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Jǐrí Černý
Department of Mathematics, ETH Zürich
Rämistr. 101, 8092 Zürich, Switzerland

jiri.cerny@math.ethz.ch

Abstract

We consider a random walk among unbounded random conductances on the two-dimensional
integer lattice. When the distribution of the conductances has an infinite expectation and a
polynomial tail, we show that the scaling limit of this process is the fractional kinetics process.
This extends the results of the paper [BČ10] where a similar limit statement was proved in
dimension d ≥ 3. To make this extension possible, we prove several estimates on the Green
function of the process killed on exiting large balls.
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1 Introduction and main results

The main purpose of the present paper is to extend the validity of the quenched non-Gaussian func-
tional limit theorem for random walk among heavy-tailed random conductances onZd to dimension
d = 2. Analogous limit theorem for d ≥ 3 was recently obtained in [BČ10].

We recall the model first. Let Ed be the set of all non-oriented nearest-neighbour edges in Zd and
let Ω = (0,∞)E

d
. On Ω we consider the product probability measure P under which the canonical

coordinates (µe, e ∈ Ed), interpreted as conductances, are positive i.i.d. random variables. Writing
x ∼ y if x , y are neighbours in Zd , and denoting by x y the edge connecting x and y , we set

µx =
∑

y∼x
µx y for x ∈Zd , (1.1)

px y = µx y/µx if x ∼ y . (1.2)

For a given realisation µ = (µe, e ∈ Ed) of the conductances, we consider the continuous-time
Markov chain with transition rates px y . We use X = (X (t), t ≥ 0) and Pµx to denote this chain and
its law on the space Dd := D([0,∞),Rd) equipped with the standard Skorokhod J1-topology. The
total transition rate of X from a vertex x ∈ Zd is independent of x:

∑

y∼x px y = 1. Therefore, as in

[BD10, BČ10], we call this process the constant-speed random walk (CSRW) in the configuration of
conductances µ. The CSRW is reversible and µx is its reversible measure.

In this paper we assume that the distribution of the conductances is heavy-tailed and bounded from
below:

P[µe ≥ u] = u−α(1+ o(1)), as u→∞, for some α ∈ (0,1), (1.3)

P[µe > c] = 1 for some c ∈ (0,∞). (1.4)

Our main result is the following quenched non-Gaussian functional limit theorem.

Theorem 1.1. Assume (1.3), (1.4) and fix d = 2. Let

Xn(t) = n−1X (tn2/α log1− 1
α n), t ∈ [0,∞), n ∈N, (1.5)

be the rescaled CSRW. Then there exists a constant C ∈ (0,∞) such that P-a.s., under Pµ0 , the sequence
of processes Xn converges as n→∞ in law on the space D2 equipped with the Skorokhod J1-topology
to a multiple of the two-dimensional fractional kinetics process C FKα.

The limiting fractional kinetics process FKα is defined as a time change of a Brownian motion by an
inverse of a stable subordinator. More precisely, let BM be a standard two-dimensional Brownian
motion started at 0, Vα an α-stable subordinator independent of BM determined by E[e−λVα(t)] =
e−tλα , and let V−1

α be the right-continuous inverse of Vα. Then

FKα(s) = BM(V−1
α (s)), s ∈ [0,∞). (1.6)

The quenched limit behaviour of the CSRW among unbounded conductances1 on Zd was for the
first time investigated in [BD10]. It is proved there that, for all d ≥ 1 and all distribution of the

1For results on CSRW among bounded conductances the reader is referred to [BČ10] and references therein.
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conductances satisfying (1.4), the CSRW converges after the normalisation n−1X (n2·) to a multiple
of the d-dimensional Brownian motion, σBMd , P-a.s. The constant σ might be 0, but [BD10]
shows that it is positive iff µe has a finite P-expectation.

When σ = 0, that is when E[µe] = ∞, the above scaling is not the right one and the Brownian
motion might not be the right scaling limit. In the case when (1.3), (1.4) are satisfied and d ≥ 3, the
paper [BČ10] identifies the fractional kinetics process as the correct scaling limit; the normalisation
is as in Theorem 1.1 without the logarithmic correction. The case d ≥ 3 and α = 1 is considered in
[BZ10]. Here the Brownian motion is still the scaling limit, however with a normalisation different
to [BD10]. Both [BČ10] and [BZ10] do not consider the case d ≤ 2. Our Theorem 1.1 fills this gap
for d = 2 and α ∈ (0, 1).

The non-Gaussian limit behaviour of the CSRW is due to trapping that occurs on edges with large
conductances: roughly said, the CSRW typically spends at x a time proportional to µx before leaving
it for a long time. The heavy-tailed distributions of conductances makes the trapping important. The
trapping mechanism is very similar to the one considered in the so-called trap models, see [BČ06]
and the references therein. Actually, the scaling limit results of [BČ10] and of the present paper are
analogous (including the normalisation) to the known scaling behaviour of the trap models [BČ07].

We would also like to point out that the dimension d = 1 is rather special for the CSRW (as well as
for the trap models). It is not possible to prove any non-degenerated quenched limit theorem when
(1.3) holds. The annealed scaling limit is a singular diffusion in a random environment which was
defined by Fontes, Isopi and Newman in [FIN02]. As this claim has never appeared in the literature,
we prove it in the appendix, adapting the techniques used for the trap models, [BČ05] or Section 3.2
of [BČ06].

The paper [BČ10] considers not only the CSRW but also another important process in a random
environment, so-called Bouchaud’s trap model (BTM) with the asymmetric dynamics. It shows that
for d ≥ 3 this model has the same scaling behaviour as the CSRW.

The BTM can be briefly defined as follows (for more motivation see [BČ10] again, and [BČ06]). Let
τ = (τx : x ∈ Z2) be a collection of i.i.d. positive random variables on a probability space (Ω̃, P̃).
Given τ and a ∈ [0,1], let P̃τx be the law of the continuous-time Markov chain X̃ with transition
rates wx y = τa−1

x τa
y started at x . This process is naturally associated with the random walk among

(not i.i.d.) random conductances given by µ̃x y = τa
xτ

a
y .

The methods of the present paper can be used with minimal modification (cf. Section 9 of [BČ10])
to show the following scaling limit statement for the two-dimensional BTM. The case a = 0 was
treated already in [BČM06, BČ07].

Theorem 1.2. Let d = 2, a ∈ [0,1] and α ∈ (0,1). Assume that P̃[τx ≥ u] = u−α(1+ o(1)) and that
τx ≥ c > 0 P̃-a.s. Let

X̃n(t) = n−1X̃ (tn2/α log1− 1
α n), t ∈ [0,∞), n ∈N, (1.7)

be the rescaled BTM. Then there exists a constant C̃ ∈ (0,∞) such that P̃-a.s., under P̃τ0 , the sequence
of processes X̃n converges as n→∞ in law on the space D2 equipped with the Skorokhod J1-topology
to a multiple of the two-dimensional fractional kinetics process C̃ FKα.

Remark 1.3. We emphasize that the topology used in Theorems 1.1 and 1.2 is the usual Skorokhod
J1-topology and not the uniform topology as in [BČ10]. Actually, as pointed out in [Mou10] (see
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also [Bil68, Chapter 18]), subtle measurability reasons prevent to define the distribution of the
processes Xn and X̃n on the (non-separable) space Dd equipped with the uniform topology. It is
therefore not possible to replace the J1-topology by the stronger uniform one in our results. The
results of [BČ10] should be corrected accordingly.

Let us now give more details on the proof of Theorem 1.1 and, in particular, on the new ingredients
which do not appear in [BČ10]. As in [BČ10], we use the fact that the CSRW can be expressed
as a time change of another process for which the usual functional limit theorem holds and which
can be well controlled. This process, called variable speed random walk (VSRW), is a continuous-
time Markov chain with transition rates µx y . We use Y = (Y (t) : t ≥ 0) and (with a slight abuse of
notation) Pµx to denote this process and its law. The reversible measure of Y is the counting measure
on Zd .

