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Abstract

We investigate the interaction of one-dimensional asymmetric exclusion processes of opposite
speeds, where the exchange dynamics is combined with a creation-annihilation mechanism, and
this asymmetric law is regularized by a nearest neighbor stirring of large intensity. The model
admits hyperbolic (Euler) scaling, and we are interested in the hydrodynamic behavior of the
system in a regime of shocks on the infinite line. This work is a continuation of a previous
paper by Fritz and Nagy [FN06], where this question has been left open because of the lack
of a suitable logarithmic Sobolev inequality. The problem is solved by extending the method
of relaxation schemes to this stochastic model, the resulting a priory bound allows us to verify
compensated compactness.
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1 Introduction and Main Result

A rigorous treatment of hyperbolic (Euler) scaling problems requires specific conditions because
a direct compactness argument is not available; the celebrated Two Blocks Lemma, see Theorem
4.6 and Theorem 4.7 of [GPV88], can not be extended to macroscopic block averages. Just as
in the case of parabolic energy inequalities, the diffusive (elliptic) component of the microscopic
evolution does vanish in a hyperbolic scaling limit, thus we can not control spatial fluctuations. This
problem is closely related to the formation of shock waves resulting in a breakdown of existence of
classical solutions to the macroscopic equations. Assuming smoothness of the macroscopic solution,
this difficulty can be avoided by means of the relative entropy method of [Yau91], hydrodynamic
limit (HDL) for a large class of models can be derived in this way. In the case of attractive systems
coupling and other specific techniques can be applied even in a regime of shocks, therefore advanced
methods of PDE theory, as the entropy condition of S. Kruzkov play a crucial role in the proofs, see
e.g. [Rez91], [KL99] and [Bah04] with some further references. Since the models of [FT04] and
[FN06] are not attractive, a new tool, the stochastic theory of compensated compactness is used
there to pass to the hydrodynamic limit; the microscopic entropy flux is evaluated by means of a
logarithmic Sobolev inequality (LSI). Our present model is more difficult, these techniques alone are
not sufficient to control the mechanism of creation and annihilation. The main purpose of this paper
is to extend the PDE method of relaxation schemes to microscopic systems with a hyperbolic scaling,
we are going to expose several versions of the argument.

1.1. Relaxation schemes: In case of non - attractive systems with general initial conditions the
method of compensated compactness, cf. [Tar79] or [Ser00] and [Daf05] is an effective tool, its
applications to microscopic systems are discussed in the papers [Fri01], [Fri04], [FT04], [FN06]
and [Fri09]. However, compensated compactness alone is not sufficient in the present situation,
it should be supplemented by another tool called the method of relaxation schemes in the PDE
literature, see [Liu87], [CL93] and [CLL94] for the first results, [GT00] or [Daf05] for explanation
and further discussions. The basic idea is not difficult: the single conservation law ∂tu+∂x f (u) = 0
in one space dimension can be obtained as the zero relaxation limit of the linear system

∂tuε + ∂x vε = 0 , ∂t vε + ∂xuε = ε
−1B(uε, vε)( f (uε)− vε) (1.1)

with a nonlinear source (relaxation) term on its right hand side. We have B > 0, so unless ( f (uε)−
vε) → 0 , this term might explode if 0 < ε → 0 ; but the negative sign of vε/ε is encouraging.
To see a successful relaxation, we have to find a clever Liapunov function h = h(u, v) such that
h′v(u, v)B(u, v)( f (u)− v)≤−b( f (u)− v)2 with some b > 0 . Then for classical solutions 1

∂th(uε, vε) + h′u(uε, vε)∂x vε + h′v(uε, vε)∂xuε ≤−(b/ε)( f (uε)− vε)
2 ,

whence under suitable conditions on f and the initial data

b

ε

∫ ∞

0

∫ ∞

−∞

�

f (uε(t, x))− vε(t, x)
�2 d x d t ≤ C0

follows, where C0 does not depend on ε . Let us remark that the equation above is easily controlled if
we have a function J = J(u, v) such that h′u(u, v)∂x v+h′v(u, v)∂xu= ∂x J , that is h is a Lax entropy for

