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Abstract

We consider the β-Laguerre ensemble, a family of distributions generalizing the joint eigenvalue
distribution of the Wishart random matrices. We show that the bulk scaling limit of these ensem-
bles exists for all β > 0 for a general family of parameters and it is the same as the bulk scaling
limit of the corresponding β-Hermite ensemble.
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1 Introduction

The Wishart ensemble is one of the first studied random matrix models, introduced by Wishart in
1928 [15]. It describes the joint eigenvalue distribution of the n × n random symmetric matrix
M = AA∗ where A is an n × (m − 1) matrix with i.i.d. standard normal entries. We can use real,
complex or real quaternion standard normal random variables as ingredients. Since we are only
interested in the eigenvalues, we can assume m− 1 ≥ n. Then the joint eigenvalue density on Rn

+
exists and it is given by the following formula for all three versions:

1

Zβn,m+1

∏

j<k

|λ j −λk|β
n
∏

k=1

λ
β

2
(m−n)−1

k e−
β

2
λk . (1)

Here β = 1,2 and 4 correspond to the real, complex and quaternion cases respectively and Zβn,m+1
is an explicitly computable constant.

The density (1) defines a distribution on Rn
+ for any β > 0, n ∈ N and m> n with a suitable Zβn,m+1.

The resulting family of distributions is called the β-Laguerre ensemble. Note that we intentionally
shifted the parameter m by one as this will result in slightly cleaner expressions later on.

Another important family of distributions in random matrix theory is the β-Hermite (or Gaussian)
ensemble. It is described by the density function

1

Z̃βn

∏

1≤ j<k≤n

|λ j −λk|β
n
∏

k=1

e−
β

4
λ2

k . (2)

on Rn. For β = 1,2 and 4 this gives the joint eigenvalue density of the Gaussian orthogonal, unitary
and symplectic ensembles. It is known that if we rescale the ensemble by

p
n then the empirical

spectral density converges to the Wigner semicircle distribution 1
2π

p

4− x21[−2,2](x). In [13] the
authors derive the bulk scaling limit of the β-Hermite ensemble, i.e. the point process limit of the
spectrum it is scaled around a sequence of points away from the edges.

Theorem 1 (Valkó and Virág [13]). If µn is a sequence of real numbers satisfying n1/6(2
p

n−|µn|)→
∞ as n→∞ and ΛH

n is a sequence of random vectors with density (2) then
Æ

4n−µ2
n(Λ

H
n −µn)⇒ Sineβ (3)

where Sineβ is a discrete point process with density (2π)−1.

Note that the condition on µn means that we are in the bulk of the spectrum, not too close to the
edge. The limiting point process Sineβ can be described as a functional of the Brownian motion in
the hyperbolic plane or equivalently via a system of stochastic differential equations (see Subsection
2.3 for details).

The main result of the present paper provides the point process limit of the Laguerre ensemble in the
bulk. In order to understand the order of the scaling parameters, we first recall the classical results
about the limit of the empirical spectral measure for the Wishart matrices. If m/n→ γ ∈ [1,∞) then
with probability one the scaled empirical spectral measures νn =

1
n

∑n
k=1δλk/n converge weakly to

the Marchenko-Pastur distribution which is a deterministic measure with density

σ̃γ(x) =

p

(x − a2)(b2− x)
2πx

1[a2,b2](x), a = a(γ) = γ1/2− 1, b = b(γ) = 1+ γ1/2. (4)
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This can be proved by the moment method or using Stieltjes-transform. (See [7] for the original
proof and [5] for the general β case).

Now we are ready to state our main theorem:

Theorem 2 (Bulk limit of the Laguerre ensemble). Fix β > 0, assume that m/n→ γ ∈ [1,∞) and let
c ∈ (a2, b2) for a = a(γ), b = b(γ) defined in (4). Let ΛL

n denote the point process given by (1). Then

2πσ̃γ(c)
�

ΛL
n − cn

�

⇒ Sineβ (5)

where Sineβ is the bulk scaling limit of the β-Hermite ensemble and σ̃γ is defined in (4).

We will actually prove a more general version of this theorem: we will also allow the cases when
m/n → ∞ or when the center of the scaling gets close to the spectral edge. See Theorem 9 in
Subsection 2.2 for the details.

Although this statement has been known for the classical cases (β = 1,2 and 4) [8], this is the first
proof for general β . Our approach relies on the tridiagonal matrix representation of the Laguerre
ensemble introduced by Dumitriu and Edelman [1] and the techniques introduced in [13].

There are various other ways one can generalize the classical Wishart ensembles. One possibility
is that instead of normal distribution one uses more general real or complex distributions in the
construction described at the beginning of this section. It has been conjectured that the bulk scaling
limit for these generalized Wishart matrices would be the same as in the β = 1 and 2 cases for the
Laguerre ensemble. The recent papers of Tao and Vu [12] and Erdős et al. [3] prove this conjecture
for a wide range of distributions (see [12] and [3] for the exact conditions).

Our theorem completes the picture about the point process scaling limits of the Laguerre ensemble.

The scaling limit at the soft edge has been proved in [9], where the edge limit of the Hermite
ensemble was also treated.

Theorem 3 (Ramírez, Rider and Virág [9]). If m> n→∞ then

(mn)1/6

(
p

m+
p

n)4/3
(ΛL

n − (
p

n+
p

m)2)⇒ Airyβ

where Airyβ is a discrete simple point process given by the eigenvalues of the stochastic Airy operator

Hβ =−
d2

d x2 + x +
2
p

β
b′x .

Here b′x is white noise and the eigenvalue problem is set up on the positive half line with initial conditions
f (0) = 0, f ′(0) = 1. A similar limit holds at the lower edge: if lim inf m/n> 1 then

(mn)1/6

(
p

m−
p

n)4/3
((
p

m−
p

n)2−ΛL
n)⇒ Airyβ .

Remark 4. The lower edge result is not stated explicitly in [9], but it follows by a straightforward
modification of the proof of the upper edge statement. Note that the condition lim inf m/n> 1 is not
optimal, the statement is expected to hold with m− n→∞. This has been known for the classical
cases β = 1,2, 4 [8].
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If m− n→ a ∈ (0,∞) then the lower edge of the spectrum is pushed to 0 and it becomes a ‘hard’
edge. The scaling limit in this case was proved in [10].

Theorem 5 (Ramírez and Rider [10]). If m− n→ a ∈ (0,∞) then

nΛL
n ⇒Θβ ,a

where Θβ ,a is a simple point process that can be described as the sequence of eigenvalues of a certain
random operator (the Bessel operator).

In the next section we discuss the tridiagonal representation of the Laguerre ensemble, recall how to
count eigenvalues of a tridiagonal matrix and state a more general version of our theorem. Section
3 will contain the outline of the proof while the rest of the paper deals with the details of the proof.

2 Preparatory steps

2.1 Tridiagonal representation

In [1] Dumitriu and Edelman proved that the β-Laguerre ensemble can be represented as joint
eigenvalue distributions for certain random tridiagonal matrices.

Lemma 6 (Dumitriu, Edelman [1]). Let An,m be the following n× n bidiagonal matrix:

An,m =
1
p

β

















χ̃β(m−1)
χβ(n−1) χ̃β(m−2)

. . . . . .
χβ ·2 χ̃β(m−n+1)

χβ χ̃β(m−n)

















.

where χβa, χ̃β b are independent chi-distributed random variables with the appropriate parameters (1≤
a ≤ n−1, m−1≤ b ≤ m−n). Then the eigenvalues of the tridiagonal matrix An,mAT

n,m are distributed
according to the density (1).

If we want to find the bulk scaling limit of the eigenvalues of An,mAT
n,m then it is sufficient to under-

stand the scaling limit of the singular values of An,m.The following simple lemma will be a useful
tool for this.

Lemma 7. Suppose that B is an n × n bidiagonal matrix with a1, a2, . . . , an in the diagonal and
b1, b2, . . . , bn−1 below the diagonal. Consider the 2n× 2n symmetric tridiagonal matrix M which has
zeros in the main diagonal and a1, b1, a2, b2, . . . , an in the off-diagonal. If the singular values of B are
λ1,λ2, . . . ,λn then the eigenvalues of M are ±λi , i = 1 . . . n.

We learned about this trick from [2], we reproduce the simple proof for the sake of the reader.

Proof. Consider the matrix B̃ =

�

0 BT

B 0

�

. If Bu = λi v and BT v = λiu then [u,±v]T is

an eigenvector of B̃ with eigenvalue ±λi . Let C be the permutation matrix corresponding to
(2,4, . . . , 2n, 1, 3, . . . , 2n− 1). Then C T B̃C is exactly the tridiagonal matrix described in the lemma
and its eigenvalues are exactly ±λi , i = 1 . . . n.
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Because of the previous lemma it is enough to study the eigenvalues of the (2n)× (2n) tridiagonal
matrix

Ãn,m =
1
p

β























0 χ̃β(m−1)
χ̃β(m−1) 0 χβ(n−1)

χβ(n−1) 0 χ̃β(m−2)
. . . . . . . . .

χ̃β(m−n+1) 0 χβ
χβ 0 χ̃β(m−n)

χ̃β(m−n) 0























(6)

The main advantage of this representation, as opposed to studying the tridiagonal matrix An,mAT
n,m,

is that here the entries are independent modulo symmetry.

Remark 8. Assume that [u1, v1, u2, v2, . . . , un, vn]T is an eigenvector for Ãn,m with eigenvalue λ.
Then [u1, u2, . . . , un]T is and eigenvector for AT

n,mAn,m with eigenvalue λ2 and [v1, v2, . . . , vn]T is an
eigenvector for An,mAT

n,m with eigenvalue λ2.

2.2 Bulk limit of the singular values

We can compute the asymptotic spectral density of Ãn,m from the Marchenko-Pastur distribution. If
m/n→ γ ∈ [1,∞) then the asymptotic density (when scaled with

p
n) is

σγ(x) = 2|x |σ̃γ(x2) =

p

(x2− a2)(b2− x2)
π|x |

1[a,b](|x |)

=

p

(x − a)(x + a)(b− x)(b+ x)

π|x |
1[a,b](|x |). (7)

This means that the spectrum of Ãn,m in R+ is asymptotically concentrated on the interval [
p

m−p
n,
p

m +
p

n]. We will scale around µn ∈ (
p

m −
p

n,
p

m +
p

n) where µn is chosen in a way
that it is not too close to the edges. Near µn the asymptotic eigenvalue density should be close to
σm/n(µn/

p
n) which explains the choice of the scaling parameters in the following theorem.

Theorem 9. Fix β > 0 and suppose that m = m(n) > n. Let Λn denote the set of eigenvalues of Ãn,m
and set

n0 =
π2

4
nσm/n

�

µnn−1/2
�2
−

1

2
, n1 = n−

π2

4
nσm/n

�

µnn−1/2
�2

. (8)

Assume that as n→∞ we have
n1/3

1 n−1
0 → 0 (9)

and
lim inf

n→∞
m/n> 1 or lim

n→∞
m/n= 1 and lim inf

n→∞
µn/
p

n> 0. (10)

Then

4
p

n0(Λn−µn)⇒ Sineβ . (11)
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The extra 1/2 in the definition of n0 is introduced to make some of the forthcoming formulas nicer.
We also note that the following identities hold:

n0+
1

2
=

2(m+ n)µ2
n− (m− n)2−µ4

n

4µ2
n

, n1 =

�

m− n−µ2
n

�2

4µ2
n

. (12)

Note that we did not assume that m/n converges to a constant or that µn =
p

c
p

n . By the discus-
sions at the beginning of this section (Λn ∩R+)2 is distributed according to the Laguerre ensemble.
If we assume that m/n → γ and µn =

p
c
p

n with c ∈ (a(γ)2, b(γ)2) then both (9) and (10) are
satisfied. Since in this case n0n−1→ σ̃γ(c) the result of Theorem 9 implies Theorem 2.