The time change is as follows. Let the clock process S be defined by

S(t) =

∫ t

0

µY (t) dt, t ∈ [0,∞). (1.8)

Then, X can be constructed on the same probability space as Y , setting X (t) = Y (S−1(t)). Since the
behaviour of Y is known (see Proposition 2.1 below), to control the CSRW X we need to know the
properties of the clock process S.

Proposition 1.4. Let

Sn(t) = n−2/α(log n)
1
α
−1S(n2 t), t ≥ 0, n ∈N. (1.9)

Then, under the assumptions of Theorem 1.1, there exists constant CS ∈ (0,∞) such that P-a.s., under
Pµ0 , Sn converges as n→∞ to CSVα weakly on the space D1 equipped with the Skorokhod M1-topology.

Theorem 1.1 follows from this proposition by the same reasoning as in [BČ10]: The asymptotic
independence of the VSRW and the clock process can be proved as in [BČ10] Lemma 6.8. The
convergence of the CSRW can be deduced from the joint convergence of the clock process and the
VSRW as in Section 8 of [BČ10] or in Section 11 of [Mou10]. (The measurability problems men-
tioned in Remark 1.3 do not play substantial role here as can be seen by comparing the arguments
of [Mou10] and [BČ10].) Therefore in this paper we concentrate on the proof of Proposition 1.4.

To show the convergence of the clock process, the paper [BČ10] uses substantially two properties of
the Green function of the VSRW Y killed on exit from a set A⊂Zd ,

gµA (x , y) = Eµx
h

∫ τA

0

1{Y (s) = y}ds
i

, x , y ∈Zd , (1.10)

where τA denotes the exit time of Y from A.

The first property concerns the off-diagonal Green function in balls B(x , r) centred at x with radius
r. It roughly states that as r diverges gµB(x ,r)(x , y) behaves (up to a constant factor) as the Green
function of the simple random walk, for many centres x and for all y with distance at least εr to x
and to the boundary of B(x , r) (see Proposition 4.3 in [BČ10], cf. also Lemma 3.5 below). This is
shown using a combination of the functional limit theorem for the VSRW and the elliptic Harnack
inequality which were both proved in [BD10].
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In d = 2 we need finer estimates. We need to consider y with distance of order rξ, ξ ∈ (0,1), from
x . We will show in Lemma 3.6 that for such y the function gµB(x ,r)(x , y) also behaves as in the simple
random walk case, at least if x = 0. The reasoning based on the functional limit theorem and the
Harnack inequality does not apply here, since gµB(x ,r)(x , y) is not harmonic at y = x . It turns out,

however, that by ‘patching’ together gµB(x ,r) for many different r ’s one can control the Green function

up to distance rξ to x (Lemma 3.6).

The second property of the Green function needed in [BČ10] concerns its diagonal behaviour. In
rough terms again, we used the fact that for d ≥ 3 the Green function in balls converges to the
infinite volume Green function, gµB(x ,r)(x , x)

r→∞−−→ gµ(x , x), that the random quantity gµ(x , x) has
a distribution independent of x , and that gµ(x , x) and gµ(y, y) are essentially independent when x
and y are not too close.

Such reasoning is rather impossible when d = 2. First, of course, the CSRW is recurrent and the
infinite volume Green function does not exist. We should thus study the killed Green functions
exclusively. We will first show that P-a.s.

gµB(x ,r)(x , x) = C0 log r(1+ o(1)), as r →∞ for x = 0, (1.11)

with some non-random constant C0, see Proposition 3.1. This is proved essentially by integrating
the local limit theorem for the VSRW, which can be proved using the same techniques as the local
limit theorem for the random walk on a percolation cluster [BH09], see [BD10] Theorem 5.14 .

The next important issue is to extend (1.11) from the origin, x = 0, to many different centres x .
While we believe that (1.11) holds true uniformly for x in B(0, Kr), say, we were not able to show
this. The main obstacle is the fact that the speed of the convergence in the local limit theorem is not
known, and therefore we cannot extend the local limit theorem to hold uniformly for many different
starting points. Note also that the method based on the integration of the functional limit theorem
used in [BČ10] to get estimates for the off-diagonal Green function that are uniform over a large
ball does not work. This is due to the fact that the principal contribution to the diagonal Green
function in balls of radius r comes from visits that occur at (spatial) scales much smaller than r.
These scales are not under control in the usual functional limit theorem.

The impossibility to extend (1.11) uniformly to x ∈ B(0, Kn) appeared to be critical for the tech-
niques of [BČ10]. It however turns out that we do not need to consider so many centres x in
(1.11). Inspecting the proof of the convergence of the clock process in [BČ10] (see also [BČM06]
for convergence of the two-dimensional trap model), we find out that it is sufficient to have (1.11)
for O(log r) points x in B(0, Kr) only. Moreover these points are typically at distance at least
r ′ = 2r/ log2 r (Lemma 4.1). Since gµB(x ,r)(x , x) is well approximated by the Green function in

smaller balls, gµB(x ,r ′/2)(x , x) (Lemma 3.4), and the smaller balls are disjoint for the centres of inter-
est, we recover enough independence to proceed similarly as in d ≥ 3.

Finaly, we would like to draw reader’s attention to the recent paper of J.-C. Mourrat [Mou10], where
another very nice proof of the scaling limit for the asymmetric (a 6= 0) BTM is given for d ≥ 5. The
techniques used in [Mou10] differ considerably from those used here and in [BČ10]. They explore
the fact that the clock process (1.8) is an additive functional of the environment viewed by the
particle which is a stationary ergodic process under the annealed measure P̃× P̃τ. Moreover, the
variance estimates of [Mou09] imply that this process is sufficiently mixing for d ≥ 5. This allows to
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deduce that the clock process must be a subordinator under the annealed measure. An argument in
the spirit of [BS02] is then applied to deduce the quenched result; this also requires d ≥ 4 at least.

The present paper is organised as follows. In Section 2, we recall some known results on the VSRW.
Section 3, in some sense the most important part of this paper, gives all necessary estimates on the
killed Green function of the VSRW. In Section 4, we prove Theorem 1.1. Since this proof follows the
lines of [BČ10], we decided not to give all details here. Instead of this, we will state a sequence of
lemmas and propositions corresponding to the main steps of the proof of [BČ10]. The formulation of
these lemmas is adapted to the two-dimensional situation. We provide proofs only in the cases when
they substantially differ from [BČ10]. In the appendix we discuss the CSRW among the heavy-tailed
conductances on the one-dimensional lattice Z.

Acknowledgement. The author thanks the anonymous referee for carefully reading the manuscript
and providing many valuable comments.

2 Preliminaries

We begin by introducing some further notation. Let B(x , R) be the Euclidean ball centred at x of
radius R and let Q(x , R) be a cube centred at x with side length R whose edges are parallel to
the coordinate axes. Both balls and cubes can be understood either as subsets of Rd , Zd or of Ed

(an edge is in B(x , R) if both its vertices are), depending on the context. For A ⊂ Zd we write
∂ A = {y /∈ A∃x ∈ A, x y ∈ Ed} and Ā = A∪ ∂ A. For A, B ⊂ Zd we set d(A, B) = inf{|x − y| : x ∈
A, y ∈ B}, where |x − y| stands for the Euclidean distance of x and y . For a set A ⊂ Zd we write
B(A, R) =

⋃

x∈A B(x , R). We define the exit time of the VSRW Y from A as τA = inf{t ≥ 0 : Y (t) /∈ A}.
We use the convention that all large values appearing below are rounded above to the closest integer,
if necessary. It allows us to write that, e.g., εnZd ⊂ Zd for ε ∈ (0,1) and n large. We use c, c′ to
denote arbitrary positive and finite constants whose values may change in the computations.