1 Differentiation with respect to space and time is usually denoted by ∂x and ∂t , while h′u and h′v are the partial
derivatives of h with respect to the state variables u and v .
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(1.1) if B = 0 , but there are other possibilities, too. Therefore it is reasonable to expect vε ≈ f (uε)
in a mean square sense as ε→ 0 , consequently the limit u of uε satisfies ∂tu+∂x f (u) = 0 in a weak
sense, see e.g. Sections 6.7 and 16.5 of [Daf05] for complete proofs which are technically much
more complex than the presentation here.

The hyperbolic scaling limit of our model of interacting exclusions with creation and annihilation
shall be understood as a microscopic version of the zero relaxation limit for the LeRoux system

∂tuε + ∂x(ρε − u2
ε) = 0 ,

∂tρε + ∂x(uε − uερε) = ε
−1B(uε,ρε)(F(uε)−ρε) ,

(1.2)

where x ∈ R , u ∈ [−1,1] , ρ ∈ [0,1], F(u) := (1/3)(4−(4−3u2)1/2 and B ≥ 1/2 , consequently the
limiting equation for u reads as ∂tu+ ∂x(F(u)− u2) = 0 . The first proof uses h= (1/2)(F(u)−ρ)2

as our Liapunov function, the result obtained in this way can be improved by choosing h as a Lax
entropy of the Leroux system.

1.2. The model: In view of our naive physical picture of electrophoresis, we consider ±1 charges
moving in an electric field on Z such that positive charges are jumping to the right at rate 1 if
allowed (i.e. there is no particle on the next site), negative charges are jumping to the left at unit
rates. The exclusion rule is in force: two or more particles (charges) can not coexist at the same
site. However, when two opposite charges meet, then they either jump over each other at rate 2 , or
they are both annihilated at rate β > 0 . To compensate annihilation, charges of opposite sign can
be created at neighboring empty sites, again at rate β . Because of technical reasons, the process is
regularized by a nearest neighbor stirring of intensity σ > 0 , all elementary actions are independent
of each other. The mathematical formulation of the model is summarized as follows.

The configuration space, Ω of our system is the set of sequences ω := (ωk ∈ {0,1,−1} : k ∈ Z) , i.e.
ωk is interpreted as the charge of the particle at site k ∈ Z , ωk = 0 indicates an empty site, and
ηk :=ω2

k denotes the occupation number. The process is composed of the following local operations.
If b = (k, k + 1) is a bond of Z , i.e. b ∈ Z∗ , then stirring ω↔ ωb means that ωk and ωk+1 are
exchanged, the rest of the configuration is not altered. The action ω↔ ωb+ creates a couple of
particles on the bond b := (k, k+ 1) if it is empty:

(ωb+)k =+1 and (ωb+)k+1 =−1 if ωk =ωk+1 = 0 ,

other coordinates are not changed. Annihilation of a couple, ω↔ωb× means that

(ωb×)k = (ω
b×)k+1 = 0 if ωk =+1 ,ωk+1 =−1 ; (ωb×) j =ω j

otherwise. The stochastic dynamics is then defined by the following formal generators, see [Lig85]
on the construction of interacting particle systems. These operators are certainly defined for finite
functions, i.e. for ϕ : Ω 7→ R depending only on a finite number of variables, and the set of finite
functions is a core of the full generator. The totally asymmetric process of interacting exclusions
(INTASEP) is generated by

Loϕ(ω) :=
∑

b∈Z∗
cb(ω)

�

ϕ(ωb)−ϕ(ω)
�

, (1.3)

where cb(ω) := (1/2)(ηk + ηk+1 +ωk −ωk+1) if b = (k, k + 1) . This generator lets ⊕ particles
jump to the right, 	 particles jump to the left at rate 1 , if allowed, while a collision ⊕	 → 	⊕
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occurs at rate 2 . Both particle number
∑

