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Abstract

An approach to analyse the properties of a particle system is to compare it with different pro-
cesses to understand when one of them is larger than other ones. The main technique for that is
coupling, which may not be easy to construct.
We give a characterization of stochastic order between different interacting particle systems in a
large class of processes with births, deaths and jumps of many particles per time depending on
the configuration in a general way: it consists in checking inequalities involving the transition
rates. We construct explicitly the coupling that characterizes the stochastic order. As a corollary
we get necessary and sufficient conditions for attractiveness. As an application, we first give the
conditions on examples including reaction-diffusion processes, multitype contact process and
conservative dynamics and then we improve an ergodicity result for an epidemic model .
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1 Introduction

The use of interacting particle systems to study biological models is becoming more and more fruit-
ful. In many biological applications a particle represents an individual from a species which interacts
with others in many different ways; the empty configuration is often an absorbing state and corre-
sponds to the extinction of that species. An important problem is to find conditions which give either
the survival of the species, or the almost sure extinction. When the population in a system is always
larger (or smaller) than the number of individuals of another one there is a stochastic order between
the two processes and one can get information on the larger population starting from the smaller
one and vice-versa.

Attractiveness is a property concerning the distribution at time t of two processes with the same
generator: if a process is attractive the stochastic order between two processes starting from different
configurations is preserved in the time evolution (see Section 2.1).

The main technique to check if there is stochastic order between two systems is coupling: if
the transitions are intricate an increasing coupling may be hard to construct. The main result
of the paper (Theorem 2.4, Section 2.1) gives a characterization of the stochastic order (resp.
attractiveness) in a large class of interacting particle systems: in order to verify if two particle
systems are stochastically ordered (resp. one particle system is attractive), we are reduced to check
inequalities involving the transition rates.

A first motivation is a general understanding of the ordering conditions between two processes. The
analysis of interacting particle systems began with Spin Systems, that are processes with state space
{0,1}Z

d
. We refer to [11] and [12] for construction and main results. The most famous examples

are Ising model, contact process and voter model. These processes have been largely investigated,
in particular their attractiveness (see [11, Chapter III, Section 2]). Many other models taking place
on XZ

d
, where X = {0,1, . . . M} ⊆ N, that is with more than one particle per site, have been studied.

Reaction-diffusion processes, for example, are processes with state space NZ
d

(hence non compact),
used to model chemical reactions. We refer to [4, Chapter 13] for a general introduction and
construction. In such particle systems a birth, death or jump of at most one particle per time is
allowed. But sometimes the model requires births or deaths of more than one particle per time.
This is the case of biological systems with mass extinction ([17], [18]), or multitype contact process
([6], [7], [14], [16]). A partial understanding of attractiveness properties can be found in [20] for
the multitype contact process. A system with jumps of many particles per time has been investigated
in [8, Theorem 2.21], where the authors found necessary and sufficient conditions for attractiveness
for a conservative particle system with multiple jumps on NZ

d
with misanthrope type rates.

Those examples and the need for more realistic models for metapopulation dynamics systems ([9])
has led us to consider systems ruled by births, deaths and migrations of more than one individual
per time with general transition rates to get an exhaustive analysis of the stochastic order behaviour
and attractiveness. Our method relies on [8], that it generalizes.

The main applications allow to investigate the ergodic properties of a process. A process is
ergodic if there exists a unique invariant measure to which it converges starting from any
initial configuration: if the process is attractive, it is enough to check the convergence of the
largest and the smallest initial configurations. This is a first application of Theorem 2.4. In
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Section 2.2.5 we combine attractiveness and a technique called u−criterion (see [4]) to get ergodic-
ity conditions on a model for spread of epidemics, either if there is a trivial invariant measure or not.

For many biological models the empty configuration 0 is an absorbing state and the main question
is if the particle system may survive, that is if there is a positive probability that the process does not
converge to the Dirac measure δ0 concentrated on 0, which is a trivial invariant measure. In order
to prove that a metapopulation dynamics model (see [3]) survives, we largely use comparison
(therefore stochastic order) with auxiliary processes: this is a second application of the result.
Instead of constructing a different coupling for each comparison, we just check that inequalities
of Theorem 2.4 are satisfied on the transition rates. Moreover the main technique we use to get
survival is a comparison with oriented percolation (see [6]), and attractiveness is a key tool in
many steps of the proofs.

The survival of a process does not imply the existence of a non trivial invariant measure: one can
have the presence of particles in the system for all times but no invariant measures. If the process is
attractive and the state space is compact, a standard approach allows to construct such a measure
starting from the largest initial configuration: this is the third application. Once we get survival, we
use this argument to construct non trivial invariant measures for metapopulation dynamics models.
In Section 2.2.4 we introduce a metapopulation dynamics model with mass migration and Allee
effect investigated in [3].

The transition rates of the particle systems we analyse in this paper depend on two sites x , y ,
on the number of particles at x and y and on the number of particles k involved in a transition:
they are of the form b(k,α,β)p(x , y), where α and β are respectively the number of particles on
x and y and p(x , y) is a probability distribution on Zd given by a bistochastic matrix (we require
neither symmetry nor translation invariance). Moreover we allow birth and death rates on a site x
depending only on the configuration state on x .

In other words we work with three different types of transition rates: given a configuration η,
on each site y we can have a birth (death) of k individuals depending on the configuration state
η(y) on the same site y with rate Pk

η(y) (P−k
η(y)) and depending also on the number of particles

on the other sites x 6= y with rate
∑

x R0,k
η(x),η(y)p(x , y) (

∑

x R−k,0
η(y),η(x)p(y, x)). We consider a

death rate R−k,0
η(y),η(x)p(y, x) instead of the more natural R−k,0

η(y),η(x)p(x , y) to simplify the proofs
and since we are interested in applications given by a symmetric probability distribution p(·, ·).
This represents a possible different interaction rule between individuals of the same population
and individuals from different populations. We can have a jump of k particles from x to y with
rate Γk

η(x),η(y)p(x , y), which represents a migration of a flock of individuals (see Section 2.1).
We require that the birth/death and jump rates differ only on the term b(k,α,β), that is the
conservative and non-conservative rates depend on the same probability distribution p(x , y).

In Section 2.1 we recall some classical definitions and propositions needed in the sequel, we intro-
duce the particle system with more details and we state the main result, Theorem 2.4. In Section
2.2 we derive the conditions on several examples (multitype contact processes, conservative dynam-
ics and reaction-diffusion processes); we also detail the conditions on models with transitions of at
most one particle per time. In Section 2.2.5 we apply the attractiveness conditions and the so-called
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u-criterion technique to improve an ergodicity result for a model of spread of epidemics. Others ap-
plications to the construction of non-trivial invariant measures in metapopulation dynamics models
will be presented in a subsequent paper (see [3]). In Section 3 we prove Theorem 2.4: the coupling
is constructed explicitly through a downwards recursive formula in Section 3.2, where a detailed
analysis of the coupling mechanisms is presented. We have to mix births, jumps and deaths in a non
trivial way by following a preferential direction. Section 4 is devoted to the proofs needed for the
application to the epidemic model. Finally we propose some possible extensions to more general
systems.

2 Main result and applications

2.1 Stochastic order an attractiveness

Denote by S = Zd the set of sites and let X ⊆ N be the set of possible states on each site of an
interacting particle system (ηt)t≥0 on the state spaceΩ = X S , with semi-group T (t) and infinitesimal
generator L given, for a local function f , by

L f (η) =
∑

x ,y∈S

∑

α,β∈X

χ
x ,y
α,β (η)p(x , y)

∑

k>0

�

Γk
α,β( f (S

−k,k
x ,y η)− f (η))+

+ (R0,k
α,β + Pk

β )( f (S
k
yη)− f (η)) + (R−k,0

α,β + P−k
α )( f (S

−k
x η)− f (η))

�

(2.1)

where χ x ,y
α,β is the indicator of configurations with values (α,β) on (x , y), that is

χ
x ,y
α,β (η) =

¨

1 if η(x) = α and η(y) = β
0 otherwise

and S−k,k
x ,y , Sk

y , S−k
y , where k > 0, are local operators performing the transformations whenever

possible

(S−k,k
x ,y η)(z) =







η(x)− k if z = x and η(x)− k ∈ X ,η(y) + k ∈ X
η(y) + k if z = y and η(x)− k ∈ X ,η(y) + k ∈ X
η(z) otherwise;

(2.2)

(Sk
yη)(z) =

¨

η(y) + k if z = y and η(y) + k ∈ X
η(z) otherwise;

(2.3)

(S−k
y η)(z) =

¨

η(y)− k if z = y and η(y)− k ∈ X
η(z) otherwise.

(2.4)

The transition rates have the following meaning:

- p(x , y) is a bistochastic probability distribution on Zd ;

- Γk
α,β p(x , y) is the jump rate of k particles from x , where η(x) = α, to y , where η(y) = β;
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- R0,k
α,β p(x , y) is the part of the birth rate of k particles in y such that η(y) = β which depends

on the value of η in x (that is α);

- R−k,0
α,β p(x , y) is the part of the death rate of k particles in x such that η(x) = α which depends

on the value of η in y (that is β);

- P±k
β

is the birth/death rate of k particles in η(y) = β which depends only on the value of η in
y: we call it an independent birth/death rate.

We call addition on y (subtraction from x) of k particles the birth on y (death on x) or jump from
x to y of k particles. By convention we take births on the right subscript and deaths on the left one:
formula (2.1) involves births upon β , deaths from α and a fixed direction, from α to β , for jumps of
particles. We define, for notational convenience

Π0,k
α,β := R0,k

α,β + Pk
β ; Π−k,0

α,β := R−k,0
α,β + P−k

α . (2.5)

We refer to [11] for the classical construction in a compact state space. Since we are interested also
in non compact cases, we assume that (ηt)t≥0 is a well defined Markov process on a subset Ω0 ⊂ Ω,
and for any bounded local function f on Ω0,

∀η ∈ Ω0, lim
t→0

T (t) f (η)− f (η)
t

=L f (η)<∞. (2.6)

We will be more precise on the induced conditions on transition rates in the examples. We state
here only a common necessary condition on the rates.

Hypothesis 2.1. We assume that for each (α,β) ∈ X 2

N(α,β) := sup{n : Γn
α,β +Π

0,n
α,β +Π

−n,0
α,β > 0}<∞,

∑

k>0

�

Γk
α,β +Π

0,k
α,β +Π

−k,0
α,β

�

<∞.

In other words, for each α,β there exists a maximal number of particles involved in birth, death and
jump rates. Notice that N(α,β) is not necessarily equal to N(β ,α), which involves deaths from β ,
births upon α and jumps from β to α.
The particle system admits an invariant measure µ if µ is such that Pµ(ηt ∈ A) = µ(A) for each
t ≥ 0, A⊆ Ω, where Pµ is the law of the process starting from the initial distribution µ. An invariant
measure is trivial if it is concentrated on an absorbing state when there exists any. The process
is ergodic if there is a unique invariant measure to which the process converges starting from any
initial distribution (see [11, Definition 1.9]).
Given two processes (ξt)t≥0 and (ζt)t≥0, a coupled process (ξt ,ζt)t≥0 is Markovian with state space
Ω0×Ω0, and such that each marginal is a copy of the original process.
We define a partial order on the state space:

∀ξ,ζ ∈ Ω, ξ≤ ζ⇔ (∀x ∈ S,ξ(x)≤ ζ(x)). (2.7)

A set V ⊂ Ω is increasing (resp. decreasing) if for all ξ ∈ V , η ∈ Ω such that ξ≤ η (resp. ξ≥ η ) then
η ∈ V . For instance if ξ ∈ Ω, then Iξ = {η ∈ Ω : ξ≤ η} is an increasing set, and Dξ = {η ∈ Ω : ξ≥ η}
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a decreasing one.
A function f : Ω→ R is monotone if

∀ξ,η ∈ Ω, ξ≤ η⇒ f (ξ)≤ f (η).

We denote by M the set of all bounded, monotone continuous functions on Ω. The partial order
on Ω induces a stochastic order on the set P of probability measures on Ω endowed with the weak
topology:

∀ν ,ν ′ ∈ P , ν ≤ ν ′⇔ (∀ f ∈M ,ν( f )≤ ν ′( f )). (2.8)

The following theorem is a key result to compare distributions of processes with different generators
starting with different initial distributions.

Theorem 2.2. Let (ξt)t≥0 and (ζt)t≥0 be two processes with generators fL and L and semi-groups
eT (t) and T (t) respectively. The following two statements are equivalent:

(a) f ∈M and ξ0 ≤ ζ0 implies eT (t) f (ξ0)≤ T (t) f (ζ0) for all t ≥ 0.

(b) For ν ,ν ′ ∈ P ,ν ≤ ν ′ implies ν eT (t)≤ ν ′T (t) for all t ≥ 0.

The proof is a slight modification of [11, proof of Theorem II.2.2].

Definition 2.3. A process (ζt)t≥0 is stochastically larger than a process (ξt)t≥0 if the equivalent
conditions of Theorem 2.2 are satisfied. In this case the process (ξt)t≥0 is stochastically smaller than
(ζt)t≥0 and the pair (ξt ,ζt)t≥0 is stochastically ordered.

Attractiveness is a property concerning the distribution at time t of two processes with the same
generator which start with different initial distributions. By taking eT = T , Theorem 2.2 reduces to
[11, Theorem II.2.2] and Definition 2.3 is equivalent to the definition of an attractive process (see
[11, Definition II.2.3]). If an attractive process in a compact state space starts from the larger initial
configuration, it converges to an invariant measure.

The main result gives necessary and sufficient conditions on the transition rates that yield stochastic
order or attractiveness of the class of interacting particle systems defined by (2.1). It extends [8,
Theorem 2.21].
We denote by S = S (Γ, R, P, p) = {Γk

α,β , R0,k
α,β , R−k,0

α,β , P±k
β

, p(x , y)}{α,β∈X ,k>0,(x ,y)∈S2}, the set of pa-
rameters that characterize the generator (2.1) of process (ηt)t≥0. We call the latter an S particle
system and we write ηt ∼ S . Given (α,β), (γ,δ) ∈ X 2 × X 2, we write (α,β) ≤ (γ,δ) if α ≤ γ and
β ≤ δ.
Let S = S (Γ, R, P, p) and fS = S (eΓ,eR, eP, p) be two processes with different transition rates (but
the same p). For all (α,β) ∈ X 2, let eN(α,β) be defined as N(α,β) in Hypothesis 2.1 using the
transition rates of fS .

Theorem 2.4. Given K ∈ N, j := { ji}i≤K , m := {mi}i≤K , h := {hi}i≤K , three non-decreasing K-uples
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in N, and α,β ,γ,δ in X such that α≤ γ, β ≤ δ, we define

Ia := IK
a (j,m) =

K
⋃

i=1

{k ∈ X : mi ≥ k > δ− β + ji} (2.9)

Ib := IK
b (j,m) =

K
⋃

i=1

{k ∈ X : γ−α+mi ≥ k > ji} (2.10)

Ic := IK
c (h,m) =

K
⋃

i=1

{k ∈ X : mi ≥ k > γ−α+ hi} (2.11)

Id := IK
d (h,m) =

K
⋃

i=1

{k ∈ X : δ− β +mi ≥ k > hi} (2.12)

An S particle system (ηt)t≥0 is stochastically larger than an fS particle system (ξt)t≥0 if and only if
∑

k∈X :k>δ−β+ j1

eΠ0,k
α,β +

∑

k∈Ia

eΓk
α,β ≤

∑

l∈X :l> j1

Π0,l
γ,δ +

∑

l∈Ib

Γl
γ,δ (2.13)

∑

k∈X :k>h1

eΠ−k,0
α,β +

∑

k∈Id

eΓk
α,β ≥

∑

l∈X :l>γ−α+h1

Π−l,0
γ,δ +

∑

l∈Ic

Γl
γ,δ (2.14)

for all choices of K ≤ eN(α,β)∨ N(γ,δ), h, j, m, α≤ γ, β ≤ δ.

Remark 2.5. The restriction K ≤ eN(α,β) ∨ N(γ,δ) avoids that an infinite number of K, Ia, Ib, Ic ,
Id result in the same rate inequality. Since eΓk

α,β = 0 for each k > eN(α,β), if K > eN(α,β) no terms
are being added to the left hand side of (2.13), and adding more terms on the right hand side does
not give any new restrictions. A similar statement holds for (2.14), with the corresponding condition
K ≤ N(γ,δ).

Remark 2.6. If S = fS , Theorem 2.4 states necessary and sufficient conditions for attractiveness of S .