Remark 10. We want prove that the weak limit of 4
p

n0(Λn − µn) is Sineβ , thus it is sufficient to
prove that for any subsequence of n there is a further subsequence so that the limit in distribution
holds. Because of this by taking an appropriate subsequence we may assume that

m/n→ γ ∈ [1,∞], and if m/n→ 1 then µn/
p

n→ c ∈ (0, 2]. (13)

These assumptions imply that for m1 = m− n+ n1 we have

lim inf
n→∞

m1/n> 0. (14)

One only needs to check this in the m/n→ 1 case, when from (13) and the definition of n1 we get
n1/n→ c > 0.

Remark 11. The conditions of Theorem 9 are optimal if lim inf m/n > 1 and the theorem provides
a complete description of the possible point process scaling limits of ΛL

n. To see this first note that
using ΛL

n = (Λn ∩R+)2 we can translate the edge scaling limit of Theorem 3 to get

2(mn)1/6

(
p

m±
p

n)1/3
(Λn− (

p
m±
p

n))⇒±Airyβ . (15)

If lim inf m/n > 1 then by the previous remark we may assume lim m/n = γ ∈ (1,∞]. Then the

previous statement can be transformed into n1/6(Λn − (
p

m ±
p

n))
d
=⇒ Ξ where Ξ is a a linear

transformation of Airyβ . From this it is easy to check that if n1/3
1 n−1

0 → c ∈ (0,∞] then we need to
scale Λn −µn with n1/6 to get a meaningful limit (and the limit is a linear transformation of Airyβ)

and if n1/3
1 n−1

0 → 0 then we get the bulk case.

If m/n→ 1 then the condition (10) is suboptimal, this is partly due to the fact that the lower soft
edge limit in this case is not available. Assuming lim inf m−n> 0 the statement should be true with
the following condition instead of (10):

µn
p

n(m− n)−1/3−
1

2
(m− n)2/3→∞. (16)

It is easy to check that this condition is necessary for the bulk scaling limit. By choosing an appro-
priate subsequence we may assume that m− n→ a > 0 or m− n→∞. Then if (16) does not hold
then we can use Theorem 5 (if m−n→ a > 0) or (15) (if m−n→∞) to show that an appropriately
scaled version of Λn − µn converges to a shifted copy of the hard edge or soft edge limiting point
process and thus it cannot converge to Sineβ .

319



2.3 The Sineβ process

The distribution of the point process Sineβ from Theorem 1 was described in [13] as a functional of
the Brownian motion in the hyperbolic plane (the Brownian carousel) or equivalently via a system
of stochastic differential equations. We review the latter description here. Let Z be a complex
Brownian motion with i.i.d. standard real and imaginary parts. Consider the strong solution of the
following one parameter system of stochastic differential equations for t ∈ [0, 1), λ ∈ R :

dαλ =
λ

2
p

1− t
d t +

p
2

p

β(1− t)
ℜ
�

(e−iαλ − 1)dZ
�

, αλ(0) = 0. (17)

It was proved in [13] that for any given λ the limit N(λ) = 1
2π

limt→1αλ(t) exists, it is integer
valued a.s. and N(λ) has the same distribution as the counting function of the point process Sineβ
evaluated at λ. Moreover, this is true for the joint distribution of (N(λi), i = 1, . . . , d) for any fixed
vector (λi , i = 1, . . . , d). Recall that the counting function at λ > 0 gives the number of points in the
interval (0,λ], and negative the number of points in (λ, 0] for λ < 0.

2.4 Counting eigenvalues of tridiagonal matrices

Assume that the tridiagonal k× k matrix M has positive off-diagonal entries.

M =

















a1 b1
c1 a2 b2

. . . . . .
ck−2 ak−1 bk−1

ck−1 ak

















, bi > 0, ci > 0.

If u=
�

u1, . . . , uk
�T is an eigenvector corresponding to λ then we have

c`−1u`−1+ a`u`+ b`u`+1 = λu`, `= 1, . . . k (18)

where we can we set u0 = uk+1 = 0 (with c0, bk defined arbitrarily). This gives a single term
recursion on R∪ {∞} for the ratios r` =

u`+1

u`
:

r0 =∞, r` =
1

b`

�

−
c`−1

r`−1
+λ− a`

�

, `= 1, . . . k. (19)

This recursion can be solved for any parameter λ, and λ is an eigenvalue if and only if rk = rk,λ = 0.

Induction shows that for a fixed ` > 0 the function λ → r`,λ is just a rational function in λ which
is analytic and increasing between its blow-ups. (In fact, it can be shown that r` is a constant
multiple of p`(λ)/p`−1(λ) where p`(·) is the characteristic polynomial of the top left `× ` minor
of M .) From this it follows easily that for each 0 ≤ ` ≤ k we can define a continuous monotone
increasing function λ → φ`,λ which satisfies tan(φ`,λ/2) = r`,λ. The function ϕ`,· is unique up to
translation by integer multiples of 2π. Clearly the eigenvalues of M are identified by the solutions of
φk,λ = 0 mod 2π. Since φ`,· is continuous and monotone this provides a way to identify the number
of eigenvalues in (λ0,λ1] from the values φk,λ0

and φk,λ1
:

#
¦

(φk,λ0
,φk,λ1

]∩ 2πZ
©

= #{eigenvalues in (λ0,λ1]}
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This is basically a discrete version of the Sturm-Liouville oscillation theory. (Note that if we shift
φk,· by 2π then the expression on the right stays the same, so it does not matter which realization
of φk,· we take.)

We do not need to fully solve the recursion (19) in order to count eigenvalues. If we consider the
reversed version of (19) started from index k with initial condition 0:

r�k = 0, r�`−1 =−c`
�

a`−λ+ b`r
�
`

�−1
, `= 1, . . . k. (20)

then λ is an eigenvalue if and only if r`,λ = r�
`,λ. Moreover, we can turn r�

`,λ into an angle φ�
`,λ which

will be continuous and monotone decreasing in λ (similarly as before for r and φ) which transforms
the previous condition to φ`,λ −φ�`,λ = 0 mod 2π. This means that we can also count eigenvalues
in the interval (λ0,λ1] by the formula

#
n

(φ`,λ0
−φ�`,λ0

,φ`,λ1
−φ�`,λ1

]∩ 2πZ
o

= #{eigenvalues in (λ0,λ1]} (21)

If h : R→ R is a monotone increasing continuous function with h(x +2π) = h(x) then the solutions
of φ`,λ = φ

�
`,λ mod 2π will be the same as that of h(φ`,λ) = h(φ�

`,λ) mod 2π. Since h(φ`,λ)−h(φ�
`,λ)

is also continuous and increasing we get

#
n

(h(φ`,λ0
)− h(φ�`,λ0

), h(φ`,λ1
)− h(φ�`,λ1

)]∩ 2πZ
o

= #{eigenvalues in (λ0,λ1]}. (22)

In our case, by analyzing the scaling limit of h(φ`,·) and h(φ�
`,·) for a certain ` and h we can identify

the limiting point process. This method was used in [13] for the bulk scaling limit of the β Hermite
ensemble. An equivalent approach (via transfer matrices) was used in [6] and [14] to analyze the
asymptotic behavior of the spectrum for certain discrete random Schrödinger operators.

3 The main steps of the proof

The proof will be similar to one given for Theorem 1 in [13]. The basic idea is simple to explain:
we will use (22) with a certain `= `(n) and h. Then we will show that the length of the interval on
the left hand side of the equation converges to 2π(N(λ1)− N(λ0)) while the left endpoint of that
interval becomes uniform modulo 2π. Since N(λ1)−N(λ0) is a.s. integer the number of eigenvalues
in (λ0,λ1] converges to N(λ1)−N(λ0) which shows that the scaling limit of the eigenvalue process
is given by Sineβ .

The actual proof will require several steps. In order to limit the size of this paper and not to make
it overly technical, we will recycle some parts of the proof in [13]. Our aim is to give full details
whenever there is a major difference between the two proofs and to provide an outline of the proof
if one can adapt parts of [13] easily.

Proof of Theorem 9. Recall that Λn denotes the multi-set of eigenvalues for the matrix Ãn,m which is

defined in (6). We denote by Nn(λ) the counting function of the scaled random multi-sets 4n1/2
0 (Λn−

µn), we will prove that for any (λ1, · · · ,λd) ∈ Rd we have

�

Nn(λ1), · · · , Nn(λd)
� d
=⇒

�

N(λ1), · · · , N(λd)
�

. (23)
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where N(λ) = 1
2π

limt→1αλ(t) as defined using the SDE (17).

We will use the ideas described in Subsection 2.4 to analyze the eigenvalue equation Ãn,m x = Λx ,
where x ∈ R2n. Following the scaling given in (11) we set

Λ = µn+
λ

4
p

n0
.

In Section 4 we will define the regularized phase function ϕ`,λ and target phase function ϕ�
`,λ for

` ∈ [0, n0). These will be independent of each other for a fixed ` (as functions in λ) and satisfy the
following identity for λ < λ′:

#
n

(ϕ`,λ−ϕ�`,λ,ϕ`,λ′ −ϕ�`,λ′]∩ 2πZ
o

= Nn(λ
′)− Nn(λ). (24)

The functions ϕ`,λ and ϕ�
`,λ will be transformed versions of the phase function and target phase

function φ`,λ and φ�
`,λ so (24) will be just an application of (22). The regularization is needed

in order to have a version of the phase function which is asymptotically continuous. Indeed, in
Proposition 17 of Section 5 we will show that for any 0 < ε < 1 the rescaled version of the phase
function ϕ`,λ in

�

0, n0(1− ε)
�

converges to a one-parameter family of stochastic differential equa-
tions. Moreover we will prove that in the same region the relative phase function α`,λ = ϕ`,λ−ϕ`,0
will converge to the solution αλ of the SDE (17)

αbn0(1−ε)c,λ
d
=⇒ αλ(1− ε), as n→∞ (25)

in the sense of finite dimensional distributions in λ. This will be the content of Corollary 18.

Next we will describe the asymptotic behavior of the phase functions ϕ`,λ,α`,λ and ϕ�
`,λ in the stretch

` ∈ [bn0(1− ε)c, n2] where
n2 = bn0−K (n

1/3
1 ∨ 1)c. (26)

(The constants ε,K will be determined later.) We will show that if the relative phase function is
already close to an integer multiple of 2π at bn0(1− ε)c then it will not change too much in the
interval [bn0(1−ε)c, n2]. To be more precise, in Proposition 19 of Section 6 we will prove that there
exists a constant c = c(λ̄,β) so that we have

E
�

|αbn0(1−ε)c,λ−αn2,λ| ∧ 1
�

≤ c
h

dist(αbn0(1−ε)c,λ, 2πZ) +
p
ε+ n−1/2

0 (n1/6
1 ∨ log n0) +K −1

i

(27)

for all K > 0,ε ∈ (0, 1),λ ≤ |λ̄|. Note that we already know that αbn0(1−ε)c converges to αλ(1− ε)
in distribution (as n→∞) and that αλ(1−ε) converges a.s. to an integer multiple of 2π (as ε→ 0).
By the conditions on n0, n1 the term n−1/2

0 (n1/6
1 ∨ log n0) converges to 0.

We will also show that if K →∞ and K n−1
0 (n

1/3
1 ∨ 1)→ 0 then the random angle ϕn2,0 becomes

uniformly distributed modulo 2π as n→∞ (see Proposition 23 of Section 7).