ηk and total charge
∑

ωk are preserved by INTASEP. The
two-parameter family, {λρ,u : 0 < ρ < 1 , 0 ≤ |u| < ρ} of translation invariant stationary product
measures is characterized by λρ,u(ηk) = ρ and λρ,u(ωk) = u ; here and later on we use the short
hand notation λ(ϕ)≡

∫

ϕ dλ . The degenerated stationary states λρ,u with ρ = 0 , ρ = 1 or |u|= ρ
play no role in our calculations. The study of interacting exclusions and some related models goes
back to the paper [TV03] by B. Tóth and B. Valkó, where HDL of INTASEP with hyperbolic scaling is
derived in a smooth regime with periodic boundary conditions.

The creation - annihilation process (CRANNI) is generated by L∗ :=Lo + βG∗ , where β > 0 and

G∗ϕ(ω) :=
∑

b∈Z∗
c+b (ω)

�

ϕ(ωb+)−ϕ(ω)
�

+
∑

b∈Z∗
c×b (ω)(ϕ(ω

b×)−ϕ(ω)) , (1.4)

where
c+b (ω) := 1[ηk = 0,ηk+1 = 0] = (1−ηk)(1−ηk+1) ,

c×b (ω) := 1[ωk = 1,ωk+1 =−1] = (1/4)(ηk +ωk)(ηk+1−ωk+1)

if b = (k, k+1) , and 1[A] denotes the indicator function of the event A⊂ Ω . For any bond (k, k+1) =
b ∈ Z∗ the elementary action ω↔ωb∗ is defined by ωb∗ :=ωb+ if (ωk,ωk+1) = (0,0) , ωb∗ =ωb×

if (ωk,ωk+1) = (+1,−1) , while ωb∗ =ω otherwise. Since c+b + c×b = 1 if ωb∗ 6=ω , we can rewrite
G∗ as

G∗ϕ(ω) =
∑

b∈Z∗

�

ϕ(ωb∗)−ϕ(ω)
�

.

Only total charge
∑

ωk is preserved by CRANNI, and within the class λρ,u : 0≤ |u|< ρ its stationary
measures are characterized by the principle of microscopic balance: λρ,u[ωk = 1,ωk+1 = −1] =
λρ,u[ωk =ωk+1 = 0] . This means that C(ρ, u) = 0 , where

C(ρ, u) := (1−ρ)2− (1/4)(ρ2− u2) = (1/4)
�

3ρ2− 8ρ+ u2+ 4
�

= (3/4)
�

ρ− F(u)
��

ρ− F∗(u)
�

,
(1.5)

F(u) :=
1

3

�

4−
p

4− 3u2
�

, F∗(u) :=
1

3

�

4+
p

4− 3u2
�

. (1.6)

The smaller root, F(u) is between 2/3 and 1 , while the second one is not allowed because F∗(u) ≥
5/3 for all u ∈ [−1, 1] . Consequently λ∗u := λF(u),u is a stationary measure of the process generated
byL∗ if |u|< 1 , and λ∗u(ωk) = u , while λ∗u(ηk) = ρ = F(u) . Note that these measures are reversible
with respect to G∗ , this fact shall be exploited several times in our computations.

Since we want to pass to HDL in a regime of shocks by means of the theory of compensated com-
pactness, our process has to be regularized, e.g. by an overall stirring of large intensity, cf. [FT04]
and [FN06]. The generator of the stirring process reads as

S ϕ(ω) :=
∑

b∈Z∗

�

ϕ(ωb)−ϕ(ω)
�

. (1.7)

This process is reversible with respect to any λρ,u , and both
∑

ηk and
∑

ωk are preserved. HDL of
the process generated by Lσ := Lo +σS in a regime of shocks was determined in [FT04], here
we are interested in the hyperbolic scaling limit of the creation - annihilation process generated
by L := Lo + βG∗ + σS , see (1.3), (1.4) and (1.7) for definitions, where β and σ are positive
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parameters to be specified later. The main goal of our paper is to develop a microscopic theory
of relaxation schemes, by means of which the macroscopic behavior of this creation - annihilation
process can be described.

