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Abstract

We study integrability and equivalence of Lp-norms of polynomial chaos elements. Relying
on known results for Banach space valued polynomials, we extend and unify integrability for
seminorms results to random elements that are not necessarily limits of Banach space valued
polynomials. This enables us to prove integrability results for a large class of seminorms of
stochastic processes and to answer, partially, a question raised by C. Borell (1979, Séminaire de
Probabilités, XIII, 1–3).
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1 Introduction

The purpose of the present paper is to unify and extend results on integrability of seminorms of
polynomial chaos elements taking values in a topological vector space. The chaos are understood in
the weak sense, in the spirit of Ledoux and Talagrand (1991). The motivation for this comes from
stochastic processes. For example, in order to study U := supt∈T |X t |, where T is a countable set, we
may think of X as a map from Ω into l∞(T ). However, the non-separability of l∞(T ) causes many
problems, e.g. with measurability of X . The approach in this paper is instead to view X as a random
element in the separable topological space RT . Then U = N(X ), where N( f ) = supt∈T | f (t)| is a
lower semicontinuous seminorm on RT (taking values in [0,∞]). When X is a weak chaos process,
Theorem 2.2 provides conditions under which U is integrable.

Weak chaos processes appear in the context of multiple integral processes; see e.g. Krakowiak and
Szulga (1988) for the α-stable case. Rademacher chaos processes are applied repeatedly when
studying U-statistics; see de la Peña and Giné (1999). They are also used to study infinitely di-
visible chaos processes; see Basse and Pedersen (2009), Marcus and Rosiński (2003) and Rosiński
and Samorodnitsky (1996). Using the results of the present paper, Basse-O’Connor and Graversen
(2010) extend some results on Gaussian semimartingales (e.g. Jain and Monrad (1982) and Stricker
(1983)) to a large class of chaos processes.

Let N be a measurable seminorm on RT . For X Gaussian, Fernique (1970) shows that eεN(X )
2

is
integrable for some ε > 0. This result is extended to Gaussian chaos processes by Borell (1978),
Theorem 4.1. Moreover, if X is α-stable for some α ∈ (0, 2), de Acosta (1975), Theorem 3.2, shows
that N(X )p is integrable for all p < α. When X is infinitely divisible, Rosiński and Samorodnitsky
(1993) provide conditions on the Lévy measure ensuring integrability of N(X ). See also Hoffmann-
Jørgensen (1977) for further results.

Given a sequence (Zn)n∈N of independent random variables, Borell (1984) studies, under the con-
dition

sup
n≥1

‖Zn−EZn‖q
‖Zn−EZn‖2

<∞, q ∈ (2,∞], (1.1)

integrability of Banach space valued random elements which are limits in probability of tetrahedral
polynomials associated with (Zn)n∈N. As shown in Borell (1984), (1.1) implies equivalence of
Lp-norms for Hilbert space valued tetrahedral polynomials for p ≤ q, but not for Banach space
valued tetrahedral polynomials except in the case q =∞. We impose the stronger condition Cq on
(Zn)n∈N, see (1.2)–(1.3), which in the case q = ∞ equals (1.1). Under Cq with q < ∞, Kwapień
and Woyczyński (1992), Theorem 6.6.2, show equivalence of Lp-norms of Banach space valued
tetrahedral polynomials. We extend and unify Borell (1984), Kwapień and Woyczyński (1992)
and and others, by considering random elements which are not necessarily limits of tetrahedral
polynomials. Moreover, for lower semicontinuous seminorms Borell (1978), de Acosta (1975) and
Fernique (1970) are special cases of Theorem 2.1.

1.1 Chaos Processes and Condition Cq

Let (Ω,F ,P) denote a probability space. When F is a topological space, a Borel measurable map
X : Ω → F is called an F -valued random element, however when F = R, X is, as usual, called
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a random variable. For each p > 0 and random variable X we let ‖X‖p := E[|X |p]1/p, which
defines a norm when p ≥ 1; moreover, let ‖X‖∞ := inf{t ≥ 0 : P(|X | ≤ t) = 1}. When F
is a Banach space, Lp(P; F) denotes the space of all F -valued random elements, X , satisfying
‖X‖Lp(P;F) = E[‖X‖p]1/p < ∞. Throughout the paper I denotes a set and for all ξ ∈ I , Hξ is a
family of independent random variables. Set H = {Hξ : ξ ∈ I}. Furthermore, d ≥ 1 is a natural
number and F is a locally convex Hausdorff topological vector space (l.c.TVS) with dual space F∗,
see Rudin (1991). Following Fernique (1997), a map N from F into [0,∞] is called a pseudo-
seminorm if for all x , y ∈ F and λ ∈R, we have

N(λx) = |λ|N(x) and N(x + y)≤ N(x) + N(y).