We follow the approach in [8]: in order to characterize the stochastic ordering of two processes, first
of all we find necessary conditions on the transition rates. Then we construct a Markovian increasing
coupling, that is a coupled process (ξt ,ζt)t≥0 which has the property that ξ0 ≤ ζ0 implies

P(ξ0,ζ0){ξt ≤ ζt}= 1,

for all t ≥ 0. Here P(ξ0,ζ0) denotes the distribution of (ξt ,ζt)t≥0 with initial state (ξ0,ζ0).

2.2 Applications

We propose several applications to understand the meaning of Conditions (2.13)–(2.14). We think
of (α,β) ≤ (γ,δ) as the configuration state of two processes ηt ≤ ξt on a fixed pair of sites x and
y: namely ηt(x) = α, ηt(y) = β , ξt(x) = γ, ξt(y) = δ.
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2.2.1 No multiple births, deaths or jumps

Let N = sup
(α,β)∈X 2

N(α,β):

Proposition 2.7. If N = 1 then a change of at most one particle per time is allowed and Conditions
(2.13) and (2.14) become

eΠ0,1
α,β + eΓ

1
α,β ≤Π

0,1
γ,δ +Γ

1
γ,δ if β = δ and γ≥ α, (2.15)

eΠ0,1
α,β ≤Π

0,1
γ,δ if β = δ and γ= α, (2.16)

eΠ−1,0
α,β + eΓ

1
α,β ≥Π

−1,0
γ,δ +Γ

1
γ,δ if γ= α and δ ≥ β , (2.17)

eΠ−1,0
α,β ≥Π

−1,0
γ,δ if γ= α and δ = β . (2.18)

Proof. . If β < δ, then δ−β+ ji ≥ δ−β+ j1 ≥ 1 for all K > 0, 1≤ i ≤ K so that 1 /∈ Ia by definition
(2.9). Since N = 1 the left hand side of (2.13) is null; if β = δ the only case for which the left hand
side of (2.13) is not null is j1 = 0, which gives

∑

k>0

eΠ0,k
α,β +

∑

k∈Ia

eΓk
α,β ≤

∑

l>0

Π0,l
γ,β +

∑

l∈Ib

Γl
γ,β .

Since N = 1, the value K = 1 covers all possible sets Ia and Ib, namely Ia = {k : m1 ≥ k > 0} and
Ib = {γ− α+m1 ≥ l > 0}. If m1 > 0, we get (2.15). If γ = α and m1 = 0 we get (2.16). One can
prove (2.17) in a similar way.

If β = δ and γ ≥ α, Formula (2.15) expresses that the sum of the addition rates of the smaller
process on y in state β must be smaller than the corresponding addition rates on y of the larger
process on y in the same state. If β = δ and γ = α we also need that the birth rate of the smaller
process on y is smaller than the one of the larger process, that is (2.16). Conditions (2.17)–(2.18)
have a symmetric meaning with respect to subtraction of particles from x .

Remark 2.8. If fS = S , when α = γ and β = δ conditions (2.16), (2.18) are trivially satisfied, and
we only have to check (2.15) when α < γ and (2.17) when β < δ.

Proposition 2.7 will be used in a companion paper for metapopulation models, see [3]. If R0,k
α,β =

0 for all α, β , k, the model is the reaction diffusion process studied by Chen (see [4]) and the
attractiveness Conditions (2.15), (2.17) (the only ones by Remark 2.8) reduce to

Γ1
α,β ≤ Γ

1
γ,β if γ > α; Γ1

α,δ ≥ Γ
1
α,β if δ > β .

In other words we need Γ1
α,β to be non decreasing with respect to α for each fixed β , and non

increasing with respect to β for each fixed α. In [4], the author introduces several couplings in
order to find ergodicity conditions of reaction diffusion processes. All these couplings are identical
to the couplingH introduced in Section 3.2 (and detailed in Appendix A if N = 1), on configurations
where an addition or a subtraction of particles may break the partial order, but differ from H on
configurations where it cannot happen.
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2.2.2 Multitype contact processes

If Γk
α,β = eΓ

k
α,β = 0, for all (α,β) ∈ X 2, k ≥ 0, that is when no jumps of particles are present, all

rates are contact-type interactions. Such a process is called multitype contact process. Conditions
(2.13)–(2.14) reduce to: for all (α,β) ∈ X 2, (γ,δ) ∈ X 2, (α,β)≤ (γ,δ), h1 ≥ 0, j1 ≥ 0,

i)
∑

k>δ−β+ j1

eΠ0,k
α,β ≤

∑

l> j1

Π0,l
γ,δ; ii)

∑

k>h1

eΠ−k,0
α,β ≥

∑

l>γ−α+h1

eΠ−l,0
γ,δ . (2.19)

Many different multitype contact processes have been used to study biological models. We propose
some examples with the corresponding conditions. Since the state space Ω = {0,1, . . . , M}Z

d
(where

M <∞) is compact, we refer to the construction in [11].

Spread of tubercolosis model ([17]). Here M represents the number of individuals in a population
at a site x ∈ Zd . The transitions are:

P1
β = φβ1l{0≤β≤M−1}, R0,1

α,β = 2dλα1l{β=0},

P−β
β
= 1l{1≤β≤M}, p(x , y) =

1

2d
1l{x∼y}.

where y ∼ x is one of the 2d nearest neighbours of site x .
Given two systems with parameters (λ,φ, M) and (λ,φ, M), the proof of [17, Proposition 1] reduces
to check Conditions (2.19):

φβ1l{0≤β≤M−1}+ 2dλα1l{β=0} ≤φδ1l{0≤δ≤M−1}+ 2dλγ1l{δ=0}, if β = δ, j1 = 0

1l{1≤α≤M ,α>h1} ≥1l{1≤γ≤M ,γ>γ−α+h1}, if γ≥ α, h1 ≥ 0

which are satisfied if λ≤ λ, φ ≤ φ and M ≤ M .

In the following examples we suppose fS = S , that is we consider necessary and sufficient
conditions for attractiveness.

2-type contact process ([14]). In this model M = 2. Since a value on a given site does not
represent the number of particles on that site, we write the state space {A, B, C}Z

d
. The value B

represents the presence of a type-B species, C the presence of a type-C species and A an empty site.
If A= 0, B = 1, C = 2 then the transitions are

R0,1
α,β = 2dλ11l{α=1,β=0}, R0,2

α,β = 2dλ21l{α=2,β=0},

P−β
β
= 1l{1≤β≤2}, p(x , y) =

1

2d
1l{x∼y}.

By taking h1 = 0, Condition (2.19) is
∑

k>δ−β

�

1l{k=1}2dλ11l{α=1,β=0}+1l{k=2}2dλ21l{α=2,β=0}
�

≤ 2dλ11l{γ=1,δ=0}+ 2dλ21l{γ=2,δ=0};

By taking β = 0, δ = 1, α = γ = 2 we get 2dλ2 ≤ 0, which is not satisfied since λ2 > 0. As already
observed, see [20, Section 5.1], one can get an attractive process by changing the order between
species: namely by taking A= 1, B = 0 and C = 2 the process is attractive.
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2.2.3 Conservative dynamics

If Π0,k
α,β = 0, for all (α,β) ∈ X 2, k ∈ N, we get a particular case of the model introduced in [8],

for which neither particles births nor deaths are allowed, and the particle system is conservative.
Suppose that in this model the rate Γk

α,β(y−x) has the form Γk
α,β p(y−x) for each k, α, β . Necessary

and sufficient conditions for attractiveness are given by [8, Theorem 2.21]:
∑

k>δ−β+ j

Γk
α,β p(y − x)≤

∑

l> j

Γl
γ,δp(y − x) for each j ≥ 0 (2.20)

∑

k>h

Γk
α,β p(y − x)≥

∑

l>γ−α+h

Γl
γ,δp(y − x) for each h≥ 0 (2.21)

while (2.13)− (2.14) become
∑

k∈Ia

Γk
α,β p(y − x)≤

∑

l∈Ib

Γl
γ,δp(y − x) (2.22)

∑

k∈Id

Γk
α,β p(y − x)≥

∑

l∈Ic

Γl
γ,δp(y − x) (2.23)

for all Ia, Ib, Ic and Id given by Theorem 2.4.

Proposition 2.9. Conditions (2.20)–(2.21) and Conditions (2.22)–(2.23) are equivalent.

Proof. . By choosing ji = j, hi = h and mi = m > N(α,β) ∨ N(γ,δ) for each i in Theorem 2.4,
Conditions (2.22)–(2.23) imply (2.20)–(2.21). For the opposite direction, by subtracting (2.21)
with h= mi > δ− β + ji to (2.20) with j = ji

∑

mi≥k>δ−β+ ji

Γk
α,β p(y − x)≤

∑

γ−α+mi≥l ′> ji

Γl ′
γ,δp(y − x) (2.24)

and we get (2.22) by summing K times (2.24) with different values of ji , mi , 1 ≤ i ≤ K . Condition
(2.23) follows in a similar way.

2.2.4 Metapopulation model with Allee effect and mass migration

The third model investigated in [3] is a metapopulation dynamics model where migrations of many
individuals per time are allowed to avoid the biological phenomenon of the Allee effect (see [1],
[19]). The state space is compact and on each site x ∈ Zd there is a local population of at most M
individuals. Given M ≥ MA > 0, M > N > 0, φ, φA, λ positive real numbers, the transitions are

P1
β = β1l{β≤M−1} P−1

β = β
�

φA1l{β≤MA}+φ1l{MA<β}
�

Γk
α,β =

¨

λ α− k ≥ M − N and β + k ≤ M ,
0 otherwise.

for each α,β ∈ X , and p(x , y) = 1
2d

1l{y∼x}. In other words each individual reproduces with rate 1,
but dies with different rates: either φA if the local population size is smaller than MA (Allee effect)
or φ if it is larger. When a local population has more than M − N individuals a migration of more
than one individual per time is allowed. Such a process is attractive by [3, Proposition 5.1, where
N and M play opposite roles], which is an application of Theorem 2.4.
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2.2.5 Individual recovery epidemic model

We apply Theorem 2.4 to get new ergodicity conditions for a model of spread of epidemics.
The most investigated interacting particle system that models the spread of epidemics is the contact
process, introduced by Harris [10]. It is a spin system (ηt)t≥0 on {0,1}Z

d
ruled by the transitions

ηt(x) = 0→ 1 at rate
∑

y∼x
ηt(y)

ηt(x) = 1→ 0 at rate 1

See [11] and [12] for an exhaustive analysis of this model.
In order to understand the role of social clusters in the spread of epidemics, Schinazi [17] intro-
duced a generalization of the contact process. Then, Belhadji [2] investigated some generalizations
of this model: on each site in Zd there is a cluster of M ≤∞ individuals, where each individual can
be healthy or infected. A cluster is infected if there is at least one infected individual, otherwise it is
healthy. The illness moves from an infected individual to a healthy one with rate φ if they are in the
same cluster. The infection rate between different clusters is different: the epidemics moves from
an infected individual in a cluster y to an individual in a neighboring cluster x with rate λ if x is
healthy, and with rate β if x is infected.
We focus on one of those models, the individual recovery epidemic model in a compact state space:
each sick individual recovers after an exponential time and each cluster contains at most M individ-
uals. The non-null transition rates are

R0,k
η(x),η(y) =

¨

2dλη(x) k = 1 and η(y) = 0
2dβη(x) k = 1 and 1≤ η(y)≤ M − 1,

(2.25)

Pk
η(y) =







γ k = 1 and η(y) = 0
φη(y) k = 1 and 1≤ η(y)≤ M − 1
η(y) k =−1 and 1≤ η(y)≤ M ,

(2.26)

p(x , y) =
1

2d
1l{y∼x} for each (x , y) ∈ S2. (2.27)

and Γk
η(x),η(y) = 0 for all k ∈ N. The rate γ represents a positive “pure birth” of the illness: by setting

γ = 0, we get the epidemic model in [2], where the author analyses the system with M < ∞ and
M =∞ and shows [2, Theorem 14] that different phase transitions occur with respect to λ and φ.
Moreover ([2, Theorem 15]), if

λ∨ β <
1−φ

2d
(2.28)

the disease dies out for each cluster size M .
By using the attractiveness of the model we improve this ergodicity condition. Notice that a depen-
dence on the cluster size M appears.

Theorem 2.10. Suppose

λ∨ β <
1−φ

2d(1−φM )
, (2.29)

with φ < 1 and either i) γ= 0, or ii) γ > 0 and β −λ≤ γ/(2d).
Then the system is ergodic.
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Notice that if γ > 0 and β ≤ λ hypothesis ii) is trivially satisfied.
If M = 1 and γ = 0 the process reduces to the contact process and the result is a well known (and
already improved) ergodic result (see for instance [11, Corollary 4.4, Chapter VI]); as a corollary
we get the ergodicity result in the non compact case as M goes to infinity.
In order to prove Theorem 2.10, we use a technique called u-criterion. It gives sufficient conditions
on transition rates which yield ergodicity of an attractive translation invariant process. It has been
used by several authors (see [4], [5], [13]) for reaction-diffusion processes.

First of all we observe that

Proposition 2.11. The process is attractive for all λ, β , γ, φ, M.

Proof. . Since M = 1, then N = 1 and Conditions (2.13)–(2.14) reduce to (2.15), (2.17). Namely,
given two configurations η ∈ Ω, ξ ∈ Ω with ξ ≤ η, necessary and sufficient conditions for attrac-
tiveness are

if ξ(x)< η(x) and ξ(y) = η(y),

(

R0,1
ξ(x),ξ(y)+ P1

ξ(y) ≤ R0,1
η(x),η(y)+ P1

η(y);
P−1
ξ(y) ≥ P−1

η(y).

If ξ(y) = η(y)≥ 1, 2dβξ(x)≤ 2dβη(x); if ξ(y) = η(y) = 0, 2dλξ(x)≤ 2dλη(x). In all cases the
condition holds since ξ≤ η.

The key point for attractiveness is that R0,1
η(x),η(y) is increasing in η(x).

Given ε > 0 and {ul(ε)}l∈X such that ul(ε)> 0 for all l ∈ X , let Fε : X × X → R+ be defined by

Fε(x , y) = 1l{x 6=y}

|y−x |−1
∑

j=0

u j(ε) (2.30)

for all x , y ∈ X . When not necessary we omit the dependence on ε and we simply write F(x , y) =

1l{x 6=y}

|y−x |−1
∑

j=0

u j . Since ul(ε) > 0, this is a metric on X and it induces in a natural way a metric on

Ω. Namely, for each η and ξ in Ω we define

ρα(η,ξ) :=
∑

x∈Zd

F(η(x),ξ(x))α(x) (2.31)

where {α(x)}x∈Zd is a sequence such that α(x) ∈ R, α(x)> 0 for each x ∈ Zd and
∑

x∈Zd

α(x)<∞. (2.32)

Denote by Ωm := {η ∈ Ω : η(x) = m for each x ∈ Zd} and let ηM
0 ∈ Ω

M and η0
0 ∈ Ω

0 (which is
not an absorbing state if γ > 0). The key idea consists in taking a “good sequence" {ul}l∈X and in
looking for conditions on the rates under which the expected value eE(·) (with respect to a coupled
measure eP) of the distance between ηM

t and η0
t converges to zero as t goes to infinity, uniformly
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with respect to x ∈ S. We will use the generator properties and Gronwall’s Lemma to prove that if
there exists ε > 0 and a sequence {ul(ε)}l∈X , ul(ε)> 0 for all l ∈ X such that the metric F satisfies

eE
�

L F(η0
t (x),η

M
t (x))

�

≤−εeE
�

F(η0
t (x),η

M
t (x))

�

(2.33)

for each x ∈ Zd , then
eE
�

lim
t→∞

F(η0
t (x),η

M
t (x))

�

= 0 (2.34)

uniformly with respect to x ∈ S so that the distance ρα(·, ·) between the larger and the smaller
process converges to zero, and ergodicity follows.

Condition (2.33) leads to

Proposition 2.12 (u-criterion). If there exists ε > 0 and a sequence {ul(ε)}l∈X such that for any l ∈ X






φlul(ε)− lul−1(ε)≤−ε
l−1
∑

j=0

u j(ε)− ū(ε)(λ∨ β)2dl

ul(ε)> 0

(2.35)

where ū(ε) :=max
l∈X

ul(ε), u−1 = 0 by convention and u0 = U > 0, then the system is ergodic.

Hence we are left with checking the existence of ε > 0 and positive {ul(ε)}l∈X which satisfy (2.35).
Such a choice is not unique.

Remark 2.13. Given U = 1 > 0, if ul(ε) = 1 for each l ∈ X then Condition (2.35) reduces to the
existence of ε > 0 such that φl − l ≤ −εl − (λ ∨ β)2dl for all l ∈ X , that is ε ≤ 1−φ − (λ ∨ β)2d,
thus Condition (2.28). Notice that in this case

F(x , y) =
|y−x |−1
∑

j=0

1= |y − x |.