Let us remark that in the paper [FN06] HDL of the process generated byLκ :=Lo+αGκ+σS was
investigated. The spin - flip generator Gκ reads as

Gκϕ(ω) :=
∑

k∈Z
(ηk −κωk)

�

ϕ(ωk)−ϕ(ω)
�

, (1.8)

where κ ∈ (−1,1) is a constant, and ω↔ ωk means that (ωk)k = −ωk , while (ωk) j = ω j other-
wise. Since Gκ violates conservation of total charge, and

(1−κ)λρ,u[ωk = 1] = (1+κ)λρ,u[ωk =−1]

in equilibrium, i.e. (1− κ)(ρ + u)/2 = (1+ κ)(ρ − u)/2 , we have u = κρ . Therefore the family
of stationary product measures is just {λκρ := λρ,κρ : 0 < ρ < 1} such that λκρ(ηk) = ρ and
λκρ(ωk) = κρ . Although we can not improve results of [FN06] in that way, it might be interesting
to see that this model also exhibits relaxation.

1.3. Currents: To understand the microscopic structure of our model, let us summarize some more
information on the generators; jπ,? below denotes the current of a conservative quantity π , which
is induced by a generator L? . By direct computations we get Loωk = jωo

k−1− jωo
k , where

jωo
k (ω) := 1

2
(ηk +ηk+1− 2ωkωk+1+ωkηk+1−ηkωk+1+ωk −ωk+1) , (1.9)

whence Juo(ρ, u) := λρ,u(jωo
k ) = ρ− u2 and λ∗u(j

ωo
k ) = f (u) := F(u)− u2 .

Similarly, Loηk = j
ηo
k−1− j

ηo
k , where

j
ηo
k (ω) :=

1

2
(ωk +ωk+1−ωkηk+1−ωk+1ηk+1+ηk −ηk+1) , (1.10)

whence Jρo(ρ, u) := λρ,u(j
ηo
k ) = u− uρ and λκρ(j

ηo
k ) = κ (ρ−ρ

2) .

The case of S is trivial: S ωk = ∆1ωk and S ηk = ∆1ηk , where ∆1ξk := ξk+1 + ξk−1 − 2ξk for
any sequence, ξ indexed by Z , thus jωs

k (ω) =ωk −ωk+1 and j
ηs
k (ω) = ηk −ηk+1 are the associated

currents. The spin - flip dynamics does not induce any current of η because Gκηk = 0 . Moreover,
the identity Gκωk = Gκ(ωk − κηk) = 2(κηk −ωk) indicates relaxation in the sense that ωk ≈ κηk
in the scaling limit, see the heuristic explanation in Section 1.4 below.

The action of the creation - annihilation process is less transparent. We have G∗ωk = jω∗k−1 − jω∗k ,
where

jω∗k := c×b (ω)− c+b (ω) , b = (k, k+ 1) , (1.11)

thus Ju∗(ρ, u) := λρ,u(jω∗k ) =−C(ρ, u) , cf. (1.5). Since λ∗u is reversible with respect to G∗ , the effect
of jω∗ vanishes in the hydrodynamic limit; λ∗u(j

ω∗
k ) = 0 . On the other hand,

G∗ηk = c+b (ω)− c×b (ω) + c+b−(ω)− c×b−(ω) , (1.12)

where b = (k, k+ 1) and b− := (k− 1, k) , whence λρ,u(G∗ηk) = 2C(ρ, u) = (3/2)(ρ − F(u))(ρ −
F∗(u)) . Observe now that the second factor is negative because F∗(u) ≥ 5/3 , thus we have a good
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reason to suspect that the terms G∗ηk give rise to relaxation: ρ ≈ F(u) in the scaling limit. This
problem, however, is more difficult than the previous one because G∗η is not a linear function of ω
and η , see the end of Section 1.4, and also Section 1.5 for some hints.