We recall some known facts about the VSRW and its transition density qµt (x , y) = Pµx [Y (t) = y],
x , y ∈Zd , t ≥ 0, in d = 2.

Proposition 2.1. Assuming (1.4) and d = 2, the following holds.

(i) (Functional limit theorem) There exists CY ∈ (0,∞) such that P-a.s., under Pµ0 , the sequence
Yn(·) = n−1Y (n2·) converges as n→∞ in law on D2 to a multiple of a standard two-dimensional
Brownian motion, CY BM.

(ii) (Heat-kernel estimates) There exist a family of random variables (Vx , x ∈Z2) on Ω and constants
c1, c2 ∈ (0,∞) such that

P[Vx ≥ u]≤ c2 exp{−c1uη}, η= 1/3, (2.1)

qµt (x , y)≤ 1∧ c2 t−1 for all x , y ∈Z2 and t ≥ 0, (2.2)

qµt (x , y)≤ c2 t−1e
− |x−y|2

c2 t , if t ≥ |x − y| and |x − y| ∨ t1/2 ≥ Vx , (2.3)

qµt (x , y)≤ c2e−c1|x−y|(1∨log |x−y|
t ), if t ≤ |x − y| and |x − y| ∨ t1/2 ≥ Vx , (2.4)

qµt (x , y)≥ c1 t−1e
− |x−y|2

c1 t if t ≥ V 2
x ∨ |x − y|1+η. (2.5)
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(iii) (Local limit theorem) For all x ∈R2 and t > 0 fixed, P-a.s.

lim
n→∞

n2qµ
n2 t
(0, [xn]) =

1

2πC 2
Y t

exp
n

−
|x |2

2tC 2
Y

o

, (2.6)

where [xn] ∈Z2 is the point with coordinates bx1nc, bx2nc.

Proof. Claims (i) and (ii) are parts of Theorems 1.1 and 1.2 of [BD10] specialised to d = 2. Claim
(iii) is a simple consequence of Theorem 5.14 of [BD10], cf. also Theorems 1.1 and 4.6 of [BH09]
where the local limit theorem is shown for the random walk on the super-critical percolation cluster.

Remark 2.2. Proposition 2.1 is the only place in the proof of Theorem 1.1 where the assumption
(1.4) is used explicitly. Hence, if Proposition 2.1 is proved with more general assumptions, then
Theorem 1.1 will hold under the same assumptions.

3 Estimates on the Green function

This section contains all estimates on the Green function of the VSRW that we need in the sequel.
These estimates might be of independent interest.

3.1 Diagonal estimates

We control the diagonal Green function at the origin first.

Proposition 3.1. Let C0 = (πC 2
Y )
−1, with CY as in Proposition 2.1(i). Then, for P-a.e. environment

µ,

lim
r→∞

gµB(0,r)(0, 0)

C0 log r
= 1. (3.1)

Proof. We use the local limit theorem (2.6) and the heat-kernel estimates to prove this claim. With
B = B(0, r), we write

gµB (0, 0) = Eµ0
h

∫ τB

0

1Y (t)=0 dt
i

= Eµ0
h

∫ r2

0

1Y (t)=0 dt
i

+ Eµ0
h

∫ τB

r2

1Y (t)=0 dt;τB > r2
i

− Eµ0
h

∫ r2

τB

1Y (t)=0 dt;τB < r2
i

=: I1+ I2− I3.

(3.2)

The dominant contribution comes from the term I1. By the local limit theorem, for every ε there
exists t0 = t0(µ,ε) such that for all t > t0

qµt (0,0) ∈ (2πC 2
Y t)−1(1− ε, 1+ ε). (3.3)
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Therefore, for r large enough,

I1 =

∫ r2

0

qµt (0,0)≤
∫ t0

0

qµt (0,0)dt + (1+ ε)

∫ r2

t0

(2πC 2
Y t)−1dt

≤ t0+ (1+ ε)(πC 2
Y )
−1 log r.

(3.4)

A lower bound on I1 is obtained analogically, yielding limr→∞ I1/ log r = C0.

Using the strong Markov property at τB and the symmetry of qt(·, ·), it is possible to estimate I3,

I3 ≤ sup
y∈∂ B

Eµy
h

∫ r2

0

1Y (t)=0 dt
i

= sup
y∈∂ B

∫ r2

0

qµt (0, y)dt. (3.5)

By splitting the last integral on V 2
0 and on |y| = r(1+ o(1)), using the estimates (2.3) and (2.4), it

follows that, as r →∞,

I3 ≤ V 2
0 +

∫ V 2
0 ∨|y|

V 2
0

c exp(−c|y|)dt +

∫ r2

V 2
0 ∨|y|

c t−1e−c|y|2/tdt ≤ V 2
0 + c. (3.6)

To bound I2 we need the following lemma.

Lemma 3.2. Let B = B(0, r) and let qµ,B
t (x , y) = Pµx [Y (t) = y, t < τB] be the transition density of

the VSRW killed on exiting B. Then there exists c <∞ such that P-a.s. for all r ∈N large enough, all
t ≥ r2 and x , y ∈ B

qµ,B
t (x , y)≤

c

r2 exp
n

−
t

cr2

o

. (3.7)

and, in consequence, Pµx[τB ≥ t]≤ ce−t/cr2
.

Proof. An easy consequence of (2.1) is the existence of C <∞ such that (see Lemma 3.3 of [BČ10])

sup
x∈B(0,r)

Vx ≤ C log1/η r, P-a.s. for all large r. (3.8)

Using the heat-kernel lower bound (2.5) together with (3.8), we obtain for all large r

sup
x∈B

∑

y∈B

qµ
r2(x , y) = sup

x∈B

�

1−
∑

y /∈B

qµ
r2(x , y)

�

≤ c < 1. (3.9)

Writing t = kr2+ s for k ∈N and s ∈ [0, r2), and using (2.2) together with qµ,B ≤ qµ,

qµ,B
t (x , y) =

∑

z1,...,zk∈B

qµ,B
r2 (x , z1)q

µ,B
r2 (z1, z2) . . . qµ,B

r2 (zk−1, zk)q
µ,B
s (zk, y)

≤
∑

z1,...,zk∈B

qµ
r2(x , z1)q

µ

r2(z1, z2) . . . qµ
r2(zk−2, zk−1)c2r−2.

(3.10)

Summing over zk−1, zk−2,. . . z1, using (3.9), this yields qµ,B
t (x , y) ≤ c2r−2ck−1, which is equivalent

to the right-hand side of (3.7). The second claim of the lemma follows by summing (3.7) over
y ∈ B.
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It is now easy to finish the proof of Proposition 3.1. By the previous lemma,

I2 =

∫ ∞

r2

qµ,B
t (0,0)dt ≤

∫ ∞

r2

cr−2e−t/cr2
dt = O(1). (3.11)

Therefore, I2 and I3 are o(log r), and the proof is completed.

We need rougher estimates on the diagonal Green function, uniform in a large ball.

Lemma 3.3. There exist c1, c2 ∈ (0,∞) such that for every ε ∈ (0,1), K > 1, P-a.s.,

c1 ≤ lim inf
n→∞

inf{gµB(x ,r)(x , x)/ log r : x ∈ B(0, Kn), r ∈ (εn, Kn)}

≤ limsup
n→∞

sup{gµB(x ,r)(x , x)/ log r : x ∈ B(0, Kn), r ∈ (εn, Kn)} ≤ c2.
(3.12)

Proof. This can be proved exactly by the same argument as Proposition 3.1, replacing the local limit
theorem used in (3.4) by the heat-kernel upper and lower bounds from Proposition 2.1(ii), using
again the fact (3.8) to control the random variables Vx .

3.2 Approximation of the diagonal Green function

As discussed in the introduction, to recover some independence required to show Theorem 1.1, we
need to approximate the diagonal Green function in large sets by smaller ones.