For ξ ∈ I let Pd(Hξ; F) denote the set of p(Z1, . . . , Zn) where n ∈ N, Z1, . . . , Zn are different ele-
ments inHξ and p is an F -valued tetrahedral polynomial of order d. Recall that p : Rn→ F is called
an F -valued tetrahedral polynomial of order d if there exist x0, x i1,...,ik ∈ F and l ≥ 1 such that

p(z1, . . . , zn) = x0+
d
∑

k=1

∑

1≤i1<···<ik≤l

x i1,...,ik

k
∏

j=1

zi j
.

Moreover, let P d(H ; F) denote the closure in distribution of ∪ξ∈IPd(Hξ; F), that is, P d(H ; F)
is the set of all F -valued random elements X for which there exists a sequence (Xk)k∈N ⊆
∪ξ∈IPd(Hξ; F) converging weakly to X . In the spirit of Ledoux and Talagrand (1991) we intro-
duce the following:

Definition 1.1. An F -valued random element X is said to be a weak chaos element of order d
associated withH if for all n ∈N and (x∗i )

n
i=1 ⊆ F∗ we have (x∗1(X ), . . . , x∗n(X )) ∈ P d(H ;Rn), and

in this case we write X ∈ weak-P d(H ; F). Similarly, a real-valued stochastic process (X t)t∈T is said
to be a weak chaos process of order d associated with H if for all n ∈ N and (t i)ni=1 ⊆ T we have
(X t1

, . . . , X tn
) ∈ P d(H ;Rn).

In what follows we shall need the next conditions:

Condition Cq. For q ∈ (0,∞), H is said to satisfy Cq if there exists β1,β2 > 0 such that for all
Z ∈ ∪ξ∈IHξ there exists cZ > 0 with P(|Z | ≥ cZ)≥ β1 and

E[|Z |q, |Z |> s]≤ β2sqP(|Z |> s), s ≥ cZ . (1.2)

For q =∞,H is said to satisfy C∞ if ∪ξ∈IHξ ⊆ L1 and

sup
ξ∈I

sup
Z∈Hξ

�‖Z −EZ‖∞
‖Z −EZ‖2

�

= β3 <∞. (1.3)

Let us start by noticing that Cq implies equivalence of moments, that is, if H satisfies Cq with
q ∈ (0,∞) then for all p ∈ (0, q) we have

sup
ξ∈I

sup
Z∈Hξ

‖Z‖q
‖Z‖p

≤ (β2 ∨ 1)1/qβ−1/p
1 <∞. (1.4)
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Equation (1.4) follows from the estimates (a)–(b):

(a): E[|Z |q] = E[|Z |q, |Z |> cZ] +E[|Z |q, |Z | ≤ cZ]

≤ β2cq
ZP(|Z |> cZ) + cq

ZP(|Z | ≤ cZ)≤ (β2 ∨ 1)cq
Z ,

and

(b): cp
Zβ1 ≤ cp

ZP(|Z | ≥ cZ)≤ E[|Z |p].

2 Main results

Recall that an F -valued random element X is said to be a.s. separably valued if P(X ∈ A) = 1 for
some separable closed subset A of F , and a map f : F → [−∞,∞] is said to be lower semicontinuous
if xn→ x in F implies f (x)≤ lim infn f (xn).

Theorem 2.1. Let F denote a metrizable l.c.TVS, X ∈ weak-P d(H ; F) be an a.s. separably valued
random element and N be a lower semicontinuous pseudo-seminorm on F such that N(X ) < ∞ a.s.
Assume that H satisfies Cq for some q ∈ (0,∞] and if q <∞ and d ≥ 2 that all elements in ∪ξ∈IHξ
are symmetric. Then for all finite 0< p < r ≤ q we have

‖N(X )‖r ≤ kp,r,d,β‖N(X )‖p <∞,

where kp,r,d,β depends only on p, q, d and the β ’s from Cq. Furthermore, in the case q = ∞ we have

that E[eεN(X )2/d ]<∞ for all ε < d/(e2d+5β4
3‖N(X )‖

2/d
2 ), and k2,r,d,β = 2d2/2+2dβ2d

3 rd/2.

For q =∞, Theorem 2.1 answers in the case where the pseudo-seminorm is lower semicontinuous a
question raised by Borell (1979) concerning integrability of pseudo-seminorms of Rademacher chaos
elements. This additional assumption is satisfied in most examples, in particular the one considered
in the Introduction. We prove Theorem 2.1 by representing N on the form N(x) = supn∈N|x∗n(x)|
where (x∗n)n∈N ⊆ F∗, which enables us to obtain the result by a suitable application of Kwapień and
Woyczyński (1992) when q <∞ and Borell (1984) when q =∞.