Another possible choice is

Definition 2.14. Given ε > 0 and U > 0, we set u0(ε) = U and we define (ul(ε))l∈X recursively
through

ul(ε) =
1

φl

�

− ε
l−1
∑

j=0

u j(ε)− U(λ∨ β)2dl + lul−1(ε)
�

for each l ∈ X , l 6= 0. (2.36)

Definition 2.14 gives a better choice of {ul(ε)}l∈X , indeed the u-criterion is satisfied under the more
general assumption (2.29). Proofs of Theorems 2.10 and 2.12 are detailed in Section 4.

3 Coupling construction and proof of Theorem 2.4

In this section we prove the main result: we begin with the necessary condition, based on [8,
Proposition 2.24].
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3.1 Necessary condition

Proposition 3.1. If the particle system (ηt)t≥0 is stochastically larger than (ξt)t≥0, then for all
(α,β), (γ,δ) ∈ X 2 × X 2 with (α,β) ≤ (γ,δ), for all (x , y) ∈ S2, Conditions (2.13)–(2.14) hold.

Proof. . Let (ξ,η) ∈ Ω × Ω be two configurations such that ξ ≤ η. Let V ⊂ Ω be an increasing
cylinder set. If ξ ∈ V or η /∈ V ,

1lV (ξ) = 1lV (η). (3.1)

Since ηt is stochastically larger than ξt , for all t ≥ 0, by Theorem 2.2 (or [11, Theorem II.2.2] if we
are interested in attractiveness)

(eT (t)1lV )(ξ)≤ (T (t)1lV )(η)

since ν ≤ ν ′ is equivalent to ν(V )≤ ν ′(V ) for all increasing sets. Combining this with (3.1),

t−1[(eT (t)1lV )(ξ)− 1lV (ξ)]≤ t−1[(T (t)1lV )(η)− 1lV (η)],

which gives, by Assumption (2.6),

( fL1lV )(ξ)≤ (L1lV )(η). (3.2)

We have, by using (2.1),

( fL1lV )(ξ) =
∑

x ,y∈S

p(x , y)
∑

α,β∈X

χ
x ,y
α,β (ξ)

∑

k>0

�

eΓk
α,β(1lV (S

−k,k
x ,y ξ)− 1lV (ξ))

+ eΠ0,k
α,β(1lV (S

0,k
x ,yξ)− 1lV (ξ)) + eΠ

−k,0
α,β (1lV (S

−k,0
x ,y ξ)− 1lV (ξ))

�

=− 1lV (ξ)
∑

x ,y∈S

p(x , y)
∑

α,β∈X

χ
x ,y
α,β (ξ)

∑

k≥0

�

eΓk
α,β1lΩ\V (S

−k,k
x ,y ξ)

+ eΠ0,k
α,β1lΩ\V (S

0,k
x ,yξ) + eΠ

−k,0
α,β 1lΩ\V (S

−k,0
x ,y ξ)

�

+ 1lΩ\V (ξ)
∑

x ,y∈S

p(x , y)
∑

α,β∈X

χ
x ,y
α,β (ξ)

∑

k≥0

�

eΓk
α,β1lV (S

−k,k
x ,y ξ)

+ eΠ0,k
α,β1lV (S

0,k
x ,yξ) + eΠ

−k,0
α,β 1lV (S

−k,0
x ,y ξ)

�

. (3.3)

We write (L1lV )(η) by using the corresponding rates of S .
We fix y ∈ S, (αz ,γz ,β ,δ) ∈ X 4 with (αz ,β) ≤ (γz ,δ) for all z ∈ S, z 6= y , and two configurations
(ξ,η) ∈ Ω×Ω such that ξ(z) = αz , η(z) = γz , for all z ∈ S, z 6= y , ξ(y) = β , η(y) = δ. Thus ξ≤ η.
We define the set C+y of sites which interact with y with an increase of the configuration on y ,

C+y =
n

z ∈ S : p(z, y)> 0 and
∑

k>0

�

eΓk
αz ,β +Γ

k
γz ,δ + eΠ

0,k
αz ,β +Π

0,k
γz ,δ

�

> 0
o

. (3.4)

Denote by x = (x1, . . . , xd) the coordinates of each x ∈ S. We define, for each n ∈ N, C+y (n) =

C+y ∩ {z ∈ S :
∑d

i=1 |zi − yi| ≤ n}. We may suppose C+y 6= ;, since otherwise (2.13)–(2.14) would be
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trivially satisfied. Given K ∈ N, we fix {pi
z}i≤K ,z∈C+y

such that for each i, z, pi
z ∈ X and pi

z ≤ ξ(z).
Moreover we fix {pi

y}i≤K such that pi
y > δ, for each i. For n ∈ N, let

I y(n) =
K
⋃

i=1

�

ζ ∈ Ω : ζ(y)≥ pi
y and ζ(z)≥ pi

z , for all z ∈ C+y (n)
	

.

The union of increasing cylinder sets I y(n) is an increasing set, to which neither ξ nor η belong. We
compute, using (3.3),

( fL1lI y (n))(ξ) =
∑

z∈C+y (n)

p(z, y)
∑

k>0

�

1l⋃K
i=1{αz−k≥pi

z ,β+k≥pi
y}
eΓk
αz ,β + 1l⋃K

i=1{β+k≥pi
y}
eΠ0,k
αz ,β

�

+
∑

z /∈C+y (n)

p(z, y)
∑

k>0

1l⋃K
i=1{β+k≥pi

y}
�

eΓk
αz ,β + eΠ

0,k
α,β

�

(L1lI y (n))(η) =
∑

z∈C+y (n)

p(z, y)
∑

l>0

�

1l⋃K
i=1{γz−l≥pi

z ,δ+l≥pi
y}
Γl
γz ,δ + 1l⋃K

i=1{δ+l≥pi
y}
Π0,l
γz ,δ

�

+
∑

z /∈C+y (n)

p(z, y)
∑

l>0

1l⋃K
i=1{δ+l≥pi

y}
�

Γl
γz ,δ +Π

0,l
γ,δ

�

.

So, by setting

J(pz , a, b) := J({pi
z}i≤K , a, b) =

K
⋃

i=1

{l : a− l ≥ pi
z , b+ l ≥ pi

y},

and by (3.2), if p1
y :=mini{pi

y}, we get

∑

z∈C+y (n)

p(z, y)
�

∑

k∈J(pz ,αz ,β)

eΓk
αz ,β +

∑

k≥p1
y−β

eΠ0,k
αz ,β

�

+
∑

z /∈C+y (n)

p(z, y)
∑

k≥p1
y−β

�

eΠ0,k
αz ,β + eΓ

k
αz ,β

�

≤
∑

z∈C+y (n)

p(z, y)
�

∑

l∈J(pz ,γz ,δ)

Γl
γz ,δ +

∑

l≥p1
y−δ

Π0,l
γz ,δ

�

+
∑

z /∈C+y (n)

p(z, y)
∑

l≥p1
y−δ

�

Π0,l
γz ,δ +Γ

l
γz ,δ

�

Taking the monotone limit n→∞ gives
∑

z∈S

�

∑

k∈J(pz ,αz ,β)

eΓk
αz ,β +

∑

k≥p1
y−β

eΠ0,k
αz ,β

�

p(z, y)≤
∑

z∈S

�

∑

l∈J(pz ,γz ,β)

Γl
γz ,δ +

∑

l≥p1
y−δ

Π0,l
γz ,δ

�

p(z, y)

By choosing the values αz ≡ α, γz ≡ γ, pi
z ≡ pi

α, since
∑

z p(z, y) = 1,
∑

k∈J(pα,α,β)

eΓk
α,β +

∑

k≥p1
y−β

eΠ0,k
α,β ≤

∑

l∈J(pα,γ,δ)

Γl
γ,δ +

∑

l≥p1
y−δ

Π0,l
γ,δ. (3.5)

A similar argument with

C−x ={z ∈ S : p(z, y)> 0 and
∑

k>0

�

eΓk
α,γ(z)+Γ

k
γ,δz
+ eΠ−k,0

α,βz
+Π−k,0

γ,δz

�

> 0}
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subsets C−x (n), n ∈ N, {pi
z}z∈C−x (n),i≤K ∈ X , {pi

x}i≤K ∈ X with pi
x < α, for each i, pi

z ≥ δz , for all
z ∈ C−y (n), i ≤ K , decreasing cylinder sets

Dx(n) =
K
⋃

i=1

�

ζ ∈ Ω : ζ(x)≤ pi
x and ζ(z)≤ pi

z , for all z ∈ C−y (n)
	

to the complement of which ξ and η belong, and the application of inequality (3.2) to ξ,η,Ω\Dx(n)
(which is an increasing set since it is the complement of an increasing one) leads to

∑

k∈J−(pγ,α,β)

eΓk
α,β +

∑

α−k≤p1
x

eΠ−k,0
α,β ≥

∑

l∈J−(pγ,γ,δ)

Γl
γ,δ +

∑

γ−l≤p1
x

Π−l,0
γ,δ (3.6)

where p1
x =maxi{pi

x},

J−(pγ, a, b) := J−({pi
γ}i≤K , a, b) =

K
⋃

i=1

{l : a− l ≤ pi
x , b+ l ≤ pi

γ}.

Finally, taking pi
y = δ + ji + 1, pi

α = α−mi in (3.5), pi
x = α− hi − 1, pi

γ = δ +mi in (3.6) gives
(2.13)–(2.14).

3.2 Coupling construction

The (harder) sufficient condition of Theorem 2.4 is obtained by showing (in this subsection) the
existence of a Markovian coupling, which appears to be increasing under Conditions (2.13)–(2.14)
(see Subsection 3.3). Our method is inspired by [8, Propositions 2.25, 2.39, 2.44], but it is much
more intricate since we are dealing with jumps, births and deaths.
Let ξt ∼ fS and ηt ∼ S such that ξt ≤ ηt . The first step consists in proving that instead of
taking all possible sites, it is enough to consider an ordered pair of sites (x , y) and to construct
an increasing coupling concerning some of the rates depending on ηt(x),ηt(y) and ξt(x),ξt(y)
(remember that we choose to take births on y , deaths on x and jumps from x to y) and a small
part of the independent rates (by this, we mean deaths from x with a rate depending only on ηt(x)
and ξt(x) and births upon y with a rate depending only on ηt(y) and ξt(y)). We do not have to
combine any “dependent reaction” eR·,·

ξt (x),ξt (y)
or jumps rate eΓ·

ξt (x),ξt (y)
on y with any rate R·,·

ηt (z),ηt (y)
or Γ·

ηt (z),ηt (y)
if z is different from x .

Definition 3.2. For fixed (x , y) ∈ S2, for all η ∈ Ω and k ∈ N let

h(Pk
η(z)) =

¨

Pk
η(y)p(x , y) z = y,

0 otherwise;
h(P−k

η(z)) =

¨

P−k
η(x)p(x , y) z = x ,

0 otherwise.

and

q(z, w) =

¨

p(x , y) if z = x and w = y,
0 otherwise.

An ordered pair of sites (x , y) is an attractive pair for ( fS ,S ) if there exists an increasing coupling
for (ξt ,ηt)t≥0 where ξt ∼ fS (eΓ,eR, h(eP), q), ηt ∼ S (Γ, R, h(P), q). For notational convenience we call
these new systems S(x ,y) and fS(x ,y).
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Notice that S(x ,y) 6= S(y,x), because we take into account births on the second site, deaths on the
first one, and only particles’ jumps from the first site to the second one. The same remark holds for
fS(x ,y). In other words in order to see if a pair is attractive, we reduce ourselves to a system with only

part of the rates depending on the pair, and a part of the independent rates depending on p(x , y)
(Pk
ηt (y)

p(x , y) and P−k
ηt (x)

p(x , y)).

Proposition 3.3. The process ηt ∼ S is stochastically larger than ξt ∼ fS if all its pairs are attractive
pairs for ( fS ,S ).

Proof. . If for each pair (x , y) we are able to construct an increasing coupling for ( fS(x ,y),S(x ,y)), we
define an increasing coupling for ( fS ,S ) by superposition of all these couplings for pairs. Indeed: it
is a coupling since by Definition 3.2 the sum of all marginals gives the original rates; it is increasing
since each coupling for a pair is increasing.

From now on, we work on a fixed pair of sites (x , y) ∈ S2 with p(x , y) > 0 and on two ordered
configurations (ηt ,ξt) ∈ Ω2 for a fixed t ≥ 0, ηt ∼ S , ξt ∼ fS , ξt ≤ ηt and

ξt(x) = α, ξt(y) = β , ηt(x) = γ, ηt(y) = δ. (3.7)

We denote by N := N(α,β)∨ N(γ,δ) and by p := p(x , y).

Remark 3.4. With a slight abuse of notation, since rates on (α,β) involve fS and rates on (γ,δ) involve
S , we omit the superscript ∼ on the lower system rates: we denote by

eΠ·,·
α,β = Π

·,·
α,β ; eΓ·α,β = Γ

·
α,β ; S := ( fS ,S ).

The rest of this section is devoted to the construction of an increasing coupling for (x , y) and
(α,β)≤ (γ,δ).

Definition 3.5. There is a lower attractiveness problem on β if there exists k such that β+ k > δ and
Π0,k
α,β +Γ

k
α,β > 0; β is k-bad and k is a bad value (with respect to β). There is a higher attractiveness

problem on γ if there exists l such that γ− l < α and Π−l,0
γ,δ +Γ

l
γ,δ > 0; γ is l-bad and l is a bad value

(with respect to γ). Otherwise β is k-good (resp. γ is l-good). There is an attractiveness problem on
(α,β), (γ,δ) if there exists at least one bad value.

In other words we distinguish bad situations, where an addition of particles allows lower states to
go over upper ones (or upper ones to go under lower ones) from good ones, where it cannot happen.
Notice that Definition 3.5 involves addition of particles upon β and subtraction of particles from γ.
If we are interested in attractiveness problems coming from addition upon α and subtraction from
δ we refer to (β ,α), (δ,γ).

We choose to define a coupling rate that moves both processes only if we are dealing with an
attractiveness problem, otherwise we let the two processes evolve independently through uncoupled
rates. Conditions (2.13)− (2.14) do not involve configurations without an attractiveness problem, so
a different construction for them does not change the result. Since N is finite, we can construct the
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coupling by a downwards recursion on the number of particles involved in a transition.

Our purpose now is to describe a coupling for ( fS(x ,y),S(x ,y)), that we denote byH (x , y) (or simply
H ), which will be increasing under Conditions (2.13)− (2.14).

First of all we detail the construction on terms involving the larger number N of particles and we prove
that under Conditions (2.13)–(2.14) none of these coupling terms breaks the partial order: this is the
claim of Proposition 3.18.

Remark 3.6. By Hypothesis 2.1, at least one of the terms Π0,N
α,β , Π0,N

γ,δ , Π−N ,0
α,β , Π−N ,0

γ,δ , ΓN
α,β and ΓN

γ,δ is
not null. We assume all these terms (and the smaller ones) positive. Otherwise the construction works
in a similar way with some null terms.

Definition 3.7. Let
bN+ := N −δ+ β; bN− := N − γ+α. (3.8)

If there is a lower attractiveness problem on β , then β + N > δ (bN+ > 0) and an addition of N
particles upon β breaks the partial order. Such a problem comes both from birth (Π0,N

α,β p) and from

jump (ΓN
α,β p) rates. If K = 1, j1 = N −δ+β−1= bN+−1 and m1 = N then Condition (2.13) writes

Π0,N
α,β +Γ

N
α,β ≤

∑

l≥bN+
(Π0,l
γ,δ +Γ

l
γ,δ). (3.9)

Notice that if l ≥ bN+, then β+N ≤ δ+ l, and additions of N particles upon β and of l particles upon
δ do not break the partial order on y . The construction consists in coupling the terms on the left
hand side (which involve N particles and break the partial order) to the ones on the right hand side
(in such a way that the final configuration preserves the partial order on y and on x) by following a
basic coupling idea. We couple jumps on the lower configuration with jumps on the upper one and
births on the lower configuration with births on the upper one. Only if this is not enough to solve
the attractiveness problem, we mix births with jumps.
If there is a higher attractiveness problem on γ, then γ− N < α (bN− > 0) and a subtraction of N
particles from γ breaks the partial order. In this case the problem comes from Π−N ,0

γ,δ p and ΓN
γ,δp; we

use a symmetric construction starting from Condition (2.14) with K = 1, h1 = N−γ+α−1= bN−−1
and m1 = N :

Π−N ,0
γ,δ +Γ

N
γ,δ ≤

∑

k≥bN−
(Π−k,0
α,β +Γ

k
α,β). (3.10)

We denote by Hk,k,·,·
α,β ,γ,δ (resp. H ·,·,l,l

α,β ,γ,δ) the coupling terms which involve jumps of k (resp. l) particles

from x to y on the lower (resp. upper) configuration; H0,k,·,·
α,β ,γ,δ (resp. H ·,·,0,l

α,β ,γ,δ) are the coupling
terms concerning births of k (resp. l) particles on y on the lower (resp. upper) configuration and
H−k,0,·,·
α,β ,γ,δ (resp. H ·,·,−l,0

α,β ,γ,δ) are the symmetric ones for death rates.