Next we will prove that the target phase function will loose its dependence on λ: for every λ ∈ R
and K > 0 we have

α�n2,λ = ϕ
�
n2,λ−ϕ

�
n2,0

P−→ 0, as n→∞. (28)

This will be the content of Proposition 24 in Section 7.
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The proof now can be finished exactly the same way as in [13]. Using the previous statements and a
standard diagonal argument we can choose ε = ε(n)→ 0 andK =K (n)→∞ so that the following
limits all hold simultaneously:

(αbn0(1−ε)c,λi
, i = 1, . . . , d)

d
=⇒ (2πN(λi), i = 1, . . . , d),

ϕn2,0
P−→ Uniform[0,2π] modulo 2π,

αbn0(1−ε)c,λi
−αn2,λi

P−→ 0, i = 1, . . . , d,

α�n2,λi

P−→ 0, i = 1, . . . , d.

This means that if we apply the identity (24) with λ = 0,λ′ = λi and ` = n2 then the length of the
random intervals

Ii = (ϕn2,0−ϕ�n2,0,ϕn2,λi
−ϕ�n2,λi

]

converge to 2πN(λi) in distribution (jointly), while the common left endpoint of these intervals
becomes uniform modulo 2π. (Since ϕn2,0 and ϕ�n2,0 are independent and ϕn2,0 converges to a
uniform distribution mod 2π.) This means that #{2kπ ∈ Ii : k ∈ Z} converges to N(λi) which
proves (23) and Theorem 9.

The following figure gives an overview of the main components of the proof.

n0, n1: defined in (8), phase functions: ϕ`,λ,ϕ�
`,λ,α`,λ,α�

`,λ, (defined in Section 4)�
�

�
�

SDE limit,
αbn0(1−ε)c,λ⇒ αλ(1− ε)

(Section 5)

�
�

�
�

α`,λ does not change much for
` ∈ [n0(1− ε), n2]

(Section 6)

�



�
	α�n2,λ converges to 0

(Section 7)

? ? ?

6

`

1

‘first stretch’ ‘middle stretch’ ‘last stretch’

bn0(1− ε)c n2 = bn0−K (n
1/3
1 ∨ 1)c n

�



�
	ϕn2,0 becomes uniform mod 2π

(Section 6.2)

Figure 1: Outline of the proof of Theorem 9
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4 Phase functions

In this section we introduce the phase functions used to count the eigenvalues.

4.1 The eigenvalue equations

Let s j =
p

n− j− 1/2 and p j =
p

m− j− 1/2. Conjugating the matrix Ãn,m (6) with a (2n)× (2n)
diagonal matrix D = D(n) with diagonal elements

D1,1 = 1, D2i,2i =
χ̃β(m−i−1)
p

βpi

i−1
∏

`=1

χ̃β(m−`)χβ(n−`)

βp`s`
, D2i+1,2i+1 =

i
∏

`=1

χ̃β(m−`)χβ(n−`)

βp`s`

we get the tridiagonal matrix ÃD
n,m = D−1Ãn,mD:

ÃD
n,m =























0 p0+ X0
p1 0 s0+ Y0

s1 0 p1+ X1
. . . . . . . . .

pn−1 0 sn−2+ Yn−2
sn−1 0 pn−1+ Xn−1

pn 0























(29)

where

X` =
χ̃2
β(m−`−1)

βp`+1
− p`, 0≤ `≤ n− 1, Y` =

χ2
β(n−`−1)

βs`+1
− s`, 0≤ `≤ n− 2.

The first couple of moments of these random variables are explicitly computable using the moment
generating function of the χ2-distribution and we get the following asymptotics:

EX` = O ((m− `)−3/2), EX 2
` = 2/β +O ((m− `)−1), EX 4

`
= O (1),

EY` = O ((n− `)−3/2), EY 2
` = 2/β +O ((n− `)−1), EY 4

`
= O (1),

(30)

where the constants in the error terms only depend on β .

We consider the eigenvalue equation for ÃD
n,m with a given Λ ∈ R and denote a nontrivial solution

of the first 2n− 1 components by u1, v1, u2, v2, . . . , un, vn. Then we have

s`v`+ (p`+ X`)v`+1 = Λu`+1, 0≤ `≤ n− 1,

p`+1u`+1+ (s`+ Y`)u`+2 = Λv`+1, 0≤ `≤ n− 2,

where we set v0 = 0 and we can assume u1 = 1 by linearity. We set r` = r`,Λ = u`+1/v`, 0≤ `≤ n−1
and r̂` = r̂`,Λ = v`/u`, 1≤ `≤ n. These are elements of R∪ {∞} satisfying the recursion

r̂`+1 =
�

−
1

r`
·

s`
p`
+
Λ
p`

��

1+
X`
p`

�−1

, 0≤ `≤ n− 1 (31)

r`+1 =
�

−
1

r̂`+1
·

p`+1

s`
+
Λ
s`

��

1+
Y`
s`

�−1

, 0≤ `≤ n− 2, (32)

with initial condition r0 =∞. We can set Yn = 0 and define rn via (32) with ` = n− 1, then Λ is an
eigenvalue if and only if rn = 0.
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4.2 The hyperbolic point of view

We use the hyperbolic geometric approach of [13] to study the evolution of r and r̂. We will view
R ∪ {∞} as the boundary of the hyperbolic plane H = {ℑz > 0 : z ∈ C} in the Poincaré half-plane
model. We denote the group of linear fractional transformations preserving H by PSL(2,R). The
recursions for both r and r̂ evolve by elements of this group of the form x 7→ b− a/x with a > 0.

The Poincaré half-plane model is equivalent to the Poincaré disk model U = {|z| < 1} via the con-
formal bijection U(z) = iz+1

z+i
which is also a bijection between the boundaries ∂H = R ∪ {∞} and

∂U = {|z| = 1, z ∈ C }. Thus elements of PSL(2,R) also act naturally on the unit circle ∂U. By
lifting these maps to R, the universal cover of ∂U, each element T in PSL(2,R) becomes an R→ R
function. The lifted versions are uniquely determined up to shifts by 2π and will also form a group
which we denote by UPSL(2,R). For any T ∈ UPSL(2,R) we can look at T as a function acting on
∂H , ∂U or R. We will denote these actions by:

∂H→ ∂H : z 7→ z.T, ∂U→ ∂U : z 7→ z◦T, ∂R→ ∂R : z 7→ z∗T.

For every T ∈ UPSL(2,R) the function x 7→ f (x) = x∗T is monotone, analytic and quasiperiodic
modulo 2π: f (x + 2π) = f (x) + 2π. It is clear from the definitions that ei x

◦T = ei f (x) and
(2 tan(x)).T= 2 tan f (x).

Now we will introduce a couple of simple elements of UPSL(2,R). For a given α ∈ R we will denote
by Q(α) the rotation by α in U about 0. More precisely, ϕ∗Q(α) = ϕ + α. For a > 0, b ∈ R we
denote by A(a, b) the affine map z→ a(z + b) in H . This is an element of PSL(2,R) which fixes∞
in H and −1 in ∂U. We specify its lifted version in UPSL(2,R) by making it fix π, this will uniquely
determines it as a R→ R function.

Given T ∈ UPSL(2,R), x , y ∈ R we define the angular shift

ash(T, x , y) = (y∗T− x∗T)− (y − x)

which gives the change in the signed distance of x , y under T. This only depends on v = ei x , w = ei y

and the effect of T on ∂ U , so we can also view ash(T, ·, ·) as a function on ∂ U×∂ U and the following
identity holds:

ash(T, v, w) = arg[0,2π)(w◦T/v◦T)− arg[0,2π)(w/v).

The following lemma appeared as Lemma 16 in [13], it provides a useful estimate for the angular
shift.

Lemma 12. Suppose that for a T ∈ UPSL(2,R) we have (i+ z).T= i with |z| ≤ 1
3
. Then

ash(T, v, w) = ℜ
h

(w̄− v̄)
�

−z− i(2+v̄+w̄)
4

z2
�i

+ ε3

= −ℜ [(w̄− v̄)z] + ε2 = ε1,
(33)

where for d = 1, 2,3 and an absolute constant c we have

|εd | ≤ c|w− v||z|d ≤ 2c|z|d . (34)

If v =−1 then the previous bounds hold even in the case |z|> 1
3
.
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4.3 Regularized phase functions

Because of the scaling in (11) we will set

Λ = µn+
λ

4n1/2
0

.

We introduce the following operators

J` = Q(π)A(s`/p`,µn/s`), M` = A((1+ X`/p`)
−1,λ/(4n1/2

0 p`))A(
p`

p`+1
, 0),

Ĵ` = Q(π)A(p`/s`,µn/p`), M̂` = A((1+ Y`/s`)
−1,λ/(4n1/2

0 s`)).

Then (31) and (32) can be rewritten as

r`+1 = r`.J`M`Ĵ`M̂`, r0 =∞.

(We suppressed the λ dependence in r and the operators M, M̂.) Lifting these recursions from ∂H
to R we get the evolution of the corresponding phase angle which we denote by φ` = φ`,λ.

φ`+1 = φ`∗J`M`Ĵ`M̂`, φ0 =−π. (35)

Solving the recursion from the other end, with end condition 0 we get the target phase function
φ�
`,λ:

φ�` = φ
�
`+1∗M̂

−1
` Ĵ−1

` M−1
` J−1

` , φ�n = 0. (36)

It is clear that φ`,λ and φ�
`,λ are independent for a fixed ` (as functions in λ), they are monotone

and analytic in λ and we can count eigenvalues using the formula (21).

In our case both M` and M̂` will be small perturbations of the identity so J`Ĵ` will be the main part
of the evolution. This is a rotation in the hyperbolic plane if it only has one fixed point in H. The
fixed point equation ρ` = ρ`.J`Ĵ` can be rewritten as

ρ` =
p`
s`







µn

p`
−

p`
�

µn
s`
− 1
ρ`

�






=
ρ`(µ2

n− p2
` )−µns`

ρ`µns`− s2
`

.

This can be solved explicitly, and one gets the following unique solution in the upper half plane if
` < n0+ 1/2:

ρ` =
µ2

n−m+ n

2µns`
+ i

s

1−
(µ2

n−m+ n)2

4µ2
ns2
`

. (37)

One also needs to use the identity p2
` − s2

` = m− n and (12). This shows that if ` < n0 then J`Ĵ` is
a rotation in the hyperbolic plane. We can move the center of rotation to 0 in U by conjugating it
with an appropriate affine transformation:

J`Ĵ` = Q(−2 arg(ρ`ρ̂`))
T−1
` .

Here T` = A(ℑ(ρ`)−1,−ℜρ`), XY = Y−1XY and

ρ̂` =
µ2

n+m− n

2µnp`
+ i

s

1−
(µ2

n+m− n)2

4µ2
np2
`

. (38)
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In order to regularize the evolution of the phase function we introduce

ϕ`,λ := φ`,λ∗T`Q`−1, 0≤ ` < n0

where Q` = Q(2 arg(ρ0ρ̂0)) · · ·Q(2 arg(ρ`ρ̂`)) and Q−1 is the identity. It is easy to check that the
initial condition remains ϕ0,λ = π. Then

ϕ`+1 = ϕ`∗Q
−1
`−1T−1

` J`M`Ĵ`M̂`T`+1Q`

= ϕ`∗Q
−1
`−1T−1

` Q(−2 arg(ρ`))
T−1
` MĴ`

`
M̂`T`T

−1
` T`+1Q`

= ϕ`∗

�
�

MĴ`
`

�T`
�Q` �

(M̂`)
T`
�Q` �T−1

` T`+1

�Q`

Note that the evolution operator is now infinitesimal: M`, M̂` and T−1
`

T`+1 will all be asymptotically
small, and the various conjugations will not change this.