Proof of Theorem 2.1. Let B denote a Banach space and let Y ∈ Pd(H ; B). For all 0 < p < r ≤ q
with r <∞ we have

‖Y ‖Lr (P;B) ≤ kp,r,d,β‖Y ‖Lp(P;B) <∞, (2.1)

where kp,r,d,β depends only on p, q, d and the β ’s from Cq. If q = ∞ and p ≥ 2 we may choose

kp,r,d,β = Adβ
2d
3 rd/2 with Ad = 2d2/2+2d . For q <∞ and d = 1, (2.1) is a consequence of Kwapień

and Woyczyński (1992), Equation (2.2.4). Furthermore, for q ∈ (1,∞) and d ≥ 2 it is taken from
the proof of Kwapień and Woyczyński (1992), Theorem 6.6.2, and using Kwapień and Woyczyński
(1992), Remark 6.9, the result is seen to hold also for q ∈ (0,1]. For q =∞, (2.1) is a consequence
of Borell (1984), Theorem 4.1. In Borell (1984) the result is only stated for 2 ≤ p < r, however,
a standard application of Hölder’s inequality shows that it is valid for all 0 < p < r; see e.g. Pisier
(1978), Lemme 1.1. Finally, in Borell (1984) there is no explicit expression for Ad ; this can, however,
be obtained by applying Lemma A.1 from the Appendix, in the proof of Borell (1984), Theorem 4.1,
top of page 198.
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Let ln
∞ be Rn equipped with the sup norm. Fix finite p, r with 0 < p < r ≤ r and let C := kp,r,d,β .

Let us show that for all n ∈N and Y ∈ P d(H ;Rn) we have

‖Y ‖Lq(P;ln
∞)
≤ C‖Y ‖Lp(P;ln

∞)
. (2.2)

Using (2.1) on B = ln
∞ we have

‖Y ‖Lq(P;ln
∞)
≤ C‖Y ‖Lp(P;ln

∞)
<∞, Y ∈ Pd(Hξ;Rn), ξ ∈ I . (2.3)

Choose (ξk)k∈N ⊆ I and Yk ∈ Pd(Hξk
;Rn) for k ∈N such that Yk →d Y (→d denotes convergence

in distribution). Moreover, let Uk = ‖Yk‖ln
∞

and U = ‖Y ‖ln
∞

. Then, Uk →d U showing that (Uk)k∈N
is bounded in L0, and by (2.3) and Krakowiak and Szulga (1986), Corollary 1.4, {U p

k : k ∈ N} is
uniformly integrable. Hence,

‖U‖q ≤ lim inf
k→∞

‖Uk‖q ≤ C lim inf
k→∞

‖Uk‖p = C‖U‖p <∞,

which shows (2.2).

Arguing as in Fernique (1997), Lemme 1.2.2, we will show that there exists (x∗n)n∈N ⊆ F∗ such that

N(x) = sup
n∈N
|x∗n(x)| for all x ∈ F. (2.4)

To show (2.4) let A := {x ∈ F : N(x) ≤ 1}. Then A is convex and balanced since N is a pseudo-
seminorm and closed since N is lower semicontinuous. Thus by the Hahn-Banach theorem, see
Rudin (1991), Theorem 3.7, for all x /∈ A there exists x∗ ∈ F∗ such that |x∗(y)| ≤ 1 for all y ∈ A and
x∗(x)> 1, showing that

Ac =
⋃

x∈Ac

{y ∈ F : |x∗(y)|> 1}. (2.5)

Since X is a.s. separably valued we may and will assume that F is separable and hence strongly
Lindelöf since it is metrizable by assumption, see Gemignani (1990). Thus, since (2.5) is an open
cover of Ac there exists (xn)n∈N ⊆ Ac such that

Ac =
∞
⋃

n=1

{y ∈ F : |x∗n(y)|> 1},

implying that A = {y ∈ F : supn∈N|x∗n(y)| ≤ 1}. Thus by homogeneity we have N(y) =
supn∈N|x∗n(y)| for all y ∈ F .

For n ∈N, let Xn := x∗n(X ) and Un = sup1≤k≤n|Xk|. Then (Un)n∈N converge almost surely to N(X ).
For all finite 0 < p < r ≤ q, (2.2) shows that ‖Un‖q ≤ C‖Un‖p <∞ for all n ∈N. This implies that
{U p

n : n ∈N} is uniformly integrable and hence

‖N(X )‖r ≤ lim inf
n→∞

‖Un‖r ≤ C lim inf
n→∞

‖Un‖p = C‖N(X )‖p <∞.