Lemma 3.4. Let k ≥ 1, K ≥ 1 and r = n/ logk n. Then, P-a.s. as n → ∞, uniformly for all x ∈
B(0, Kn) and all A⊂Z2 such that B(x , r)⊂ A⊂ B(0, Kn),

gµA (x , x) = gµB(x ,r)(x , x) +O(log log n). (3.13)

Proof. By the monotonicity of gµA in A and the strong Markov property

gµA (x , x)− gµB(x ,r)(x , x)≤ gµB(0,Kn)(x , x)− gµB(x ,r)(x , x)

= Eµx
h

∫ τB(0,Kn)

τB(x ,r)

1Y (t)=xdt
i

≤ sup
y∈∂ B(x ,r)

Eµy
h

∫ τB(0,Kn)

0

1Y (t)=xdt
i

≤ sup
y∈∂ B(x ,r)

∫ n2 log n

0

qµt (y, x)dt + gµB(0,Kn)(x , x)Pµy [τB(0,Kn) ≥ n2 log n],

(3.14)

where for the last term we used the fact that

Eµy
h

∫ τB(0,Kn)

n2 log n

1Y (t)=xdt;τB(0,Kn) ≥ n2 log n
i

≤ gµB(0,Kn)(x , x)Pµy [τB(0,Kn) ≥ n2 log n]. (3.15)

By Lemmas 3.2 and 3.3, the second term on the right-hand side of (3.14) is O(n−c log n) = o(1).
The first term can be controlled using the heat-kernel estimates again: Observing that, by (3.8),
|x − y|= r � sup{Vx : x ∈ B(0, Kn)}, we have from (2.3), (2.4)

∫ n2 log n

0

qµt (y, x)dt ≤
∫ |x−y|

0

ce−c|x−y|dt +

∫ n2 log n

|x−y|

c

u
e−|x−y|2/c tdt. (3.16)

The first term is clearly o(1). After the substitution t/|x − y|2 = u, the second term is smaller than
∫ (log n)1+2k

0
c
u
e−c/udu= O(log log n).
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3.3 Off-diagonal estimates

Next, we need off-diagonal estimates on gµB(x ,r)(x , y). The following lemma provides them for y not

too close to x and the boundary of the ball (cf. Proposition 4.3 of [BČ10]).

Lemma 3.5. Let K > 1, 0 < 3εo < εg < K/3, δ > 0 and r ∈ [εg ,εg + εo/2). Then, P-a.s. for all but
finitely many n, for all points x ∈ B(0, (K − εg)n), and y ∈ B(x , (εg − εo)n) \ B(x ,εon),

1−δ ≤
gµB(x ,rn)(x , y)

C0
�

log(rn)− log |x − y|
� ≤ 1+δ. (3.17)

Proof. This lemma can be proved in the same way as Proposition 4.3 of [BČ10], using a suitable
integration of the functional limit theorem and the elliptic Harnack inequality. For d = 2, one
should only replace the formula for the Green function g?B(x ,r)(x , y) of the d-dimensional Brown-

ian motion CY BMd killed on exiting B(x , r) ((4.5) in [BČ10]) with its two-dimensional analogue
g?B(x ,r)(x , y) = C0(log r − log |x − y|). Remark also that the condition εg < 1/2 appearing in the

statement of Proposition 4.3 of [BČ10] is not necessary for the proof, so we omitted it here.

The previous lemma does not give any estimate on the Green function near to the centre of the ball.
When x = 0, we can improve it.

Lemma 3.6. Let ξ ∈ (0,1) and δ > 0. Then P-a.s. for all but finitely many n, for all y ∈ B(0, n/2) \
B(0, nξ)

1−δ ≤
gµB(0,n)(0, y)

C0
�

log n− log |y|
� ≤ 1+δ. (3.18)

Proof. We prove this lemma by patching together the estimate (3.17) (with r = εg = 1) on several
different scales. Fix εo < 1 such that − logεo ≥ δ−1. Due to the previous lemma, we can assume
that |y| ≤ εon, implying that the denominator of (3.18) is larger than C0δ

−1.

Given µ, we choose n0 = n0(µ) such that (3.17) holds for all n > nξ0/2 and we consider n > n0. Let
k be the largest integer such that y ∈ B(0, 2−kn), hence

(1−δ)
log n− log |y|

log 2
≤ k =

j log n− log |y|
log2

k

≤
log n− log |y|

log2
. (3.19)

Let ri = 2−in, i = 0, . . . , k. By our choice of n, ri ≥ nξ0/2 for all i ≤ k. We can thus apply Lemma 3.5:
For all z ∈ B(0, (1− εo)ri) \ B(0,εori)

�

�gµB(0,ri)
(0, z)− C0

�

log ri − log |z|
�

�

�≤ δC0
�

log ri − log |z|
�

. (3.20)

By standard properties of the Green functions, the function hi(z) = gµB(0,2ri)
(0, z)− gµB(0,ri)

(0, z) is

harmonic for the VSRW in B(0, ri). On ∂ B(0, ri), gµB(0,ri)
≡ 0, and, using (3.20),

gµB(0,2ri)
(0, z) ∈ C0

�

log2+O(r−1
i )
�

(1−δ, 1+δ) for all z ∈ ∂ B(0, ri). (3.21)
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Therefore, by the maximum principle, hi(z) ∈ C0(log 2+O(r−1
i ))(1− δ, 1+ δ) for all z ∈ B(0, ri).

Iterating this estimate, we obtain

gµB(0,n)(0, y)− gµB(0,rk)
(0, |y|) ∈ kC0(log2+O(|y|−1))(1−δ, 1+δ), (3.22)

and thus, using (3.19),
�

�gµB(0,n)(0, y)− C0(log n− log |y|)
�

�≤ gB(0,rk)(0, y) + 2δC0k
�

log2+O(|y|−1)
�

. (3.23)

Using gB(0,rk)(0, y) ≤ C0 (by (3.20)) for the first term, and (3.19) for the second term on the right-
hand side of (3.23), we deduce the lemma.

For x 6= 0 we have the following upper estimate.

Lemma 3.7. For every K > 1, ξ ∈ (0, 1), εo ∈ (0, 1), and r ∈ (3εon, Kn) there exists C > 0 such that
P-a.s for all but finitely many n ∈N, x ∈ B(0, Kn) and y ∈ B(x , r − εon) \ B(x , nξ)

gµB(x ,r)(x , y)≤ C
�

log(r)− log |x − y|
�

. (3.24)

Proof. Due to Lemma 3.5, we should consider only y with |x − y| ≤ εor. As before,

gµB(x ,r)(x , y)≤
∫ r2

0

qµt (x , y)dt +

∫ ∞

r2

qµ,B(x ,r)
t (x , y)dt. (3.25)

By Lemma 3.2, the second integral is O(1). For the first integral, applying the heat-kernel upper
bounds, using sup{Vx : x ∈ B(0, Kn)} � (rn)ξ < |x − y| by (3.8), we get

∫ r2

0

qµt (x , y)dt ≤
∫ |x−y|

0

c′e−c|x−y|dt +

∫ r2

|x−y|
c′ t−1e−

|x−y|2

c t dt. (3.26)

The first integral is o(1). By an easy asymptotic analysis, the second integral behaves like
c′ log cr2

|x−y|2 +O(1)≤ C(log r − log |x − y|) for |x − y| ≤ εor.

4 Proof of the main theorem

We now have all estimates required to prove Theorem 1.1. As we have already remarked, it is
sufficient to show Proposition 1.4 only. Theorem 1.1 follows from it as in [BČ10]. Moreover, since
the proof of Proposition 1.4 mostly follows the lines of [BČ10], we focus on the difficulties appearing
for d = 2 and we explain the modifications needed to resolve them.