For instance Hk,k,0,l
α,β ,γ,δ combines the jump of k particles from x to y on the lower configuration and

the birth of l particles on y on the upper one.

The coupling construction takes place in three main steps.
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Step 1) Suppose both β and γ are N−bad; if this is not the case one of them is good and the
construction works in an easier way.
We begin with jump rates. We couple the lower configuration N−jump rate ΓN

α,β p with jumps on

the upper configuration. We first couple it with ΓN
γ,δp, because α ≤ γ, α− N ≤ γ− N and the final

pairs of values are (α− N ,β + N)≤ (γ− N ,δ+ N). Let

HN ,N ,N ,N
α,β ,γ,δ := (ΓN

α,β ∧Γ
N
γ,δ)p. (3.11)

Then if the lower attractiveness problem is not solved, that is HN ,N ,N ,N
α,β ,γ,δ = Γ

N
γ,δp, we have a remainder

of the lower configuration jump rate that we couple with the upper configuration jump rate with
the largest change of particles left, N − 1. We go on by coupling the new remainder of ΓN

α,β p, if

positive, with Γl
γ,δp at l th step. The final pairs of values we reach are (α− N ,β + N), (γ− l,δ+ l),

which always preserve the partial order on x since α− N ≤ γ− l when l ≤ N . The partial order on
y is preserved only if β +N ≤ δ+ l, that is if l ≥ bN+. For this reason we stop the coupling between
jumps at step bN+: this is the meaning of formula (3.9).
More precisely, when ΓN

α,β > Γ
N
γ,δ and N − 1≥ bN+, we get the second coupling rate

HN ,N ,N−1,N−1
α,β ,γ,δ := (ΓN

α,β p−HN ,N ,N ,N
α,β ,γ,δ )∧Γ

N−1
γ,δ p = (ΓN

α,β −Γ
N
γ,δ)p ∧Γ

N−1
γ,δ p.

Then either HN ,N ,N−1,N−1
α,β ,γ,δ = (ΓN

α,β −Γ
N
γ,δ)p, and with the two steps l = N and l = N − 1 we have no

remaining part of ΓN
α,β p, or HN ,N ,N−1,N−1

α,β ,γ,δ = ΓN−1
γ,δ p and we are left with a remainder (ΓN

α,β − Γ
N
γ,δ −

ΓN−1
γ,δ )p, to go on with l = N − 2, . . . Therefore we can define recursively starting from (3.11)

HN ,N ,l,l
α,β ,γ,δ :=(ΓN

α,β p−
∑

l ′>l

HN ,N ,l ′,l ′

α,β ,γ,δ )∧Γ
l
γ,δp =: JN ,l+1

α,β ∧Γl
γ,δp (3.12)

where JN ,l
α,β is the remainder of the jump (hence notation J) rate ΓN

α,β p left over after the l th step of the

coupling construction; (3.12) means that we couple the remainder from the (l + 1)th step, JN ,l+1
α,β ,

with Γl
γ,δp at the l th step.

We proceed this way until either we have no remainder of ΓN
α,β p, or we have reached bN+ with the

remainder
JN ,bN+

α,β = ΓN
α,β p−

∑

l≥bN+
HN ,N ,l,l
α,β ,γ,δ = Γ

N
α,β p−

∑

l≥bN+
Γl
γ,δp > 0 (3.13)

Note that, since β + N ≤ δ + l for l ≥ bN+, none of the coupled transitions until this point have
broken the partial ordering. Proceeding until bN+ − 1 would break the partial ordering. Therefore

we stop at bN+ the construction in Step 1 and we will couple the remainder JN ,bN+

α,β with upper birth
rates at Step 3a.

Step 1 is detailed in Tables 1 and 2, where N d+ corresponds to the first l (going downwards from
N) such that the minimum in (3.12) is JN ,l+1

α,β .

We have to distinguish between two situations:
• if the minimum given by HN ,N ,l,l

α,β ,γ,δ is always the second term, we do not reach N d+ at bN+ yet.

Since we have decided to stop the coupling construction at step bN+, we need to couple with birth
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Table 1: N jump rate, N d+ ≥ bN+ (JN ,bN+

α,β = 0)

l JN ,l+1
α,β ∧ Γl

γ,δp = HN ,N ,l,l
α,β ,γ,δ

N ×
...

... Γl
γ,δp

N d++ 1 ×

N d+ × ΓN
α,β p−

∑

l ′>N d+

Γl ′
γ,δp ≥ 0

N d+− 1 ×
...

... 0
bN+ ×

Table 2: N jump rate, N d+ = bN+− 1 (JN ,bN+

α,β > 0)

l JN ,l+1
α,β ∧ Γl

γ,δp = HN ,N ,l,l
α,β ,γ,δ

N ×
...

... Γl
γ,δp

bN+ ×

rates (Step 3a) in order to solve the attractiveness problem (Table 2 when JN ,bN+

α,β > 0) and we put

N d+ = bN+− 1.
• if N d+ ≥ bN+ then HN ,N ,N d+−1,N d+−1

α,β ,γ,δ = 0 by (3.12). Therefore there is no need to continue a

coupling involving ΓN
α,β p, since the attractiveness problem is solved. In this case HN ,N ,l,l

α,β ,γ,δ = 0 for
bN+ ≤ l < N d+ by definition, we do not need Step 3a and we define

HN ,N ,0,l
α,β ,γ,δ := 0 for each l > 0. (3.14)

In both cases, we define
HN ,N ,l,l
α,β ,γ,δ := 0 for 0< l < bN+. (3.15)

since these terms could break the partial ordering. Moreover, since β is N−bad, we define

HN ,N ,−l,0
α,β ,γ,δ := 0 for each l > 0. (3.16)

Notice that such terms are not a priori null. Indeed if γ is l−bad and β is N−good one can use this
coupling term to solve the attractiveness problem of Π−l,0

γ,δ p.
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If there is a higher attractiveness problem, we repeat the same construction for the coupling terms
involving the jump rate ΓN

γ,δp starting from (3.11) and we define a value N d− analogous to the

previous N d+. The recursive formula symmetric to (3.12) if ΓN
γ,δ > Γ

N
α,β is

Hk,k,N ,N
α,β ,γ,δ :=Γk

α,β p ∧ (ΓN
γ,δp−

∑

k′>k

Hk′,k′,N ,N
α,β ,γ,δ ) =: Γk

α,β p ∧ JN ,k+1
γ,δ (3.17)

where J k,N
γ,δ represents the remainder of the jump rate ΓN

γ,δp left over after the kth step of the coupling

construction. We need to couple the remainder of ΓN
γ,δp with the lower death rates in Step 3a if

J
bN−,N
γ,δ = ΓN

γ,δp−
∑

k≥bN−
Hk,k,N ,N
α,β ,γ,δ = Γ

N
γ,δp−

∑

k≥bN−
Γk
α,β p > 0. (3.18)

In this case we put N d− = bN− − 1. By symmetry we define Hk,k,N ,N
α,β ,γ,δ = 0 for each 0 < k < bN−,

H−k,0,N ,N
α,β ,γ,δ = 0 for each k > 0 if N d− ≥ bN− and H0,k,N ,N

α,β ,γ,δ = 0 for each k > 0 if γ is N−bad.

Remark 3.8. By (3.11), either N d+ = N or N d− = N, that is either the lower or the higher attractive-
ness problem given by the jump of N particles is solved by the first coupling term.

If there is no lower (higher) attractiveness problem we put N d+ = N + 1 (N d− = N + 1).
If either β or γ is N−good, we use only one of the previous constructions. Suppose for instance
that γ is N−good: then the construction involving ΓN

α,β p works in the same way, but the symmetric

one is not required and we use the coupling terms H ·,·,N ,N
α,β ,γ,δ only to solve the lower attractiveness

problems induced by either ΓN
α,β p (at Step 1) or by Π0,N

α,β p (at Step 3b). Therefore H0,N ,N ,N
α,β ,γ,δ (defined

at Step 3a) might be non null, but we define

H−l,0,N ,N
α,β ,γ,δ := 0 for each l > 0. (3.19)

If β is N−good a symmetric remark holds.

Step 2) Suppose β is N−bad. The birth rate Π0,N
α,β p could break the partial order on β . We work as

in Step 1 and we begin with the coupling term

H0,N ,0,N
α,β ,γ,δ :=(Π0,N

α,β ∧Π
0,N
γ,δ )p. (3.20)

If the attractiveness problem is not solved we couple the remainder of Π0,N
α,β p with the birth rate of

the upper configuration with the largest change of particles, Π0,N−1
γ,δ p and going down we couple it

with Π0,l
γ,δp at l th-step, until l = bN+. We define recursively starting from (3.20) the terms

H0,N ,0,l
α,β ,γ,δ :=(Π0,N

α,β p−
∑

l ′>l

H0,N ,0,l ′

α,β ,γ,δ )∧Π
0,l
γ,δp =: BN ,l+1

α,β ∧Π0,l
γ,δp (3.21)

where BN ,l
α,β is the remainder of the birth (hence notation B) rate Π0,N

α,β p left over after the l th step of the
coupling construction.
We proceed as in Step 1 for transitions involving births: while the minimum in (3.21) is the second

126



term we go on downwards in l. As soon as the minimum is the first term, we have no remainder
of Π0,N

α,β p, so the lower attractiveness problem is solved and we define N B to be this first such l.

Otherwise we have reached bN+ with the remainder

BN ,bN+

α,β = Π0,N
α,β p−

∑

l≥bN+
H0,N ,0,l
α,β ,γ,δ = Π

0,N
α,β p−

∑

l≥bN+
Π0,l
γ,δp > 0 (3.22)

We have to distinguish between two situations:
• if the minimum given by H0,N ,0,l

α,β ,γ,δ is always the second term, we do not reach N B at bN+ yet.

Since we stop the coupling construction at step bN+, we need to couple the remainder with jump

rates (Step 3b) in order to solve the attractiveness problem (Table 4 when BN ,bN+

α,β > 0) and we put

N B = bN+− 1;
• if N B ≥ bN+ then BN ,bN+

α,β = 0 (see Table 3). Therefore there is no need to continue a coupling

involving Π0,N
α,β p, since the attractiveness problem is solved. In this case H0,N ,0,l

α,β ,γ,δ = 0 for bN+ ≤ l < N B

by definition, we do not need Step 3b and we define

H0,N ,l,l
α,β ,γ,δ := 0 for each l > 0, (3.23)

In both cases, we define
H0,N ,0,l
α,β ,γ,δ := 0 for 0< l < bN+. (3.24)

Table 3: N birth rate, N B ≥ bN+ (BN ,bN+

α,β = 0)

l BN ,l+1
α,β ∧ Π0,l

γ,δp = H0,N ,0,l
α,β ,γ,δ

N ×
...

... Π0,l
γ,δp

N B + 1 ×

N B × Π0,N
α,β p−

∑

l ′>N B

Π0,l ′

γ,δp ≥ 0

N B − 1 ×
...

... 0
bN+ ×

The attractiveness problem coming from either birth or death rates is solved. Indeed

Lemma 3.9. Under Condition (2.13),

N B ∨ N d+ ≥ bN+.
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Table 4: N birth rate, N B = bN+− 1 (BN ,bN+

α,β > 0)

l BN ,l+1
α,β ∧ Π0,l

γ,δp = H0,N ,0,l
α,β ,γ,δ

N ×
...

... Π0,l
γ,δp

bN+ ×

Proof. . If this is not the case, by (3.17), Table 1 and definition of N d+

ΓN
α,β p−

∑

l ′>bN+

Γl ′
γ,δp = JN ,bN++1

α,β > ΓbN
+

γ,δp. (3.25)

By (3.21), Table 3 and definition of N B

Π0,N
α,β p−

∑

l ′>bN+

Π0,l ′

γ,δp = BN ,bN++1
α,β > Π0,bN+

γ,δ p. (3.26)

The sum of (3.25) and (3.26) contradicts (3.9).

If β is N−good, then H0,N ,·,·
α,β ,γ,δ = 0 and we define N B = N d+ = N + 1.

Remark 3.10. If γ is N−bad, the construction involving death rates works in a similar way with
symmetric definitions of N D and of a remainder Dk,N

γ,δ . As in Lemma 3.9, under Condition (2.14),

N D ∨ N d− ≥ bN−. (3.27)

If γ is N−good, then H ·,·,−N ,0
α,β ,γ,δ = 0 and we define N D = N d− = N + 1.

Step 3a) Suppose β is N−bad and N d+ = bN+ − 1. We come back to Step 1, where even if the
remaining part of ΓN

α,β p was still positive at step bN+, we decided to stop. We refer to Table 5.

By Lemma 3.9, N B ≥ bN+. We use the upper configuration birth rate remaining from Step 2 in
order to solve the attractiveness problem: we couple the remainder from Step 1 of ΓN

α,β p with the

remainder from Step 2 of Π0,N
γ,δ p,

HN ,N ,0,N
α,β ,γ,δ := JN ,bN+

α,β ∧ [Π0,N
γ,δ p−Π0,N

γ,δ p ∧Π0,N
α,β p].

Then, if the minimum is the second term we proceed downwards in l with terms

HN ,N ,0,l
α,β ,γ,δ :=[JN ,bN+

α,β −
∑

l ′>l

HN ,N ,0,l ′

α,β ,γ,δ ]∧ [Π
0,l
γ,δp−Π0,l

γ,δp ∧ BN ,l+1
α,β ]

=:J N ,l+1
α,β ∧ [Π0,l

γ,δp−Π0,l
γ,δp ∧ BN ,l+1

α,β ]. (3.28)
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where J N ,l
α,β is the remainder of the jump (J ) rate ΓN

α,β p left over after l th step. Notice that J N ,N+1
α,β =

JN ,bN+

α,β .
We proceed with (3.28) until the minimum is the first term, in which case there is no remainder of
ΓN
α,β p, so the attractiveness problem is solved, and we define N dB to be the first such l. In other

words when l > N dB, the coupling term is the remainder of the upper configuration l-birth rate,
when l = N dB it is the remainder of the lower configuration N–jump rate, and when l < N dB the
coupling terms are null.

Remark 3.11. If l > N dB then the minimum of (3.28) is the second term, which depends on Step 1:
-if l > N B, by Table 3, BN ,l+1

α,β ∧Π0,l
γ,δp = Π0,l

γ,δp and by (3.28), HN ,N ,0,l
α,β ,γ,δ = 0;

-if l = N B, by (3.28), HN ,N ,0,l
α,β ,γ,δ = Π

0,l
γ,δp− BN ,l+1

α,β =
∑

l ′≥l Π
0,l ′

γ,δp−Π0,N
α,β p;

-if l < N B then BN ,l+1
α,β ∧Π0,l

γ,δp = BN ,l+1
α,β = 0 and HN ,N ,0,l

α,β ,γ,δ = Π
0,l
γ,δp.

In other words even if the minimum is the second term in HN ,N ,0,l
α,β ,γ,δ , it could be null, when solving the

lower attractiveness problem left no remainder of Π0,l
γ,δp. It means that positive coupling terms begin

below N B.

If JN ,bN+

α,β = 0, that is if N d+ ≥ bN+, we put N dB = N + 1. We give it the same value if β is N−good:

in these cases HN ,N ,0,l
α,β ,γ,δ = 0 for each l > 0.

Table 5: Third step, N d+ = bN+− 1 (JN ,bN+

α,β > 0)

l J N ,l+1
α,β ∧ [Π0,l

γ,δp−Π0,l
γ,δp ∧ BN ,l+1

α,β ] = HN ,N ,0,l
α,β ,γ,δ

N ×
...

... Π0,l
γ,δp−Π0,l

γ,δp ∧ BN ,l+1
α,β

N dB + 1 ×

N dB × J N ,l+1
α,β ≥ 0

N dB − 1 ×
...

... J N ,l+1
α,β = 0

0 ×

If γ is N−bad and N d+ = bN+− 1 then N d− = N by Remark 3.8 and we do not need Step 3a for the
upper jump rate. If N d− = bN− − 1 (in this case N d+ = N), the construction works in a symmetric

way, by coupling the remainder of the upper configuration jump rate J bN−,N
γ,δ defined in a similar

way with the remainder of the death rate from Step 2. If γ is N−good we put N dD = N + 1: in
these cases H−k,0,N ,N

α,β ,γ,δ = 0 for each k > 0.