To prove the last statement of the theorem let ε < d/(e2d+5β4
3‖N(X )‖

2/d
2 ). Since k2,r,d,β =

2d2/2+2dβ2d
3 rd/2 we have

E[eεN(X )
2/d
]≤ 1+

d
∑

k=1

‖N(X )‖2k/d
2k/d +

∞
∑

k=d+1

�

ε2d+5β4
3‖N(X )‖

2/d
2 /d

�k kk

k!
<∞,

which completes the proof.
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Let T denote a countable set and F := RT be equipped with the product topology. Then F is a
separable and locally convex Fréchet space and all x∗ ∈ F∗ are of the form x 7→

∑n
i=1αi x(t i),

for some n ∈ N, t1, . . . , tn ∈ T and α1, . . . ,αn ∈ R. Thus for X = (X t)t∈T we have that X ∈
weak-P d(H ; F) if and only if X is a weak chaos process of order d. Rewriting Theorem 2.1 in the
case F =RT we obtain the following result:

Theorem 2.2. Assume H satisfies Cq for some q ∈ (0,∞] and if q <∞ and d ≥ 2 that all elements
in ∪ξ∈IHξ are symmetric. Let T denote a countable set, (X t)t∈T be a weak chaos process of order d
and N be a lower semicontinuous pseudo-seminorm on RT such that N(X )<∞ a.s. Then for all finite
0< p < r ≤ q we have

‖N(X )‖r ≤ kp,r,d,β‖N(X )‖p <∞,

and in the case q =∞ that E[eεN(X )2/d ]<∞ for all ε < d/(e2d+5β4
3‖N(X )‖

2/d
2 ).

Let G denote a vector space of Gaussian random variables andΠd(G ;R) be the closure in probability
of the random variables p(Z1, . . . , Zn), where n ∈N, Z1, . . . , Zn ∈ G and p : Rn→R is a polynomial
of degree at most d (not necessary tetrahedral). Recall that a sequence of independent, identically
distributed random variables (Zn)n∈N such that P(Z1 =±1) = 1/2 is called a Rademacher sequence.

Proposition 2.3. Suppose F is a l.c.TVS and X is an F-valued random element such that x∗(X ) ∈
Πd(G ;R) for all x∗ ∈ F∗. Then X ∈ weak-P d(H ; F) where H = {H0} and H0 is a Rademacher
sequence. Thus, if X is a.s. separably valued and N is a lower semicontinuous pseudo-seminorm on F
such that N(X )<∞ a.s. then for all r > 2,

‖N(X )‖r ≤ 2d2/2+2d rd/2‖N(X )‖2 <∞,

and E[eεN(X )2/d ]<∞ for all ε < d/(e2d+5‖N(X )‖2/d2 ).

Proof. Let n ∈ N, x∗1, . . . , x∗n ∈ F∗ and W = (x∗1(X ), . . . , x∗n(X )). We need to show that W ∈
P d(H ;Rn). For all k ≥ 1 we may choose polynomials pk : Rk → R

n of degree at most d and
Y1,k, . . . , Yk,k independent standard normal random variables such that with Yk = (Y1,k, . . . , Yk,k) we
have limk pk(Yk) = W in probability. Hence it suffices to show pk(Yk) ∈ P d(H ;Rn) for all k ∈ N.
Fix k ∈ N and let us write p and Y for pk and Yk. Reenumerate H0 as k independent Rademacher
sequences (Zi,m)i≥1 with m= 1, . . . , k and set

U j =
1
p

j

j
∑

i=1

(Z1,i , . . . , Zk,i), j ∈N.

Then, by the central limit theorem U j →d Y and hence p(U j)→d p(Y ). Due to the fact that all Zi,m

only takes on the values ±1, p(U j) ∈ Pd(H0;Rn) for all j ∈ N, showing that p(Y ) ∈ P d(H ;Rn).
By applying Theorem 2.1, the conclusion follows sinceH satisfies C∞ with β3 = 1.

The integrability of eεN(X )
2/d

, in Proposition 2.3, is a consequence of the seminal work Borell (1978),
Theorem 4.1. However, Proposition 2.3 provides a simple proof of this result and also provides
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equivalence of Lp-norms and explicit constants. When F = RT for some countable set T , Proposi-
tion 2.3 covers processes X = (X t)t∈T , where all time variables, X t , have the following representa-
tion in terms of multiple Wiener-Itô integrals with respect to a Brownian motion W ,

X t =
d
∑

k=0

∫

R
k
+

f (t, k; s1, . . . , sk) dWs1
· · · dWsk

, t ∈ T.