The proof explores the fact that the stable subordinator Vα at time T is well approximated by the
sum of a large but finite number of its largest jumps before T . These jumps of the limiting process
corresponds in Sn to visits of the VSRW Y to sites with µx ∼ n2/α log−1/α n.

To understand this scale heuristically, observe that a fixed time T for Sn corresponds to the time
T n2 for Y , see (1.9). At this time Y typically visits N ∼ n2/ log n different sites, similarly to the
two-dimensional simple random walk. The maximum of N independent variables with the same
distribution as µe is then of order N1/α ∼ n2/α log−1/α n.
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We thus define (cf. (6.1) and (6.3) of [BČ10])

En(u, w) = {e ∈ E2 : µe ∈ [u, w)n2/α log−1/α n},

Tn(u, w) = {x ∈Zd : x ∈ En(u, w), x 6∈ En(w,∞)}.
(4.1)

Unlike in [BČ10], it is not necessary to define the ‘bad’ edges (cf. (6.2) of [BČ10]). This is the
consequence of the next lemma that shows that the edges of the set En(u,∞) are well separated in
d = 2. This lemma might appear technical, but it is crucial for the applied technique. It implies the
independence of gµ

B(x ,n/ log2 n)
(x , x) for x ∈ Tn(u,∞) not sharing the same edge.

Lemma 4.1. Let K > 0, u> 0. Define Bn = B(0, Kn). Then there exists a positive constant ι such that
P-a.s. for all n ∈N large

min{dist(e, f ) : e, f ∈ En(u,∞)∩Bn} ≥ 2n/ log2 n. (4.2)

sup{µe : e /∈ En(u,∞)∩Bn, e has vertex in Tn(u,∞)} ≤ n−ιn2/α log−1/α n. (4.3)

B(0, n/ log2 n)∩ En(u,∞) = ;. (4.4)

Proof. Observe first that for k ≥ 2 and 2k−1 ≤ n ≤ 2k, En(u,∞) ⊂ E2k(2−2/αu,∞). To prove (4.2) it
is thus sufficient to show that for all u′ > 0, P-a.s. for all k ∈N large,

min{dist(e, f ) : e, f ∈ E2k(u′,∞)∩B2k} ≥ 2k+1/(k log2)2. (4.5)

The probability of the complement of this event is bounded from above by
∑

e∈B2k

∑

f ∈B(e,2k+1/(k log 2)2)

P[e, f ∈ E2k(u′,∞)]≤ c(u′)k−2, (4.6)

where we used the definition of En and (1.3) for the last inequality. Borel-Cantelli lemma then
implies (4.2). Claims (4.3), (4.4) are proved similarly.

We now investigate the rescaled clock process Sn. As in [BČ10], we fix εs small and treat separately
the contributions of vertices from Tn(0,εs), Tn(εs,ε

−1
s ) and Tn(ε−1

s ,∞) to this process. We first show
that the contribution of the visits to the set Tn(0,εs) can be neglected, cf. Proposition 5.1 of [BČ10].

Proposition 4.2. For every δ > 0 there exists εs such that for all K ≥ 1 and Bn = B(0, Kn), P-a.s. for
all but finitely many n,

Pµ0
h

K−2n−2/α log
1
α
−1 n

∫ τBn

0

µY (t)1{Y (t) ∈ Tn(0,εs)}dt ≥ δ
i

≤ δ. (4.7)

Proof. The proof resembles to the proof of Proposition 5.1 of [BČ10], but there are some differences
caused by the recurrence of the CSRW in d = 2. We will show that P-a.s. for all large n,

Eµ0

∫ τBn

0

µY (t)1{Y (t) ∈ Tn(0,εs)}dt ≤ K2n2/α log1− 1
α nδ2. (4.8)
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The proposition then follows by using the Markov inequality. We set imax = min{i :
2−iεsn

2/α log−
1
α n≤ c}= O(log n), and

Hn(i) = {e ∈Bn : µe ∈ εsn
2/α log−

1
α n(2−i , 2−i+1]}. (4.9)

Observe that En(0,εs) ⊂ ∪
imax
i=1Hn(i). For an edge e = {x , y}, we set gµn (e) = gµ

Bn
(0, x) + gµ

Bn
(0, y),

and for some fixed small ξ we define the deterministic function ḡn : E2→ [0,∞) as

ḡn(e) =

(

4C0 log n, if dist(0, e)≤ nξ,

4C0{log n− log(dist(0, e))}, otherwise.
(4.10)

Observe that by Proposition 3.1 and Lemma 3.6, P-a.s. for all n large, gµn (e) ≤ ḡn(e) for all e ∈ Bn.
Using this notation, we have P-a.s. for all n large

Eµ0

∫ τBn

0

µY (t)1{Y (t) ∈ Tn(0,εs)}dt ≤
∑

e∈En(0,εs)

µe gµn (e)

≤
imax
∑

i=1

∑

e∈Hn(i)

2−i+1εsn
2/α log−

1
α nḡn(e).

(4.11)

Setting pn,i = P[µe ∈ Hn(i)]≤ Cε−αs 2iαn−2 log n, we have for a C > 0 and λ > 0

P
h

2−i+1εsn
2/α log−

1
α n

∑

e∈Hn(i)

ḡn(e)≥ Cε1−α
s 2i(α−1)K2n2/α log1− 1

α n
i

≤ e−λCε−αs K2 log n2iα
∏

e∈Bn

(1+ pn,i(e
λ ḡn(e)− 1)).

(4.12)

The logarithm of the last product is bounded by pn,i
∑

e∈Bn
eλ ḡn(e). To bound this expression we use

the fact that for a small enough λ there is a constant c independent of n such that
∑

e∈Bn

eλ ḡn(e) ≤ cK2n2, (4.13)

which can be proved as Lemma A.2 of [BČM06]. Therefore, (4.12) is bounded from above by

e−λCε−αs K2 log n2iα
ecε−αs 2iαn−2 log nK2n2

= e−ε
−α
s K22iα log n(λC−c). (4.14)

Taking C large, this is summable (even after multiplication by log n). The Borel-Cantelli
lemma then implies that the complement of the event on the left-hand side of (4.12) holds
for all i ≤ imax, P-a.s. for all large n. Therefore, the left-hand side of (4.8) is bounded
by
∑imax

i=1 Cε1−α2i(α−1)K2n2/α log1− 1
α n, which is smaller than the right-hand side, if ε is small

enough.

To treat the dominant contribution of Tn(εs,ε
−1
s ), we apply the same coarse-graining construction

as in [BČ10]. In this construction we observe the VSRW before the exit from the large ball Bn.
The VSRW spends a time of order K2n2 in this ball and visits only finitely many pairs of sites
from Tn(εs,ε

−1
s ). In every pair it spends a time of order log n. This logarithmic factor explains the
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additional power of the logarithm appearing in the normalisation of Sn and not in the definition of
En(u, v).

We now start the construction. Let νn = n/ log2 n. For e ∈ Ed , z ∈Zd we set

γn(e) = Ceff[e, B(e,νn)
c], (4.15)

γn(z) = Ceff[z, B(z,νn+ 1)c] =
�

gµB(z,νn+1)(z, z)
�−1, (4.16)

where Ceff denotes the effective conductance between two sets, see e.g. [BČ10] (3.8) for the usual
definition. We have the following analogue of Lemma 6.2 of [BČ10].

Lemma 4.3. (i) For all e and n, γn(e) is independent of µe.
(ii) For every εc > 0, P-a.s. for all large n, for all e ∈ En(u, v)∩Bn and z ∈ e,

(1+ εc)γn(z)≥ γn(e)≥ γn(z). (4.17)

(iii) For every e ∈ E2, C0γn(e) log n
n→∞−−−→ 1 in P-probability.