Step 3b) Suppose β is N−bad and N B = bN+ − 1. We come back to Step 2, where even if the
remainder of Π0,N

α,β p was still positive at step bN+, we decided to stop. We refer to Table 6. By Lemma
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3.9, N d+ ≥ bN+. We cannot couple BN ,bN+

α,β with the upper configuration jump rates remaining from
Step 2 with l > γ− α, because the final states we would reach are (α,β + N), (γ− l,δ+ l), which
break the partial order. Therefore we put

H0,N ,l,l
α,β ,γ,δ := 0 for each l > γ−α (3.29)

Then we couple the remainder BN ,bN+

α,β from Step 2 of Π0,N
α,β p with the upper configuration jump rates

remaining from Step 1 that do not break the partial order in α to solve the attractiveness problem,
that is Γl

γ,δp with l ≤ γ−α,

H0,N ,l,l
α,β ,γ,δ := BN ,bN+

α,β ∧ [Γl
γ,δp− JN ,l+1

α,β ∧Γl
γ,δp] with l = γ−α, (3.30)

if the minimum is the second term we proceed downwards in l with Γl
γ,δp with l < γ−α

H0,N ,l,l
α,β ,γ,δ :=[BN ,bN+

α,β −
∑

γ−α≥l ′>l

H0,N ,l ′,l ′

α,β ,γ,δ ]∧ [Γ
l
γ,δp− JN ,l+1

α,β ∧Γl
γ,δp]

=:BN ,l+1
α,β ∧ [Γl

γ,δp− JN ,l+1
α,β ∧Γl

γ,δp] (3.31)

where BN ,l
α,β is the remainder of the birth (B) rate Π0,N

α,β p left over after step l th in Step 3b. Notice

thatBN ,N+1
α,β = BN ,bN+

α,β .
We proceed with (3.31) until the minimum is the first term, in which case there is no remainder of
Π0,N
α,β p, so the attractiveness problem is solved, and we define N Bd to be the first such l. In other

words when l > N Bd , the coupling term is the remainder of the upper configuration l-jump rate,
when l = N Bd it is the remainder of the lower configuration N -birth rate, and when l < N Bd the
coupling terms are null.

Remark 3.12. If l > N Bd then the minimum in (3.31) is the second term, which depends on Step 2:
• if l > N d+ then JN ,l+1

α,β ∧Γl
γ,δp = Γl

γ,δp by Table 1 and

H0,N ,l,l
α,β ,γ,δ = 0; (3.32)

• if l = N d+ ≥ bN+ (see Table 1), then JN ,l+1
α,β ∧Γl

γ,δp = JN ,l+1
α,β and

H0,N ,l,l
α,β ,γ,δ = Γ

l
γ,δp− JN ,l+1

α,β =
∑

l ′≥N d+

Γl ′
γ,δp−ΓN

α,β p; (3.33)

• if l < N d+ then JN ,l+1
α,β ∧Γl

γ,δp = JN ,l+1
α,β = 0 by Table 1; hence

H0,N ,l,l
α,β ,γ,δ = Γ

l
γ,δp if 0< l < N d+.

In other words if there is no remainder of Γl
γ,δp after Step 2, the coupling term H0,N ,l,l

α,β ,γ,δ is null even if

the attractiveness problem is not solved yet. It means that positive coupling terms begin below N d+.

130



Table 6: Third step, N B = bN+− 1 (BN ,bN+

α,β > 0)

l BN ,l+1
α,β ∧ [Γl

γ,δp− JN ,l+1
α,β ∧Γl

γ,δp] = H0,N ,l,l
α,β ,γ,δ

γ−α ×
...

... Γl
γ,δp− JN ,l+1

α,β ∧Γl
γ,δp

N Bd + 1 ×

N Bd × BN ,l+1
α,β ≥ 0

N Bd − 1 ×
...

... BN ,l+1
α,β = 0

0 ×

If BN ,bN+

α,β = 0, that is if N B ≥ bN+, we put N Bd = N + 1. We give it the same value if β is N−good: in

these cases H0,N ,l,l
α,β ,γ,δ = 0 for each l > 0. We refer to Table 6.

Remark 3.13. In Step 3 we do not impose any restriction as in previous steps, the pairs of values
(α−N ,β +N), (γ,δ+ l) or (α,β +N), (γ− l,δ+ l) breaking the partial order on β (that is such that
β + N > δ+ l) that we could reach a priori will be avoided by attractiveness (see Proposition 3.18).

If γ is N−bad and N D = bN− − 1 then the symmetric construction allows to define the index N Dd of
the last positive coupling term and the remainder Dk,N

γ,δ of the death rate Π−N ,0
γ,δ p after Step 1 and k

recursions in Step 3b. Remark 3.13 works in a symmetric way. If γ is N−good we put N Dd = N + 1
and Hk,k,−N ,0

α,β ,γ,δ = 0 for each k > 0.

Remark 3.14. In the indexes we have defined, the superscript B means birth, D death, d+ diffusion
(jump) on the lower configuration, d− diffusion (jump) on the upper configuration, Bd birth and
diffusion, dB diffusion and birth, Dd death and diffusion, dD diffusion and death.

Once we constructed the coupling rates involving ΓN
α,β p, Π0,N

α,β p, ΓN
γ,δp and Π−N ,0

γ,δ p we move to rates
involving less than N particles. If β is (N − 1)-bad (and/or γ is (N − 1)-bad) in order to solve
the lower (higher) attractiveness problems given by ΓN−1

α,β p and Π0,N−1
α,β p (ΓN−1

γ,δ p and Π−(N−1),0
γ,δ p)

(or their remainders from previous steps) we repeat Step 1, Step 2 and Step 3 for such terms. We
proceed this way with the remainders of Γk

α,β p and Π0,k
α,β p (Γl

γ,δp and Π−l,0
γ,δ p) going downwards

with respect to k (l) until β is k-good (γ is l-good).

We couple an upper configuration jump rate Γl
γ,δp with a lower configuration birth rate Π0,k

α,β p if
β+k > l and α≤ γ− l in order to solve a lower attractiveness problem, and with a lower configuration
death rate Π−k,0

α,β p if α > γ− l in order to solve a higher attractiveness problem: we cannot couple the
same higher jump rate both with lower birth and death rates. A symmetric remark holds for lower
jump rates.
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Coupling rates are given below by downwards recursive relations

Definition 3.15. Given k ≤ N and l ≤ N, the possible non null coupling terms are given by

•Step 1
J k,l+1
α,β := Γk

α,β p−
∑

l ′>l

Hk,k,l ′,l ′

α,β ,γ,δ −
∑

l ′>l

Hk,k,−l ′,0
α,β ,γ,δ

J k+1,l
γ,δ := Γl

γ,δp−
∑

k′>k

Hk′,k′,l,l
α,β ,γ,δ −

∑

k′>k

H0,k′,l,l
α,β ,γ,δ

Hk,k,l,l
α,β ,γ,δ = J k,l+1

α,β ∧ J k+1,l
γ,δ if (α > γ− l or β + k > δ) and

(β + k ≤ δ+ l) and (α− k ≤ γ− l)
•Step 2 (births)

Bk,l+1
α,β := Π0,k

α,β p−
∑

l ′>l

H0,k,0,l ′

α,β ,γ,δ

Bk+1,l
γ,δ := Π0,l

γ,δp−
∑

k′>k

H0,k′,0,l
α,β ,γ,δ −

∑

k′>k

Hk′,k′,0,l
α,β ,γ,δ

H0,k,0,l
α,β ,γ,δ = Bk,l+1

α,β ∧ Bk+1,l
γ,δ if δ+ l ≥ β + k > δ

• Step 2 (deaths)
Dk,l+1
α,β := Π−k,0

α,β p−
∑

l ′>l

H−k,0,−l ′,0
α,β ,γ,δ −

∑

l ′>l

H−k,0,l ′,l ′

α,β ,γ,δ

Dk+1,l
γ,δ := Π−l,0

γ,δ p−
∑

k′>k

H−k′,0,−l,0
α,β ,γ,δ

H−k,0,−l,0
α,β ,γ,δ = Dk,l+1

α,β ∧ Dk+1,l
γ,δ if α > γ− l ≥ α− k

•Step 3a) (births)
J k,l+1
α,β = Γk

α,β p−
∑

l ′≥k−δ+β

Hk,k,l ′,l ′

α,β ,γ,δ −
∑

l ′>l

Hk,k,0,l ′

α,β ,γ,δ

Hk,k,0,l
α,β ,γ,δ = J

k,l+1
α,β ∧ [Bk+1,l

γ,δ −H0,k,0,l
α,β ,γ,δ] if β + k > l

•Step 3a) (deaths)
J k+1,l
γ,δ = Γl

γ,δp−
∑

k′≥l−γ+α

Hk′,k′,l,l
α,β ,γ,δ −

∑

k′>k

H−k′,0,l,l
α,β ,γ,δ

H−k,0,l,l
α,β ,γ,δ = [D

k,l+1
α,β −H−k,0,−l,0

α,β ,γ,δ ]∧J
k+1,l
γ,δ if α > γ− l

•Step 3b) (births)
B k,l+1
α,β = Π0,k

α,β p−
∑

l ′≥k−δ+β

H0,k,0,l ′

α,β ,γ,δ −
∑

γ−α≥l ′>l

H0,k,l ′,l ′

α,β ,γ,δ

H0,k,l,l
α,β ,γ,δ =B

k,l+1
α,β ∧ [J k+1,l

γ,δ −Hk,k,l,l
α,β ,γ,δ] if β + k > δ and α≤ γ− l;

•Step 3b) (deaths)
Dk+1,l
γ,δ = Π−l,0

γ,δ p−
∑

k′≥l−γ+α

H−k′,0,−l,0
α,β ,γ,δ −

∑

δ−β≥k′>k

Hk′,k′,−l,0
α,β ,γ,δ

Hk,k,−l,0
α,β ,γ,δ = [J

k,l+1
α,β −Hk,k,l,l

α,β ,γ,δ]∧B
k+1,l
γ,δ if α > γ− l and β + k ≤ δ
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• The uncoupled terms are

i) Hk,k,0,0
α,β ,γ,δ =

(

J k,1
α,β if β + k > δ,

J k,1
α,β otherwise;

ii) H0,0,l,l
α,β ,γ,δ =

(

J 1,l
γ,δ if γ− l < α,

J1,l
γ,δ otherwise;

(3.34)

i) H0,k,0,0
α,β ,γ,δ =

(

B k,1
α,β if β + k > δ,

Bk,1
α,β otherwise;

ii) H0,0,0,l
α,β ,γ,δ = B1,l

γ,δ (3.35)

i) H0,0,−l,0
α,β ,γ,δ =

(

D1,l
γ,δ if γ− l < α,

D1,l
γ,δ otherwise;

ii) H−k,0,0,0
α,β ,γ,δ = Dk,1

α,β (3.36)

Remark 3.16. The uncoupled terms are given by the remainders of the original rates: this ensures that
we actually get a coupling. For instance, if β + k > δ, then by (3.34) (i), (3.15) and (3.15) we get

∑

l≥0

(Hk,k,l,l
α,β ,γ,δ +Hk,k,0,l

α,β ,γ,δ +Hk,k,−l,0
α,β ,γ,δ ) = J

k,1
α,β +

∑

l>0

(Hk,k,l,l
α,β ,γ,δ +Hk,k,0,l

α,β ,γ,δ) = Γ
k
α,β p

since Hk,k,l,l
α,β ,γ,δ = 0 for each l < k−δ+ β . If β + k ≤ δ, by (3.34) (i) and (3.15)

∑

l≥0

(Hk,k,l,l
α,β ,γ,δ +Hk,k,0,l

α,β ,γ,δ +Hk,k,−l,0
α,β ,γ,δ ) = J k,1

α,β +
∑

l>0

(Hk,k,l,l
α,β ,γ,δ +Hk,k,−l,0

α,β ,γ,δ ) = Γ
k
α,β p

since by (3.15) Hk,k,0,l
α,β ,γ,δ = 0 for each l > 0. One gets all the marginals by summing the coupling terms

in a similar way.

Remark 3.17. Coupling rates involving the largest change of N particles constructed above can be ob-
tained by an explicit calculation starting from Definition 3.15. For instance Formula (3.12) corresponds
to (3.15) with k = N. Indeed if β is N-bad the coupling terms HN ,N ,−l,0

α,β ,γ,δ = 0 by (3.15), and if k = N

then
∑

k′>N (H
k′,k′,l,l
α,β ,γ,δ+H0,k′,l,l

α,β ,γ,δ) = 0. Formulas (3.17), (3.21), (3.28) and (3.31) can be obtained in a
similar way.

The easier formulation of couplingH when N = 1 is derived in Appendix A.

We explicitly constructed the coupling rates such that the largest change of N particles breaks the
partial order: the following proposition proves that coupling H is increasing for such rates, under
Conditions (2.13) and (2.14) if β or/and γ are bad values. Indeed it states that all coupling terms
that would break the order of configurations are equal to 0.

Proposition 3.18. i) If β is N-bad and l < bN+ then under Condition (2.13)

HN ,N ,l,l
α,β ,γ,δ = H0,N ,0,l

α,β ,γ,δ = H0,N ,l,l
α,β ,γ,δ = HN ,N ,0,l

α,β ,γ,δ = 0. (3.37)

ii) If γ is N-bad and k < bN−, then under Condition (2.14)

Hk,k,N ,N
α,β ,γ,δ = H−k,0,−N ,0

α,β ,γ,δ = Hk,k,−N ,0
α,β ,γ,δ = H−k,0,N ,N

α,β ,γ,δ = 0. (3.38)
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Proof. i) Suppose l < bN+. Then H0,N ,0,l
α,β ,γ,δ = HN ,N ,l,l

α,β ,γ,δ = 0 by (3.15) and (3.24).

• Suppose N d+ = bN+− 1, then N B ≥ bN+ by Lemma 3.9 and H0,N ,l,l
α,β ,γ,δ = 0 for each l by (3.23). Since

HN ,N ,0,l
α,β ,γ,δ is null for each l < N dB by Table 5, we prove that N dB ≥ bN+.

Assume by contradiction that N dB < bN+. By Definition of N dB, (3.28), Table 3 and Remark 3.11,

HN ,N ,0,bN+

α,β ,γ,δ =Π0,bN+

γ,δ p− BN ,bN++1
α,β ∧ (Π0,bN+

γ,δ p)

=Π0,bN+

γ,δ p− 1l{bN+=N B}(Π
0,N
α,β p−

∑

l ′>N B

Π0,l ′

γ,δp)< J N ,bN++1
α,β . (3.39)

We compute J N ,l+1
α,β if l > N dB. By (3.28), (3.13) and Remark 3.11

J N ,l+1
α,β =ΓN

α,β p−
∑

l ′≥bN+
Γl ′
γ,δp−

∑

l ′>l

HN ,N ,0,l ′

α,β ,γ,δ

=ΓN
α,β p−

∑

l ′≥bN+
Γl ′
γ,δp−

∑

l ′>l

�

1l{l ′<N B}Π
0,l ′

γ,δp+ 1l{l ′=N B}H
N ,N ,0,N B

α,β ,γ,δ

	

=ΓN
α,β p−

∑

l ′≥bN+
Γl ′
γ,δp−

∑

N B>l ′>l

Π0,l ′

γ,δp

− 1l{N B>l}
�

Π0,N B

γ,δ p− (Π0,N
α,β p−

∑

l ′>N B

Π0,l ′

γ,δp)
�

. (3.40)

Hence by (3.39),

J N ,N d++1
α,β > Π0,bN+

γ,δ p− 1l{bN+=N B}(Π
0,N
α,β p−

∑

l ′>N B

Π0,l ′

γ,δp).

This implies that if either N B = bN+ or N B > bN+

ΓN
α,β p+Π0,N

α,β p >
∑

l ′≥bN+
Γl ′
γ,δp−

∑

l ′≥bN+
Π0,l ′

γ,δp (3.41)

which contradicts (3.9).

• Suppose N B = bN+−1, that is BN ,bN+

α,β > 0. Then N d+ ≥ bN+ by Lemma 3.9 and HN ,N ,0,l
α,β ,γ,δ = 0 for each

l by (3.14).
Notice that Condition (2.13) with K = 1, m1 = 0 and j1 = bN+− 1 reduces to

Π0,N
α,β p ≤

∑

l ′≥bN+
Π0,l ′

γ,δp−
∑

γ−α≥l ′≥bN+
Γl ′
γ,δp (3.42)

which contradicts BN ,bN+

α,β > 0 if bN+ > γ−α. Therefore we assume bN+ ≤ γ−α.