For basic fact about multiple integrals see Nualart (2006).

The next result is known from Arcones and Giné (1993), Theorem 3.1, for general Gaussian poly-
nomials.

Proposition 2.4. Assume thatH = {H0} satisfies Cq for some q ∈ [2,∞] andH0 consists of symmet-
ric random variables. Let F denote a Banach space and X an a.s. separably valued random element in
F with x∗(X ) ∈ P d(H ;R) for all x∗ ∈ F∗. Then there exist x0, x i1,...,ik ∈ F and {Zn : n ≥ 1} ⊆ H0
such that for all finite p ≤ q

X = lim
n→∞

�

x0+
d
∑

k=1

∑

1≤i1<···<ik≤n

x i1,...,ik

k
∏

j=1

Zi j

�

a.s. and in Lp(P; F).

Proof. We follow Arcones and Giné (1993), Lemma 3.4. Since X is a.s. separably valued we may and
do assume F that is separable, which implies that F∗1 := {x∗ ∈ F∗ : ‖x∗‖ ≤ 1} is metrizable and com-
pact in the weak*-topology by the Banach-Alaoglu theorem; see Rudin (1991), Theorem 3.15+3.16.
Moreover, the map x∗ 7→ x∗(X ) from F∗1 into L0(P) is trivially weak*-continuous and thus a weak*-
continuous map into L2(P) by a combination of the equivalence of norms from Theorem 2.1 and
Krakowiak and Szulga (1986), Corollary 1.4. This shows that {x∗(X ) : x∗ ∈ F∗1} is compact in
L2(P) and hence separable. By definition of P d(H ;R), this implies that there exists a countable
set {Zn : n ∈N} ⊆H0 such that

x∗(X ) =
∑

A∈Nd

a(A, x∗)ZA, in L2(P),

for some a(A, x∗) ∈ R, where Nd = {A⊆N : |A| ≤ d} and ZA =
∏

i∈A Zi for A ∈ Nd . For A ∈ Nd , the
map x∗ 7→ a(A, x∗) from F∗ into R is linear and weak*-continuous and hence there exists xA ∈ F
such that a(A, x∗) = x∗(xA), showing that

x∗(X ) = lim
n→∞

x∗
�
∑

A∈N n
d

xAZA

�

, in L2(P), (2.6)

where N n
d = {A ∈ Nd : A ⊆ {1, . . . , n}}. Since F is separable, (2.6) and Kwapień and Woyczyński

(1992), Theorem 6.6.1, show that

lim
n→∞

∑

A∈N n
d

xAZA = X a.s.

As above it follows that the convergence also takes place in Lp(P; F) for all finite p ≤ q, which
completes the proof.

The above proposition gives rise to the following corollary:
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Corollary 2.5. Assume thatH = {H0} satisfies Cq for some q ∈ [2,∞] andH0 consists of symmetric
random variables. Let T denote a set, V (T ) ⊆RT a separable Banach space where the maps f 7→ f (t)
from V (T ) into R is continuous for all t ∈ T, and X = (X t)t∈T a stochastic process with sample
paths in V (T ) satisfying X t ∈ P d(H ;R) for all t ∈ T. Then there exists x0, x i1,...,ik ∈ V (T ) and
{Zn : n≥ 1} ⊆H0 such that

X = lim
n→∞

�

x0+
d
∑

k=1

∑

1≤i1<···<ik≤n

x i1,...,ik

k
∏

j=1

Zi j

�

a.s. in V (T ) and in Lp(P; V (T )) for all finite p ≤ q.

Proof. For t ∈ T , let δt : V (T ) → R denote the map f 7→ f (t). Since V (T ) is a separable Banach
space and {δt : t ∈ T} ⊆ V (T )∗ separate points in V (T ) we have

(i) the Borel σ-field on V (T ) equals the cylindrical σ-field σ(δt : t ∈ T ),

(ii) {
∑n

i=1αiδt i
: αi ∈R, t i ∈ T, n≥ 1} is sequentially weak*-dense in V (T )∗,

see e.g. Rosiński (1986), page 287. By (i) we may regard X as a random element in V (T ) and by
(ii) it follows that x∗(X ) ∈ P d(H ;R) for all x∗ ∈ V (T )∗. Hence the result is a consequence of
Proposition 2.4.