1.4. Macroscopic equations: Under hyperbolic scaling of space and time, at a level ε ∈ (0,1] of
scaling the scaled densities read as ρε(t, x) := ηk(t/ε) and uε(t, x) := ωk(t/ε) if |x − εk| < ε/2 ;
later on we shall redefine these empirical processes in terms of block averages. A formal application
of the principle of local equilibrium suggests that in the case of interacting exclusions ρε and uε
converge in some sense to weak solutions of the following version 2 of the LeRoux system:

∂tρ+ ∂x(u− uρ) = 0 and ∂tu+ ∂x(ρ− u2) = 0 , (1.13)

for a correct derivation see [TV03] or [FT04] concerning Lo or Lσ = L0 +σS , respectively. In
the second case we had to assume that σ = σ(ε)→+∞ such that εσ(ε)→ 0 and εσ2(ε)→+∞ as
ε→ 0 ; the uniqueness of the limit is not known in a regime of shocks. Under the same assumptions
on σ , in the paper [FN06] it was shown that HDL of the spin - flip dynamics generated byLκ results
in a Burgers equation:

∂tρ+κ∂x(ρ−ρ2) = 0 , (1.14)

and the limit is unique even in the regime of shocks. As we suggest in the next subsection, and
demonstrate at the end of the paper, (1.14) can also be derived as the zero relaxation limit of the
modified LeRoux system

∂t ρ̃ε + ∂x(ũε − ũερ̃ε) = 0 , ∂t ũε + ∂x(ρ̃ε − ũ2
ε) = (2α/ε)(κρ̃ε − ũε) (1.15)

allowing us to do the replacement ũε ≈ κρ̃ε . Since Gκηk = 0 and Gκωk = 2(κηk − ωk) , this
heuristic picture reveals quite well the microscopic structure of the spin - flip dynamics, note that
the vanishing terms, εσ(ε)∂ 2

x ρ̃ε and εσ(ε)∂ 2
x ũε have been omitted.

In view of the previous subsection, see (1.9), (1.11) and (1.12) in particular, a formal calculation
yields

∂tu= ∂x

�

u2− F(u)
�

= ∂x

�

u2+ 1
3

p

4− 3u2
�

(1.16)

as the macroscopic equation for the creation - annihilation process generated by L := Lo + βG∗ .
Assuming smoothness of the macroscopic solution, it would not be difficult to formulate and prove
the statement in a rigorous manner. Let us remark that the flux F(u) − u2 is neither convex nor
concave, thus the structure of shocks developed by this equation is rather complex. It is important
that the graph of F(u)− u2 does not contain any linear segment, thus the uniqueness theorem of
[CR00] applies. The relaxation scheme for (1.16) is less convincing than that of (1.15), it can be
written as

∂t ũε + ∂x(ρ̃ε − ũ2
ε) + β ∂xJ

u∗(ρ̃ε, ũε) = 0 ,

∂t ρ̃ε + ∂x(ũε − ũερ̃ε) = (2β/ε)C(ρ̃ε, ũε) ,
(1.17)

where C(ρ, u) = B(u,ρ)(F(u) − ρ) with B(u,ρ) = (3/4)(F∗(u) − ρ) ≥ 1/2 , see (1.5). As it has
been stressed already in Section 1.1, in order to demonstrate relaxation ρ̃ε ≈ F(ũε) , we have to
find an effective Liapunov function, possibly a Lax entropy for (1.13). Since (ρ − F(u))C(ρ, u) ≤

2 The standard form, ∂t v + ∂x(πv) = 0 and ∂tπ+ ∂x(v + π2) = 0 of the LeRoux system is obtained by substituting
v = 1−ρ and π=−u into (1.13), cf. [Ser00].
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−(1/2)(ρ − F(u))2 , even H := (1/2)(ρ − F(u))2 seems to be an effective Liapunov function, see
Section 1.1, and (1.2) in particular.

