�

≤
1+ 4θ

Mh2

PBe
h2

�

τ0 ≥ (1− 3ρ)m
�

.

These may be viewed as three “sandwich” bounds on P0(τ0 ≥ m), with the outermost sandwich
readily yielding the desired result, as we will show. The innermost sandwich (the 3rd and
4th inequalities) may be interpreted as follows. For convenience we assume the hi are even
integers. Recall H from (2.3); when H ≥ h2, we let T denote the first hitting time of h1 after

12



τh2
. We can decompose an excursion of height at least h2 and length at least m into 3 parts:

0 to τh2
, τh2

to T , and T to the end. The idea is that for a typical excursion of length at
least m, most of the length τ0 of the full excursion will be in the middle interval [τh2

, T];
the first and last intervals will have length at most ρm. The middle sandwich (2nd and 5th
inequalities) comes from approximating the original RW by the imbedded RW from a Bessel
process, during the interval [τh2

, T]. Then the outermost sandwich (1st and 6th inequalities)
comes from approximating the imbedded RW by the actual Bessel process, and from showing
that the third interval, from T to excursion end, is typically relatively short.

A useful inequality is as follows: for h> k ≥ 0 and m≥ 1,

P0(τ0 ≥ m, H ≥ h)≥ P0
�

τh < τ0
�

Ph(τk ≥ m) =
1

Mh
Ph(τk ≥ m). (4.2)

As a special case we have

P0(τ0 ≥ m)≥ P0(τ0 ≥ m, H ≥ h2)≥
1

Mh2

Ph2
(τh1

≥ m), (4.3)

which establishes the 3rd inequality in (4.1).

By (2.6) there exists l1 ≥ 1 such that for all x ≥ l1,

x |Rx | ≤
1

2
,

2κMx

K0 x2κL(x)−1 ∈
�

7

8
,
9

8

�

,
2κ(M2x −Mx)

K0(22κ− 1)x2κL(x)−1 ∈
�

7

8
,
9

8

�

,

If δ 6= 0, enlarging l1 if necessary, we also have
�

�

�

�

x(2px − 1) +
δ

2

�

�

�

�

<
|δ|
4

.

We turn to the 4th inequality in (4.1). We have

P0(τ0 ≥ m) = P0(τ0 ≥ m, H ≥ h2) + P0(τ0 ≥ m, H < h2). (4.4)

The main contribution should come from the first probability on the right. To show this, we
first need two lemmas. We begin with the following bound on strip-confinement probabilities.

Lemma 4.1. Assume (2.1) and (2.2). There exists K2(ε, l1) as follows. For all h ≥ 1, m ≥ 2h2

and 0< q < h,
Pq(Xn ∈ (0, h) for all n≤ m)≤ e−K2m/h2

.

Proof. Consider first δ 6= 0, h> l1. We claim that

Pq(Xn ∈ (l1, h) for all n≤ h2− l1)

is bounded away from 1 uniformly in q, h with l1 ≤ q < h. In fact, from the definition of l1, the
drift px − qx has constant sign for x ≥ l1. Suppose the drift is positive; then {Xn} and {X sym

n }
can be coupled so that Xn ≥ X sym

n for all n up to the first exit time of {Xn} from (l1, h). Therefore

Pq(Xn ∈ (l1, h) for all n≤ h2− l1)≤ Psym
q (τh > h2− l1)≤ 1− Psym

0 (τh ≤ h2− l1).

13



Since X sym
n is a non-reflecting symmetric RW, for Z a standard normal r.v. we have

Psym
0 (τh ≤ h2− l1)≥ Psym

0 (τh ≤ h2/2)≥ Psym
0 (X sym

bh2/2c ≥ h)→ P(Z >
p

2)

as h→ ∞, so Psym
0 (τh ≤ h2 − l1) is bounded away from 0 uniformly in h > l1, and the claim

follows. Similarly if the drift is negative, we can couple so that Xn ≤ X sym
n until the time that

{Xn} hits l1, and therefore

Pq(Xn ∈ (l1, h) for all n≤ h2− l1)≤ Psym
q (τl1 > h2− l1)≤ 1− Psym

h (τ0 ≤ h2− l1),

and the claim again follows straightforwardly. Then since qx ≥ ε for all x ≤ l1, we have

Pq(Xn /∈ (0, h) for some n≤ h2)≥ εl1 Pq(Xn /∈ (l1, h) for some n≤ h2− l1), (4.5)

which together with the claim shows that there exists γ = γ(l1,ε) such that for all l1 ≤ q < h
we have

Pq(Xn /∈ (0, h) for some n≤ h2)≥ γ. (4.6)

Therefore by straightforward induction, since m≥ 2h2,

Pq(Xn ∈ (0, h) for all n≤ m)≤ (1− γ)bm/h
2c ≤ e−K2m/h2

, (4.7)

completing the proof for δ 6= 0, h> l1.

For δ 6= 0, h≤ l1, the left side of (4.5) is bounded below by εl1 , and (4.7) follows similarly.

For δ = 0, it seems simplest to proceed by comparison. Instead, in place of (4.5) we have

Pq(Xn /∈ (0, h) for some n≤ h2)≥ Pq(τ0 ≤ q2+ 1). (4.8)

We can change the value of the (downward) drift parameter from δ = 0 to δ̃ ∈ (−1, 0) by
subtracting δ̃/4x from px for each x ≥ 1. By an obvious coupling, this reduces the probability
on the right side of (4.8). But by Proposition 6.3 below, this reduced probability is bounded
away from 0 in q ≥ 1. Thus (4.6) and then (4.7) hold in this case as well.

It should be pointed out that the proof of Proposition 6.3 makes use of Theorem 2.1 which in
turn makes use of Lemma 4.1. Since the application of Proposition 6.3 in the proof of Lemma
4.1 is only for δ̃ 6= 0, and since this application is only used to prove the lemma in the case
δ = 0, this is not circular—all proofs can be done for nonzero drift parameter first, and then
this can be applied to obtain the result for 0 drift parameter.

If we start the RW at 0, we can strengthen the bound in Lemma 4.1, as follows. Let Qn =
max0≤k≤n Xk, so H =Qτ0

.

Lemma 4.2. Assume δ > −1. There exist K3(ε, l1), K4(ε, l1) as follows. For all h > l1 and
m≥ 4h2,

P0(Xn ∈ (0, h) for all 1≤ n≤ m)≤
K3

Mh
e−K4m/h2

.
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Proof. Let k1 = min{k : 2k−2 > l1} and k2 = max{k : 2k−1 < h}. Then for some constants
Ki(ε, l1),

P0(Xn ∈ (0, h) for all 1≤ n≤ m)

≤ P0

�

Xn ∈ (0,2k1−1) for all 1≤ n≤ m
�

+
k2
∑

k=k1

P0
�

Qm ∈ [2k−1, 2k),τ0 > m
�

≤ e−K5m+
k2
∑

k=k1

�

P0
�

Qm ∈ [2k−1, 2k),τ0 > m,τ2k−2 ≤
m

2

�

+ P0
�

Qm ∈ [2k−1, 2k),τ0 > m,τ2k−2 >
m

2

�

�

≤ e−K5m+
k2
∑

k=k1

�

P0

�

τ2k−2 ≤
m

2
,τ0 > τ2k−1

�

P2k−2

�

Xn ∈ (0,2k) for all n≤
m

2

�

+ P0

�

τ0 > τ2k−1 > τ2k−2 >
m

2

�

�

≤ e−K5m+
k2
∑

k=k1

�

P1
�

τ0 > τ2k−1
�

e−K2m/22k+1

+
1

p2k−1λ2k−1
P2k−1

�

τ0 < τ2k−1 ,τ0−τ2k−2 >
m

2

�

�

≤ e−K5m+
k2
∑

k=k1

�

1

M2k−1
e−K2m/22k+1

+
1

p2k−1λ2k−1
P2k−1

�

τ2k−2 < τ2k−1
�

P2k−2

�

Xn ∈ (0,2k−1) for all n≤
m

2

�

�

≤ e−K5m+
k2
∑

k=k1

�

1

M2k−1
e−K2m/22k+1

+
1

p2k−1λ2k−1

q2k−1(M2k−1 −M2k−1−1)
M2k−1 −M2k−2

e−K2m/22k−1
�

(4.9)

≤ e−K5m+
k2
∑

k=k1

�

1

M2k−1
+

1

M2k−1 −M2k−2

�

e−K2m/22k+1

≤ e−K5m+ K6

k2
∑

k=k1

L(2k)

22kκ
e−K2m/22k+1

≤ e−K5m+ K7h−2κL(h)e−K2m/8h2

≤ K8h−2κL(h)e−K9m/h2
,

and the lemma follows from this and (2.6). Here in the 2nd inequality we used the ellipticity
condition (2.1), in the 4th inequality we used Lemma 4.1 and reversal of the path from time
0 to time τ2k−1 , in the 5th inequality we used (2.3), in the 6th inequality we used Lemma 4.1,
in the 8th inequality we used (2.5), and in the last three inequalities we used the fact that L is

15



slowly varying.