Borell (1984), Theorem 5.1, shows Corollary 2.5 assuming (1.1), T is a compact metric space,
V (T ) = C(T ) and X ∈ Lq(P; V (T )). By assuming Cq instead of the weaker condition (1.1) we can
omit the assumption X ∈ Lq(P; V (T )). Note also that by Theorem 2.2 the last assumption is satisfied
under Cq. When H0 consists of symmetric α-stable random variables and d = 1, Corollary 2.5 is
known from Rosiński (1986), Corollary 5.2. The separability assumption on V (T ) in Corollary 2.5
is crucial. Indeed, for all p > 1, Jain and Monrad (1983), Proposition 4.5, construct a separable
centered Gaussian process X = (X t)t∈[0,1] with sample paths in the non-separable Banach space
Bp of functions of finite p-variation on [0,1] such that the range of X is a non-separable subset
of Bp and hence the conclusion in Corollary 2.5 can not be true. However, for the non-separable
Banach space B1 a result similar to Corollary 2.5 is shown in Jain and Monrad (1982) for Gaussian
processes, and extended to weak chaos processes in Basse-O’Connor and Graversen (2010).

3 A class of infinitely divisible processes

An important example of a weak chaos process of order one is (X t)t∈T of the form

X t =

∫

S

f (t, s)Λ(ds), t ∈ T, (3.1)

where Λ is an independently scattered infinitely divisible random measure (or random measure for
short) on some non-empty space S equipped with a δ-ring S , and s 7→ f (t, s) are Λ-integrable
deterministic functions in the sense of Rajput and Rosiński (1989). To obtain the associatedH let I
be the set of all ξ given by ξ= {A1, . . . , An} for some n ∈N and disjoint sets A1, . . . , An in S , and let

Hξ = {Λ(A1), . . . ,Λ(An)} and H = {Hξ}ξ∈I . (3.2)
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Then, by definition of the stochastic integral (3.1) as the limit of integrals of simple functions,
(X t)t∈T is a weak chaos process of order one associated withH .

As we saw in Section 2, Cq is crucial in order to obtain integrability results and equivalence of Lp-
norms, so let us consider some cases where the important example (3.1) does or does not satisfy
Cq. For this purpose let us introduce the following distributions: The inverse Gaussian distribution
IG(µ,λ) with µ,λ > 0 is the distribution on R+ with density

f (x;µ,λ) =
�

λ

2πx3

�1/2

e−λ(x−µ)
2/(2µ2 x), x > 0. (3.3)

Moreover, the normal inverse Gaussian distribution NIG(α,β ,µ,δ) with µ ∈R, δ ≥ 0, and 0≤ β ≤
α, is symmetric if and only if β = µ= 0, and in this case it has the following density

f (x;α,δ) =
αeδα

π
p

1+ x2δ−2
K1

�

δα(1+ x2δ−2)1/2
�

, x ∈R,

where K1 is the modified Bessel function of the third kind and index 1 given by K1(z) =
1
2

∫∞
0

e−z(y+y−1)/2 d y for z > 0.

For each finite number t0 > 0, a random measure Λ is said to be induced by a Lévy process Y =
(Yt)t∈[0,t0] if S = [0, t0], S =B([0, t0]) and Λ(A) =

∫

A
dYs for all A ∈ S . By the scaling property

it is not difficult to show that if Λ is a symmetric α-stable random measure with α ∈ (0,2), thenH
satisfies Cq if and only if q < α. The next result studies Cq in some non-trivial cases.

Proposition 3.1. Let t0 ≥ 1 be a finite number, Λ a random measure induced by a Lévy process
Y = (Yt)t∈[0,t0] andH be given by (3.2).

(i) If Y1 has an IG-distribution, thenH satisfies Cq if and only if q ∈ (0, 1
2
).

(ii) If Y1 has a symmetric NIG-distribution, thenH satisfies Cq if and only if q ∈ (0,1).

(iii) If Y is non-deterministic and has no Gaussian component, thenH does not satisfy Cq for any q ≥
2. In fact, all integrable non-deterministic Lévy processes Y satisfies limt→0(‖Yt‖2/‖Yt‖1) =∞.

Proof. Assume that Λ is a random measure induced by a Lévy process Y = (Yt)t∈[0,T]. For arbitrary
A∈ S let Z = Λ(A).

To prove the if -implication of (i) let q ∈ (0, 1
2
) and assume that Y1 =d IG(µ,λ). Then Z =d

IG(m(A)µ, m(A)2λ), where m is the Lebesgue measure, and hence with cZ = m(A)2λ we have that
Z/cZ =d IG(µ/(λm(A)), 1), which has a density which on [1,∞) is bounded from below and above
by constants (not depending on x) times gZ(x), where

gZ : R+→R+, x 7→ x−3/2 exp[−x(λm(A))2/(2µ2)].