We can also introduce the corresponding target phase function

ϕ�`,λ := φ�`,λ∗T`Q`−1, 0≤ ` < n0. (39)

The new, regularized phase functions ϕ`,λ and ϕ�
`,λ have the same properties as φ,φ�, i.e.: they

are independent for a fixed ` (as functions in λ), they are monotone and analytic in λ and we can
count eigenvalues using the formula (24). (See (22) and the discussion before it.)

We will further simplify the evolution using the following identities:

−
a

r
+ b =

�

b2+ 1

a
r − b

�

Q
�

arg
�

b− i

b+ i

��

, r.Ĵ`T` =−
1

r

p`
s`ℑρ`

+
µn

s`ℑρ`
−
ℜρ`
ℑρ`

.

From this we get
Ĵ`T` = T̂`Q`(−2arg(ρ̂`))

where

r.T̂` =

�

s`
ℑρ`p`

− 2
ℜρ`
ℑρ`

µn+
µ2

n

ℑρ`p`s`

�

r −
µn

s`ℑρ`
+
ℜρ`
ℑρ`

=
1

ℑρ̂`
r −
ℜρ̂`
ℑρ̂`

.

This allows us to write
�
�

MĴ`
`

�T`
�Q`
= (MT̂`

`
)Q(−2arg(ρ̂`))Q` = (MT̂`

`
)Q̂` . (40)

where
Q̂` = Q`Q(−2arg(ρ̂`)).

Thus

ϕ`+1 = ϕ`∗
�

MT̂`
`

�Q̂` �

M̂T`
`

�Q` �
T−1
` T`+1

�Q` .
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We will introduce the following operators to break up the evolution into smaller pieces:

L`,λ = A(1,λ/(4n1/2
0 p`)), L̂`,λ = A(1,λ/(4n1/2

0 s`)),

S`,λ = LT̂`
`,λ

�

T̂−1
` A(

p`
p`+1
(1+ X`/p`)

−1, 0) T̂`

�

, (41)

Ŝ`,λ = L̂T`
`,λ

�

T`
−1A((1+ Y`/s`)

−1, 0)T`+1

�

.

Then

ϕ`+1 = ϕ`∗
�

LT̂`
`

�Q̂` �
S`,0
�Q̂`
�

L̂T`
`

�Q` �
Ŝ`,0
�Q` = ϕ`∗

�

S`,λ
�Q̂` �Ŝ`,λ

�Q` . (42)

We also introduce the relative (regularized) phase function and target phase function:

α`,λ := ϕ`,λ−ϕ`,0, α�`,λ := ϕ�`,λ−ϕ
�
`,0. (43)

5 SDE limit for the phase function

Let F` denote the σ-field generated by ϕ j,λ, j ≤ ` − 1. Then ϕ`,λ is a Markov chain in ` with
respect to F`. Indeed, the relation (42) shows that ϕ`+1,λ = h`,λ(ϕ`+1,λ, X`, Y`) where h`,λ is a
deterministic function depending on ` and λ. Since X`, Y` are independent of F` it follows that
E
�

ϕ`+1,λ|F`
�

= E
�

ϕ`+1,λ|ϕ`,λ
�

. We will show that this Markov chain converges to a diffusion

limit after proper normalization. In order to do this we will estimate E
�

ϕ`+1,λ−ϕ`,λ|F`
�

and

E
�

(ϕ`+1,λ−ϕ`,λ)(ϕ`+1,λ′ −ϕ`,λ′)|F`
�

using the angular shift lemma, Lemma 12.

To simplify the computations we introduce ‘intermediate’ values for the process ϕ`,λ by breaking the
evolution operator in (42) into two parts:

ϕ`+1/2 ,λ = ϕ`∗
�

S`,λ
�Q̂` , F`+1/2 = σ(F` ∪ {ϕ`+1/2 ,λ}).

Note that ϕ`,λ is still a Markov chain if we consider it as a process on the half integers.

Remark 13. We would like to note that the ‘half-step’ evolution rules ϕ`,λ → ϕ`+1/2 ,λ, ϕ`+1/2 ,λ →
ϕ`+1,λ are very similar to the one-step evolution of the phase function ϕ in [13]. Indeed, in [13],

the evolution of ϕ is of the type ϕ`+1 = ϕ`∗
�

S̃`,λ
�Q̃` where S̃ is an affine transformation and Q̃ is a

rotation similar to our S, Ŝ and Q, Q̂. In our case the evolution of ϕ`+1,λ is the composition of two
transformations with similar structure. The main difficulties in our computations are caused by the
fact that Q and Q̂ are rather different which makes the oscillating terms more complicated.

5.1 Single step estimates

Throughout the rest of the proof we will use the notation k = n0 − `. We will need to rescale the
discrete time by n0 in order to get a limit, we will use t = `/n0 and also introduce ŝ(t) =

p
1− t.
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We start with the identity

p`ℑρ̂` = s`ℑρ` =

È

s2
`
−
(µ2

n−m+ n)2

4µ2
n

=

È

n−
(µ2

n−m+ n)2

4µ2
n

− `−
1

2

=
p

n0− `=
p

k =
p

n0ŝ(t).

Note that this means that

ρ` = ±

r

n− n0− 1/2

n− `− 1/2
+ i

r

n0− `
n− `− 1/2

=±
r

n1

n1+ k
+ i

È

k

n1+ k
, (44)

ρ̂` =

r

m− n0− 1/2

m− `− 1/2
+ i

r

n0− `
m− `− 1/2

=

r

m1

m1+ k
+ i

È

k

m1+ k
(45)

where the sign in ℜρ` is positive if µn >
p

m− n and negative otherwise.

For the angular shift estimates we need to consider

Z`,λ := i.S−1
`,λ− i =

ρ̂`X`
p

n0ŝ(t)
·

p`+1

p`
+
�

−
λ

4n0ŝ(t)
+
ρ̂`(p`+1− p`)

p`ℑρ̂`

�

=: V`+ v`,

Ẑ`,λ := i.Ŝ−1
`,λ− i =

ρ`Y`
p

n0ŝ(t)
+
�

−
λ

4n0ŝ(t)
+
ρ`+1−ρ`
ℑρ`

�

=: V̂`+ v̂`. (46)

Here V`, V̂` are the random and v`, v̂` are the deterministic parts of the appropriate expressions. We
have the following estimates for the deterministic parts (by Taylor expansion):

v`,λ =
vλ(t)

n0
+O(k−2), vλ(t) =−

λ

4ŝ(t)
−

ρ̂(t)
2p(t)ŝ(t)

, |v`,λ| ≤
c

k
,

v̂`,λ =
v̂λ(t)

n0
+O(k−2), v̂λ(t) =−

λ

4ŝ(t)
+

d
d t
ρ(t)

ℑρ(t)
, |v̂`,λ| ≤

c

k
,

where p(t) = p(n)(t) =
p

m/n0− t and ρ(t) = ρ(n)(t), ρ̂(t) = ρ̂n(t) are defined by equations (44)
and (45) with `= n0 t. For the random terms from (30) we get

EV` = EV̂` = O (k−1/2(n− `)−3/2),

EV 2
` =

1

n0
q(1)(t) +O (k−1(n− `)−1), EV̂ 2

` =
1

n0
q(2)(t) +O (k−1(n− `)−1),

E|V 2
` | = E|V̂

2
` |=

1

n0
q(3)(t) +O (k−1(n− `)−1), E|V d

` |,E|V̂
2
` |= O (k

−d/2), d = 3,4,

where the constants in the error term only depend on β and

q(1)(t) =
2ρ̂(t)2

β ŝ(t)2
, q(2)(t) =

2ρ(t)2

β ŝ(t)2
, q(3)(t) =

2

β ŝ(t)2
. (47)

We introduce the notations

∆1/2 fx ,λ = fx+1/2 ,λ− fx ,λ, ∆ fx ,λ = fx+1,λ− fx ,λ

and we also set for ` ∈ Z+
η` = ρ

2
0ρ̂

2
0ρ

2
1ρ̂

2
1 . . .ρ2

` ρ̂
2
` .

The following proposition is the analogue of Proposition 22 in [13].
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Proposition 14. For `≤ n0 we have

E
�

∆1/2ϕ`,λ
�

�ϕ`,λ = x
�

=
1

n0
b(1)
λ
(t) +

1

n0
osc(1)+O (k−3/2) = O (k−1)

E
�

∆1/2ϕ`,λ∆1/2ϕ`,λ′
�

�ϕ`,λ = x ,ϕ`,λ′ = y
�

=
1

n0
a(1)(t, x , y) +

1

n0
osc(2)+O (k−3/2)

E
�

∆1/2ϕ`+1/2 ,λ

�

�ϕ`+1/2 ,λ = x
�

=
1

n0
b(2)
λ
(t) +

1

n0
osc(3)+O (k−3/2) = O (k−1)

E
�

∆1/2ϕ`+1/2 ,λ∆1/2ϕ`+1/2 ,λ′
�

�ϕ`+1/2 ,λ = x ,ϕ`+1/2 ,λ′ = y
�

=
1

n0
a(2)(t, x , y) +

1

n0
osc(4)+O (k−3/2),

E
�

|∆1/2ϕ`,λ|d
�

�ϕ`,λ = x
�

,E
�

|∆1/2ϕ`+1/2 ,λ|d
�

�ϕ`,λ = x
�

= O (k−d/2), d = 2,3

where t = `/n0,

b(1)
λ
= λ

4ŝ
+ ℜρ̂

2pŝ
+ ℑρ̂2

2β ŝ2 , b(2)
λ
=
λ

4ŝ
−
ℜ d

d t
ρ

ℑρ
+
ℑρ2

2β ŝ2 ,

a(1) = 1
β ŝ2ℜ

�

ei(x−y)
�

+ 1+ℜρ̂2

β ŝ2 , a(2) =
1

β ŝ2ℜ
�

ei(x−y)
�

+
1+ℜρ2

β ŝ2 .

The oscillatory terms are

osc(1) = ℜ((−v`− iq(1)/2)e−i x ρ̂−2
` η`) +ℜ(ie

−2i x ρ̂−4
` η

2
`q
(1))/4,

osc(2) = q(3)ℜ(e−i x ρ̂−2
` η`+ e−i y ρ̂−2

` η`)/2+ℜ(q
(1)(e−i x ρ̂−2

` η`+ e−i y ρ̂−2
` η`+ e−i(x+y)ρ̂−4

` η
2
`))/2,

osc(3) = ℜ((−v̂`− iq(2)/2)e−i xη`) +ℜ(ie−2i xη2
`q
(2))/4,

osc(4) = q(3)ℜ(e−i xη`+ e−i yη`)/2+ℜ(q(2)(e−i xη`+ e−i yη`+ e−i(x+y)η2
`))/2.

Proof. We start with the identity

ϕ`+1/2 ,λ−ϕ`,λ = ϕ`+1,λ∗Q̂
−1
` −ϕ`,λ∗Q̂

−1
` = ϕ`,λ∗Q̂

−1
` S`,λ−ϕ`,λ∗Q̂−1

` = ash(S`,λ, eiϕ`,λη̄`ρ̂
−2
` ,−1).

Here we used the definition of the angular shift with the fact that S`,λ (and any affine transfor-
mation) will preserve ∞ ∈ H which corresponds to −1 in U. A similar identity can be proved for
∆1/2ϕ`+1/2 ,λ.

The proof now follows exactly the same as in [13], it is a straightforward application of Lemma 12
using the estimates on v`,λ, v̂`,λ, V`, V̂`.

5.2 The continuum limit

In this section we will prove that ϕ(n)(t,λ) = ϕbtn0c,λ converges to the solution of a one-parameter
family of stochastic differential equations on t ∈ [0,1). The main tool is the following proposition,
proved in [13] (based on [11] and [4]).

Proposition 15. Fix T > 0, and for each n≥ 1 consider a Markov chain X n
`
∈ Rd with `= 1, . . . , bnTc.