We return to the proof of the 4th inequality in (4.1). We have for m sufficiently large that

P0(τ0 ≥ m, H ≥ h2) (4.10)

≤ P0

�

τh2
< τ0

�

Ph2
(τh1

≥ (1− 2ρ)m)

+ P0

�

ρm< τh2
< τ0

�

+ P0

�

τh2
< τ0

�

Ph1
(τ0 > ρm)

≤
1

Mh2

Ph2
(τh1

≥ (1− 2ρ)m) + P0

�

ρm< τh2
< τ0

�

+
1

Mh2

�

Ph1
(τh2

< τ0) + Ph1
(ρm< τ0 < τh2

)
�

≤
1

Mh2

Ph2
(τh1

≥ (1− 2ρ)m) + P0
�

Xn ∈ (0, h2) for all 1≤ n≤ ρm
�

+
1

Mh2

�

Mh1

Mh2

+ Ph1
(Xn ∈ (0, h2) for all n≤ ρm)

�

≤
1

Mh2

Ph2
(τh1

≥ (1− 2ρ)m) +
K3

Mh2

e−K4ρ/ε
2
2 +

2

Mh2

�

ε1

ε2

�2κ

+
1

Mh2

e−K2ρ/ε
2
2

= (I) + (I I) + (I I I) + (IV ).

The 4th inequality in (4.10) uses (2.5) and Lemmas 4.1 and 4.2. We want to show that
(I I), (I I I), (IV ) are much smaller than (I). We will show that if ε1 � ε2 the probability in
(I) is of the same order as

Ph2
(τpm < τh1

) =
Mh2
−Mh1

Mpm−Mh1

∼ ε2κ
2 . (4.11)

This means that (I I I)� (I) provided ε1� ε2
2.

To complement (4.10) we have the following bound from Lemma 4.2:

P0(τ0 ≥ m, H < h2)≤ P0
�

Xn ∈ (0, h2) for all 1≤ n< m
�

≤
K3

Mh2

e−K4/ε
2
2 . (4.12)

We will later prove the following lower bound for (I).

Claim 1. There exists K10(δ) such that provided ε1 < ε2/2 and m is sufficiently large, we have

Ph2
(τh1

≥ (1− 2ρ)m)≥ Ph2

�

τh1
≥ m

�

≥ K10ε
2κ
2 (4.13)

and
PBI

h2
(τh1

≥ (1− 2ρ)m)≥ PBI
h2

�

τh1
≥ m

�

≥ K10ε
2κ
2 . (4.14)

Assuming Claim 1, given θ > 0, provided ε2 and ε1/ε
2
2 are sufficiently small (depending on

δ,ρ,θ), the 4th inequality in (4.1) follows from (4.10) and (4.12).

16



Our next task is to use the coupling of {Xn} to {X BI
n }, from Section 3, to prove the 2nd and 5th

inequaltites in (4.1). Here h1± should be viewed as substitutes for h1 which allow an error of
η
p

m in the coupling construction. Fix m/2 ≤ l ≤ m. We begin with the 5th inequality. From
the coupling construction we have

Ph2

�

τh1
≥ l
�

≤ PBI
h2
(τBI

h1−
≥ l
�

+ P∗h2
(N(τBI

h1−
)≥ η

p
m,τBI

h1−
< l ∧τh1

). (4.15)

We need to bound the last probability. Consider first δ 6= 0. Let A(x) = supy≥x a(y), so
A(x) = o(1/x), and let d0 = h2

1−A(h1−)/|δ|. Suppose that for some time i and some even
integers d0 ≤ d ≤ η

p
m, the gap |X i − X BI

i | ≤ d and X BI
i ≥ h1−. Provided h1− is large, by (3.1)

the misstep probability for the next step is then at most

A(h1−) +
|δ|d
h2

1−
≤

2|δ|d
h2

1−
.

Let Gd0
, Gd0+2, . . . , G2η

p
m−2 be independent geometric random variables, with Gd having pa-

rameter 2|δ|d/h2
1−, and S = Gd0

+ Gd0+2 + · · · + G2η
p

m−2. The gap |X i − X BI
i | can change

(always by 2) only at times of missteps. Therefore if we start from the time (if any) before τBI
h1−

when the gap first reaches d0, the time until the next misstep (if any) before τBI
h1−

is stochas-

tically larger than Gd0
, and then the time until the misstep after that (if any) before τBI

h1−
is

stochastically larger than Gd0+2, and so on. It follows that

P∗h2
(N(τBI

h1−
)≥ η

p
m,τBI

h1−
< l ∧τh1

)≤ P(S ≤ l)≤ P(S ≤ m). (4.16)

Note that for h1− large (depending on η/ε1),

E(S)
m
=

∑

d0≤d<2η
p

m,
d−d0 even

h2
1−

2|δ|dm
≥

h2
1−

4|δ|m
log
η
p

m

d0
≥

ε2
1

32|δ|
log

|δ|
h1−A(h1−)

,

which grows to infinity as m → ∞; thus E(S) � m. In fact by standard computations using
exponential moments, we obtain that for some K11(η,δ,ε1) we have

P(S ≤ m)≤ e−K11
p

m (4.17)

for all sufficiently large m, and hence by Claim 1,

P(S ≤ m)≤
θ

2
Ph2
(τh1

≥ l). (4.18)

In the case δ = 0, {X BI
n } is a symmetric simple RW so there are no discrepancies, only alarms,

which have probability at most A(h1)when the original RW is above height h1. Hence in place of
(4.16) we have the left side of (4.16) bounded above by the probability that a Binomial(l, A(h1))
exceeds η

p
m, and this probability is also bounded by e−K11

p
m, and then the same argument

applies. Now (4.13), (4.15), (4.16) and (4.18) show that provided m is large, the 5th inequality
in (4.1) holds.

17



Turning to the 2nd inequality in (4.1), the analog of (4.16) is still valid, so from the coupling
construction, (4.17) and (4.14) (trivially modified to allow h1+ in place of h1), we have

Ph2
(τh1

≥ m)≥ PBI
h2
(τBI

h1+
≥ m)− P∗h2

(N(τh1
)≥ η

p
m,τh1

< m∧τBI
h1+
) (4.19)

≥ PBI
h2
(τh1+

≥ m)− e−K11
p

m

≥ (1− θ)PBI
h2
(τh1+

≥ m),

proving the desired inequality.

The next step is to prove the first and last inequalities in (4.1), by relating the probabilities
for {X BI

n } to probabilities for the continuous-time Bessel process Yt . We need to establish the
following.

Claim 2. Given 0< ε1 < ε2, 0< ρ < 1/3 and θ > 0, for sufficiently large m,

PBI
h2

�

τh1−
≥ (1− 2ρ)m

�

≤ (1+ θ)PBe
h2

�

τh1−
≥ (1− 3ρ)m

�

, (4.20)

and
PBI

h2
(τh1+

≥ m)≥ (1− θ)PBe
h2

�

τh1+
≥ (1+ρ)m

�

. (4.21)

Suppose Claim 2 is proved. For the Bessel process we have the obvious inequality

PBe
h2

�

τh1−
≥ (1− 3ρ)m

�

≤ PBe
h2

�

τ0 ≥ (1− 3ρ)m
�

, (4.22)

while
PBe

h2

�

τh1+
≥ (1+ρ)m

�

≥ PBe
h2

�

τ0 ≥ (1+ 2ρ)m
�

− PBe
h1+

�

τ0 ≥ ρm
�

. (4.23)

It follows from (15) in [23] that for δ >−1 and ε > 0,

PBe
ε
p

t
(τ0 ≥ t) =

∫ ε2/2

0

1

Γ(κ)
uκ−1e−u du∼ K12ε

2κ as ε→ 0, (4.24)

where K12 = (2κκΓ(κ))−1. (Strictly speaking this seems to be stated in [23] only for Bessel
processes with dimension in (0, 2), i.e. δ ∈ (−1, 1), but the same proof works for nonpositive
dimension, i.e. δ ≥ 1. The key is the 3 lines after (57) in Appendix B of [23].) Applying this to
each probability on the right side of (4.23) we see that for ρ and then ε1/ε2 taken sufficiently
small and then m large, we have

PBe
h1+

�

τ0 ≥ ρm
�

≤ θ PBe
h2

�

τ0 ≥ (1+ 2ρ)m
�

,

and therefore by (4.23),

PBe
h2

�

τh1+
≥ (1+ρ)m

�

≥ (1− θ)PBe
h2

�

τ0 ≥ (1+ 2ρ)m
�

. (4.25)

Combining (4.21) and (4.25) we obtain the first inequality in (4.1), while the last inequality in
(4.1) is a consequence of (4.20) and (4.22). This completes the proof of (4.1). Since ρ,θ can
be taken arbitrarily small, (4.1) together with (2.6) and (4.24) proves (2.7).
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Proof of Claim 2. Let T0 = 0 and let T1, T2, . . . be the stopping times when the Bessel process
reaches an integer different from the last integer it has visited, so that X BI

n = YTn
. Denote the

hitting times of h1− in the two processes by τBI
h1−

and τBe
h1−

and letσi =min{t : Yt ∈ {i−1, i+1}}.
Given k and x1, x2, . . . , xk, with x i ≥ h1−, let

A= {τBI
h1−
= k} ∩ {X BI

0 = h2, X BI
1 = x1, . . . , X BI

k = xk}.

Conditionally on A, the random variables Ti−Ti−1, i ≤ k, are independent, with the distribution
of Ti − Ti−1 being

PBe
x i−1

�

σx i−1
∈ · | Yσxi−1

= x i
�

.

The mean of this distribution is

EBe
h2
(Ti − Ti−1 | A) =

EBe
x i−1

�

σx i−1
δ{Yσxi−1

=x i}
�

PBe
x i−1
(Yσxi−1

= x i)
. (4.26)

We need estimates for the quantities

EBe
x (σxδ{Yσx=x−1}), EBe

x (σx) and PBe
x (Yσx

= x − 1).