Since H0,N ,l,l
α,β ,γ,δ is null for each l < N Bd by Table 6, we prove that N Bd ≥ bN+. Suppose by contradiction

that N Bd < bN+ ≤ γ−α. By Definition of N Bd , (3.31), Table 1 and Remark 3.12,

H0,N ,bN+,bN+

α,β ,γ,δ =ΓbN
+

γ,δp− JN ,bN++1
α,β ∧ (ΓbN

+

γ,δp)

=ΓbN
+

γ,δp− 1l{bN+=N d+}(Γ
N
α,β p−

∑

l ′>N d+

Γl ′
γ,δp)<BN ,bN++1

α,β . (3.43)
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We computeBN ,l+1
α,β if l > N Bd . By (3.31), (3.22) and Remark 3.12

BN ,l+1
α,β =Π0,N

α,β p−
∑

l ′≥bN+
Π0,l ′

γ,δp−
∑

γ−α≥l ′>l

H0,N ,l ′,l ′

α,β ,γ,δ

=Π0,N
α,β p−

∑

l ′≥bN+
Π0,l ′

γ,δp−
∑

γ−α≥l ′>l

�

1l{N d+>l ′}Γ
l ′
γ,δp+ 1l{l ′=N d+}H

0,N ,N d+,N d+

α,β ,γ,δ

	

=Π0,N
α,β p−

∑

l ′≥bN+
Π0,l ′

γ,δp−
∑

N d+∧(γ−α+1)>l ′>l

Γl ′
γ,δp

− 1l{γ−α≥N d+>l}
�

ΓN d+

γ,δ p− (ΓN
α,β p−

∑

l ′>N d+

Γl ′
γ,δp)

�

. (3.44)

Hence by (3.43),

BN ,bN++1
α,β > ΓbN

+

γ,δp− 1l{bN+=N d+}(Γ
N
α,β p−

∑

l ′>N d+

Γl ′
γ,δp).

If γ−α≥ N d+ ≥ bN+ this is equivalent to (3.41), hence a contradiction. If N d+ > γ−α we get

Π0,N
α,β p >

∑

l ′≥bN+
Π0,l ′

γ,δp−
∑

γ−α≥l ′≥bN+
Γl ′
γ,δp

which contradicts (3.42).
Claim (ii) is proved by symmetric arguments.

Remark 3.19. As a consequence, Tables 5 and 6 (and the symmetric ones) do not contain any coupling
term breaking the partial order between configurations.

3.3 Sufficient condition

We complete the proof of Theorem 2.4 by

Proposition 3.20. Under Conditions (2.13)–(2.14),H is increasing.

In order to prove Proposition 3.20, we define a new system S (in fact a new pair of systems S :=

( fS ,S ) by Remark 3.4), depending on S andH , whose rates are those of S to whom we subtract
the coupled rates ofH involving changes of N particles.

Definition 3.21. Given S , S has the transition rates

Γ
k
α,β p =







J N ,1
α,β if (k = N ,β + N > δ)

J k,N
α,β if k < N or

(k = N ,β + N ≤ δ);
Γ

l
γ,δp =







J 1,N
γ,δ if (l = N ,γ− N < α),

JN ,l
γ,δ if l < N or

(l = N ,γ− l ≥ α);

Π
0,k
α,β p =

(

BN ,1
α,β if k = N ,

Π0,k
α,β p if k < N ;

Π
0,l
γ,δp =BN ,l

γ,δ for each l;

Π
−k,0
α,β p =D−k,N

α,β for each k; Π
−l,0
γ,δ p =

(

D1,N
γ,δ if l = N ,

Π−l,0
γ,δ p if l < N .

135



Our plan consists in working by induction on the largest change of particles n(S ) which causes
either a lower or a higher attractiveness problem: given the particle system S , it is defined by

W :={k : (k > δ− β or k > γ−α) and (Γk
α,β +Γ

k
γ,δ +Π

0,k
α,β +Π

−k,0
γ,δ > 0)}

n(S ) =n(S ,α,β ,γ,δ) :=

¨

sup W if W 6= ;;
(δ− β)∧ (γ−α) otherwise.

(3.45)

Remark 3.22. If γ (resp. β) is N-good, then n(S ) = sup{k : (k > δ − β) and (Γk
α,β +Π

0,k
α,β > 0)}

(resp. n(S ) = sup{k : (k > γ−α) and (Γk
γ,δ +Π

−k,0
γ,δ > 0)}).

By Remark 3.6, n(S ) = N . Let n̄= n(S ).
We prove that if S satisfies Conditions (2.13)–(2.14) and n(S ) = N , then H = H (S ) is
increasing. The induction hypothesis is: if a particle system S ∗ satisfies Conditions (2.13)–(2.14)
and n(S ∗)≤ N − 1, thenH (S ∗) is increasing.
We give an outline of the proof: suppose that the induction hypothesis is satisfied. We defined a
new system S . By Proposition 3.23, n ≤ N − 1 and by Proposition 3.24, it satisfies Conditions
(2.13)–(2.14). Therefore we can use the induction hypothesis and H =H (S ) is increasing. This
implies, by Proposition 3.27, thatH (S ) is increasing.

Proposition 3.23. If either β or γ (or both) are N-bad, then n̄≤ N − 1.

Proof. . If β is N -bad, we prove that Γ
N
α,β = 0= Π

0,N
α,β . By Definition 3.21 and (3.34) i)

Γ
N
α,β p =J N ,1

α,β = HN ,N ,0,0
α,β ,γ,δ ;

and by Definition 3.21 and (3.35) i)

Π
0,N
α,β p =BN ,1

α,β = H0,N ,0,0
α,β ,γ,δ.

Since β + N > δ + 0, by Proposition 3.18 i), HN ,N ,0,0
α,β ,γ,δ = 0, H0,N ,0,0

α,β ,γ,δ = 0 and we are done. In a

symmetric way Γ
N
γ,δ = Π

−N ,0
γ,δ = 0 if γ is N -bad.

If both β and γ are N -bad, by (3.45), n≤ N−1. If β is N -bad but γ is N -good, then n= sup{k : (k >
δ− β) and (Γ

k
α,β +Π

0,k
α,β) > 0}. Again n ≤ N − 1 since Γ

N
α,β and Π

0,N
α,β are null. The same conclusion

holds if γ is N -bad and β is good.

The harder part is:

Proposition 3.24. If S satisfies Conditions (2.13)–(2.14), then so does S .

Proof. . We prove that for all K , h, j,m, Ia, Ib, Ic , Id in Theorem 2.4,
∑

k>δ−β+ j1

Π
0,k
α,β +

∑

k∈Ia

Γ
k
α,β ≤

∑

l> j1

Π
0,l
γ,δ +

∑

l∈Ib

Γ
l
γ,δ (3.46)

∑

k>h1

Π
−k,0
α,β +

∑

k∈Id

Γ
k
α,β ≥

∑

l>γ−α+h1

Π
−l,0
γ,δ +

∑

l∈Ic

Γ
l
γ,δ. (3.47)

We prove (3.46). Since, by symmetry, the proof of (3.47) is similar, we skip it.
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Remark 3.25. Let A= {a ∈ X : a ≤ K , ja ≥ bN+}, then for each k > δ− β + ji > N such that ji ≥ ja
we have Γ

k
α,β = 0 by Definitions of N and 3.21. Therefore 1l{mi≥k>δ−β+ ji}Γ

k
α,β = 0. Let

KA =

¨

min A if A 6= ;
K + 1 otherwise.

IKA
a =

KA−1
⋃

i=1

{mi ≥ k > δ− β + ji}, IKA
b =

KA−1
⋃

i=1

{γ−α+mi ≥ l > ji} (3.48)

then condition
∑

k>δ−β+ j1

Π
0,k
α,β +

∑

k∈IKA
a

Γ
k
α,β ≤

∑

l> j1

Π
0,l
γ,δ +

∑

l∈IKA
b

Γ
l
γ,δ

implies (3.46) and we can suppose without loss of generality

bN+ > jK . (3.49)

If γ is N-bad a similar remark involving bN− and variables N d−, N D, N Dd and N dD holds by symmetry.

If β is N -good then Condition (3.46) is trivially satisfied. We suppose that both β and γ are N -bad.
If γ is N -good the proof is similar but easier, then we skip it. Hence we suppose bN+ > 0 and bN− > 0.

By Proposition 3.23, Π
0,N
α,β = 0 and by Definition 3.21, Π

0,l
α,β = Π

0,l
α,β for each l < N . Therefore

∑

k>δ−β+ j1

Π
0,k
α,β p =

∑

k>δ−β+ j1

Π0,k
α,β p−Π0,N

α,β p (3.50)

By Proposition 3.23, Γ
N
α,β = 0. Moreover Hk,k,−N ,0

α,β ,γ,δ = 0 for each k > δ− β + ji ≥ δ− β by (3.15).
Then by Definition 3.21, (3.15) and (3.49) we have

∑

k∈Ia

Γ
k
α,β p =

∑

k∈Ia\{N}

�

Γk
α,β p−Hk,k,N ,N

α,β ,γ,δ

�

(3.51)

where Ia \ {N} is the shorthand for Ia1l{N /∈Ia}+ (Ia \ {N})1l{N∈Ia}.

The right hand side of (3.46) is given by Definition 3.21, (3.15) and (3.15). Notice that Γ
N
γ,δ = 0 by

Proposition 3.23 since γ is N -bad; moreover H0,N ,l,l
α,β ,γ,δ = 0 if l > γ−α by (3.29):

∑

l> j1

Π
0,l
γ,δp+

∑

l∈Ib

Γ
l
γ,δp =

∑

l> j1

�

Π0,l
γ,δp−H0,N ,0,l

α,β ,γ,δ −HN ,N ,0,l
α,β ,γ,δ

�

+
∑

l∈Ib\{N}

�

Γl
γ,δp−HN ,N ,l,l

α,β ,γ,δ −H0,N ,l,l
α,β ,γ,δ

�

. (3.52)

By Remark 3.9 either N B ≥ bN+ or N d+ ≥ bN+. We detail the case N d+ ≥ bN+, which contains all the
technical difficulties of the proof. The other proof (for N d+ = bN+− 1) is similar.
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Since N d+ ≥ bN+ then HN ,N ,0,l
α,β ,γ,δ = 0 for each l by (3.14). Moreover H0,N ,l,l

α,β ,γ,δ = 0 for each

l > γ − α by (3.15). Since bN− > 0 and {γ − α ≥ l > j1} ⊆ Ib then
∑

{l∈Ib}∩{l 6=N}

H0,N ,l,l
α,β ,γ,δ =

1l{N B=bN+−1}

∑

γ−α≥l> j1

H0,N ,l,l
α,β ,γ,δ. Moreover using Tables 3 and 4

∑

l> j1

�

Π0,l
γ,δp−H0,N ,0,l

α,β ,γ,δ

�

=
∑

N B≥l> j1

�

Π0,l
γ,δp−H0,N ,0,l

α,β ,γ,δ

�

. (3.53)

The first term on the right hand side (3.52) that we consider is
∑

N B≥l> j1

(Π0,l
γ,δp−H0,N ,0,l

α,β ,γ,δ)− 1l{N B=bN+−1}

∑

γ−α≥l> j1

H0,N ,l,l
α,β ,γ,δ. (3.54)

• If N B ≥ bN+, since bN+ > jK ≥ j1 by (3.49), we have N B > j1: by using Table 3 and (3.21), (3.54)
is equal to

∑

N B≥l> j1

Π0,l
γ,δp− BN ,N B+1

α,β =
∑

l> j1

Π0,l
γ,δp−Π0,N

α,β p. (3.55)

• If N B = bN+ − 1, since in proof of Proposition 3.18 we obtained that N Bd ≥ bN+, again by (3.49),
we have N Bd > j1: by Table 6, (3.31) and (3.22), (3.54) is equal to

∑

bN+−1≥l> j1

Π0,l
γ,δp−

∑

γ−α≥l>N Bd

H0,N ,l,l
α,β ,γ,δ −B

N ,N Bd+1
α,β =

∑

l>bN+−1

Π0,l
γ,δp− BN ,bN+

α,β

=
∑

l> j1

Π0,l
γ,δp−Π0,N

α,β p. (3.56)

that is (3.54) has the same value in both cases. The second sum on the right hand side of (3.52) is
∑

l∈Ib\{N}

�

Γl
γ,δp−HN ,N ,l,l

α,β ,γ,δ

�

=
∑

l∈Ib\{N}

Γl
γ,δp−

∑

l∈Ib\{N}

Γl
γ,δp1l{l>N d+}

−
∑

l∈Ib\{N}

�

ΓN
α,β p−

∑

l ′>N d+

Γl ′
γ,δp

�

1l{l=N d+}

=
∑

l∈Ib\{N}

Γl
γ,δp−

∑

l∈Ib\{N}

Γl
γ,δp1l{l>N d+}

−
�

ΓN
α,β p−

∑

l>N d+

Γl
γ,δp

�

1l{N d+∈Ib\{N}}. (3.57)

Therefore using (3.53), (3.55), (3.56) and (3.57)
∑

l> j1

Π
0,l
γ,δp+

∑

l∈Ib

Γ
l
γ,δp =

∑

l> j1

Π0,l
γ,δp−Π0,N

α,β p+
∑

l∈Ib\{N}

Γl
γ,δp−

∑

l∈Ib\{N}

Γl
γ,δp1l{l>N d+}

−
�

ΓN
α,β p−

∑

l>N d+

Γl
γ,δp

�

1l{N d+∈Ib\{N}}. (3.58)

We use (3.50), (3.51), (3.58) and Condition (2.13) to check that Condition (3.46) is satisfied.
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Case A: Suppose N d− = N . In this case ΓN
α,β > Γ

N
γ,δ (by (3.11)) and Hk,k,N ,N

α,β ,γ,δ = 0 for each k < N .
Therefore by (3.51)

∑

k∈Ia

Γ
k
α,β =

∑

k∈Ia\{N}

Γk
α,β . (3.59)

• Suppose N d+ /∈ Ib. Since N d+ ≥ bN+ > jK by (3.49), we must have N d+ > γ− α+ mK , hence
Ib \ {{N} ∪ {N ≥ l > N d+}} = Ib. It implies that

∑

l∈Ib\{N}
Γl
γ,δ1l{l>N d+} = 0, and by (3.50), (3.51)

and (3.58) Condition (3.46) becomes
∑

k>δ−β+ j1

Π0,k
α,β +

∑

k∈Ia\{N}

Γk
α,β ≤

∑

l> j1

Π0,l
γ,δ +

∑

l∈Ib

Γl
γ,δ

which holds by Condition (2.13).
• If N d+ ∈ Ib \ {N}, then

γ−α+mK ≥ N d+ ≥ bN+ > jK , (3.60)

hence (see Table 1) by (3.50), (3.51) and (3.58) Condition (3.46) is
∑

k>δ−β+ j1

Π0,k
α,β +

∑

k∈Ia\{N}

Γk
α,β ≤

∑

l> j1

Π0,l
γ,δ +

∑

l∈Ib\{N}

Γl
γ,δ −

∑

l∈Ib\{N}

Γl
γ,δ1l{l>N d+}

−ΓN
α,β +

∑

l>N d+

Γl
γ,δ

=
∑

l> j1

Π0,l
γ,δ +

∑

l∈{Ib\{N}}∪{l>N d+}

Γl
γ,δ −Γ

N
α,β . (3.61)

Notice that
�

Ib \ {N}
	

∪ {l > N d+}= Ib ∪ {l > N d+}.

• If N ∈ Ia, (3.61) becomes
∑

k>δ−β+ j1

Π0,k
α,β +

∑

k∈Ia

Γk
α,β ≤

∑

l> j1

Π0,l
γ,δ +

∑

l∈Ib∪{l>N d+}

Γl
γ,δ

which holds by (2.13).
• If N /∈ Ia, (3.61) writes

∑

k>δ−β+ j1

Π0,k
α,β +

∑

k∈Ia∪{N}

Γk
α,β ≤

∑

l> j1

Π0,l
γ,δ +

∑

l∈Ib∪{l>N d+}

Γl
γ,δ (3.62)

Denote by

bIa =Ia ∪ {N ≥ l ≥ δ− β + (N −δ+ β)}= Ia ∪ {N ≥ l ≥ N}
bIb =Ib ∪ {N + γ−α≥ l ≥ N −δ+ β}

then by Condition (2.13) applied to bIa, bIb
∑

k>δ−β+ j1

Π0,k
α,β +

∑

k∈bIa

Γk
α,β ≤

∑

l> j1

Π0,l
γ,δ +

∑

l∈bIb

Γl
γ,δ. (3.63)

By (3.60), bIb = Ib ∪ {N + γ−α≥ l > N d+} and (3.63) implies (3.62).
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Remark 3.26. This is the key passage where a Definition of Ia, . . . Id as a single set instead of a union
of several sets does not work.

Case B: Suppose N = N d+. In this case HN ,N ,l,l
α,β ,γ,δ = 0 for each l < N , the left hand side of (3.57)

is equal to
∑

l∈Ib\{N}
Γl
γ,δp, Formula (3.51) still holds but terms Hk,k,N ,N

α,β ,γ,δ are not null. One works

as in Case A, when N d− = N , by using the symmetric construction of Hk,k,N ,N
α,β ,γ,δ and by checking the

condition in different cases.