Proof. Claims (i), (ii) are proved as in [BČ10]. Claim (iii) follows using the identity
Ceff(z, B(z, Ac)) = gµA (z, z)−1 valid for any A ⊂ Z2, Proposition 3.1, the translation invariance of
P, and claim (ii).

We now split the sets En(u, v) according to the value of γn(e). To this end we choose a sequence hn
so that hn ↘ 0, bn := P[|C0γn(e) log n− 1| > hn]↘ 0, and bn log n� log1/2 n. This is possible by
Lemma 4.3(iii). We define

E0
n(u, v) = {e ∈ En(u, v), |C0γn(e) log n− 1| ≤ hn},

E1
n(u, v) = En(u, v) \ E0

n(u, v).
(4.18)

We also set T0
n (u, v) = {z ∈ Tn(u, v), z ∈ E0

n(u, v)} and T1
n (u, v) = Tn(u, v) \ T0

n (u, v). Similarly to
Lemma 6.3 of [BČ10] (cf. also (6.41) there), these sets are homogeneously spread over Bn.

Lemma 4.4. Let 0< u< v, δ,εb > 0 be fixed and set pn(u, v) = n−2 log n(u−α−v−α). Then, P-a.s. for
all but finitely many n, for all x ∈ εbnZ2 ∩Bn, and all i ∈ {0, . . . , 2 log2 log n}

|Q(x ,εbn)∩ E0
n(u, v)| ∈ 2n2ε2

bpn(u, v)(1−δ, 1+δ), (4.19)

|Q(x ,εbn)∩ E1
n(u, v)| ≤ cbnn2ε2

bpn(u, v), (4.20)

|Q(x , 2−in)∩ En(u, v)| ≤ c(log1/2 n∨ 2−2in2pn(u, v)). (4.21)

Proof. The proof is a concentration argument for binomial random variables. However, since
pn(u, v)n2 = O(log n), we need to work with subsequences in order to apply the Borel-Cantelli
lemma.

As the first step, we disregard γn(e) and show (4.19) for En instead of E0
n:

|Q(x ,εbn)∩ En(u, v)| ∈ 2n2ε2
bpn(u, v)(1−δ, 1+δ). (4.22)

We start by proving the upper bound. For n ∈ N we define k = k(n) ∈ N and s = s(n) ∈ [1, 2) by
n= s2k. We set si = (1+

δ
20
)i , imax = inf{i : si > 2}, i(n) = sup{i : si ≤ s(n)}. It is not difficult to see

that
En(u, v)∩Q(x ,εbn)⊂ E2k(us2/α

i(n)−1, vs2/α
i(n)+2)∩Q(y,εbsi(n)+12k) (4.23)
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for some y = y(x , n) ∈ 1
20
δεb2kZ2. Moreover, by definition of pn(u, v) and (1.3),

p2k(us2/α
i(n)−1, vs2/α

i(n)+1)ε
2
b22ks2

i(n)+1 ≤ (1+
δ
2
)pn(u, v)ε2

bn2. (4.24)

Hence, to prove the upper bound of (4.22), it is sufficient to show that P-a.s. for all k large, for all
i1, i2, i3 ∈ {0, . . . , imax}, and for all y ∈ 1

20
δεb2kZ2 ∩B2k ,

�

�E2k(us2/α
i1

, vs2/α
i2
)∩Q(y,εbsi32k)

�

�≤ (1+ δ
2
)p2k(us2/α

i1
, vs2/α

i2
)ε2

bs2
i3

22k. (4.25)

The number of y ’s in consideration and imax are finite. The probability of the complement of (4.25)
for given i1, i2, i3, can be bounded using the exponential Chebyshev inequality, using the indepen-
dence of µe ’s, by exp{−c22kp2k(·, ·)} ∼ exp(−ck). As this is summable, the upper bound follows.
The proof of the lower bound in (4.22) is analogous.

The proof of (4.21) is very similar to the proof of the upper bound of (4.22). In the upper
bound on the probability of the complementary event, it is in addition necessary to sum over
0 ≤ i ≤ c log log2k and consider O(log2 2k) possible values for y . On the other hand, the term
log1/2 n on the right-hand side of (4.21) assures that the Chebyshev inequality gives at least a factor
exp{−c

p

log 2k}, which assures the summability.

It remains to show (4.20), since, as bn→ 0, (4.19) follows from (4.20) and (4.22). From the proofs
of Lemma 4.1 and of (4.22), we know that (4.22) and (4.2) hold out of events whose probabilities
are summable along the subsequence 2k, k ∈N. Moreover, if (4.2) holds then (γn(e) : e ∈ En(u, v)∩
Bn) are independent since γn(e) depends only on the environment restricted to B(e,νn). We can now
use once more the concentration for binomial random variables as before. The fact that bn log n�
log1/2 n and thus exp{−cb2k p2k(u, v)22k} � exp{−c

p
k} assures the summability again.

As in [BČ10] Lemma 6.4, P-a.s. for all but finitely many n we can define a family of approximate
ballsBn(x , r)⊂Z2 with the following properties: For all x ∈Bn and r ∈ (0, Kn)

(i) Bn(x , r) is simply connected in Z2.

(ii) B(x , r)⊂Bn(x , r)⊂ B(x , r + 3νn).

(iii) ∂Bn(x , r)∩
⋃

e∈En(εs ,∞)
B(e,νn) = ;.

The existence of these sets follows easily from Lemma 4.1.

We now adapt the definition of the coarse graining from [BČ10]. We use the sets Bn(·,εg n) to
cut the trajectory of Y to several parts whose contribution to Sn we treat separately: Let εg > 0,
tn(0) = 0, yn(0) = 0 and for i ≥ 1 let

tn(i) = inf
�

t > tn(i− 1) : Y (t) /∈Bn
�

yn(i− 1),εg n
�	

,

yn(i) = Y (tn(i)).
(4.26)

We define

s0
n(i; u, v) = n−2/α(log n)

1
α
−1

∫ tn(i+1)

tn(i)
µY (t)1{Y (t) ∈ T0

n (u, v)}dt; (4.27)

this is the increment of the (normalised) clock process between times tn(i) and tn(i + 1) caused by
sites in T0

n (u, v).

The behaviour of the sequence tn(i) is the same as in [BČ10], Lemma 6.5. The distribution of s0
n is

characterised by the next proposition, cf. Proposition 6.7 of [BČ10].
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Proposition 4.5. Let T , εs,εg > 0. Define s0
n(i) = s0

n(i,εs,ε
−1
s ) and let F n

i be the σ-algebra generated
by (Ys, s ≤ tn(i)). Then, there is a constant κ > 0 independent of εs,εg and T, such that P-a.s. for all
n large enough, for all i ≤ ε−2

g T, and for all intervals A= (0, a] with a ∈ (0,∞)
�

�Pµ0 [s
0
n(i) = 0|F n

i ]− (1− cεs
ε2

g)
�

�≤ κc2
εs
ε4

g , (4.28)
�

�Pµ0 [s
0
n(i) ∈ A|F n

i ]− ε
2
gνεs
(A)
�

�≤ κνεs
(A)cεs

ε4
g , (4.29)

where cεs
= π(ε−αs − εαs ) and νεs

is the measure on (0,∞) given by

νεs
(dx) =

∫ ε−1
s

εs

π

2C0u
exp
n

−
x

2C0u

o

αu−α−1dudx . (4.30)

Remark 4.6. There is an important difference between Proposition 4.5 and Proposition 6.7 of
[BČ10]. In [BČ10], it is claimed that the sequence sn(i) converges to an i.i.d. sequence s∞(i) for
every fixed εg . However, [BČ10] does not show this claim, but only equivalents of our statements
(4.28), (4.29).