Let

s(x) =

(

x1+δ if δ 6=−1,

log x if δ =−1

be the scale function for the Bessel process and let L f given by

(L f )(x) =
1

2
f ′′(x)−

δ

2x
f ′(x)

be its infinitesmal generator. For fixed x and z ∈ [x − 1, x + 1] the functions f = fx , g =
gx , h± = h±x given by

f (z) = PBe
z (Yσx

= x − 1), g(z) = EBe
z (σx),

h±(z)
s(x + 1)− s(x − 1)

= EBe
z (σxδ{Yσx=x±1})

satisfy
L f ≡ 0, f (x − 1) = 1, f (x + 1) = 0;

L g ≡−1, g(x − 1) = g(x + 1) = 0;

(L h+)(z) = s(x − 1)− s(z), h+(x − 1) = h+(x + 1) = 0;

(L h−)(z) = s(z)− s(x + 1), h−(x − 1) = h−(x + 1) = 0.

These can be solved explicitly, yielding that for δ >−1,

f (z) =
s(x + 1)− s(z)

s(x + 1)− s(x − 1)
,
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g(z) =







− 1
1−δz2+ 4x

1−δ
1

(x+1)1+δ−(x−1)1+δ z1+δ + Ax if δ 6= 1,

−z2 log z+ (x+1)2 log(x+1)−(x−1)2 log(x−1)
4x

z2+ A′x if δ = 1,

h+(z) =

(

(x−1)1+δ

1−δ z2− 1
3+δz3+δ + Bxz1+δ + Dx if δ 6= 1,

(x − 1)2z2 log z− 1
4
z4+ B′xz2+ D′x if δ = 1,

h−(z) =

(

− (x+1)1+δ

1−δ z2+ 1
3+δz3+δ + B′′x z1+δ + D′′x if δ 6= 1,

−(x + 1)2z2 log z+ 1
4
z4+ B′′′x z2+ D′′′x if δ = 1.

Note the formulas here for δ = 1 are determined by the formulas for δ 6= 1, by continuity in δ.
Here Bx is given by

(1−δ)Bx =−
4x(x − 1)1+δ

(x + 1)1+δ − (x − 1)1−δ
+

1−δ
1+δ

(x − 1)2ψ1

�

2

x − 1

�

with

ψ1(u) =
1+δ
3+δ

(1+ u)3+δ − 1

(1+ u)1+δ − 1
= 1+ u+

2+δ
6

u2+O(u3) as u→ 0,

B′x is given by

B′x =
1

2
(x2+ 1)−

(x − 1)2(x + 1)2

4x
log
�

1+
2

x − 1

�

− (x − 1)2 log(x − 1),

and B′′x and B′′x are given by

(1−δ)B′′x =
4x(x + 1)1+δ

(x + 1)1+δ − (x − 1)1−δ
−

1−δ
1+δ

(x − 1)2ψ1

�

2

x − 1

�

and

B′′′x =−
1

2
(x2+ 1) +

(x − 1)2(x + 1)2

4x
log
�

1+
2

x − 1

�

+ (x + 1)2 log(x + 1).

Finally, Ax , A′x and Dx , D′x and D′′x , D′′′x are determined by g(x − 1) = 0, h+(x − 1) = 0 and
h−(x + 1) = 0, respectively, but we do not need these values because we can use for example
g(x) = g(x)− g(x−1), and Ax or A′x cancels in the latter expression. From these computations
we readily obtain

f (x)→
1

2
, g(x)→ 1,

h±(x)
s(x + 1)− s(x − 1)

→
1

2
as x →∞, (4.27)

and then also

EBe
x (σx | Yσx

= x − 1)→ 1, EBe
x (σx | Yσx

= x + 1)→ 1 as x →∞.
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Therefore, uniformly in those A with all x i ≥ h1−, as m→∞ we have

EBe
h2
(Ti − Ti−1 | A)→ 1. (4.28)

It is easily seen by comparison to “Brownian motion plus small constant” that PBe
z (σx > 1) is

bounded away from 1 uniformly in (large) x and in z ∈ [x − 1, x + 1]. Hence by the Markov
property PBe

x

�

σx > t) decays exponentially in t, uniformly in large x . By (4.27), this means
there exist K13, K14 such that

PBe
x

�

σx > t | Yσx
= x ± 1

�

≤max
�

1

f (x)
,

1

1− f (x)

�

PBe
x

�

σx > t)≤ K13e−K14 t ,

for all t ≥ 0 and all (large) x . Therefore for m sufficiently large, for all A and t,

PBe
h2
(Ti − Ti−1 > t | A)≤ K13e−K14 t . (4.29)

By standard methods, it follows from (4.28) and (4.29) that for some K15(ρ), K16(ρ) not de-
pending on A,

PBe
h2

��

�

�τBe
h1−
−τBI

h1−

�

�

�> ρτBI
h1−

�

� A
�

= PBe
h2

��

�Tk − k
�

�> ρk
�

� A
�

≤ K15e−K16k. (4.30)

Therefore the same bound holds unconditionally, so

PBI
h2

�

τBI
h1−
≥ (1− 2ρ)m

�

(4.31)

≤ PBe
h2

�

τBe
h1−
≥ (1− 3ρ)m

�

+ PBe
h2

�

τBI
h1−
≥ (1− 2ρ)m,

�

�

�τBe
h1−
−τBI

h1−

�

�

�> ρτBI
h1−

�

≤ PBe
h2

�

τBe
h1−
≥ (1− 3ρ)m

�

+ K15e−(1−2ρ)K16m

≤ (1+ θ)PBe
h2

�

τBe
h1−
≥ (1− 3ρ)m

�

,

where the last inequality follows from (4.23) and (4.24), for large m. Thus (4.20) is proved.
We have similarly from (4.30) (with τh1−

trivially replaced by τh1+
) that

PBe
h2

�

τBe
h1+
≥ (1+ρ)m

�

(4.32)

≤ PBe
h2

�

τBI
h1+
≥ m

�

+ PBe
h2

�

τBe
h1+
≥ (1+ρ)m,

�

�

�τBe
h1+
−τBI

h1+

�

�

�> ρτBI
h1+

�

≤ PBI
h2

�

τBI
h1+
≥ m

�

+ K15e−K16m

≤
1

1− θ
PBI

h2

�

τBI
h1+
≥ m

�

,

so (4.21), and thus Claim 2, are also proved.

Proof of Claim 1. From (4.21), (4.25) and then(4.24), we have

PBI
h2
(τh1+

≥ m)≥ (1− θ)PBe
h2

�

τh1+
≥ (1+ρ)m

�

≥ (1− 2θ)PBe
h2

�

τ0 ≥ (1+ 2ρ)m
�

≥ K17ε
2κ
2 ,
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and it is straightforward to replace τh1+
here by τh1

, proving the second inequality in (4.14).
The first inequality there is trivial.

The first inequality in (4.13) is also trivial, so we prove the second one. Using (4.14) and slight
variants of (4.16) and (4.17) we get that for large m,

Ph2
(τh1

≥ m)≥ P∗h2

�

τBI
h1+
≥ m, N(m)≤ η

p
m
�

= P∗h2

�

τBI
h1+
≥ m

�

− P∗h2

�

τh1+
≥ m, N(m)> η

p
m
�

≥ K10ε
2κ
2 − e−K2

p
m

≥
1

2
K10ε

2κ
2 ,

completing the proof of Claim 1.

This also completes the proof of (2.7), as noted after Claim 2.

5 Proof of (2.8) and (2.9)

For even numbers 0< m< n, let

fm = P0(τ0 = m), Am,n =
2

n−m+ 2

n
∑

j=m

f j .

Am,n is the average of the even-index f j ’s with j ∈ [m, n]. We use (2.10) and the following
convexity property of { fm}.

Lemma 5.1. For all even numbers 0< k < m,

fm ≤
fm+k + fm−k

2
(5.1)

and
fm ≤ Am−k,m+k. (5.2)

Proof. Let x= {x0, . . . , xm} be the trajectory of an excursion of length m starting at time 0, and
x′ = {x ′k, . . . , x ′m+k} the trajectory of an excursion of length m starting at time k. (Necessarily,
then, x0 = xm = x ′k = x ′m+k = 0 and all other x j and x ′j are positive.) Since k is even,
there must be an s ∈ (k, m) with xs = x ′s; let T = T (x,x′) denote the least such s and Dt =
{(x,x′) : T (x,x′) = t}. For x,x′ ∈ Dt , by switching the two trajectories after time t, we obtain
an excursion y = y(x,x′) = {x0, . . . , x t , x ′t+1, . . . , x ′m+k} of length m+ k and an excursion y′ =
y′(x,x′) = {x ′k, . . . , x ′t , x t+1, . . . , xm} of length m− k. The map (x,x′) 7→ (y,y′) is one to one and
satisfies

P0(x)P(x
′ | Xk = 0) = P0(y)P(y

′ | Xk = 0).
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It follows that

f 2
m =

∑

t:k<t<m

∑

(x,x′)∈Dt

P0(x)P(x
′ | Xk = 0)

=
∑

t:k<t<m

∑

(x,x′)∈Dt

P0(y(x,x′))P(y′(x,x′) | Xk = 0)

≤

 

∑

y

P0(y)

!







∑

y′
P(y′ | Xk = 0)







= fm+k fm−k

≤
�

fm+k + fm−k

2

�2

.

Equation (5.2) is an immediate consequence of (5.1).