Let Y n
`
(x) be distributed as the increment X n

`+1− x given X n
`
= x. We define

bn(t, x) = nE[Y n
bntc(x)], an(t, x) = nE[Y n

bntc(x)Y
n
bntc(x)

T].

330



Suppose that as n→∞ we have

|an(t, x)− an(t, y)|+ |bn(t, x)− bn(t, y)| ≤ c|x − y|+ o(1) (48)

sup
x ,`

E[|Y n
` (x)|

3] ≤ cn−3/2, (49)

and that there are functions a, b from R× [0, T] to Rd2
,Rd respectively with bounded first and second

derivatives so that

sup
x∈Rd2

,t

�

�

�

∫ t

0

an(s, x) ds−
∫ t

0

a(s, x) ds
�

�

�+ sup
x∈Rd ,t

�

�

�

∫ t

0

bn(s, x) ds−
∫ t

0

b(s, x) ds
�

�

� → 0. (50)

Assume also that the initial conditions converge weakly, X n
0

d
=⇒ X0.

Then (X n
bntc, 0≤ t ≤ T ) converges in law to the unique solution of the SDE

dX = b d t +σ dB, X (0) = X0, t ∈ [0, T],

where B is a d-dimensional standard Brownian motion and σ : Rd × [0, T] is a square root of the
matrix valued function a, i.e. a(t, x) = σ(t, x)σ(t, x)T .

We will apply this proposition to ϕ`,λ with ` ≤ n0(1− ε) and ` ∈ Z/2, so the single steps of the
proposition correspond to half steps in our setup.

The following lemma shows that the oscillatory terms in the estimates of Proposition 14 average out
in the ‘long run’. Its proof relies on Proposition 14 and Lemma 26 of the Appendix.

Lemma 16. Let |λ|, |λ′| ≤ λ̄ and ε > 0. Then for any `1 ≤ n0(1− ε), `1 ∈ Z

1

n0

∼
∑

0≤`<`1

E
�

∆1/2ϕ`,λ |ϕ`,λ = x
�

=
1

n0

`1−1
∑

`=0

bλ(t) +O (n
−1/2
0 + n1/2

1 n−3/2
0 ) (51)

1

n0

∼
∑

0≤`<`1

E
�

∆1/2ϕ`,λ∆1/2ϕ`,λ′ |ϕ`,λ = x , ϕ`,λ′ = y
�

=
1

n0

`1−1
∑

`=0

a(t, x , y) +O (n−1/2
0 + n1/2

1 n−3/2
0 )

where t = `/n0, the functions bλ, a are defined as

bλ =
λ

2ŝ
+
ℜρ̂
2pŝ
+
ℑ(ρ̂2+ρ2)

2β ŝ2 −
ℜ d

d t
ρ

ℑρ
, a =

2

β ŝ2ℜ
�

ei(x−y)
�

+
2+ℜ(ρ̂2+ρ2)

β ŝ2 , (52)

and the implicit constants in O depend only on ε,β , λ̄. The indices in the summation
∼
∑

run through
half integers.

Proof of Lemma 16. We will only prove the first statement, the second one being similar. Note that
bλ(t) = b(1)

λ
(t) + b(2)

λ
(t).

Summing the first and third estimates in Proposition 14 we get (51) with an error term

1

n0

`1−1
∑

`=0

ℜ(e1,`η`) +
1

n0

`1−1
∑

`=0

ℜ(e2,`η
2
`) +O (n

−1/2
0 ), (53)
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where the first two terms will be denoted ζ1,ζ2. Here

e1,` =
�

(−vλ− iq(1)/2)ρ̂2
` + (−v̂λ− iq(2)/2)

�

e−i x , e2,` = i(ρ̂−4
` q(1)+ q(2))e−2i x/4

where for this proof c denotes varying constants depending on ε. Using the fact that vλ, v̂λ, q(1), q(2)

and their first derivatives are continuous on [0,1− ε] we get

|ei,`|< c, |ei,`− ei,`+1|< cn−1
0 . (54)

Applying Lemma 26 of the Appendix to the first sum in (53):

|ζ1| ≤
1

n0
|e1,`1

||F (1)1,`1
|+

1

n0

`1−1
∑

`=1

|e1,`− e1,`+1||F
(1)
1,` |.

Since `1 ≤ n0(1− ε) we have |F (1)1,` | ≤ c(1+ n1/2
1 k−1/2)≤ c(n1/2

1 n−1/2
0 + 1) and

|ζ1| ≤ c(n−3/2
0 n1/2

1 + n−1
0 ).

(Recall that k = n0− `.) For the estimate of ζ2 we first note that

|e2,`|=
1

2β

n0

k
|ρ̂−2
` +ρ

2
` |=

1

2β

n0

k
|ρ̂2
`ρ

2
` + 1|. (55)

We will use Lemma 26 if |ρ̂2
`ρ

2
` + 1| is ‘big’, and a direct bound with (55) if it is small. To be more

precise: we divide the sum into three pieces, we cut it at indices `∗1 and `∗2 so that

|ρ̂2
`ρ

2
` + 1| ≤ n−1/2

0 if k ∈ [k∗2, k∗1] and |ρ̂2
`ρ

2
` + 1| ≥ n−1/2

0 otherwise. (56)

Note that one or two of the resulting partial sums may be empty. We can always find such indices
because arg ρ̂2

`ρ
2
` is monotone if µn ≥

p
m− n and if µn <

p
m− n then arg ρ̂2

`ρ
2
` decreases if

k >
p

m1n1 then it increases. (See the proof of Lemma 26.)

We denote the three pieces by ζ2,i , i = 1,2, 3 and bound them separately. Since k ≥ εn0, Lemma 26
gives

|ζ2,1| ≤ c(n1/2
1 n−3/2

0 + n−1/2
0 ).

The term |ζ2,3| can be bounded exactly the same way, so we only need to deal with ζ2,2. Here we
use (55) to get a direct estimate:

|ζ2,2| ≤
1

2β

∑

k∈[k∗2,k∗1]∩[εn0,n0]

1

k
|ρ̂−2
` +ρ

2
` | ≤ cn−1/2

0 .

Collecting all our estimates the statement follows.

Now we have the ingredients to prove the continuum limit.
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Proposition 17. Assume that m/n0 → κ ∈ [1,∞], n/n0 → ν ∈ [1,∞] and that eventually
µn >

p
m− n or µn ≤

p
m− n. Then the continuous functions p(n)(t)−1,ρ(n)(t), ρ̂(n)(t) converge

to following limits on [0, 1):

p−1(t) = (κ− t)−1/2, ρ(t) =±

r

ν − 1

ν − t
+ i

r

1− t

ν − t
, ρ̂(t) =

r

κ− 1

κ− t
+ i

r

1− t

κ− t
,

where the sign in ℜρ depends on the (eventual) sign of µn −
p

m− n. If κ = ∞ then p−1(t) = 0,
ρ̂(t) = 1 and if ν =∞ then ρ(t) =±1.

Let B and W be independent real and complex standard Brownian motions, and for each λ ∈ R consider
the strong solution of

dϕλ =

�

λ

2ŝ
−
ℜρ′

ℑρ
+
ℑ(ρ2+ ρ̂2)

2β ŝ2 +
ℜρ̂
2pŝ

�

d t +

p
2ℜ(e−iϕλdW )
p

β ŝ
+

p

2+ℜ(ρ2+ ρ̂2)
p

β ŝ
dB,

ϕλ(0) = π. (57)

Then we have

ϕλ,bn0 tc
d
=⇒ ϕλ(t), as n→∞,

where the convergence is in the sense of finite dimensional distributions for λ and in path-space D[0,1)
for t.

Proof. The proof is very similar to the proof of Theorem 25 in [13]. One needs to check that for any
fixed vector (λ1, . . . ,λd) the Markov chain (ϕ`,λi

, 1 ≤ i ≤ d),` ≤ b(1− ε)n0c, ` ∈ Z/2 satisfies the
conditions of Proposition 15 and to identify the variance matrix of the limiting diffusion. Note that
because our Markov chain lives on the half integers one needs to slightly rephrase the proposition,
but this is straightforward.

The Lipshitz condition (48) and the moment condition (49) are easy to check from Proposition 14.
The averaging condition (50) is satisfied because of Lemma 16, using the fact that because of the
conditions of the proposition, the functions bλ(t), a(t, x , y) converge. This proves that the rescaled
version of (ϕ`,λ j

, 1 ≤ j ≤ d) converges in distribution to an SDE in Rd where the drift term is given

by the limit of (bλj , j = 1 . . . d) and the diffusion matrix is given by a(t, x) j,k =
2
β ŝ2ℜ

�

ei(xk−x j)
�

+
2+ℜ(ρ̂2+ρ2)

β ŝ2 .

The only step left is to verify that the limiting SDE can be rewritten in the form (57). This follows
easily using the fact that if Z is a complex Gaussian with i.i.d. standard real and imaginary parts and
ω1,ω2 ∈ C then

Eℜ(ω1Z)ℜ(ω2Z) =ℜ(ω̄1ω2).

The following corollary describes the scaling limit of the relative phase function α`,λ.

Corollary 18. Let Z be a complex Brownian motion with i.i.d. standard real and imaginary parts and

consider the strong solution αλ(t) of the SDE system (17). Then αbn0 tc,λ
d
=⇒ αλ(t) as n→∞ where

the convergence is in the sense of finite dimensional distributions for λ and in path-space D[0, 1) for t.
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Proof. We just need to show that for any subsequence of n we can choose a further subsequence
so that the convergence holds. By choosing an appropriate subsequence we can assume that
m/n0, n/n0 both converge and that µn −

p
m− n is always positive or nonnegative. Then the con-

ditions of Proposition 17 are satisfied and αλ = ϕλ −ϕ0 will satisfy the SDE (17) with a complex
Brownian motion Zt :=

∫ t

0
eiϕ0(t)dWt . From this the statement of the corollary follows.

6 Middle stretch

In this section we will study the behavior of α`,λ and ϕ`,λ in the interval [b(1− ε)n0c, n2] with n2 =
j

n0−K (n
1/3
1 ∨1)

k

. The constant K will eventually go to ∞, so we can assume that K > C0 > 0
with C0 large enough.

6.1 The relative phase function

The objective of this subsection is to show that the relative phase function α`,λ does not change
much in the middle stretch.

Proposition 19. There exists a constant c = c(λ̄,β) so that with y = n−1/2
0 (n1/6

1 ∨ log n0) we have

E
�

|α`2,λ−α`1,λ| ∧ 1|F`1

�

≤ c
�

d(α`1,λ, 2πZ) +
p
ε+ y +K −1

�

(58)

for all K > 0,ε ∈ (0,1),λ≤ |λ̄|, n0(1− ε)≤ l1 ≤ l2 ≤ n2, ` ∈ Z.

Because of the moment bounds (30) we may assume that

|X`|, |Y`| ≤
1

10
p

n0ŝ(`/n0), for `≤ n2. (59)

Indeed, the probability that (59) does not hold is at most c(n0 − n2)−1 ≤ cK −1 which can be
absorbed in the error term of (58).

We first provide the one-step estimates for the evolution of the relative phase function.