Proposition 3.27. IfH :=H (S ) is increasing, thenH =H (S ) is increasing.

Proof. . We show that all coupling rates of H breaking the partial order between configurations
are null. By Proposition 3.18, the ones involving N particles are null and if both β and γ are
(N − 1)-good thenH is increasing. Therefore we suppose that either β or γ is (N − 1)-bad.
We prove thatH andH differ only on rates where a change of N particles causes an attractiveness
problem. By Proposition 3.23 such terms are null forH .

Step 1: by Definition 3.15 (3.15) on S and Definition 3.21, if N > k ≥ k−δ+ β , we get

H
k,k,l,l
α,β ,γ,δ =[Γ

k
α,β p−

∑

l ′>l

�

H
k,k,l ′,l ′

α,β ,γ,δ +H
k,k,−l ′,0
α,β ,γ,δ

�

]∧ [Γl
γ,δp−

∑

k′>k

�

H
k′,k′,l,l
α,β ,γ,δ +H

0,k′,l,l
α,β ,γ,δ)]

=[J k,N
α,β −

∑

l ′>l

(H
k,k,l ′,l ′

α,β ,γ,δ +H
k,k,−l ′,0
α,β ,γ,δ )]∧ [J

N ,l
γ,δ −

∑

k′>k

�

H
k′,k′,l,l
α,β ,γ,δ +H

0,k′,l,l
α,β ,γ,δ)] (3.64)

Note that since J k,N
α,β = Γ

k
α,β p−Hk,k,N ,N

α,β ,γ,δ +Hk,k,−N ,0
α,β ,γ,δ and JN ,l

γ,δ = Π
0,l
γ,δp−HN ,N ,l,l

α,β ,γ,δ−H0,N ,l,l
α,β ,γ,δ, by definition

(3.15) when 0< k, l ≤ N − 1,

Hk,k,l,l
α,β ,γ,δ =[J

k,N
α,β −

∑

l ′>l

(Hk,k,l ′,l ′

α,β ,γ,δ +Hk,k,−l ′,0
α,β ,γ,δ )]∧ [J

N ,l
γ,δ −

∑

k′>k

�

Hk′,k′,l,l
α,β ,γ,δ +H0,k′,l,l

α,β ,γ,δ)]. (3.65)

By (3.64) and (3.65), Hk,k,l,l
α,β ,γ,δ and H

k,k,l,l
α,β ,γ,δ have the same recursive definition when 0 < k ≤ N − 1,

0< l ≤ N − 1.

Step 2: If β is k-bad (otherwise H
0,k,0,l
α,β ,γ,δ = H0,k,0,l

α,β ,γ,δ = 0 for each l > 0), by Definition 3.15 (3.15)
and Definition 3.21

H
0,k,0,l
α,β ,γ,δ =[Π

0,k
α,β p−

∑

l ′>l

H
0,k,0,l ′

α,β ,γ,δ]∧ [Π
0,l
γ,δp−

∑

k′>k

(H
0,k′,0,l
α,β ,γ,δ +H

k′,k′,0,l
α,β ,γ,δ )].

=[Π0,k
α,β p−

∑

l ′>l

H
0,k,0,l ′

α,β ,γ,δ]∧ [B
N ,l
γ,δ −

∑

k′>k

(H
0,k′,0,l
α,β ,γ,δ +H

k′,k′,0,l
α,β ,γ,δ )]. (3.66)

As in previous case, since BN ,l
γ,δ = Π

0,l
γ,δp − H0,N ,0,l

α,β ,γ,δ − HN ,N ,0,l
α,β ,γ,δ , by definition (3.15), H0,k,0,l

α,β ,γ,δ and

H
0,k,0,l
α,β ,γ,δ have the same recursive definition when 0 < k ≤ N − 1, 0 < l ≤ N . Notice that in this case

they coincide even if l = N , since we may have Π
0,N
γ,δ p > 0. By similar arguments and (3.15) we

prove the symmetric result with respect to death rates.
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Step 3a: Suppose that β is k-bad and J
k,k−δ+β
α,β > 0, that is Step 1 was not enough to solve the

attractiveness problem induced by Γ
k
α,β p for S . By Definitions 3.15 (3.15)–(3.15) and 3.21

H
k,k,0,l
α,β ,γ,δ =[Γ

k
α,β p−

∑

l ′≥k−δ+β

H
k,k,l ′,l ′

α,β ,γ,δ −
∑

l ′>l

H
k,k,0,l ′

α,β ,γ,δ]∧ [Π
0,l
γ,δp−

∑

k′≥k

H
0,k′,0,l
α,β ,γ,δ −

∑

k′>k

H
k′,k′,0,l
α,β ,γ,δ )]

=[J k,N
α,β −

∑

l ′≥k−δ+β

H
k,k,l ′,l ′

α,β ,γ,δ −
∑

l ′>l

H
k,k,0,l ′

α,β ,γ,δ]∧ [B
N ,l
γ,δ −

∑

k′≥k

H
0,k′,0,l
α,β ,γ,δ −

∑

k′>k

H
k′,k′,0,l
α,β ,γ,δ )]. (3.67)

Since J k,N
α,β = Γ

k
α,β p − Hk,k,N ,N

α,β ,γ,δ − Hk,k,0,N
α,β ,γ,δ and BN ,l

γ,δ = Π
0,l
γ,δp − H0,N ,0,l

α,β ,γ,δ − HN ,N ,0,l
α,β ,γ,δ , again Hk,k,0,l

α,β ,γ,δ and

H
k,k,0,l
α,β ,γ,δ have the same recursive definition when 0 < k ≤ N − 1, 0 < l ≤ N . The equality of

recursive formulas corresponding to Step 3b is proved in a similar way.

Since all terms are defined by the same downwards induction formula, we just need to check that
they coincide for the initial coupling rates. The one involving ΓN−1

α,β p and ΓN−1
γ,δ p is given by (3.64)

with l = N − 1, that is

H
N−1,N−1,N−1,N−1
α,β ,γ,δ =JN−1,N

α,β ∧ JN ,N−1
γ,δ = [ΓN−1

α,β p−HN−1,N−1,N ,N
α,β ,γ,δ +HN−1,N−1,−N ,0

α,β ,γ,δ ]

∧ [ΓN−1
γ,δ p−HN ,N ,N−1,N−1

α,β ,γ,δ −H0,N ,N−1,N−1
α,β ,γ,δ ] = HN−1,N−1,N−1,N−1

α,β ,γ,δ

and we are done. The one involving Π0,N−1
α,β p is given by (3.66) with l = N , that is

H
0,N−1,0,N
α,β ,γ,δ =Π0,N−1

α,β p ∧ BN ,N
γ,δ = Π

0,N−1
α,β p ∧ [Π0,N

γ,δ p−H0,N ,0,N
α,β ,γ,δ −HN ,N ,0,N

α,β ,γ,δ ]

=H0,N−1,0,N
α,β ,γ,δ .

We prove that H−N ,0,−(N−1),0
α,β ,γ,δ = H−N ,0,−(N−1),0

α,β ,γ,δ for death rates by symmetric arguments.

Therefore H and H are identical for all coupling rates involving a change of less than N particles
which cause an attractiveness problem: the conclusion includes uncoupled rates. The claim follows
sinceH is increasing and by Proposition 3.18.

3.3.1 Proof of Proposition 3.20

We do an induction in two steps. First of all we suppose that β is N -bad and γ is N -good, that is
β + N > δ and γ− N ≥ α. We skip the similar symmetric case.
Let S ∗N := S and suppose that Proposition 3.20 holds for each system S ∗ such that n(S ∗)≤ N −1.
Notice that since γ is N -good, then γ is n(S ∗)-good for each S ∗ and, by Remark 3.22, definition of
n(S ∗) involves for each S ∗ only rates that cause a lower attractiveness problem.
Remember that Definition 3.21 of S depends on the original system, that is S = S (S ). We define
S ∗j = S (S

∗
j+1) and n j = n(S ∗j ) for j ∈ N, j ≤ N − 1.

If β is (N −1)-bad, by Proposition 3.23, nN−1 ≤ N −1, and S ∗N−1 satisfies Conditions (2.13)–(2.14)
by Proposition 3.18. We define a coupling HN−1 for S ∗N−1 as in Definition 3.15, and by induction
hypothesis it is increasing. By Proposition 3.27, ifHN−1 is increasing then so isHN .
We have to check the induction basis: we proceed downwards with definitions of the new systems
S ∗j until β + j ≤ δ. If β < δ, then S ∗i with j = δ−β is attractive, since β + j ≤ δ and there are no
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attractiveness problems. If β = δ, then the attractiveness of a system with n1 = 1 under Condition
(2.13) is proved in Appendix A.

We proved that all systems such that there is only a lower (or only a higher) attractiveness problem
are attractive under Conditions (2.13)–(2.14). Now we prove that this holds also for a system
where both β and γ are N -bad.

If β + N > δ and γ− N < α, the definition of n(S ) is given by (3.45) but everything works in a
similar way: we define S ∗N = S , S ∗j = S (S

∗
j+1) and n j = n(S ∗j ) for j ≤ N − 1.

If both β and γ are (N − 1)-bad, by Proposition 3.23, nN−1 ≤ N − 1 and S ∗N−1 satisfies Conditions
(2.13)–(2.14) by Proposition 3.18. We define a coupling HN−1 for S ∗N−1 as in Definition 3.15; by
induction hypothesis it is increasing. By Proposition 3.27, ifHN−1 is increasing then so isHN .
We have to check the induction basis: we proceed downwards with the definition of a new system
S ∗j until either β or γ are j-good, that is until j = (δ− β)∨ (γ−α).
If δ−β 6= γ−α, then only one attractiveness problem is present and the claim follows from the first
part of the proof.
If j = δ − β = γ − α > 0, then S ∗j is attractive since there are no attractiveness problems; if
j = δ − β = γ− α = 0, then the attractiveness of a system with n1 = 1, β = δ and γ = α under
Conditions (2.13)–(2.14) is proved in Appendix A. �

3.4 Sufficient conditions on more general systems

In order to show the sufficient conditions of Theorem 2.4, we restricted ourselves to transi-
tion rates on a given pair of sites (x , y): if Conditions (2.13)–(2.14) are satisfied we can
construct an increasing coupling for the system S(x ,y) and the final increasing coupling is
given by superposition of couplings for all pairs of sites (see Section 3.2 and Proposition
3.3). We use neither the translation invariance of P±k

η(x), nor the fact that the smaller and
the larger systems share the same p(x , y). Therefore we can state the result for a more gen-
eral pair of systems G = {R0,±k

η(x),η(y)(x , y),Γk
η(x),η(y)(x , y), P±k

η(x)(x), p(x , y))} and eG = {eR0,±k
η(x),η(y),

eΓk
η(x),η(y), eP

±k
η(x)(x),ep(x , y)}:

Corollary 3.28. A particle system ηt ∼ G is stochastically larger than ξt ∼ eG if for each (x , y) ∈ S2,
(α,β)≤ (γ,δ), (α,β) ∈ X 2, (γ,δ) ∈ X 2, with p = p(x , y) and ep = ep(x , y)

�

∑

k>δ−β+ j1

eΠ0,k
α,β(x , y) +

∑

k∈Ia

eΓk
α,β(x , y)

�

ep ≤
�

∑

l> j1

Π0,l
γ,δ(x , y) +

∑

l∈Ib

Γl
γ,δ(x , y)

�

p,

�

∑

k>h1

eΠ−k,0
α,β (x , y) +

∑

k∈Id

eΓk
α,β(x , y)

�

ep ≥
�

∑

l>γ−α+h1

Π−l,0
γ,δ (x , y) +

∑

l∈Ic

Γl
γ,δ(x , y)

�

p,

for all choices of K ≤ eN(α,β)∨ N(γ,δ), k, j, m in Theorem 2.4.

Such conditions are not necessary. We use Corollary 3.28 with the comparison technique with
oriented percolation in [3] to prove survival of species in metapopulation models.
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4 Proof of Theorem 2.10

Since F(x , y) = F(0, y− x) = F(y− x , 0), with a slight abuse of notation we write F(y− x) instead
of F(x , y).

Proof. of Proposition 2.12.
We treat separately the cases γ= 0 and γ > 0.
i) If γ = 0 then the Dirac measure δ0 is invariant. We denote by P(·) the independent coupling
measure and by E(·) its expected value. We fix x ∈ S and we compute the generator on F(ηM

t (x)) in
Definition (2.30), where {ul(ε)}l∈X satisfies Hypothesis (2.35). Let t ≥ 0, we denote by ηM

t (x) = l.
By (2.35)

L F(ηM
t (x)) =L F(l) = 1l{l=0}

h

λ
∑

y∼x
ηM

t (y)(F(1)− F(0))
i

+ 1l{1≤l≤M−1}

h

(β
∑

y∼x
ηM

t (y) + lφ)(F(l + 1)− F(l)) + l(F(l − 1)− F(l))
i

+ 1l{l=M}

h

M(F(M − 1)− F(M))
i

= 1l{l=0}

h

λ
∑

y∼x
ηM

t (y)u0

i

+ 1l{1≤l≤M−1}

h

(β
∑

y∼x
ηM

t (y) + lφ)ul − lul−1

i

+ 1l{l=M}

h

−MuM−1

i

≤1l{l=0}

h

(λ
∑

y∼x
ηM

t (y) + lφ)ul − lul−1

i

+ 1l{1≤l≤M}

h

(β
∑

y∼x
ηM

t (y) + lφ)ul − lul−1

i

≤(λ∨ β)ū
∑

y∼x
ηM

t (y) + l(φul − ul−1)

≤(λ∨ β)ū
∑

y∼x
ηM

t (y)− ε
l−1
∑

j=0

u j − (λ∨ β)2dūl. (4.1)

Let ηM
0 ∈ Ω

M . By translation invariance and Definition (2.30)

d

d t
E(F(ηM

t (x))) =E(L F(ηM
t (x)))≤ E

�

(λ∨ β)ū
∑

y∼x
ηM

t (y)− ε
ηM

t (x)−1
∑

j=0

u j − (λ∨ β)2dūηM
t (x)

�

=− εE(F(ηM
t (x))).

By Gronwall’s Lemma we get the result.

ii) If γ > 0 then δ0 is not any more an invariant measure. Let (ξt ,ηt)t≥0 be a coupled process
through the basic coupling probability measure eP such that ξ0 ∈ Ω0 and η0 ∈ ΩM . We fix x ∈ Zd .
We denote by k = ξt(x), l = ζt(x) := ηt(x)− ξt(x) and k+ l = ηt(x). First of all we prove
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Lemma 4.1.

L F(k, k+ l)≤λ
∑

y∼x
(ηt(y)− ξt(y))ul + l

�

φul − ul−1
�

. (4.2)

Proof. . By Definition (2.30),

L F(ξt(x),ηt(x)) =1l{k=l=0}

h

λ
∑

y∼x
ζt(y)ul

i

+ 1l{k=0,0<l≤M−1}

h

(λ
∑

y∼x
ξt(y)

+ γ)(−ul−1) + (k+ l)(−ul−1) + (β
∑

y∼x
ηt(y) + lφ)ul

i

+ 1l{k=0,l=M}

h

(λ
∑

y∼x
ξt(y) + γ)(−ul−1) +M(−uM−1)

i

+ 1l{k>0,k+l≤M−1}

h

(β
∑

y∼x
ζt(y) + lφ)ul + l(−ul−1)

i

+ 1l{k≤M−1,k+l=M}

h

(β
∑

y∼x
ξt(y) + kφ)(−ul−1) + l(−ul−1)

i

. (4.3)

We prove that

L F(k, k+ l)≤1l{k=0,0<l≤M−1}

h

− (λ
∑

y∼x
ξt(y) + γ)ul−1− lul−1+ (β

∑

y∼x
ηt(y) + lφ)ul

i

+ 1l{{k=0,0<l≤M−1}c}

h

(λ∨ β)
∑

y∼x
ζt(y)ul + lφul − lul−1

i

. (4.4)

Notice that if k = 0 then ηt(x) = k+ l = l.
If k ≥ 0 and k+ l = M , then the last term in the right hand side of (4.3) is smaller or equal to

β
∑

y∼x
ζt(y)ul + lφul − lul−1.

The same inequality holds when l = 0 and k = M , that is ξt(x) = ηt(x) = M , since the last term in
the right hand side of (4.3) is null and lφul − lul−1 = 0. If k = 0 and l = 0,

λ
∑

y∼x
ζt(y)ul = λ

∑

y∼x
ζt(y)ul + lφul − lul−1.