Let θ > 0. Provided η is sufficiently small (depending on θ), we have from (2.10), (2.11) and
Lemma 5.1 that for n large and even and k = 2bηn/2c,

P0(τ0 = n) = fn (5.3)

≤ An−k,n+k

=
1

k+ 1
P0
�

(1−η)n≤ τ0 ≤ (1+η)n
�

≤ (1+ θ)
22−κκ

K0Γ(κ)
n−(κ+1)L(

p
n).

In the reverse direction, suppose fn < (1−θ)An−k,n−2 for some 0< k < n/2, with k, n even. By
Lemma 5.1 we have

k/2
∑

j=1

fn−2 j ≤
k

4
fn+

1

2

k/2
∑

j=1

fn−4 j (5.4)

≤
1− θ

2

k/2
∑

j=1

fn−2 j +
1

4

k/2
∑

j=1

fn−4 j +
1

4

k/2
∑

j=1

fn−4 j+2+ fn−4 j−2

2

=
1− θ

2

k/2
∑

j=1

fn−2 j +
1

4

k/2
∑

j=1

fn−4 j +
1

8

k/2
∑

j=1

fn−4 j+2+
1

8

(k+2)/2
∑

j=2

fn−4 j+2

=
1− θ

2

k/2
∑

j=1

fn−2 j +
1

4

k
∑

m=2

fn−2m+
1

8
fn−2+

1

8
fn−2k−2,

and therefore

1+ θ
2

k/2
∑

j=1

fn−2 j ≤
1

4

k
∑

j=1

fn−2 j +
1

8
fn−2k−2, (5.5)
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which in the case k = 2bηn/2c gives

(1+ θ)P0
�

(1−η)n≤ τ0 ≤ n− 2
�

(5.6)

≤
1

2
P0
�

(1− 2η)n≤ τ0 ≤ n− 2
�

+
1

4
P0

�

τ0 = n− 4
�ηn

2

�

− 2
�

.

For small η and large n, this contradicts (2.7), showing that we cannot have fn < (1 −
θ)An−k,n−2. Therefore for large n, using (2.7) we have

P0(τ0 = n) = fn (5.7)

≥ (1− θ)An−k,n−2

=
2(1− θ)

k
P0
�

(1−η)n≤ τ0 ≤ n− 2
�

≥ (1− 2θ)
22−κκ

K0Γ(κ)
n−(κ+1)L(

p
n).

This and (5.3) prove (2.8).

We now prove (2.9). Let P̃ denote the distribution of the Bessel-like RW dual to P, that is, the
walk with transition probabilities p̃x = qx , q̃x = px for x ≥ 1. In [14] it is proved that for n
even,

P(τ0 > n) = P̃(Xn = 0). (5.8)

For δ = −1, the dual walk has drift parameter δ̃ = 1, so (2.9) follows by applying (2.8) and
(2.20) to the dual walk.

6 Proof of Theorem 2.2

We want to use (2.13) so we need to approximate

f (k)n = Pk(τ0 = n) and Pk(Xn = 0).

We sometimes omit the superscript (k)when it is equal to 0. We start with the following relative
of Lemma 5.1.

Lemma 6.1. Let 0≤ p ≤ q ≤ r ≤ s ≤∞ and 0≤ k < l. Then for l − k even,

Pl(τ0 ∈ [p, q])Pk(τ0 ∈ [r, s])≤ Pl(τ0 ∈ [r, s])Pk(τ0 ∈ [p, q]), (6.1)

and for l − k odd,

Pl(τ0 ∈ [p, q])Pk(τ0 ∈ [r, s])≤ Pl(τ0 ∈ [r + 1, s+ 1])Pk(τ0 ∈ [p− 1, q− 1]). (6.2)

Proof. Suppose first that l − k is even. Consider a lattice path x starting at (0, k) in space-time
which first hits the horizontal axis at a time in [r, s], and a lattice path x′ starting at (0, l) which
first hits the axis at a time in [p, q]. Since l − k is even, there must be a t ∈ (0, q] with x t = x ′t .
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Switching the two trajectories after the first such t and proceeding as in Lemma 5.1 we obtain
(6.1).

For l − k odd we repeat this argument but with the path x shifted one unit to the right, that is,
started from (1, k).

Here are some special cases of interest for Lemma 6.1, particularly when comparing point
versus interval probabilities for τ0.

Corollary 6.2. (i) For all 0≤ k < l ≤ n and j > 0 with n− l and n+ j− k even,

f (k)n+ j

f (k)n

≤
f (l)n+ j

f (l)n

if l − k is even, (6.3)

and
f (k)n+ j

f (k)n−1

≤
f (l)n+ j+1

f (l)n

if l − k is odd. (6.4)

(ii) For all 0≤ l ≤ m,
Pl(τ0 = m)≤ Ml P0(τ0 = m) if l is even, (6.5)

and
Pl(τ0 = m)≤ Ml P0(τ0 = m− 1) if l is odd. (6.6)

(iii) For all l > 0 and 0≤ p < q < m,

Pl(τ0 = m)≥ Ml P0(τ0 = m)
P0(τ0−τl ∈ [p, q])

P0(τ0 ∈ [p, q])
if l is even, (6.7)

and

Pl(τ0 = m)≥ Ml P0(τ0 = m− 1)
P0(τ0−τl ∈ [p, q])

P0(τ0 ∈ [p− 1, q− 1])
if l is odd. (6.8)

By Corollary 6.2, to show that Pl(τ0 = m) can be well approximated by Ml P0(τ0 = m) (or
Ml P0(τ0 = m− 1), depending on parity), it is sufficient to find, given m, values p < q ≤ m for
which the fraction in (6.7) or (6.8) is almost 1. We will see that this can be done for m� l2.

Proof of Corollary 6.2. (i) Take p = q = n and r = s = n+ j in Lemma 6.1 to get f (l)n f (k)n+ j ≤

f (l)n+ j f (k)n in the case of even l − k, and similarly for odd l − k.

(ii) Consider even l. We may assume m is also even, for otherwise the left side of (6.5) is 0.
Applying Lemma 6.1 with k = 0, p = q = r = m and s =∞ we get

Pl(τ0 = m)≤
Pl(τ0 ≥ m)
P0(τ0 ≥ m)

P0(τ0 = m), (6.9)

while by (4.2),

1

Ml
Pl(τ0 ≥ m)≤ P0(τ0 ≥ m). (6.10)
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Together these prove (6.5). For odd l we may assume m is odd, and in place of (6.9) we get

Pl(τ0 = m)≤
Pl(τ0 ≥ m+ 1)

P0(τ0 ≥ m)
P0(τ0 = m− 1), (6.11)

and the rest of the proof is essentially unchanged, since Pl(τ0 ≥ m+ 1)≤ Pl(τ0 ≥ m).

(iii) Consider even l. We may assume m is even, for otherwise the right side of (6.7) is 0.
Applying Lemma 6.1 with k = 0, [r, s] = {m} we obtain

Pl(τ0 = m)≥
Pl(τ0 ∈ [p, q])
P0(τ0 ∈ [p, q])

P0(τ0 = m), (6.12)

while by (2.3),

1

Ml
Pl(τ0 ∈ [p, q]) = P0(τl < τ0)Pl(τ0 ∈ [p, q]) = P0(τ0−τl ∈ [p, q]), (6.13)

and together these prove (6.7). For odd l we may again assume m is odd and take [r, s] =
{m− 1}, so that in place of (6.12), using (6.13) we get

Pl(τ0 = m)≥
Pl(τ0 ∈ [p, q])

P0(τ0 ∈ [p− 1, q− 1])
P0(τ0 = m− 1) (6.14)

= Ml
P0(τ0−τl ∈ [p, q])

P0(τ0 ∈ [p− 1, q− 1])
P0(τ0 = m− 1).

Note that if we take k = 0 and j � n in (6.3), we see from (2.8) that the left side of (6.3) is
close to 1, so the right side cannot be much less than 1 for any l > 0.

For the Bessel process we have by (4.24) that for 0< a < b, recalling κ= (1+δ)/2,

PBe
k (τ0 ∈ [a, b]) =

∫ k2/2a

k2/2b

1

Γ(κ)
uκ−1e−u du. (6.15)

As a step toward approximating Pk(Xn = 0)we have the following “interval” version of Theorem
2.2, for midrange starting heights (k of order

p
m); for these we apparently cannot get sharp

results from Corollary 6.2(ii) and (iii).

Proposition 6.3. Let θ > 0,χ > 0, 0 < ∆min < ∆max and 0 < a < b. Provided χ is sufficiently
small (depending on θ), ∆max is sufficiently small (depending on θ ,χ),

b− a

b
∈ [∆min,∆max], (6.16)

the starting height k is midrange, that is,

p
aχ ≤ k ≤

p

a/χ, (6.17)
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and a is sufficiently large (depending on θ ,χ,∆min,∆max), we have

(1− θ)PBe
k (τ0 ∈ [a, b])≤ Pk(τ0 ∈ [a, b])≤ (1+ θ)PBe

k (τ0 ∈ [a, b]) (6.18)

and

1− θ
Γ(κ)

b− a

b

�

k2

2a

�κ

e−k2/2a ≤ Pk(τ0 ∈ [a, b]) (6.19)

≤
1+ θ
Γ(κ)

b− a

b

�

k2

2a

�κ

e−k2/2a.