Proposition 20. There exists c = c(β , λ̄) so that for every ` ≤ n2 and |λ| < λ̄ we have the following
estimates

E
�

∆α`,λ|F`
�

=−
1

n0
ℜ
¦

η`
�

e−iϕ`,λ − e−iϕ`,0
��

ρ̂−2
`

�

vλ+ iq(1)/2
�

+
�

v̂λ+ iq(2)/2
�

]}

−
1

n0
ℜ
¦

iη2
`/4
�

e−2iϕ`,λ − e−2iϕ`,0
��

ρ̂−4
` q(1)+ q(2) ]}+O (α̂`,λk−3/2+ k−1/2n−1/2

0 )

= O (α̂`,λk−1+ k−1/2n−1/2
0 ) (60)

E
�

∆α2
`,λ|F`

�

= O (α̂`,λk−1+ k−1n−1
0 ) (61)

E
�

|∆α`,λ∆ϕ`,λ|
�

�F`
�

= O (α̂`,λk−1) (62)

where α̂`,λ denotes the distance between α`,λ and 2π.
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Proof. We first prove estimates on ∆1/2α`,λ and ∆1/2α`+1/2 ,λ. In order to do this, we break up the
evolution of ϕ`,λ into even smaller pieces:

ϕ`,λ
L

T̂`Q̂`
`−→ ϕ`+1/4 ,λ

S
Q̂`
`,0−→ ϕ`+1/2 ,λ

L̂
T`Q`
`−→ ϕ`+3/4 ,λ

Ŝ
Q`
`,0−→ ϕ`+1,λ (63)

where ϕ`+1/4 ,λ and ϕ`+3/4 ,λ are defined accordingly. We also define the relative phase functions for
the intermediate steps in the natural way.

By choosing c(β , λ̄) large enough we can assume λ̄

4
p

n0k
≤ 1

10
for `≤ n2 ≤ n−K . Using this with the

cutoff (59) the random variables Z`,λ, Ẑ`,λ defined in (46) are both less than 1/3 in absolute value.
This means that we are allowed to use Lemma 12 in the general case for each operator appearing
in (63) (i.e. the condition |z| ≤ 1/3 is always satisfied). From this point the proof is similar to the
proof of Proposition 29 in [13]. We first write

∆1/2α`,λ = ash(LT̂`
`

,−1, eiϕ`,λη̄`ρ̂
−2
` ) + ash(SQ̂`

`,0, eiϕ`+1/4 ,λη̄`ρ̂
−2
` , eiϕ`,λη̄`ρ̂

−2
` )

+ash(SQ̂`
`,0, eiϕ`,λη̄`ρ̂

−2
` , eiϕ`,0η̄`ρ̂

−2
` ). (64)

Using Lemma 12 one can show that the first two terms in (64) are of O (n−1/2
0 k−1/2). Using Lemma

12 again for the third term together with

|eiϕ`,λ − eiϕ`,0 |= |eiα`,λ − 1| ≤ α̂`,λ, |ei2ϕ`,λ − ei2ϕ`,0 | ≤ 2α̂`,λ

we get the analogue of (60) for ∆1/2α`,λ:

E
�

∆1/2α`,λ|F`
�

=−
1

n0
ℜ
¦

η`
�

e−iϕ`,λ − e−iϕ`,0
��

ρ̂−2
`

�

vλ+ iq(1)/2
�

]}

−
1

n0
ℜ
¦

iη2
`/4
�

e−2iϕ`,λ − e−2iϕ`,0
��

ρ̂−4
` q(1) ]}+O (α̂`,λk−3/2+ k−1/2n−1/2

0 )

= O (α̂`,λk−1+ k−1/2n−1/2
0 ) (65)

We can prove the analogues of (61) and (62) and similar bounds for ∆1/2α`+1/2 ,λ the same way. We
can also prove

E
�

∆1/2 eiϕ`,λ −∆1/2 eiϕ`,0 |F`
�

≤ ck−1α̂`+ cn−1/2
0 k−1/2 (66)

this is the analogue of Lemma 32 from [13] and it can be proved exactly the same way.

To get (60) we write

E
�

∆α`,λ
�

�ϕ`,0 = x ,ϕ`,λ = y
�

= E
�

∆1/2α`,λ
�

�ϕ`,0 = x ,ϕ`,λ = y
�

+E
�

E[∆1/2α`+1/2 ,λ

�

�F`+1/2 ]
�

�ϕ`,0 = x ,ϕ`,λ = y
�

,

= E
�

∆1/2α`,λ
�

�ϕ`,0 = x ,ϕ`,λ = y
�

+E
�

∆1/2α`+1/2 ,λ

�

�ϕ`+1/2 ,0 = x ,ϕ`+1/2 ,λ = y
�

+O (α̂`,λk−2+ k−3/2n−1/2
0 )

where the last line follows from (66) and the just proved half step estimates. Now applying (65) and
the corresponding estimate for ∆1/2α`+1/2 ,λ we get (60). The other two estimates follow similarly.
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The next lemma provides a Gronwall-type estimate for the relative phase function. This will be the
main ingredient in the proof of Proposition 19. The proof is based on the single step estimates of
Proposition 20 and the oscillation estimates of Lemma 26, the latter will be proved in the Appendix.

Lemma 21. There exist constants c0, c1, c2 depending on λ̄,β and a finite set J depending on n, n1, m1

so that with y = n−1/2
0 (n1/6

1 ∨ log n0) we have

�

�

�E
�

α`2,λ−α`1,λ|F`1

�

�

�

�≤ c1(y +
p
ε) +E(α̂`2−1|F`1

)/2+
`2−2
∑

`=`1

b`E(α̂`|F`)

0≤ b` ≤ c0(n
1/2
1 k−5/2+ k−3/2+ (n1/3

1 ∨ 1)k−2+ 1(`∈J))

if K > c2, |λ| ≤ λ̄ and n0(1− ε)≤ `1 ≤ `2 ≤ n2.

Proof. Recall that k = n0− `, ki = n0− `i . We denote x` = E[α̂`|F`1
] and set

e1,` =
1

n0

�

e−iϕ`,λ − e−iϕ`,0
��

(−vλ− iq(1)/2)ρ̂−2
` + (−v̂0− iq(2)/2)

�

,

e2,` = −
i

n0
(e−2iϕ`,λ − e−2iϕ`,0)[ρ̂−4

` q(1)+ q(2)]/4.

From Proposition 20 we can write

�

�E[α2−α1|F`1
]
�

�≤

�

�

�

�

�

�

`2−1
∑

`=`1

ℜ(η`e1,`)

�

�

�

�

�

�

+

�

�

�

�

�

�

`2−1
∑

`=`1

ℜ(η2
` e2,`)

�

�

�

�

�

�

+ c
`2−1
∑

`=`1

x`k
−3/2+ c

`2−1
∑

`=`1

k−1/2n−1/2
0

whose terms we denote ζ1,ζ2,ζ3 and ζ4 respectively. Clearly, ζ3 is of the right form and

|ζ4| ≤
n0ε
∑

k=1

k−1/2n−1/2
0 ≤ c

p
ε,

so we only need to bound the first two terms.

We will use
E
�

∆eiϕ`,λ −∆eiϕ`,0 |F`
�

≤ ck−1 x`+ cn−1/2
0 k−1/2

which is the ‘one-step’ version of (66) and can be proved the same way as Lemma 32 in [13]. From
this we get the estimates

|ei,`| ≤ cx`/k, |∆ei,`| ≤ ck−2 x`+ cn−1/2
0 k−3/2.

Then by Lemma 26 we have

|ζ1| ≤ C x`2−1k−1
2 |F

(1)
`1,`2−1|+ C

`2−2
∑

`=`1

|F (1)
`1,`|(x`k

−2+ n−1/2
0 k−3/2)

with F`1,` ≤ C(n1/2
1 k−1/2+ 1). Collecting the estimates and using k2 ≥K (n

1/3
1 ∨1) we get

|ζ1| ≤ cK −1 x`2−1+ cn−1/2
0 (n1/6

1 ∨ 1) +
`2−2
∑

`=`1

x`(n
1/2
1 k−5/2+ k−2).
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In order to bound ζ2 we use a similar strategy to the one applied in the proof of Lemma 16. We
divide the index set [`1,`2] into finitely many intervals I1, I2, . . . , Ia so that for each 1 ≤ j ≤ a one
of the following three statements holds:

for each ` ∈ I j we have k ≥pn1m1 and |ρ̂2
`ρ

2
` + 1| ≥ k−1/2, (67)

for each ` ∈ I j we have k ≤pn1m1 and |ρ̂2
`ρ

2
` + 1| ≥ k−1/2, (68)

for each ` ∈ I j we have |ρ̂2
`ρ

2
` + 1| ≤ k−1/2. (69)

It is clear that if we divide [`1,`2] into parts at the
p

n1m1 and the solutions of |ρ̂2
`ρ

2
` + 1| = k−1/2

then the resulting partition will satisfy the previous conditions. Since |ρ̂2
`ρ

2
` + 1| = k−1/2 has at

most three roots (it is a cubic equation, see the proof of Lemma 26 for details) we can always get
a suitable partition with at most five intervals. Moreover the endpoints of these intervals (apart
from `1 and `2) will be the elements of a set of size at most four with elements only depending on
n, m1, n1.

We will estimate the sums corresponding to the various intervals I j separately. If I j satisfies condition
(69) then we use

|e2,`|=
1

2β
|e−2i x − e−2i y |

1

k
|ρ̂2
`ρ

2
` + 1| ≤ ck−3/2 x`

to get
|
∑

`∈I j

ℜ(η2
` e2,`)| ≤ c

∑

`∈I j

k−3/2 x`

If I j = [`∗1,`∗2] satisfies condition (67) then we use Lemma 26 to get

|
∑

`∈I j

ℜ(η2
`e2,`)| ≤ cx`∗1(k

∗
1)
−1|F (2)

`∗1,`∗2
|+ c

`∗2−1
∑

`=`∗1

|F (2)
`+1,`∗2

|(x`k−2+ n−1/2
0 k−3/2)

where we have
|F (2)
`+1,`∗2

| ≤ |F (2)
`,`∗2
|+ 1≤ c(k1/2+ n1/2

1 (k
∗
2)
−1/2+ 1). (70)

We can bound the first term as

x`∗1(k
∗
1)
−1((k∗1)

1/2+ n1/2
1 (k

∗
2)
−1/2+ 1)≤ cK −1/2 x`∗1

using k ≥ (n1/3
1 ∨ 1). For the general term in the sum we get

c(k1/2+ n1/2
1 (k

∗
2)
−1/2+ 1)(x`k

−2+ n−1/2
0 k−3/2)

≤ cx`(k
−3/2+ (n1/3

1 ∨ 1)k−2) + c(n−1/2
0 k−1+ (n1/3

1 ∨ 1)n−1/2
0 k−3/2) (71)

Note that the sum of the error terms (71) is

c
`∗2−1
∑

`=`∗1

(n−1/2
0 k−1+ (n1/3

1 ∨ 1)n−1/2
0 k−3/2)≤ c(n−1/2

0 log n0+ (n
1/6
1 ∨ 1)n−1/2

0 )
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where we used (n1/3
1 ∨ 1)≤ k ≤ n0. Putting our estimates together:

|
∑

`∈I j

ℜ(η2
` e2,`)| ≤cK −1/2 x`∗1 + c

`∗1−1
∑

`=`1

x`(k
−3/2+ (n1/3

1 ∨ 1)k−2) (72)

+ c(n−1/2
0 log n0+ (n

1/6
1 ∨ 1)n−1/2

0 ).

The only case left is when I j = [`∗1,`∗2] satisfies condition (68). If µn ≥
p

m− n then we have

the same estimate for F (2)
`,`∗2

as in (70) so we get exactly the same bound as in (72). If we have

µn <
p

m− n then we use (80) of Lemma (26) with the bound

|F (2)
`∗1,`| ≤ c(k1/2+ n1/2

1 (k
∗
1)
−1/2+ 1).

Copying the previous arguments we get

|
∑

`∈I j

ℜ(η2
` e2,`)| ≤ cK −1/2 x`∗2−1+ c

`∗2−1
∑

`=`∗1

x`(k
−3/2+ (n1/3

1 ∨ 1)k−2)

+c(n−1/2
0 log n0+ (n

1/6
1 ∨ 1)n−1/2

0 ).