Thus there exists a constant c > 0, not depending on A or s, such that

E[|Z/cZ |q, |Z/cZ |> s]
sqP(|Z/cZ |> s)

≤ c sup
u>0





∫∞
u

xq−3/2e−x d x

uq
∫∞

u
x−3/2e−x d x



 s ≥ 1. (3.4)
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Using e.g. l’Hôpital’s rule it is easily seen that (3.4) is finite, showing (1.2). Therefore Cq follows by
the inequality

P(Z/cZ ≥ 1)≥
e−1/2

p
2π

∫ ∞

1

x−3/2 exp[−x(λT )2/(2µ2)] d x .

To show the only if -implication of (i) note that n2Y1/n →d X as n→∞, where X follows a 1
2
-stable

distribution on R+. Assume thatH satisfies Cq for some q ≥ 1/2. Then, by (1.4) there exists c > 0
such that ‖Yt‖1/2 ≤ c‖Yt‖1/4 for all t ∈ [0,1], and since {n2Y1/n : n ≥ 1} is bounded in L0 it is also
bounded in L1/2. But this contradicts

∞= ‖X‖1/2 ≤ lim inf
n→∞

‖n2Y1/n‖1/2,

and shows thatH does not satisfy Cq.

To show the if -implication of (ii) assume that Y1 =d NIG(α, 0, 0,δ). Then, Z = Λ(A) follows a
NIG(α, 0, 0, m(A)δ) distribution and with cZ = m(A)δ we have that Z/cZ =d εU

1/2
Z , where UZ and ε

are independent, UZ =d IG(1/(m(A)δα), 1) and ε =d N(0,1). For q ∈ (0, 1),

E[|Z/cZ |q, |Z/cZ |> s] =
p

2π−1
�

∫ s

0

E[|xU1/2
Z |

q, |xU1/2
Z |> s]e−x2/2 d x

+

∫ ∞

s

E[|xU1/2
Z |

q, |xU1/2
Z |> s]e−x2/2 d x

�

.

Using the above (i) on UZ and q/2, there exists a constant c1 > 0 such that
∫ s

0

E[|xU1/2
Z |

q, |xU1/2
Z |> s]e−x2/2 d x ≤ c1sq

∫ s

0

P
�

UZ > (s/x)2
�

e−x2/2 d x

≤ c1sq

∫ ∞

0

P
�

xU1/2
Z > s

�

e−x2/2 d x = c1

p

π2−1sqP(|Z/cZ |> s).

Furthermore, it is well known that there exists a constant c2 > 0 such that for all s ≥ 1
∫ ∞

s

E[|xU1/2
Z |

q, |xU1/2
Z |> s]e−x2/2 d x

≤ E[Uq/2
Z ]

∫ ∞

s

xqe−x2/2 d x ≤ c2sqE[Uq/2
Z ]

∫ ∞

s

e−x2/2 d x .

Since UZ has a density given by (3.3) it is easily seen that

E[Uq/2
Z ]≤ 1+

1
p

2π

∫ ∞

1

xq/2−3/2 d x .

Moreover, using that Z/cZ =d NIG(m(A)αδ, 0, 0, 1) and that K1(z) ≥ e−z/z for all z > 0, it is not
difficult to show that there exists a constant c3, not depending on s and A, such that

∫ ∞

s

e−x2/2 d x ≤ c3P(|Z/cZ |> s), for all s ≥ 1. (3.5)
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By combining the above we obtain (1.2) and by (3.5) applied on s = 1, Cq follows. The only if -
implication of (ii) follows similar to the one of (i), now using that (n−1Y1/n)n≥1 converge weakly to
a symmetric 1-stable distribution.

To show (iii) it is enough to prove that for all non-deterministic and square-integrable Lévy pro-
cesses, Y , with no Gaussian component we have ‖Yt‖1 = o(t1/2) and ‖Yt‖22 ∼ tE[(Y1 −E[Y1])2] as
t → 0. The latter statement follows by the equality

E[Y 2
t ] = Var(Yt) +E[Yt]

2 = Var(Y1)t +E[Y1]
2 t2.

To show that ‖Yt‖1 = o(t1/2) as t → 0 we may assume that Y is symmetric. Indeed let µ= E[Y1], Y ′

an independent copy of Y and Ỹt = Yt − Y ′t . Then Ỹ is a symmetric square-integrable Lévy process
and

‖Yt‖1 ≤ ‖Yt −µt‖1+ |µ| ≤ ‖Yt −µt − (Y ′t −µt)‖1+ |µ|t = ‖Ỹt‖1+ |µ|t.