Therefore (4.4) holds.
Since ul is non increasing in l,

−(λ
∑

y∼x
ξt(y) + γ)ul−1 ≤−(λ

∑

y∼x
ξt(y) + γ)ul

If β ≤ λ,

−(λ
∑

y∼x
ξt(y) + γ)ul−1− lul−1+ (β

∑

y∼x
ηt(y) + lφ)ul

≤ lφul − lul−1+λ
∑

y∼x
ζt(y)ul
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and by (4.4) the claim follows; if β > λ

lφul − lul−1+ β
∑

y∼x
ηt(y)ul −λ

∑

y∼x
ξt(y)ul−1− γul−1

= lφul − lul−1+λ
∑

y∼x
ζt(y)ul +

�

(β −λ)
∑

y∼x
ηt(y)− γ

�

ul . (4.5)

Since β − λ ≤ γ/(2dM), then (β − λ)
∑

y∼x ηt(y)− γ ≤ 0 and the claim follows from (4.4) and
(4.5).

By Lemma 4.1, (2.35) and translation invariance

eE
�

L F(k, k+ l)
�

≤ eE
�

lφul − lul−1+λ
∑

y∼x
ζt(y)ul

�

≤ eE
�

− ε
l−1
∑

j=0

u j −λU2dl +λ
∑

y∼x
ζt(y)U

�

=−εeE
�

F(k, k+ l)
�

.

and the claim follows by Gronwall’s Lemma.

Now we prove that Definition 2.14 satisfies the hypothesis of the u-criterion under (2.29). We begin
with a technical proposition.

Proposition 4.2. Let (ul(ε))l∈X be given by Definition 2.14. If φ < 1 and

1−φ
2d

< λ∨ β <
1−φ

2d(1−φM )

then there exists ε̄ > 0 such that ul(ε) is positive, decreasing in l for each l ∈ X and in ε for each
0< ε≤ ε̄.

We prove Proposition 4.2 by induction on l. We need the following lemma to use the induction
hypothesis:

Lemma 4.3. If for l ∈ X ,

λ∨ β <
1−φ

2d(1−φ l)

and there exists ε̄ such that uk(ε) > 0 for each k ≤ l − 1, 0 < ε ≤ ε̄; then there exists 0 < ε∗ ≤ ε̄ such
that

U <
ul−1(ε∗)

2d(λ∨ β)
. (4.6)

Proof. . We prove by a downwards induction on 0≤ k ≤ l − 1 that:
if there exists 0< ε∗ ≤ ε̄ such that

J(k,ε∗) :=−(λ∨ β)2dU(1+φ + . . .+φk) + ul−k−1(ε
∗)> 0 (4.7)
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then J(k− 1,ε∗)> 0.
Indeed, if k = l − 1 then (4.7) is the assumption (λ∨ β)2d(1−φ l)< 1−φ.
Suppose there exists 0< ε∗ ≤ ε̄ such that J(k,ε∗)> 0. By Definition 2.14, (4.7) is equivalent to

−(λ∨ β)2dU(1+ . . .+φk) +
−ε∗

∑l−k−2
j=0 u j(ε∗) + (l − k− 1)

�

− U(λ∨ β)2d + ul−k−2(ε∗)
�

φ(l − k− 2)
> 0

that is

−(λ∨ β)2dU(l − k− 1)
�

(1+ . . .+φk)φ + 1
�

− ε∗
l−k−2
∑

j=0

u j(ε
∗) + (l − k− 1)ul−k−2(ε

∗)> 0.

Therefore

J(k− 1,ε∗)>−(λ∨ β)2dU(1+φ + . . .+φk+1) + ul−k−2(ε
∗)>

ε∗

l − k− 1

l−k−2
∑

j=0

u j(ε
∗).

Since by hypothesis u j(ε)> 0 for each 0< ε≤ ε̄, then J(k−1,ε∗)> 0 and by induction (4.7) holds
for each 0≤ k ≤ l − 1. By taking k = 0 we get

−(λ∨ β)2dU + ul−1(ε
∗)> 0

which is the claim.

Proof. of Proposition 4.2.
We prove by induction on l ∈ X that there exists ε̄l such that for each 0 < ε < ε̄l and for each

0≤ j ≤ l, u j(ε) is positive, decreasing in j, U <
u j(ε)

2d(λ∨ β)
and

0>
d

dε
u j(ε)≥−CU( j) (4.8)

with CU( j) the solution of

CU(1) =
U

φ
, CU( j) =

CU( j− 1) + U

φ
. (4.9)

This gives

CU( j) =
U

φ j (1+φ +φ
2+ . . .+φ j−1) = U

1−φ j

φ j(1−φ)
(4.10)

hence u j(ε)> 0 is also decreasing in ε.
We prove the induction basis when l = 1. By Definition 2.14

u1(ε) =
−εu0− U(λ∨ β)2d + u0

φ
= u0

−ε− (λ∨ β)2d + 1

φ
.

Since (λ ∨ β)2d > 1−φ we can take ε < ε1 small enough to have 1− (λ ∨ β)2d − ε < φ, that is
u1(ε) < u0 = U; since (λ∨ β)2d < 1 then U < U/(2d(λ∨ β)) and, by taking ε < ε∗1 small enough,
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u1(ε) is positive; moreover notice that u1(ε) is decreasing in ε, and d
dε

u1(ε) = −
U
φ
= −CU(1) for

each ε. Hence the induction basis as well as the hypothesis of Lemma 4.3 are satisfied for l = 1:
there exists ε̄1 = ε1 ∧ ε∗1 such that if ε ≤ ε̄1 then U > u1(ε) > 0, u1(ε) is decreasing in ε, and (4.6)
holds.
Suppose there exists ε̄l−1 > 0 such that for each 0 < ε ≤ ε̄l−1, then 0 > d

dε
u j(ε) ≥ −CU( j), u j(ε) is

decreasing in j for each j ≤ l − 1, U <
u j(ε)

2d(λ∨ β)
and u j(ε)> 0 for each j ≤ l − 1.

First of all we prove that there exists εl > 0 such that if 0 < ε < εl then ul(ε) < ul−1(ε). By
Definition 2.14

ul(ε) = ul−1(ε)
�−ε

∑l−1
j=0 u j(ε)− U(λ∨ β)2dl + lul−1(ε)

φlul−1(ε)

�

. (4.11)

By induction hypothesis, if ε≤ ε̄l−1 then U > u j(ε)> 0 for each j ≤ l − 1 and we get

−ε
∑l−1

j=0 u j(ε)− U(λ∨ β)2dl + lul−1(ε)

φlul−1(ε)
<
−U(λ∨ β)2dl + lul−1(ε)

φlul−1(ε)

<
1

φ
−
(λ∨ β)2d

φ
< 1

that is ul(ε)< ul−1(ε) by (4.11) and we set εl = ε̄l−1.
By (4.10), CU( j) is always positive and increasing in j. We prove that (4.8) holds for j = l. By
Definition 2.14

d

dε
ul(ε) =

1

φl

�

− ε
d

dε

l−1
∑

j=0

u j(ε)−
l−1
∑

j=0

u j(ε) + l
d

dε
ul−1(ε)

�

. (4.12)

We begin with the right inequality involving the derivative of ul(ε) in (4.8). By induction hypothesis,
if 0< ε≤ ε̄l−1 by (4.9), (4.10) and (4.12) on the one hand

φl
d

dε
ul(ε)>− lU − lCU(l − 1) =−CU(l)lφ.

and on the other hand

φl
d

dε
ul(ε)≤ε

l−1
∑

j=0

CU( j)−
l−1
∑

j=0

u j(ε) + l
d

dε
ul−1(ε)< ε

l−1
∑

j=0

U
1−φ j

φ j(1−φ)
−

l−1
∑

j=0

u j(ε).

Since 0 < ε < ε̄l−1 and u j(ε) is positive and decreasing in ε, as ε approaches 0 the first sum on
the right hand side goes to 0, while the second sum is positive and increasing: therefore for each
j ≤ l − 1, we can take ε̂l small enough so that d

dε
ul(ε)< 0 for each 0< ε≤ ε̂l .

Now we prove that there exists ε∗l > 0 such that ul(ε) > 0 for each 0 < ε ≤ ε∗l . By Definition 2.14,
ul(ε)> 0 if

− U(λ∨ β)2dl + lul−1(ε)> ε
l−1
∑

j=0

u j(ε). (4.13)

By the induction hypothesis, assumptions of Lemma 4.3 are satisfied, hence there exists 0 < ε∗ ≤
ε̄l−1 such that (4.6) is satisfied. Thus −U(λ∨β)2dl+ lul−1(ε∗)> 0 and we can choose ε∗l ≤ ε

∗ such
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that

−U(λ∨ β)2dl + lul−1(ε
∗)> ε∗l lU (4.14)

If ε≤ ε∗l (≤ ε̄l−1)

−U(λ∨ β)2dl + lul−1(ε)>− U(λ∨ β)2dl + lul−1(ε
∗)

>ε∗l lU > ε∗l

l−1
∑

j=0

u j(ε)> ε
l−1
∑

j=0

u j(ε)

which is (4.13). By taking 0< ε < ε̄0 ∧ . . . ε̄l−1 ∧ ε̂l ∧ ε∗l , ul(ε)> 0 and is decreasing in l and ε, and
the claim follows.

Proof. of Theorem 2.10.
Let {ul(ε)}l∈X be given by Definition (2.36). By Proposition 4.2 we can choose 0 < ε < ε̄ such that
ul(ε)> 0 for each l ∈ X and ergodicity follows from Proposition 2.12.
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[13] C. NEUHAUSER. An ergodic theorem for Schlögl models with small migration. Probab. Theory
Related Fields. 85 (1990), no. 1, 27–32. MR1044296

[14] C. NEUHAUSER. Ergodic theorems for the multitype contact process. Probab. Theory Related
Fields. 91 (1992), no. 3-4, 467–506. MR1151806

[15] R.B. SCHINAZI. Classical and spatial stochastic processes. Birkhäuser Boston Inc., Boston, 1999.
MR1719718

[16] R.B. SCHINAZI. On the spread of drug resistant diseases. J. Statist. Phys. 97 (1999), no. 1-2,
409–417. MR1733477

[17] R.B. SCHINAZI. On the role of social clusters in the transmission of infectious disesases. Theor.
Popul. Biol. 61 (2002), 163–169.

[18] R.B. SCHINAZI. Mass extinctions: an alternative to the Allee effect. Ann. Appl. Probab. 15
(2005), no. 1B, 984–991. MR2114997

[19] P.A. STEPHENS AND W.J. SUTHERLAND. Consequences of the Allee effect for behaviour, ecology
and conservation. Trends in Ecology and Evolution. 14 (1999), 401–405.

[20] J. STOVER. Attractive n-type contact processes. Preprint available at
http://arxiv.org/abs/1006.5723.

A Appendix: Explicit coupling construction if N = 1

We detail the coupling when N = 1 to understand the simplest construction. Note that we have to
mix birth with jump rates also in this case.
There is a lower attractiveness problem (β+1> δ) only if β = δ, and a higher one (γ−1< α) only
if γ= α. Definition 3.15 becomes
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Definition A.1. The non zero coupling rates ofH are given by:

H1,1,1,1
α,β ,γ,δ = (eΓ

1
α,β ∧Γ

1
γ,δ)p if β = δ or γ= α;

H0,1,0,1
α,β ,γ,δ = (eΠ0,1

α,β ∧Π
0,1
γ,δ)p

H1,1,0,1
α,β ,γ,δ = [eΓ1

α,β p− (eΓ1
α,β ∧Γ

1
γ,δ)p]∧ [Π

0,1
γ,δp− (eΠ0,1

α,β ∧Π
0,1
γ,δ)p]

H0,1,1,1
α,β ,γ,δ = [eΠ0,1

α,β p− (eΠ0,1
α,β ∧Π

0,1
γ,δ)p]∧ [Γ

1
γ,δp− (eΓ1

α,β ∧Γ
1
γ,δ)p] if γ > α







if β = δ

H−1,0,−1,0
α,β ,γ,δ = (eΠ−1,0

α,β ∧Π
−1,0
γ,δ )p

H−1,0,1,1
α,β ,γ,δ = [eΠ−1,0

α,β p− (eΠ−1,0
α,β ∧Π

−1,0
γ,δ )p]

+ ∧ [Γ1
γ,δp− (eΓ1

α,β ∧Γ
1
γ,δ)p]

H1,1,−1,0
α,β ,γ,δ = [eΓ1

α,β p− (eΓ1
α,β ∧Γ

1
γ,δ)p]∧ [Π

−1,0
γ,δ p− (eΠ−1,0

α,β ∧Π
−1,0
γ,δ )p] if β < δ







if α= γ;

H0,1,0,0
α,β ,γ,δ = eΠ

0,1
α,β p−H0,1,0,1

α,β ,γ,δ −H0,1,1,1
α,β ,γ,δ; H1,1,0,0

α,β ,γ,δ = eΓ
1
α,β p−H1,1,1,1

α,β ,γ,δ −H1,1,−1,0
α,β ,γ,δ −H1,1,0,1

α,β ,γ,δ;

H0,0,0,1
α,β ,γ,δ = Π

0,1
γ,δp−H0,1,0,1

α,β ,γ,δ −H1,1,0,1
α,β ,γ,δ; H0,0,1,1

α,β ,γ,δ = Γ
1
γ,δp−H1,1,1,1

α,β ,γ,δ −H0,1,1,1
α,β ,γ,δ −H−1,0,1,1

α,β ,γ,δ ;

H−1,0,0,0
α,β ,γ,δ = eΠ

−1,0
α,β p−H−1,0,−1,0

α,β ,γ,δ −H−1,0,1,1
α,β ,γ,δ ; H0,0,−1,0

α,β ,γ,δ = Π
−1,0
γ,δ p−H−1,0,−1,0

α,β ,γ,δ −H1,1,−1,0
α,β ,γ,δ .

Proposition A.2. Definition A.1 gives an increasing coupling.

Proof. . The definition of uncoupled terms ensures this is a coupling. We have to prove attractive-
ness.

Suppose β = δ and γ≥ α. Therefore H−1,0,1,1
α,β ,γ,β = H−1,0,−1,0

α,β ,γ,β = H1,1,−1,0
α,β ,γ,β = 0.

• Suppose eΓ1
α,β ≥ Γ

1
γ,δ. By Condition (2.15) we must have eΠ0,1

α,β p ≤ Π0,1
γ,δp, then H0,1,0,0

α,β ,γ,δ = 0.
Moreover

H1,1,1,1
α,β ,γ,δ = Γ

1
γ,δp, H0,1,0,1

α,β ,γ,δ = eΠ
0,1
α,β p, H0,1,1,1

α,β ,γ,δ = 0

H1,1,0,1
α,β ,γ,δ = [(eΓ

1
α,β −Γ

1
γ,δ)p]∧ [(Π

0,1
γ,δ − eΠ

0,1
α,β)p] = (eΓ

1
α,β −Γ

1
γ,δ)p

by Condition (2.15). Therefore H1,1,0,0
α,β ,γ,δ = eΓ

1
α,β p−Γ1

γ,δp− eΓ1
α,β p+Γ1

γ,δp = 0.

• Suppose eΓ1
α,β < Γ

1
γ,δ. Then H1,1,1,1

α,β ,γ,δ = eΓ
1
α,β p and we get H1,1,0,1

α,β ,γ,δ = H1,1,0,0
α,β ,γ,δ = 0. We have to prove

that H0,1,0,0
α,β ,γ,δ = 0.

If γ= α, by Condition (2.16) then H0,1,0,0
α,β ,γ,δ = Π

0,1
α,β p−Π0,1

α,β p ∧Π0,1
γ,δp = 0 and we are done.

Suppose γ > α:

H0,1,0,0
α,β ,γ,δ = eΠ

0,1
α,β p− eΠ0,1

α,β p ∧Π0,1
γ,δp− [eΠ0,1

α,β p− eΠ0,1
α,β p ∧Π0,1

γ,δp]∧ [Γ1
γ,δp− eΓ1

α,β p]

By using the relation

a ∧ (c− c ∧ b) = (a+ b)∧ c− b ∧ c for a, b, c ≥ 0
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with a = Γ1
γ,δp− eΓ1

α,β p, b = Π0,1
γ,δp and c = eΠ0,1

α,β p, we get by Condition (2.15),

H0,1,0,0
α,β ,γ,δ =eΠ

0,1
α,β p− eΠ0,1

α,β p ∧Π0,1
γ,δp− [Γ1

γ,δp− eΓ1
α,β p+Π0,1

γ,δp]∧ eΠ0,1
α,β p+ eΠ0,1

α,β p ∧Π0,1
γ,δp

=eΠ0,1
α,β p− eΠ0,1

α,β p = 0.

If α= γ and δ ≥ β we check that the coupling is increasing in the same way.
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