Proof. Let 0 < ρ < ∆min/8 and ζ > 2β > 0. We always select our constants in the following
manner: θ is given; we choose χ then∆max, and then∆min <∆max is arbitrary, then we choose
ρ and then ζ and β (which appear in (6.20) below.) Finally we choose [a, b] as specified. Each
choice may depend only on the preceding choices, and when we say a parameter is “sufficiently
large” (or small), the required size may depend on the previous choices.

The general outline is similar to the proof of (2.7). Analogously to (4.1), we will establish the
following sequence of ten inequalities:

(1−6θ)PBe
k (τ

Be
0 ∈ [a, b]) (6.20)

≤ (1− 5θ)PBe
k

�

τBe
0 ∈ [(1+ 2ρ)a, (1− 3ρ)b]

�

≤ (1− 4θ)PBe
k

�

τBe
ζk ∈ [(1+ρ)a, (1− 3ρ)b]

�

≤ (1− 3θ)PBI
k

�

τBI
ζk ∈ [a, (1− 2ρ)b]

�

≤ (1− θ)Pk
�

τ(ζ−2β)k ∈ [a, (1−ρ)b]
�

≤ Pk(τ0 ∈ [a, b])

≤ (1+ θ)Pk
�

τ(ζ+2β)k ∈ [(1−ρ)a, b]
�

≤ (1+ 4θ)PBI
k

�

τBI
ζk ∈ [(1−ρ)a, (1+ρ)b]

�

≤ (1+ 5θ)PBe
k (τ

Be
ζk ∈ [(1− 2ρ)a, (1+ 2ρ)b])

≤ (1+ 7θ)PBe
k (τ

Be
0 ∈ [(1− 2ρ)a, (1+ 3ρ)b])

≤ (1+ 8θ)PBe
k (τ

Be
0 ∈ [a, b]).

As with (4.1), this should be viewed as five “sandwich” bounds on Pk(τ0 ∈ [a, b]), with the
outermost sandwich yielding the desired result.

Provided ∆max/θχ is sufficiently small and the second inequality in (6.17) holds, the gamma
density

fκ(u) =
1

Γ(κ)
uκ−1e−u, u≥ 0,

satisfies

(1− θ) fκ

�

k2

2a

�

≤ fκ(u)≤ (1+ θ) fκ

�

k2

2a

�

for all u ∈
�

k2

2b
,

k2

2a

�

.
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Then by (6.15),

PBe
k (τ0 ∈ [a, b])≥

1− θ
Γ(κ)

b− a

b

�

k2

2a

�κ

e−k2/2a (6.21)

and, using also the second inequality in (6.17),

PBe
k (τ0 ∈ [a, b])≤

1+ θ
Γ(κ)

b− a

b

�

k2

2a

�κ

e−k2/2a. (6.22)

Therefore (6.19) follows from (6.18). The inequalities (6.21) and (6.22), with minor modifi-
cations made to θ , a and b, also prove the first and last inequalities in (6.20), provided ρ is
suficiently small (depending on θ ,∆min,χ.)

Turning to the 2nd and 9th inequalities in (6.20), provided ζ2/ρχ is sufficiently small (depend-
ing on θ), using (6.15) we have

PBe
k (τ0 ∈ [(1− 2ρ)a, (1+ 3ρ)b])≥ PBe

k

�

τζk ∈ [(1− 2ρ)a, (1+ 2ρ)b]
�

PBe
ζk

�

τ0 ≤ ρb
�

(6.23)

= PBe
k

�

τζk ∈ [(1− 2ρ)a, (1+ 2ρ)b]
�

∫ ∞

ζ2k2/2ρb

1

Γ(κ)
uκ−1e−u du

≥ (1− θ)PBe
k

�

τζk ∈ [(1− 2ρ)a, (1+ 2ρ)b]
�

.

This proves the 9th inequality in (6.20). In the other direction,

PBe
k (τ0 ∈ [(1+ 2ρ)a, (1− 3ρ)b])≤ PBe

k

�

τζk ∈ [(1+ρ)a, (1− 3ρ)b]
�

+ PBe
ζk

�

τ0 > ρa
�

.
(6.24)

From (6.16), (6.17) and (6.21),

PBe
k (τ0 ∈ [(1+ 2ρ)a, (1− 3ρ)b])≥

(1− θ)∆min

Γ(κ)

�

k2

2a

�κ

e−1/2χ , (6.25)

and hence by (4.24), provided ζ2/ρ is sufficiently small (depending on θ ,∆min,χ),

PBe
ζk

�

τ0 > ρa
�

=

∫ ζ2k2/2ρa

0

1

Γ(κ)
uκ−1e−u du (6.26)

≤
1

κΓ(κ)

�

ζ2k2

2ρa

�κ

≤ θ PBe
k (τ0 ∈ [(1+ 2ρ)a, (1− 3ρ)b]).

With (6.24) this shows that

PBe
k (τ0 ∈ [(1+ 2ρ)a, (1− 3ρ)b])≤

1

1− θ
PBe

k

�

τζk ∈ [(1+ρ)a, (1− 3ρ)b]
�

, (6.27)

which proves the 2nd inequality in (6.20).
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Next we consider the 3rd and 8th inequalities in (6.20), in which Bessel-process probabilities
are compared to similar probabilities for the imbedded RW. First, for the 8th inequality, analo-
gously to (4.31) we have for some Ki = Ki(ρ) that

PBI
k

�

τBI
ζk ∈ [(1−ρ)a, (1+ρ)b]

�

(6.28)

≤ PBe
k

�

τBe
ζk ∈ [(1− 2ρ)a, (1+ 2ρ)b]

�

+ PBe
k

�

τBI
ζk ∈ [(1−ρ)a, (1+ρ)b], |τBI

ζk −τ
Be
ζk|> ρa

�

≤ PBe
k

�

τBe
ζk ∈ [(1− 2ρ)a, (1+ 2ρ)b]

�

+ K18e−K19a.

By (6.17), (6.27) and (6.25), there exist K20 = K20(ρ,∆min,χ) and K21 = K21(ρ,∆min,χ,θ)
such that for a ≥ K21,

PBe
k

�

τBe
ζk ∈ [(1− 2ρ)a, (1+ 2ρ)b]

�

≥ K20a−κ ≥
1

θ
e−K19a, (6.29)

which with (6.28) and (6.23) shows that

PBI
k

�

τBI
ζk ∈ [(1−ρ)a, (1+ρ)b]

�

≤ (1+ θ)PBe
k

�

τBe
ζk ∈ [(1− 2ρ)a, (1+ 2ρ)b]

�

, (6.30)

so the 8th inequality in (6.20) is proved. For the 3rd inequality, similarly to (6.28) and (6.30)
we get

PBe
k

�

τBe
ζk ∈ [(1+ρ)a, (1− 3ρ)b]

�

≤ PBI
k

�

τBI
ζk ∈ [a, (1− 2ρ)b]

�

+ e−K19a, (6.31)

which together with a slight modification of (6.29) gives

(1− θ)PBe
k

�

τBe
ζk ∈ [(1+ρ)a, (1− 3ρ)b]

�

≤ PBI
k

�

τBI
ζk ∈ [a, (1− 2ρ)b]

�

, (6.32)

yielding the desired result.

Now we consider the 4th through 7th inequalities in (6.20), comparing probabilities for the
imbedded RW to similar probabilities for the original RW, and comparing the hitting times of
(ζ− 2β)k and 0; for this we use the coupling of {Xn} and {X BI

n }. First, for the 4th inequality,
observe that for walks starting at k, if τBI

ζk ∈ [a, (1−2ρ)b] and the number of missteps by time

τBI
ζk is less than βk, then at time τBI

ζk, the stopping time τ(ζ−2β)k for the RW {Xn} has not yet
occurred and this RW is located in ((ζ− 2β)k, (ζ+ 2β)k). Therefore

PBI
k

�

τBI
ζk ∈ [a, (1− 2ρ)b]

�

(6.33)

≤ P∗k
�

τ(ζ−2β)k < τ
BI
ζk ∧ (1− 2ρ)b, N(τ(ζ−2β)k)≥ βk

�

+ P∗k
�

τBI
ζk ∈ [a, (1− 2ρ)b],τ(ζ−2β)k > τ

BI
ζk, XτBI

ζk
∈ ((ζ− 2β)k, (ζ+ 2β)k)

�

.

Let
D = {τBI

ζk ∈ [a, (1− 2ρ)b],τ(ζ−2β)k > τ
BI
ζk, XτBI

ζk
∈ ((ζ− 2β)k, (ζ+ 2β)k)}

denote the last event in (6.33). When D occurs, the RW {X BI
n } reaches height ζk at some

time l, and when it does, the RW {Xn} is at some height j close to ζk, so {Xn} has a high
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probability to reach height (ζ − 2β)k within an additional time ρb. More precisely, for j ∈
((ζ−2β)k, (ζ+2β)k) and l ∈ [a, (1−2ρ)b], provided ζ2/ρχ is sufficiently small (depending
on θ), using (2.6), (2.7), (4.2) and our assumption a ≥ χk2 we have

P∗k
�

τ(ζ−2β)k ∈ [a, (1−ρ)b] | D ∩ {τBI
ζk = l, X l = j}

�

(6.34)

= Pj
�

τ(ζ−2β)k ≤ (1−ρ)b− l
�

≥ Pj(τ(ζ−2β)k ≤ ρb
�

≥ 1−M j P0(τ0 ≥ ρb)

≥ 1− θ .