Hence assume that Y is symmetric. Recall, e.g. from Hoffmann-Jørgensen (1994), Exercise 5.7, that
for any random variable U we have

‖U‖1 =
1

π

∫

R

1−ℜϕU(s)
s2 ds,

where ϕU denotes the characteristic function of U . Using the inequalities 1 − e−x ≤ 1 ∧ x and
1− cos(x)≤ 4(1∧ x2) for all x ≥ 0 it follows that with ψ(s) := 4

∫

(1∧ |sx |2)ν(d x) we have

‖Yt‖1 ≤
1

π

∫

R

1− e−tψ(s)

s2 ds ≤
1

π

∫

R

|tψ(s)| ∧ 1

s2 ds. (3.6)

By substitution we get

∫

R

|tψ(s)| ∧ 1

s2 ds ≤ 2t1/2

∫ ∞

0

|tψ(t−1/2s)| ∧ 1

s2 ds. (3.7)

From Lebesgue’s dominated convergence theorem, it follows

ψ(s)s−2 = 4

∫

R

(x2 ∧ s−2)ν(d x)−−→
s→∞

0,

showing that for all s > 0, tψ(t−1/2s) → 0 as t → 0. With c := 4
∫

R
(1 ∧ |x |2)ν(d x) we have

ψ(s)≤ cs2 for all s ≥ 1, and therefore for t ∈ (0,1),

|tψ(t−1/2s)| ∧ 1

s2 ≤ 1{|s|≤1}c+ 1{|s|>1}s
−2, s ≥ 0.

Thus,

lim
t→0

∫ ∞

0

|tψ(t−1/2s)| ∧ 1

s2 ds = 0,

which by (3.6)–(3.7) completes the proof.
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A Appendix

To obtain explicit constant in Theorem 2.1 we need the following lemma:

Lemma A.1. Let V denote a vector space, N a seminorm on V , ε ∈ (0,1) and x0, . . . , xd ∈ V .

If N
�

d
∑

k=0

λk xk

�

≤ 1 for all λ ∈ [−ε,ε] then N
�

d
∑

k=0

xk

�

≤ 2d2/2+dε−d . (A.1)

Proof. Assume first that x0, . . . , xd ∈R. By induction in d, let us show:

If
�

�

�

d
∑

k=0

λk xk

�

�

�≤ 1 for all λ ∈ [−ε,ε] then
�

�

�

d
∑

k=0

xk

�

�

�≤ 2d2/2+dε−d . (A.2)

For d = 1,2 (A.2) follows by a straightforward argument, so assume d ≥ 3, (A.2) holds for d − 1
and that the left-hand side of (A.2) holds for d. We have

�

�

�

d
∑

k=0

λk(εk xk)
�

�

�≤ 1, for all λ ∈ [−1, 1],

which by Pólya and Szegö (1954), Aufgabe 77, shows that |xdε
d | ≤ 2d and hence |xd | ≤ 2dε−d . For

λ ∈ [−ε,ε], the triangle inequality yields

�

�

�

d−1
∑

k=0

λk xk

�

�

�≤ 1+ 2d , and hence
�

�

�

d−1
∑

k=0

λk xk

1+ 2d

�

�

�≤ 1.

The induction hypothesis implies

�

�

�

d−1
∑

k=0

xk

�

�

�≤ ε−(d−1)2(d−1)2+(d−1)(1+ 2d),

and hence another application of the triangle inequality shows that

�

�

�

d
∑

k=0

xk

�

�

�≤ ε−d2d + ε−(d−1)2(d−1)2/2+(d−1)(1+ 2d)

≤ ε−d2d2/2+d
�

2−d2/2+ 2−1/2−d + 2−1/2
�

,

which is less than or equal to ε−d2d2/2+d since d ≥ 3. This completes the proof of (A.2).

Now let x0, . . . , xd ∈ V . Since N is a seminorm, the Hahn-Banach theorem (see Rudin (1991),
Theorem 3.2) shows that there exists a family Λ of linear functionals on V such that

N(x) = sup
F∈Λ
|F(x)|, for all x ∈ V.

Assuming that the left-hand side of (A.1) is satisfied we have

�

�

�

d
∑

k=0

λkF(xk)
�

�

�≤ 1, for all λ ∈ [−ε,ε] and all F ∈ Λ,

227



which by (A.2) shows

�

�

�F
�

d
∑

k=0

xk

�
�

�

�=
�

�

�

d
∑

k=0

F(xk)
�

�

�≤ 2d(d−1)ε−d , for all F ∈ Λ.

This completes the proof.
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