The i.i.d. sequence s∞(i) is used in [BČ10] to prove Lemma 6.8. Its proof can be however mod-
ified easily to use (4.28), (4.29) only. We use this occasion to present the correct proof below,
see Lemma 4.8

Proof of Proposition 4.5. The proof of this proposition is very similar to the proof of Proposition 6.7
in [BČ10]. One shows that with a probability 1− cεs

ε2
g +O(c2

εs
ε4

g) none of the sites from T0
n (εs,ε

−1
s )

is visited between tn(i) and tn(i + 1). Otherwise, with probability cεs
ε2

g +O(c2
εs
ε4

g), Y visits exactly

two sites from this set sharing a common edge. More than two sites from T0
n (εs,ε

−1
s ) are visited

with probability O(c2
εs
ε4

g).

If Y visits a site from T0
n (εs,ε

−1
s ), it spends there an asymptotically exponentially distributed time,

as stated in the next lemma. Its proof is exactly the same as the proof of Lemma 6.6 in [BČ10].

Lemma 4.7. Let z ∈B0
n = B(0, (K−εg)n), e = x y ∈ En(εs,ε

−1
s )∩Bn(z,εg n) be such that µe = un2/α

and γn(e) log n= v. Then, P-a.s., the distribution of

n−2/α(log n)
1
α
−1

∫ τBn(z,εg n)

0

1{Y (t) ∈ {x , y}}µY (t)dt (4.31)

under Pµx and Pµy converges as n→∞ to the exponential distribution with mean 2u/v.

With this lemma at disposition, we need to estimate the probability that a site x ∈ T0
n (εs,ε

−1
s ) is

visited between tn(i) and tn(i+ 1). This probability can be written using the Green functions as

gBn(yn(i),εg n)(yn(i), x)

gBn(yn(i),εg n)(x , x)
. (4.32)

The denominator (4.32) is C0 log(εg n)(1+ o(1)) by the definition of E0
n , using also the definition

of the approximate balls Bn(yn(i),εg n) and Lemma 3.4. The numerator can be estimated using
Lemma 3.5 when |x − yn(i)| ≥ εon. Such x ’s give the principal contribution. For the remaining x ’s
one uses Lemma 3.7 as the upper bound.
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The proof of Proposition 4.5 then continues exactly as the proof of Proposition 6.7 of [BČ10] by
estimating the probability that Tn(u, v), εs ≤ u< v ≤ ε−1

s , is visited between tn(i) and tn(i+1) by the
sum of probabilities that e ∈ En(u, v) are visited. Due to the homogeneity of En(u, v) (Lemma 4.4),
this summation can be replaced by an integration with respect to 2pn(u, v) times Lebesgue measure.
For the principal contribution coming from e’s with d(e, yn(i))≥ εon, this leads to the integral

Pµ0 [Y hits T0
n (u, v) between tn(i) and tn(i+ 1)]

∼ 2pn(u, v)

∫

x∈R2:εon≤|x |≤εg n

C0
�

log(εg n)− log |x |
�

C0 log(εg n)
dx

=
pnπε

2
g n2

log n
(1+ o(1)) + pn(u, v)Rn(εo,εg)

= π(u−α− v−α)ε2
g + pn(u, v)Rn(εo,εg),

(4.33)

where the error term pn(u, v)Rn(εo,εg) can be made arbitrarily small in comparison to the first term
by sending εo → 0 before εg . This explains the value of the constant cεs

in d = 2. The measure νεs

is obtained by combining the previous computation with Lemma 4.7. The technical details of these
computations are analogous to [BČ10].

The error terms of (4.28), (4.29) which do not appear in [BČ10] (see Remark 4.6) are explained as
follows. With one exception, all the errors in the proof of Proposition 6.7 of [BČ10] can be made
arbitrarily small with respect to ε2

g . The only exception is the error comming from the estimate
on the probability that more than two edges from E0

n(εs,ε
−1
s ) are visited. This probability can be

bounded by the right-hand side of (4.28). The error term in (4.29) then corresponds to the event
that the first visited edge of E0

n(εs,ε
−1
s ) gives (after the normalisation) a contribution belonging to

A= (0, a], and then another edge from E0
n(εs,ε

−1
s ) is visited.

The consequence of Proposition 4.5, is the following lemma replacing Lemma 6.8 of [BČ10]. Since,
as explained in Remark 4.6, its proof in [BČ10] uses the incorrectly stated Proposition 6.7, we
present the corrected proof here.

Lemma 4.8. Let T,εg ,εs > 0, ` ∈ N, λ1, . . . ,λ` > 0, ξ1, . . . ,ξ` ∈ R2, and 0 ≤ i1 < · · · < i` ≤ Tε−2
g .

Define rn(i) = n−1(yn(i+ 1)− yn(i)). Then P-a.s. for all large n

Eµ0
h

exp
n

−
∑̀

j=1

�

λ js
0
n(i j) + ξ j · rn(i j)

�

oi

=
∏̀

j=1

h

1+ ε2
g

� |ξ j|2

4
− cεs

+ G(λ j)
�i

+R ,

(4.34)

where G(λ) = Gεs(λ) =
∫∞

0
e−λxνεs

(dx), and the reminder term R satisfies for all εg small enough

|R| ≤ ε3
g(1+ c2

εs
)
∑`

j=1 c(ξ j ,λ j).

Proof. We first control the joint Laplace transform of the pair (s0
n(i), rn(i)), i ≤ ε−2

g T , given F n
i =

σ(Ys, s ≤ tn(i)). The calculation very similar to (6.50)–(6.51) of [BČ10], with the conditional
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expectations replacing the usual ones, gives

Eµ0
�

e−λs0
n(i)−ξ·rn(i)

�

�F n
i

�

= Eµ0
�

e−ξ·rn(i)1{s0
n(i) = 0}

�

�F n
i

�

+ Eµ0
�

e−λs0
n(i)−ξ·rn(i)1{s0

n(i) 6= 0}
�

�F n
i

�

= Eµ0
�

e−ξ·rn(i)1{s0
n(i) = 0}

�

�F n
i

�

+ Eµ0
�

e−λs0
n(i)1{s0

n(i) 6= 0}
�

�F n
i

�

(1+Oξ(εg)),

(4.35)

where Oξ(εg) denotes an error whose absolute value is bounded by c(ξ)εg for all n large and εg

small; this estimate comes from e−2εg |ξ| ≤ e−ξ·rn(i) ≤ e2εg |ξ|. The first term on the right-hand side
of (4.35) can be rewritten using Proposition 4.5 and the fact that, by the functional central limit
theorem, the distribution of rn(i) converges to the uniform distribution on the sphere with radius εg ,

Eµ0
�

e−ξ·rn(i)
�

�F n
i

�

− Eµ0
�

e−ξ·rn(i)1{s0
n(i) 6= 0}

�

�F n
i

�

= 1+
ε2

g |ξ|
2

4
+Oξ(ε

4
g)− Pµ0 [s

0
n(i) 6= 0|F n

i ](1+Oξ(εg))

= 1+
ε2

g |ξ|
2

4
− cεs

ε2
g + (1+ c2

εs
)Oξ(ε

4
g) + cεs

Oξ(ε
3
g).

(4.36)

The second term on the right-hand side of (4.35) can be estimated using Proposition 4.5 again:
Itegrating by parts, for all large n,

Eµ0
�

e−λs0
n(i)1{s0

n(i) 6= 0}
�

�F n
i

�

=

∫

(0,∞)
λe−λx Pµ0 [0< s0

n(i)≤ x]dx

= ε2
g

∫

(0,∞)
λe−λxνεs

((0, x])dx(1+ cεs
O(ε2

g)) = ε
2
g G(λ) + cεs

Oλ(ε
4
g).

(4.37)

Putting these two computation together we get for all n large enough

Eµ0
�

e−λs0
n(i)−ξ·rn(i)|F n

i

�

= 1+ ε2
g

� |ξ|2

4
− cεs

+ G(λ)
�

+R ′ξ,λ, (4.38)

where R ′ξ,λ is random but its absolute value is bouned by cξ,λ(1+ c2
εs
)ε3

g for all εg small enough.