Since l, j are arbitrary, the same bound holds if we just condition on D. From this and (6.33)
we get

PBI
k

�

τBI
ζk ∈ [a, (1− 2ρ)b]

�

(6.35)

≤ P∗k
�

τ(ζ−2β)k < τ
BI
ζk ∧ (1− 2ρ)b, N(τ(ζ−2β)k)≥ βk

�

+
1

1− θ
Pk
�

τ(ζ−2β)k ∈ [a, (1−ρ)b]
�

.

Reasoning similarly to (4.17) using (6.17), and then using (6.21) and (6.32), we get that for
some K22(ζ,β) and K23(ζ,β ,θ ,∆min,χ), for a ≥ K23,

P∗k
�

τ(ζ−2β)k < τ
BI
ζk ∧ (1− 2ρ)b, N(τ(ζ−2β)k)≥ βk

�

(6.36)

≤ e−K22
p

a

≤ θ PBI
k

�

τBI
ζk ∈ [a, (1− 2ρ)b]

�

.

With (6.35) this shows that

(1− θ)2PBI
k

�

τBI
ζk ∈ [a, (1− 2ρ)b]

�

≤ Pk
�

τ(ζ−2β)k ∈ [a, (1−ρ)b]
�

, (6.37)

which yields the 4th inequality in (6.20).

For the 5th inequality in (6.20), from (2.6), (2.7), (4.2) and (6.17), provided ζ2/ρχ is suffi-
ciently small (depending on θ), we have

P(ζ−2β)k
�

τ0 > ρb
�

≤ M(ζ−2β)kP0(τ0 ≥ ρb)≤ θ .

Hence

(1− θ)Pk
�

τ(ζ−2β)k ∈ [a, (1−ρ)b]
�

(6.38)

≤ Pk
�

τ(ζ−2β)k ∈ [a, (1−ρ)b]
�

P(ζ−2β)k
�

τ0 ≤ ρb
�

≤ Pk
�

τ0 ∈ [a, b]
�

,

which proves the 5th inequality.
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Next, to prove the 7th inequality in (6.20), we can repeat (6.33)—(6.37) with {Xn} and {X BI
n }

interchanged, and with ζk, (ζ−2β)k replaced by (ζ+2β)k,ζk, respectively, to obtain first the
following analog of (6.35) and (6.36):

Pk
�

τ(ζ+2β)k ∈ [(1−ρ)a, b]
�

(6.39)

≤ P∗k
�

τBI
ζk < τ(ζ+2β)k ∧ b, N(τBI

ζk)≥ βk
�

+
1

1− θ
Pk
�

(τBI
ζk ∈ [(1−ρ)a, (1+ρ)b]

�

≤ θ Pk
�

τ(ζ+2β)k ∈ [(1−ρ)a, b]
�

+
1

1− θ
Pk
�

(τBI
ζk ∈ [(1−ρ)a, (1+ρ)b]

�

,

and from this the analog of (6.37):

Pk
�

τ(ζ+2β)k ∈ [(1−ρ)a, b]
�

≤ (1+ 3θ)PBI
k

�

τBI
ζk ∈ [(1−ρ)a, (1+ρ)b]

�

, (6.40)

so the 7th inequality is proved. Here for the second inequality in (6.39), analogously to (6.36),
we require a lower bound for Pk

�

τ(ζ+2β)k ∈ [(1− ρ)a, b]
�

, and this follows from (6.21) and
the inequality

Pk
�

τ(ζ−2β)k ∈ [a, (1−ρ)b]
�

≥
1− 6θ

1− θ
PBe

k (τ0 ∈ [a, b])

which is contained in the first four inequalities of (6.20), with trivial modification to replace
ζ− 2β with ζ+ 2β and [a, (1−ρ)b] with [(1−ρ)a, b].

For the 6th inequality, we have

Pk
�

τ0 ∈ [a, b]
�

≤ Pk
�

τ(ζ+2β)k ∈ [(1−ρ)a, b]
�

(6.41)

+ Pk
�

τ(ζ+2β)k < (1−ρ)a,τ0 ∈ [a, b]
�

.

Let us show that the last probability in (6.41) is much smaller than the first one. The Markov
property at τ(ζ+2β)k, together with (2.6), (2.7), (4.2) and (6.17), yields that for some K24,
provided a is sufficiently large,

Pk
�

τ(ζ+2β)k < (1−ρ)a,τ0 ∈ [a, b]
�

≤ P(ζ+2β)k
�

τ0 ≥ ρa
�

(6.42)

≤ M(ζ+2β)kP0(τ0 ≥ ρa)

≤ K24

�

ζ2k2

ρa

�κ

.

From (6.17), (6.21) and the first half of (6.20) we have that for some K25,

Pk
�

τ0 ∈ [a, b]
�

≥ (1− 6θ)PBe
k (τ0 ∈ [a, b])≥ K25∆mine−1/2χ

�

k2

a

�κ

.

From this and (6.42) we obtain that provided ζ2/ρ is sufficiently small (depending on
∆min,θ ,χ), the ratio of the last to the first probability in (6.41) is at most θ , which with
(6.41) shows that

(1− θ)Pk
�

τ0 ∈ [a, b]
�

≤ Pk
�

τ(ζ+2β)k ∈ [(1−ρ)a, b]
�

,

proving the 6th inequality in (6.20), which completes the full proof of (6.20). Statement (6.18)
is then immediate, and then, as we have noted, (6.19) follows.
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Let us now prove Theorem 2.2 for low starting heights—suppose that

1≤ k <
p
χm.

Let a ∈ [m/2, m). We will use Corollary 6.2(ii) and (iii), with [p, q] = [a/2, a], together with
(2.8). By (2.8), provided ρ is sufficiently small (depending on θ) and then a is sufficiently
large, we have

P0

�

τ0−τk ∈
�a

2
, a
��

) (6.43)

≥ P0

�

τk ≤ ρa,τ0 ∈
��

1

2
+ρ
�

a, a
��

= P0

�

τ0 ∈
��

1

2
+ρ
�

a, a
��

�

1− P0

�

τk > ρa

�

�

�

�

τ0 ∈
��

1

2
+ρ
�

a, a
�

��

≥ (1− θ)P0

�

τ0 ∈
�a

2
, a
��

�

1− P0

�

τk > ρa

�

�

�

�

τ0 ∈
��

1

2
+ρ
�

a, a
�

��

.

We need an upper bound for the conditional probability on the right side of (6.43). For some
K26, K27 we have from (2.6), (2.7), (6.17) and Lemma 4.2 that provided χ is sufficiently small
(depending on θ ,ρ),

P0

�

τk > ρa

�

�

�

�

τ0 ∈
��

1

2
+ρ
�

a, a
�

�

(6.44)

≤
P0(τk ∧τ0 > ρa)

P0

�

τ0 ∈
��

1
2
+ρ
�

a, a
��

≤ K26
e−K4ρa/k2

Mka−κL(
p

a)

≤ K27
L(k)

L(
p

a)

� a

k2

�κ

e−K4ρa/k2

≤ θ .

Now (6.43), (6.44), (2.7) and (2.8) show that

P0

�

τ0−τk ∈
�a

2
, a
��

)≥ (1− 2θ)P0

�

τ0 ∈
�a

2
, a
��

(6.45)

≥ (1− 3θ)P0

�

τ0 ∈
�a

2
− 1, a− 1

��

which with Corollary 6.2(ii), (iii) shows that

(1− 3θ)MkP0(τ0 = m)≤ Pk(τ0 = m)≤ MkP0(τ0 = m), m even, (6.46)

(1− 3θ)MkP0(τ0 = m− 1)≤ Pk(τ0 = m)≤ MkP0(τ0 = m− 1), m odd. (6.47)

This and (2.8) prove (2.14).
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Next we prove Theorem 2.2 for midrange starting heights–suppose

p
mχ ≤ k ≤

r

m

χ
.

Let θ > 0 and let 0 < ∆min < ∆max be as in Proposition 6.3. For the first inequality in (2.15)
we use Corollary 6.2(i) and Proposition 6.3. From Corollary 6.2(i) and Theorem 2.1, for m
large with m− k even, and 0 ≤ j < ∆minm with m− j even, provided ∆min is small enough
(depending on θ), we have

f (k)m ≥
f (0)m

f (0)m− j

f (k)m− j ≥ (1− θ) f
(k)
m− j if k is even, (6.48)

f (k)m ≥
f (0)m−1

f (0)m− j−2

f (k)m− j−1 ≥ (1− θ) f
(k)
m− j−1 if k is odd, (6.49)

so that, averaging over j and applying Proposition 6.3, provided∆min is small enough (depend-
ing on χ,θ),

Pk(τ0 = m)≥ (1− 2θ)
2

∆minm
Pk((1−∆min)m< τ0 < m) (6.50)

≥ (1− 3θ)
2

Γ(k)m

�

k2

2m

�κ

e−k2/2m.

For the second inequality in (2.15) the proof is similar: in place of (6.48) and (6.49) we have
that for m+ j even,

f (k)m ≤
f (0)m

f (0)m+ j

f (k)m+ j ≤ (1+ θ) f
(k)
m+ j if k is even, (6.51)

f (k)m ≤
f (0)m−1

f (0)m+ j

f (k)m+ j+1 ≤ (1+ θ) f
(k)
m+ j+1 if k is odd. (6.52)

and then as with (6.50),

Pk(τ0 = m)≤ (1+ θ)
2

∆minm
Pk
�

τ0 ∈ [m, (1+∆min)m]
�

≤ (1+ 3θ)
2

Γ(κ)m

�

k2

2m

�κ

e−k2/2m, (6.53)

completing the proof of (2.15).