Collecting our estimates, noting that `∗2 − 1 is the endpoint of one of the intervals I j and letting K
be large enough we get the statement of the lemma.

The proof of Proposition 19 relies on the single step estimates of Proposition 20 and the following
Gronwall-type lemma which was proved in [13].

Lemma 22. Suppose that for positive numbers x`, b`, c, integers `1 < `≤ `2 we have

x` ≤
x`−1

2
+ c+

`−1
∑

j=`1

b j x j . (73)

Then x`2
≤ 2 (x`1

+ c)exp
�

3
∑`2−1

j=`1
b j

�

.

Now we are ready to prove Proposition 19.

Proof of Proposition 19. We will adapt the proof of Proposition 28 from [13]. Let a = α`1,λ and
define a◊, a◊ ∈ 2πZ so that [a◊, a◊) is an interval of length 2π containing a. We can assume
that λ ≥ 0, the other case being very similar. We will drop the index λ from α and we will write
E(.) = E(.|F`1

).

We will show that there exists c0 so that if K > c0, then if ã = a♦ or a♦ then

E|α`2
− ã| ≤ c1(|a− ã|+

p
ε+ y). (74)

The claim of the proposition follows from this by an application of the triangle inequality, the addi-
tional condition κ > c0 is treated via the error term 1/κ.
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In order to prove (74) for ã = a♦ we follow the steps described in Proposition 28 from [13]. Using
the exact same argument we only need to prove that for the coefficients b` in Lemma 21 are bounded
by a constant depending only on λ̄,β and that α never goes below an integer multiple of 2π that it
passes.

The first statement is easy to check, we have,

`2−1
∑

`=`1

b` ≤ c0

�

n1/2
1 (n

−1/2
1 ∧ 1) + (n−1/6

1 ∧ 1) + (n1/3
1 ∨ 1)(n−1/3

1 ∧ 1) +#(J)
�

< c′.

To prove the other statement first recall the evolution steps (63) and that α j,λ = ϕ j,λ − ϕ j,λ for
j ∈ Z/4. Using the fact that the maps L`,λ, L̂`,λ and their conjugates are monotone in λ (as functions

on R) we get that α`,λ ≤ α`+1/4 ,λ and α`+1/2 ,λ ≤ α`+3/4 ,λ. Moreover, since
�

S`,0
�Q̂` and

�

Ŝ`,0
�Q` are

2π−quasiperiodic functions on R we have bα`+1/4 ,λc2π = bα`+1/2 ,λc2π and bα`+3/4 ,λc2π = bα`+1,λc2π.
Hence, we get the following inequality:

bα`,λc2π ≤ bα`+1/4 ,λc2π = bα`+1/2 ,λc2π ≤ bα`+3/4 ,λc2π = bα`+1,λc2π,

which implies that α never goes below an integer multiple of 2π that it passes. This means α` ≥ a♦
and α`− a♦ ≥ α̂` for `≥ `1.

Lemma 21 provides the bound

|Eα`− a♦| ≤ (a− a♦) + c(y +
p
ε) +Eα̂`−1/2+

`−2
∑

j=`1

b jEα̂ j .

Since |Eα`− a♦| ≥ Eα̂`, inequality (74) follows for ã = a♦ via Lemma 22.

In order to deal with the ã = a♦ case in (74) we define T ∈ Z/2 the first time when αT ≥ a♦. Note
that α can only pass an integer multiple of 2π in the `→ `+ 1/4 or `+ 1/2 → `+ 3/4 steps, and ϕ
evolves deterministically in these steps. This means that T − 1/2 is a stopping time with respect to
F j , j ∈ Z/2.

For large enough K we have λ̄

4
p

n0k
≤ 1

10
. Then by Lemma 12 we get the uniform bound

α j+1/4 ,λ−α j,λ ≤ cn−1/2
0 , j ≤ `2, j ∈ Z/2.

By the strong Markov property and the bound (60) we get

E[(αT − a♦)1(T ≤ `2)]≤ cn−1/2
0 and E[(αT+1/2 − a♦)1(T ≤ `2)]≤ cn−1/2

0 .

Using this together with the first part of the proof and the strong Markov property again we get

E(α`2
− a♦)+ = E

�

1(T ≤ `2)E
�

α`2
− a♦

�

�FT

��

≤ c1(E
�

(αT − a♦)1(T ≤ `2)
�

+
p
ε+ y)

≤ c′1(
p
ε+ y), (75)

Lemma 21 gives

|Eα`− a♦| ≤ (a♦− a) + c(y +
p
ε) +Eα̂`−1/2+

`−2
∑

j=`1

b jEα̂ j .
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Then by (75) and the identity |a|=−a+ 2a+ we get

E|α`− a♦| ≤ |Eα`− a♦|+ 2E(α`− a♦)+

≤ (a♦− a) + c(y +
p
ε) +Eα̂`−1/2+

`−2
∑

j=`1

b jEα̂ j .

Since α̂` ≤ |α`− a♦|, the Gronwall-type estimate in Lemma 22 implies (74) with ã = a♦.

6.2 The uniform limit

Proposition 23. Assume thatK =K (n)→∞ and thatK n−1
0 (n

1/3
1 ∨1)→ 0 as n→∞. Then, ϕn2,0

modulo 2π converges in distribution to the uniform distribution on (0, 2π) as n→∞.

Proof. We can use exactly the same argument as in Proposition 33, [13]. We show that given ε > 0,
every subsequence has a further subsequence along which ϕn2,0 modulo 2π is eventually ε-close to

the uniform distribution. We set ξ = bK (n1/3
1 ∨ 1)c and pick τ = τ(ε) with τξ ≤ n2. Because of

K n−1
0 (n

1/3
1 ∨1)→ 0 we will be able to let τ→∞. We will show that for any fixed τ the distribution

of ϕn2,0 − ϕn2−τξ,0 given Fn2−τξ is asymptotically normal with a variance going to ∞ as τ → ∞.
From that the statement will follow.

Note that the arguments of Proposition 17 can be repeated for the evolution of ϕn2−τξ+`,0 with
0≤ `≤ τξwhich gives that ϕn2,0 conditioned onFn2−τξ converges to ϕ0(1−(1+τ)−1)where ϕ0(t)
is the solution of (57) with λ= 0. This is just a normal random variable, its variance is given by the
integrating the sum of the squares of the independent diffusion coefficients on [0, 1− (1+ τ)−1].

This is at least as big as the variance coming from the dW term which gives
∫ 1−(1+τ)−1

0
2

β(1−t)d t.
This goes to∞ if τ→∞ as required.

7 Last stretch

The purpose of this section is to prove that on the interval [n2, n] the relative target phase function
α�
`,λ = ϕ

�
`,λ−ϕ

�
`,0 does not change much.

Proposition 24. For any fixed λ ∈ R and K > 0 we have α�n2,λ
P−→ 0 as n→∞.

The length of the interval [n2, n] is equal to n1+K (n
1/3
1 ∨1), up to an error of order 1. By taking an

appropriate subsequence of n (see Remark 10) we may assume that n1 has a finite or infinite limit
as n→∞. We will consider these two cases separately.

Proof of Proposition 24 in the limn→∞ n1 <∞ case. By (12) we have that |m− n−µ2
n|/µn converges

as n→∞, by taking an appropriate subsequence we can assume that the limit also exists without
the absolute values. Note that condition (10) implies that limn→∞m/n> 1 and thus m− n→∞.

We may also assume that n−n2 is eventually equal to an integer ξ. From there we proceed similarly
as in [13]. We first note that by (36) and (39) we have

ϕ�n−ξ,λ∗Q
−1
n−ξ−1 = 0∗Rn−1,λ . . .Rn−ξ,λTn−ξ
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where R`,λ = M̂−1
`

Ĵ−1
`

M−1
`

J−1
`

. From (31) and (32) we get

r.Rn− j,λ =
rs2

n− j + rsn− jYn− j − sn− jΛ

pn− j pn− j+1−Λ2+ pn− j+1Xn− j + rsn− jΛ+ rYn− jΛ

where Λ = µn+λ/(4n1/2
0 ). Using (12), sn− j =

p

j− 1/2, pn− j =
p

m− n+ j− 1/2 and m−n→∞

we get that r.Rn− j,λ− r.Rn− j,0
P−→ 0 for any fixed j. This leads to

α�n2,λ = ϕ
�
n−ξ,λ∗Q

−1
n−ξ−1−ϕ

�
n−ξ,0∗Q

−1
n−ξ−1→ 0 as n→∞.

If limn→ n1 =∞ then we will need the edge scaling results proved in [9] which are summarized in
Theorem 3 of the introduction. The initial condition f (0) = 0, f ′(0) = 1 for the operator Hβ in the
theorem comes from the fact that the discrete eigenvalue equation for An,mAT

n,m with an eigenvalue

Λ′ = (
p

n+
p

m)2 + (
p

m+
p

n)4/3

(mn)1/6
ν is equivalent to a three-term recursion for the vector entries w`,Λ

(c.f. (18)) with the initial condition w0,ν = 0 and w1,ν 6= 0.

By [9], Remark 3.8, the results of [9] extend to solutions of the same three-term recursion with
more general initial conditions. We say that a value of ν is an eigenvalue for a family of recursions
parametrized by ν if the corresponding recursion reaches 0 in its last step. Suppose that for given
ζ ∈ [−∞,∞] the initial condition for the three-term recursion equation satisfies

(mn)−1/3

(
p

m+
p

n)−2/3

w0,ν

(w1,ν −w0,ν)
=

(mn)−1/3

(
p

m+
p

n)−2/3
(r0,ν − 1)−1 P−→ ζ, (76)

uniformly in ν with r0 := w1,ν/w0,ν . Here the factor (mn)1/3

(
p

m+
p

n)2/3
is the spatial scaling for the problem

([9], Section 5). Then the eigenvalues of this family of recursions converge to those of the stochastic
Airy operator with initial condition f (0)/ f ′(0) = ζ. The corresponding point process Ξζ is also
a.s. simple (i.e. there are no multiple points) and it will satisfy the following non-atomic property:
for any x ∈ R we have P(x ∈ Ξζ) = 0 (see [9], Remark 3.8). Similar statement holds at the
lower edge if lim infn→∞m/n > 1 with (rn,ν + 1)−1 in (76). (In this case one first multiplies the
off-diagonal entries of An,mAT

n,m by −1 before applying the arguments of [9], this will not change
the eigenvalues.)

If m/n→ γ ∈ [1,∞) then we can rewrite (76) jointly for the upper and lower soft edge as

γ−1/3

(pγ± 1)−2/3
n−1/3(r0,ν ∓ 1)−1 P−→ ζ, . (77)

The multiplier is 1 in the case γ=∞ and it is always a finite nonzero value unless γ= 1 and we are
at the lower edge.

Proof of Proposition 24 if limn→∞ n1 =∞. By taking an appropriate subsequence, we may assume
that µn−

p
m− n is always positive or always negative. According to the proof of Lemma 34 in [13]

we need to consider the family of recursions

r`+1,ν = r`,ν .J`M`Ĵ`M̂`, n2 ≤ `≤ n
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with initial condition
rn2,ν = x .T−1

n2
= ℑ(ρn2

)x +ℜ(ρn2
)

for a given x ∈ R and show that the probability of having an eigenvalue in [0,λ] converges to 0 as
n→∞.

We introduce
n∗ = n− n2, m∗ = m− n2.

Note that the recursion is determined by the bottom (2n∗)× (2n∗) submatrix of ÃD(n)
n,m in (29) which

has the exact same distribution as the matrix ÃD(n
∗)

n∗,m∗ . Thus we can consider the eigenvalue equation

for ÃD(n
∗)

n∗,m∗ with generalized initial condition

r∗0,λ = ℑ(ρn2
)x +ℜ(ρn2

).