Using this statement and the fact that e−λs0
n(i)+ξ·rn(i) ≤ C(ξ) <∞ for all possible values of s0

n(i) and
rn(i), we can write

Eµ0
h

e−
∑`

j=1[λ js
0
n(i j)+ξ j ·rn(i j)]

i

= Eµ0
h

e−
∑`−1

j=1[λ js
0
n(i j)+ξ j ·rn(i j)]Eµ0

h

e−[λ`s
0
n(i`)+ξ`·rn(i`)]|F n

i`

ii

≤
h

1+ ε2
g

� |ξ`|2

4
− cεs

+ G(λ`)
�

+ cξ`,λ`(1+ c2
εs
)ε3

g

i

Eµ0
h

e−
∑`−1

j=1[λ js
0
n(i j)+ξ j ·rn(i j)]

i

.

(4.39)

Iterating the last statement and taking the error terms out of the product (using again εg small
enough) gives the upper bound for (4.34). The lower bound is obtained analogously.

To finish the control of the behaviour of Sn we need to estimate the contribution of the sets
Tn(ε−1

s ,∞) and T1
n (εs,ε

−1
s ) (see below (4.18) for the notation). From the next lemma, which is

proved in the same way as Lemmas 7.1, 7.2 of [BČ10], we see that their contribution is zero with a
large probability.
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Lemma 4.9. For every δ, K > 0 there exists εs > 0 such that, P-a.s., for all but finitely many n,

Pµ0
�

σT1
n (εs ,ε−1

s )∪Tn(ε−1
s ,∞) < τB

�

≤ δ, (4.40)

where σA denotes the hitting time of A⊂Z2, σA = inf{t : Y (t) ∈ A}.

Propositions 4.2, 4.5 and Lemma 4.9 characterise the contributions of various sites in Bn to the
clock process Sn. Using these results the proof of Proposition 1.4, and consequently of Theorem 1.1,
can be completed as in Section 8 of [BČ10].

A The CSRW on the one-dimensional lattice

In this appendix, we study the CSRW among heavy-tailed random conductances on the one-
dimensional lattice. We show that the scaling limit of this process is the singular diffusion in random
environment. This diffusion, which is also the scaling limit of the one-dimensional trap model, see
[FIN02, BČ05], is defined as follows.

Definition A.1 (Fontes-Isopi-Newman diffusion). Let (Ω̄, P̄) be a probability space on which we de-
fine a standard one-dimensional Brownian motion BM and an inhomogeneous Poisson point process
(x i , vi) on R× (0,∞) with intensity measure dx αv−1−αdv. Let ρ be the random discrete measure
ρ =

∑

i viδx i
. Conditionally on ρ, we define the FIN-diffusion (Z(s), s ≥ 0) as a diffusion process

(with Z(0) = 0) that can be expressed as a time change of BM with the speed measure ρ: Denoting
by `(t, y) the local time of BM, we set φρ(t) =

∫

R
`(t, y)ρ(dy) and Z(s) = BM(φ−1

ρ (s)).

The following theorem describes the scaling behaviour of the one-dimensional CSRW.

Theorem A.2. Assume (1.3), (1.4) and set CF = E[µ−1
e ],

cn = inf{t ≥ 0 : P(µe > t)≤ n−1}= n1/α(1+ o(1)), n≥ 1. (A.1)

Then, as n→∞, under P× Pµ0 , the process

Xn(t) := n−1X
�

CF ncn t
�

(A.2)

converges in distribution to Z(t).

Proof. The proof follows the lines of [BČ05] and Section 3.2 of [BČ06]. We will construct copies
X̄n of Xn, n≥ 1, on the same probability space (Ω̄, P̄) as the FIN diffusion. On this probability space
we then show that X̄n converges P̄-a.s. To this end we express X̄n as a time-scale change of BM and
show that the speed measures of X̄n converge to ρ and the scale change is asymptotically negligible.

Let us introduce our notation for the time-scale change first. Consider a locally-finite deterministic
discrete measure ν(dx) =

∑

i∈Zwiδyi
(dx). The measure ν is referred to as the speed measure. Let

S be a strictly increasing function defined on the set {yi : i ∈Z}. We call such S the scaling function.
Let us introduce slightly non-standard notation S ◦ ν for the “scaled measure”

(S ◦ ν)(dx) =
∑

i∈Z
wiδS(yi)(dx). (A.3)
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With `(t, y) denoting the local time of the Brownian motion BM, we define φν ,S(t) =
∫

R
`(t, y)(S ◦

ν)(dy). Then, the time-scale change of Brownian motion with the speed measure ν and the scale
function S is a process Xν ,S defined by

Xν ,S(t) = S−1(W (φ−1
ν ,S(t))), t ≥ 0. (A.4)

If S is the identity function, we speak about the time change only. The following classical lemma
[Sto63] describes the properties of Xν ,S if the set of atoms of ν has no accumulation point.

Lemma A.3. If the sequence (yi , i ∈ Z) has no accumulation point and satisfies (without loss of
generality) yi < y j for i < j, then the process Xν ,S(t) is a continuous time Markov chain with state
space {yi} and transition rates ωi j from yi to y j given by: ωi j = 0 if |i− j| 6= 1,

ωi,i−1 = (2wi(S(yi)− S(yi−1)))
−1.

ωi,i+1 = (2wi(S(yi+1)− S(yi)))
−1.

(A.5)

We can now construct the copies of Xn on the probability space (Ω̄, P̄). Let G : [0,∞) 7→ [0,∞) be
given by

P̄(ρ((0, 1])> G(u)) = P(µe > u). (A.6)

and set
µ̄n

x ,x+1 = G−1�n1/αρ((x/n, (x + 1)/n])
�

, x ∈Z, n ∈N. (A.7)

From the definition of the measure ρ, it follows that ρ((0, 1])
law
= t−1/αρ((0, t]). Therefore, for all

n, the sequence (µ̄n
x ,x+1 : x ∈Z) has the same distribution as (µx ,x+1 : x ∈Z). For all n we define a

measure νn on R and a piece-wise constant function Sn :R 7→R by

νn(du) =
1

2cn

∑

x∈Z
(µ̄n

x ,x−1+ µ̄
n
x ,x+1)δx/n(du). (A.8)

Sn(u) =

(

n−1C−1
F

∑x−1
y=0(µ̄

n
y,y+1)

−1, if u ∈ [x/n, (x + 1)/n), x ∈Z, x ≥ 0,

n−1C−1
F

∑−1
y=x(µ̄

n
y,y+1)

−1, if u ∈ [x/n, (x + 1)/n), x ∈Z, x < 0,.
(A.9)

We define processes X̄n = Xνn,Sn
. From Lemma A.3 it follows directly that X̄n has the same distribu-

tion as Xn. The key step in the proof of Theorem A.2 is the following lemma

Lemma A.4. P̄-a.s., as n→∞,

Sn→ Id, νn
v→ ρ, Sn ◦ νn

v→ ρ, (A.10)

where Id denotes the identity map and
v→ the vague convergence of measures.

Proof. The first clam can be shown as in [BČ05]; it follows from the law of large numbers for trian-
gular arrays and uses only fact that E[µ−1

e ]<∞ which is a consequence of (1.4). The second claim
is proved in [FIN02, BČ05] for slightly different measures, namely for ν̃n = c−1

n

∑

x∈Z µ̄
n
x ,x+1δx/n.

However, this small difference does not play any role for the vague convergence. The third claim is
a direct consequence of the first two.

As a consequence of this lemma we obtain as in [BČ05, BČ06] the following, slightly stronger,
convergence result.
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Theorem A.5. Let T > 0. Then, P̄-a.s.

X̄n(t)
n→∞−−−→ Z(t) uniformly on [0, T]. (A.11)

Theorem A.2 then directly follows from Theorem A.5.
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