Last, we prove Theorem 2.2 for high starting heights. We may assume k ≤ m. From the first
inequalities in (6.51) and (6.52) and from Theorem 2.1, averaging over j ∈ [0, m/8] we obtain
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that for m large and 0< h< k/3 we have

Pk(τ0 = m)≤
�

9

8

�κ 32

m
Pk

�

τ0 ∈
�

m,
9

8
m
��

≤
�

9

8

�κ 32

m
Pk

�

τh ≤
9

8
m
�

. (6.54)

To bound the last probability we couple our Bessel-like RW to a symmetric simple RW. Recall
that N(t) denotes the number of alarms by time t, and let

N ∗ =

�

�

�

�

�

i ≤
9

8
m : X i ≥ h, X sym

i ≥ h, and an alarm occurs at time i
�
�

�

�

�

.

Analogously to (4.15) we have

Pk

�

τh ≤
9

8
m
�

= P∗k

�

τ
sym
3h > τh,τh ≤

9

8
m
�

+ P∗k

�

τ
sym
3h ≤ τh ≤

9

8
m
�

≤ P∗k
�

N ∗ > h
�

+ Psym
k

�

τ
sym
3h ≤

9

8
m
�

. (6.55)

We now take h = k/8; we assume for convenience that h is an integer. If m0 (and hence k) is
large enough, then supx≥k/8 |px −

1
2
| ≤ 2(1+ |δ|)/k. Then N ∗ is stochastically smaller than a

Binomial(9m/8,2(1+ |δ|)/k) random variable. We apply Bennett’s Inequality (see Hoeffding
[26]), which states that for a Binomial(n, p) random variable Y and λ > np,

P(Y ≥ λ)≤ e−λψ(np(1−p)/λ),

where ψ is the decreasing function

ψ(x) = (1+ x) log
�

1+
1

x

�

− 1.

For x ≤ 1/4 we have ψ(x) ≥ 1 and hence ψ(x) ≥ 1
2
(1+ x) log

�

1+ 1
x

�

≥ 1
2

log 1
x
. Therefore

for λ≥ 4np,
P(Y ≥ λ)≤ e−(λ/2) log(λ/np),

and in particular, provided χ is sufficiently small we have

P∗k

�

N ∗ >
k

8

�

≤ e−(k/16) log(k2/18(1+|δ|)m) ≤ e−k/4 ≤ e−k2/4m. (6.56)

Also, again provided χ is small, by Hoeffding’s inequality [26],

Psym
k

�

τ
sym
k/4 ≤

9

8
m
�

≤ 2Psym
0

�

X sym
9m/8 >

3

4
k
�

≤ e−k2/4m,

which with (6.54), (6.55) and (6.56) yields

Pk(τ0 = m)≤
�

9

8

�κ 64

m
e−k2/4m ≤

1

m
e−k2/8m, (6.57)

completing the proof of (2.16).
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7 Proof of Theorems 2.3 and 2.4

Theorem 2.4 is a straightforward consequence of Theorem 2.3, (2.13) and (2.5), so we prove
Theorem 2.3. We use (2.21), applying Theorem 2.2 and (2.18)—(2.20) to approximate the
products on the right side.

We consider first part (i), for low starting heights, i.e. 1≤ k <
p
χn. By (2.7), (2.8) and (2.21)

and Theorem 2.2, given θ > 0, taking ρ and then χ sufficiently small, for n large, we have the
following sandwich bound for Pk(Xn = 0):

(1− 2θ)P0(X ñ = 0) (7.1)

≤ (1− θ) min
(1−ρ)n≤ j≤n

P0(X j̃ = 0)

≤ Pk(τ0 ≤ ρn) min
(1−ρ)n≤ j≤n

P0(X j̃ = 0)

≤ Pk(Xn = 0)

≤ max
(1−ρ)n≤ j≤n

P0(X j̃ = 0) +
∑

0≤ j<(1−ρ)n

Pk(τ0 = n− j)P0(X j = 0)

≤ (1+ θ)P0(X ñ = 0) + max
0≤i<(1−ρ)n

Pk(τ0 = n− i)
∑

0≤ j<(1−ρ)n

P0(X j = 0)

≤ (1+ θ)P0(X ñ = 0) + K28(ρn)−(κ+1)L(
p

n)Mpχn

∑

0≤ j<(1−ρ)n

P0(X j = 0).

We need to show that the second term on the right side of (7.1) is small compared to the first
term on the right side. From (2.18)—(2.20) we see that for some K29, in all three cases, the
sum in that second term is bounded by K29nP0(X ñ = 0). Therefore, using (2.6) and (2.8), if χ
is sufficiently small (depending on θ ,ρ) then for large n, the second term is bounded above by

2K28K29
χκ

ρκ+1 P0(X ñ = 0)≤ θ P0(X ñ = 0).

With (7.1) this gives

(1− 2θ)P0(X ñ = 0)≤ Pk(Xn = 0)≤ (1+ 2θ)P0(X ñ = 0), (7.2)

as desired.

Next we consider part (ii), for E0(τ0) <∞ and midrange starting heights,
p

nχ ≤ k ≤
p

n/χ.
By (2.18) there exists n1 such that

2− θ
E0(τ0)

≤ P0(Xn = 0)≤
2+ θ
E0(τ0)

for all even n≥ n1.

Let 0 < χ̃ < χ. Then using (2.21) and Theorem 2.2 (with χ̃ in place of χ), provided χ̃ is

35



sufficiently small, and then n (and hence k) is sufficiently large,

Pk(Xn = 0)≥
n−χ̃k2
∑

j=n1

Pk(τ0 = n− j)P0(X j = 0) (7.3)

≥
2− θ
E0(τ0)

∑

m:χ̃k2≤m≤n−n1,m−k even

Pk(τ0 = m)

≥
2− 3θ

E0(τ0)

∑

m:χ̃k2≤m≤n−n1,m−k even

2

Γ(κ)m

�

k2

2m

�κ

e−k2/2m

≥
2− 4θ

E0(τ0)

∫ n−n1

χ̃k2

1

Γ(κ)x

�

k2

2x

�κ

e−k2/2x d x

=
2− 4θ

E0(τ0)

∫ 1/2χ̃

k2/2(n−n1)

1

Γ(κ)
uκ−1e−u du

≥
2− 5θ

E0(τ0)

∫ ∞

k2/2n

1

Γ(κ)
uκ−1e−u du.

In the other direction, we have similarly

n−χ̃k2
∑

j=n1

Pk(τ0 = n− j)P0(X j = 0)≤
2+ 5θ

E0(τ0)

∫ ∞

k2/2n

1

Γ(κ)
uκ−1e−u du. (7.4)

Also similarly to (7.3), given α > 0 we have for sufficiently small χ̃ that provided n is large,

Pk(χ̃k2 ≤ τ0 ≤ k2/χ̃)≥ (1−α)
∫ 1/2χ̃

χ̃/2

1

Γ(κ)
uκ−1e−u du≥ 1− 2α, (7.5)

so in particular, for small χ̃,

Pk(τ0 < χ̃k2)≤ θ
∫ ∞

1/2χ

1

Γ(κ)
uκ−1e−u du.
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With (2.18), (2.21), (7.4) and Theorem 2.2 this gives

Pk(Xn = 0)≤
2+ 5θ

E0(τ0)

∫ ∞

k2/2n

1

Γ(κ)
uκ−1e−u du (7.6)

+ Pk(n− n1 < τ0 ≤ n) + Pk(τ0 < χ̃k2) max
n−χ̃k2/2< j≤n

P0(X j = 0)

≤
2+ 5θ

E0(τ0)

∫ ∞

k2/2n

1

Γ(κ)
uκ−1e−u du

+
K30n1

n

�

k2

2n

�κ

e−k2/2n+
3θ

E0(τ0)

∫ ∞

1/2χ

1

Γ(κ)
uκ−1e−u du

≤
2+ 9θ

E0(τ0)

∫ ∞

k2/2n

1

Γ(κ)
uκ−1e−u du,

which with (7.3) proves Theorem 2.3(ii) for midrange starting heights.

Now consider part (ii) for high starting heights, k >
p

n/χ. We may assume θ < 1. Analogously
to (7.4) we have using (2.21) and Theorem 2.2 that

n−k
∑

j=n1+1

Pk(τ0 = n− j)P0(X j = 0)≤
3

E0(τ0)

∑

m:k≤m≤n−n1−1,m−k even

1

m
e−k2/8m

≤
3

E0(τ0)
k+ 1

k

∫ n−n1

k

1

x
e−k2/8x d x

=
3

E0(τ0)
k+ 1

k

∫ k/8

k2/8(n−n1)
e−u du

≤
4

E0(τ0)
e−k2/8n. (7.7)

Further, as in (7.1), using Theorem 2.2,

n1
∑

j=0

Pk(τ0 = n− j)P0(X j = 0)≤
�

max
j≤n1

Pk(τ0 = n− j)
� n1−1
∑

j=0

P0(X j = 0)

≤
n1+ 1

n
e−k2/8n. (7.8)

Now (2.21), (7.7) and (7.8) prove (2.24).