(We will use ∗ to denote that we are working with the smaller matrix.) We will transform this back
to an eigenvalue equation for Ãn∗,m∗ and then An∗,m∗A

T
n∗,m∗ with a generalized initial condition.

Recall the recursion (31) and that r∗` = u∗`+1/v
∗
` , r̂∗` = v∗`/u

∗
`. From this we get

v∗1
v∗0
= r∗0 r̂∗1 = r∗0

�

−
1

r∗0
·

s∗0
p∗0
+
Λ
p∗0

��

1+
X ∗0
p∗0

�−1

=

�

−
s∗0
p∗0
+ (ℑ(ρn2

)x +ℜ(ρn2
))
Λ
p∗0

�

βp∗1p∗0
χ̃2
β(m∗−1)

(78)

where Λ = µn +
λ

4
p

n0
. Denote the solution of the generalized eigenvalue equation for Ãn∗,m∗ corre-

sponding to Λ with ũ∗1, ṽ∗1 , . . . . If we remove the conjugation with D(n
∗) from ÃD(n

∗)

n∗,m∗ then from (78)
we get

ṽ∗1
ṽ∗0
=

�

−
s∗0
p∗0
+ (ℑ(ρn2

)x +ℜ(ρn2
))
Λ
p∗0

�

χβ(n∗−1)p
∗
0

χ̃β(m∗−1)s
∗
1

. (79)

By Remark 8 this is exactly the initial condition for the generalized eigenvalue equation for
An∗,m∗A

T
n∗,m∗ with eigenvalue Λ2 = µ2

n+
µnλ

2
p

n0
+ λ2

16n0
.

The spectrum of the matrix An∗,m∗A
T
n∗,m∗ is concentrated asymptotically to [(

p
m∗ −

p
n∗)2, (

p
m∗ +

p
n∗)2]. A direct computation shows that

p
m1±

p
n1 = µn, where we have+ if µn−

p
m− n> 0 and

− otherwise. This means that if µn <
p

m− n then our original bulk scaling around µn corresponds
to the lower edge scaling of An∗,m∗A

T
n∗,m∗ and if µn >

p
m− n then we get the upper edge scaling.

(Note that because of our assumptions if µn <
p

m− n than lim inf m/n> 1.)

Again, by taking an appropriate subsequence, we may assume that m∗/n∗ → γ∗ ∈ [1,∞]. We first

check that the initial condition (79) satisfies (77), this is equivalent to showing that (n∗)1/3
�

ṽ∗1
ṽ∗0
∓ 1
�

converges in probability to a constant. Since n1→∞ we have

m∗ > n∗→∞, ρn2
=±1+ i

p
K (n∗)−1/3+ o((n∗)−1/3),

n1 = n∗−K (n∗)1/3, m1 = m∗−K (n∗)1/3,

µn =
p

m∗±
p

n∗−
K
2
(n∗)1/3

�

(m∗)−1/2± (n∗)−1/2
�

+ o((n∗)−2/3).
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Since `−1/2χ`
P−→ 1 as `→∞ we get that in probability

lim (n∗)1/3
�

ṽ∗1
ṽ∗0
∓ 1

�

=
p
K x

�

1± (γ∗)−1/2
�

and the convergence is uniform if we assume that λ is bounded. This means that we may apply the
edge scaling result, we just need to convert the scaling from the bulk to the edge. In the bulk we
were interested in the interval I = [µ2

n, (µn + λn−1/2
0 /4)2]. If we apply the edge scaling, then this

interval becomes (m∗n∗)1/6

(
p

m∗±
p

n∗)4/3
(I − (

p
m∗ ±

p
n∗)2). Using our asymptotics for µn we get that for the

end point of the interval

(m∗n∗)1/6

(
p

m∗±
p

n∗)4/3
(µ2

n− (
p

m∗±
p

n∗)2)→−
K
2
(1± (γ∗)−1/2)1/6,

and for the length we get

lim
n→∞

�

(µn+λn−1/2
0 /4)2−µ2

n

� (m∗n∗)1/6

(
p

m∗±
p

n∗)4/3
=

(γ∗)1/6

(
p

γ∗± 1)1/3
lim

n→∞

λ
p

n0
= 0.

(We used that if γ∗ = 1 then we must have + in the ±.) This means that after the edge rescaling the
interval shrinks to a point, meaning that the probability that our original recursion has an eigenvalue
in [0,λ] converges to the probability that the limiting edge point process has a point at a given value
which is equal to 0.

8 Appendix

In this section we provide the needed oscillation estimates.

Lemma 25. Suppose that 2π > θ1 > θ2 > . . .> θm > 0 and let s` =
∑`

j=1 θ j . Then

|
m
∑

j=1

eis j | ≤ c(θ−1
m + (2π− θ1)

−1)≤ c′(|eiθm/2− 1|−1+ |eiθ1/2+ 1|−1).

Proof. The first inequality is the same as Lemma 36 from [13] and the second inequality is straight-
forward.

Lemma 26. Let 1≤ `1 < `2 ≤ n0 and F (i)
`1,`2
=
∑`2

j=`1
ηi

j for i = 1, 2 and g` ∈ C . Then for i = 1,2:

�

�

�

�

�

�

ℜ
`2
∑

`=`1

g`η
i
`

�

�

�

�

�

�

≤ |F (i)
`1,`2
||g`2
|+

`2−1
∑

`=`1

|F (i)
`1,`||g`+1− g`|, (80)

�

�

�

�

�

�

ℜ
`2
∑

`=`1

g`η
i
`

�

�

�

�

�

�

≤ |F (i)
`1,`2
|g`1
||+

`2−1
∑

`=`1

|F (i)
`+1,`2

||g`+1− g`|. (81)
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We also have the following estimates:

|F (1)
`1,`2
| ≤ c(1+ n1/2

1 k−1/2
2 ) (82)

|F (2)
`1,`2
| ≤







c
�

|ρ2
`1
ρ̂2
`1
+ 1|−1+ 1+ n1/2

1 k−1/2
2

�

if (?) or (??),

c
�

|ρ2
`2
ρ̂2
`2
+ 1|−1+ 1+ n1/2

1 k−1/2
1

�

if (? ? ?)
(83)

where the conditions are given by

(?) : µn ≥
p

m− n with k0, k1 ≥
p

m1n1 or k0, k1 ≤
p

m1n1,

(??) : µn <
p

m− n with k0, k1 ≥
p

m1n1, (84)

(? ? ?) : µn <
p

m− n with k0, k1 ≤
p

m1n1.

Proof. The bounds (80) and (81) follow from partial summation. In order to prove the bounds on
F (i)
`1,`2

we will apply Lemma 25, but we need to consider various cases. Note that the constant c
might change from line to line.
Case 1: µn ≥

p
m− n,ℜρ` ≥ 0.

We have the bounds

k1/2(n1+ k)−1/2 ≤ argρ`, n1/2
1 (n1+ k)−1/2 ≤ π/2− argρ`,

k1/2(m1+ k)−1/2 ≤ arg ρ̂`, m1/2
1 (m1+ k)−1/2 ≤ π/2− arg ρ̂`.

and arg(ρ`ρ̂`) is decreasing. The sequence arg(ρ̂2
`ρ

2
` ) satisfies the conditions of Lemma 25 and

using m1 > n1 and m1 > cn> cn0 we get the bound

|
`2
∑

`=`1

η`| ≤ c
�

(n1+ k2)
1/2k−1/2

2 + (k1+m1)
1/2m−1/2

1

�

≤ c(n1/2
1 k−1/2

2 + 1).

We have

ρ`ρ̂` =
p

m1n1− k
p

k+m1

p

k+ n1

+
i
p

k
�p

m1+
p

n1
�

p

k+m1

p

k+ n1

which means that if k1, k2 ≥
p

m1n1 or k1, k2 ≤
p

m1n1 then we can use Lemma 25 for the sequence
arg(ρ̂4

`
ρ4
`
). (In the first case π/2 ≤ arg(ρ̂`ρ`) < π while in the second case 0 < arg(ρ̂`ρ`) ≤ π/2.)

From the lemma we get

|
`2
∑

`=`1

η2
` | ≤ c

�

|ρ2
`1
ρ̂2
`1
+ 1|−1+ |ρ2

`2
ρ̂2
`2
− 1|−1

�

and explicit computation together with m1 > cn> ck gives

|ρ2
` ρ̂

2
` − 1|−1 =

p

k+m1

p

k+ n1

2
p

k
�p

m1+
p

n1
�
≤ c(1+ n1/2

1 k−1/2).
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This finishes the proof of the lemma in this case.
Case 2: µn <

p
m− n,ℜρ` < 0.

Now we have

ρ`ρ̂` =−
k+pm1

p
n1

p

k+m1

p

k+ n1

+
i
p

k
�p

m1−
p

n1
�

p

k+m1

p

k+ n1

. (85)

meaning π/2< arg(ρ̂`ρ`)< π. Differentiation of the real part shows that argρ`ρ̂` decreases if k >
p

m1n1 and then it increases. This means that we can apply Lemma 25 for the sequences arg(ρ̂2
`ρ

2
` )

or arg(ρ̂4
`
ρ4
`
) if k1, k2 ≥

p
n1m1 and the reversed versions of these sequences if k1, k2 ≤

p
n1m1.

From (85) we get

π≤ argρ2
` ρ̂

2
` , 2π− argρ2

` ρ̂
2
` ≥

2
p

k
�p

m1−
p

n1
�

p

k+m1

p

k+ n1

≥ c(k−1/2n1/2
1 + 1)−1 (86)

where we used
p

m1− n1 ≥ c
p

m1 which follows from m1 > cn > cn1. Applying Lemma 25 to
arg(ρ̂2

`ρ
2
` ) (or the reversed sequence) we get

|
`2
∑

`=`1

η`| ≤
¨

c(n1/2
1 k−1/2

1 + 1) if k1, k2 ≥
p

n1m1,
c(n1/2

1 k−1/2
2 + 1) if k1, k2 ≤

p
n1m1.

Noting that k−1/2
1 ≤ k−1/2

2 this proves (82) in Case 2 if k1, k2 ≤
p

n1m1 or k1, k2 ≥
p

n1m1. If k1 >p
n1m1 and k2 <

p
n1m1 then we can cut the sum in to parts at

p
n1m1 and since for k ≥ pm1n1

we have n1/2
1 k−1/2 ≤ 1 we have (82) in this case as well.

To prove (83) we apply Lemma 25 to arg(ρ̂4
`
ρ4
`
) (or its reversed) to get

|
`2
∑

`=`1

η2
` | ≤







c
�

|ρ2
`1
ρ̂2
`1
+ 1|−1+ |ρ2

`2
ρ̂2
`2
− 1|−1

�

if k1, k2 ≥
p

n1m1,

c
�

|ρ2
`2
ρ̂2
`2
+ 1|−1+ |ρ2

`1
ρ̂2
`1
− 1|−1

�

if k1, k2 ≤
p

n1m1.

From this (83) follows by noting that

|ρ2
` ρ̂

2
` − 1|−1 =

p

k+m1

p

k+ n1

2
p

k
�p

m1−
p

n1
�
≤ c(n1/2

1 k−1/2+ 1).

where the first equality is explicit computation and the inequality is from (86).

Acknowledgments. The authors wish to thank the anonymous referees for valuable comments and
suggestions.

References

[1] Ioana Dumitriu and Alan Edelman. Matrix models for beta ensembles. J. Math. Phys.,
43(11):5830–5847, 2002. MR1936554

345

http://www.ams.org/mathscinet-getitem?mr=1936554


[2] Ioana Dumitriu and Peter Forrester. Tridiagonal realization of the anti-symmetric Gaussian
β-ensemble J. Math. Phys., 51, 093302, 2010
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