We turn now to part (iii), for −1 < δ < 1 and midrange starting heights
p

nχ ≤ k ≤
p

n/χ.
We use the fact that

∫ 1

0

1

(1− u)1+κu1−κ e−a/(1−u) du= Γ(κ)a−κe−a for all a,κ > 0, (7.9)
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as can easily be seen via the change of variable v = (1−u)−1. By (2.19) there exists n2 = n2(θ)
such that

(1− θ)2κK0

Γ(1−κ)
n−(1−κ)L(

p
n)−1 ≤ P0(Xn = 0)≤

(1+ θ)2κK0

Γ(1−κ)
n−(1−κ)L(

p
n)−1 (7.10)

for all even n≥ n2. Analogously to (7.3), provided χ̃/χ is sufficiently small, using (2.21), (7.9)
and (7.10) we then obtain that for large n,

Pk(Xn = 0) (7.11)

≥
n−χ̃k2
∑

j=n2

Pk(τ0 = n− j)P0(X j = 0)

≥
(2− θ)2κK0

Γ(κ)Γ(1−κ)

∑

n2≤ j≤n−χ̃k2

j even

1

n− j

�

k2

2(n− j)

�κ

e−k2/2(n− j) j−(1−κ)L(
p

j)−1

≥
(1− θ)2κK0

Γ(κ)Γ(1−κ)
L(
p

n)−1

∫ n−χ̃k2

n2

1

n− x

�

k2

2(n− x)

�κ

e−k2/2(n−x) 1

x1−κ d x

=
(1− θ)2κK0

Γ(κ)Γ(1−κ)
n−(1−κ)L(

p
n)−1

�

k2

2n

�κ ∫ 1−χ̃k2/n

n2/n

1

(1− u)1+κu1−κ e−k2/2n(1−u) du

≥
(1− 2θ)2κK0

Γ(1−κ)
n−(1−κ)L(

p
n)−1e−k2/2n.

In the other direction, analogously to (7.4), from a calculation similar to (7.11) we get

n−χ̃k2
∑

j=n2

Pk(τ0 = n− j)P0(X j = 0)≤
(1+ 2θ)2κK0

Γ(1−κ)
n−(1−κ)L(

p
n)−1e−k2/2n. (7.12)

With (2.21), (2.19) and Theorem 2.2 this gives the analog of (7.6): provided χ̃ is taken suffi-
ciently small and then n sufficiently large,

Pk(Xn = 0) (7.13)

≤
(1+ 2θ)2κK0

Γ(1−κ)
n−(1−κ)L(

p
n)−1e−k2/2n

+ n2 max
0≤ j<n2

Pk(τ0 = n− j) + Pk(τ0 < χ̃k2) max
n−χ̃k2< j≤n

P0(X j = 0)

≤
(1+ 2θ)2κK0

Γ(1−κ)
n−(1−κ)L(

p
n)−1e−k2/2n

+ K31(χ)n
−1+ θ

(1+ 2θ)2κK0

Γ(1−κ)
n−(1−κ)L(

p
n)−1

≤
(1+ 4θ)2κK0

Γ(1−κ)
n−(1−κ)L(

p
n)−1e−k2/2n.
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Here the second inequality uses the fact that by (7.5), we can make Pk(τ0 < χ̃k2) as small as
desired by taking χ̃ small. Together (7.11) and (7.13) prove Theorem 2.3(iii) for midrange
starting heights.

We turn next to part (iii) for high starting heights, k >
p

n/χ. There exists K32 such that for
0< α≤ K2

32,
∞
∑

j=1

e−α j 1

j1−κL(
p

j)
≤

2

κ
α−κL

�

1
p
α

�−1

. (7.14)

Then analogously to (7.3) and (7.11), when k ≤ K32n, using (2.21), (7.10) and Theorem 2.2
we have for large n,

n−k
∑

j=n2

Pk(τ0 = n− j)P0(X j = 0)

≤
21+κK0

Γ(1−κ)

n−k
∑

j=n2

1

n− j
e−k2/8(n− j) 1

j1−κL(
p

j)

≤
22+κK0

Γ(1−κ)

�

2

n
e−k2/8n

∑

n2≤ j≤n/2

e−k2 j/8n2 1

j1−κL(
p

j)

+
∑

n/2< j≤n−k

1

n− j
e−k2/8(n− j) 1

j1−κL(
p

j)

�

≤
22+κK0

Γ(1−κ)

�

4 · 4κ

κn
e−k2/8n

�n

k

�2κ
L
�n

k

�−1
+

2

n
e−k2/4n

n
∑

j=1

1

j1−κL(
p

j)

�

≤
22+κK0

Γ(1−κ)

�

4 · 4κ

κn
e−k2/8n

�n

k

�2κ
L
�n

k

�−1
+

4

κn
e−k2/4nnκL(

p
n)−1

�

. (7.15)

Here in the third inequality we used the fact that (n− j)−1e−k2/8(n− j) is a decreasing function
of j, and the fact that L is slowly varying. Provided χ is sufficiently small, the second term
inside the brackets on the right side of (7.15) is smaller than the first term; using this, (2.21)
and Theorem 2.2 we obtain that for some K33(κ), provided χ is small enough,

Pk(Xn = 0)≤
24+3κK0K32

κΓ(1−κ)n
e−k2/8n

�n

k

�2κ
L
�n

k

�−1
+
∑

0≤ j<n2

Pk(τ0 = n− j)

≤
24+3κK0K32

κΓ(1−κ)n
e−k2/8n

�n

k

�2κ
L
�n

k

�−1
+

2n2

n
e−k2/8n

≤ K33e−k2/8nn−(1−κ)L(
p

n)−1. (7.16)

Here n2 = n2(1). This proves (2.26) when k ≤ K32n. If K32n < k ≤ n, in place of (7.15) and
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(7.16) we have using (2.16) that

Pk(Xn = 0) =
n−k
∑

j=0

Pk(τ0 = n− j)P0(X j = 0)

≤
n−k
∑

j=0

1

n− j
e−k2/8n

≤ K34e−k2/8n, (7.17)

from which (2.26) follows.

Next we consider part (iv), in which δ = 1, E0(τ0) =∞, in the case of midrange starting heights
p

nχ ≤ k ≤
p

n/χ. In this case µ0 is slowly varying, and by (2.20) there exists n3 = n3(θ) such
that

2− θ
µ0(n)

≤ P0(Xn = 0)≤
2+ θ
µ0(n)

for all even n≥ n3. (7.18)

Then analogously to (7.3), using Theorem 2.2, (2.21) and (7.18), for large n,

Pk(Xn = 0)≥
n−χ̃k2
∑

j=n3

Pk(τ0 = n− j)P0(X j = 0) (7.19)

≥
4− 3θ

Γ(κ)

∑

χ̃k2≤m≤n−n3
n−m even

1

m

�

k2

2m

�κ

e−k2/2m 1

µ0(n−m)

≥
2− 2θ

µ0(n)

∫ ∞

k2/2n

1

Γ(κ)
uκ−1e−u du,

and similarly

n−χ̃k2
∑

j=n3

Pk(τ0 = n− j)P0(X j = 0)≤
2+ 2θ

µ0(n)

∫ ∞

k2/2n

1

Γ(κ)
uκ−1e−u du. (7.20)

Using (2.21), (7.18), (7.20) and Theorem 2.2, and taking χ̃ sufficiently small, we obtain the
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analog of (7.13):

Pk(Xn = 0) (7.21)

≤
2+ 2θ

µ0(n)

∫ ∞

k2/2n

1

Γ(κ)
uκ−1e−u du

+ n3 max
0≤ j<n3

Pk(τ0 = n− j) + Pk(τ0 < χ̃k2) max
n−χ̃k2< j≤n

P0(X j = 0)

≤
2+ 2θ

µ0(n)

∫ ∞

k2/2n

1

Γ(κ)
uκ−1e−u du

+ K35(χ)n
−1+

θ

µ0(n)

∫ ∞

1/2χ

1

Γ(κ)
uκ−1e−u du

≤
2+ 4θ

µ0(n)

∫ ∞

k2/2n

1

Γ(κ)
uκ−1e−u du.

Together (7.19) and (7.21) prove Theorem 2.3(iv) for midrange starting heights.

Last we consider part (iv) for high starting heights, k >
p

n/χ. We may assume θ < 1. When
k ≤ K32n and k is sufficiently large, we have analogously to (7.15), using (7.14) and Theorem
2.2,

n−k
∑

j=n3

Pk(τ0 = n− j)P0(X j = 0)

≤
n−k
∑

j=n3

1

n− j
e−k2/8(n− j) 3

µ0( j)

≤
6

n
e−k2/8n

∑

n3≤ j≤n/2

e−k2 j/8n2 1

µ0( j)
+

6

n
e−k2/4n

∑

n/2< j≤n−k

1

µ0( j)

≤
96

n
e−k2/8n n2

k2µ0

�

n2

k2

�−1

+ e−k2/4n 6

µ0(n)

≤ e−k2/8n 7

µ0(n)
. (7.22)

In the last inequality we have bounded (n2/k2)µ0(n2/k2)−1 by n/96µ0(n), valid for χ suffi-
ciently small because n2/k2 ≤ χ2n and µ0 is slowly varying. Then using (2.21) and (2.16),

Pk(Xn = 0)≤ e−k2/8n 7

µ0(n)
+
∑

1≤ j<n3

Pk(τ0 = n− j)

≤ e−k2/8n 7

µ0(n)
+

n3

n
e−k2/8n

≤ e−k2/8n 8

µ0(n)
. (7.23)
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If instead K32n < k ≤ n, then (7.17) is valid. In fact, a look at (6.57) shows that, by reducing
χ if necessary, we can replace 8 on the right side of (7.17) with any constant greater than 4.
Therefore in place of (7.23) we have for large n that

Pk(Xn = 0)≤ K34e−k2/6n ≤
1

µ0(n)
e−k2/8n. (7.24)

Thus (2.28) holds in both cases.
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