1.5. Thermodynamic entropy: Conservation laws play a fundamental role in the study of nonlinear
hyperbolic systems, see [Ser00] or [Daf05] with references on the original work by Peter D. Lax.
The function S = S(ρ, u) of the state variables ρ, u ∈ R is a Lax entropy with flux Φ = Φ(ρ, u) for
a system of two conservation laws, as the LeRoux system, if ∂tS + ∂xΦ = 0 along classical solutions.
Such a couple (S,Φ) is called a Lax entropy - flux pair ; in case of (1.13) these are characterized by

Φ′ρ(ρ, u) = S′u(ρ, u)− uS′ρ(ρ, u) ,

Φ′u(ρ, u) = (1−ρ)S′ρ(ρ, u)− 2uS′u(ρ, u) .
(1.18)

Differentiating the right hand sides above with respect to u and v , a linear wave equation

S′′u,u(u, v) = (1−ρ)S′′ρ,ρ(u, v)− uS′′u,ρ(u, v) (1.19)

is obtained for S , which admits a rich class of solutions, cf. [Ser00].

An interesting example, the relative entropy of λρ,u and λv,π at one site is defined as

S(ρ, u) :=
∑

s=0,±1

λρ,u[ωk = s] log
λρ,u[ωk = s]

λv,π[ωk = s]
(1.20)

=
ρ+ u

2
log
ρ+ u

v +π
+
ρ− u

2
log
ρ− u

v−π
+ (1−ρ) log

1−ρ
1− v

.

By a direct computation

S′ρ(ρ, u) =
1

2
log
ρ+ u

v +π
+

1

2
log
ρ− u

v−π
− log

1−ρ
1− v

,

S′u(ρ, u) =
1

2
log
ρ+ u

v +π
−

1

2
log
ρ− u

v−π
,

(1.21)

therefore the thermodynamic entropy satisfies (1.19), consequently it is really a Lax entropy for
(1.13).

Let us demonstrate at an intuitive level that thermodynamic entropy might be an effective Liapunov
function for our relaxation schemes. For this purpose the parameters v and π should be specified
such that S′u(ρ,κρ) = 0 in case of spin - flips, while S′ρ(F(u), u) = 0 for creation and annihilation.

Choosing v = 1/2 and π= κ/2 in the definition of S , we see that

S′u(ρ, u)(κρ− u)≤−2(u−κρ)2 ,

consequently the spin - flip dynamics exhibits relaxation to the Burgers equation. Although this
problem has been solved already in [FN06] with another method, some remarks on this approach
are added at the end of the paper.

To understand relaxation of creation and annihilation, set e.g. π = 0 and v = F(0) = 2/3 in the
definition of S , then

S′ρ(ρ, u) =
1

2
log
ρ2− u2

4
−

1

2
log(1−ρ)2 ,
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whence by a direct computation

S′ρ(ρ, u)C(ρ, u)≤−(1/4)C2(ρ, u)≤−(1/16)(ρ− F(u))2 ,

which is the necessary bound for relaxation to (1.16).

Unfortunately, our probabilistic calculations presuppose that the underlying entropy has bounded
first and second derivatives, therefore we have to look for something else. In Section 3 we show
that, although it is not a Lax entropy, H(ρ, u) := (1/2)

�

ρ− F(u)
�2 is an effective Liapunov function

even for the microscopic system of creation and annihilation, while Hκ(ρ, u) := (1/2)(u − κρ)2

applies in the case of spin flips. Computations are quite simple in both cases, but the results are not
as good as possible. In case of the creation - annihilation process generated by L =L∗ +σS , this
statement can be improved a bit by means of a clever Lax entropy - flux pair, see Sections 1.6 and
5.6. The optimal result on the spin - flip dynamics is that of [FN06], cf. Section 5.7.

1.6. Main result: It is well known that (1.16) develops shocks in a finite time, and uniqueness
of its weak solutions breaks down at the same time, thus we must be careful with definitions. A
measurable u : R2

+ 7→ [−1, 1] is a weak solution to (1.16) with initial value u0(x) = u(0, x) if
∫ ∞

0

∫ ∞

−∞
(ψ′t(t, x)u(t, x) +ψ′x(t, x)(F(u(t, x))− u2(t, x))) d x d t

+

∫ ∞

−∞
ψ(0, x)u0(x) d x = 0

(1.22)

for all ψ ∈ C1
c (R

2) . Here and below a subscript “c“ refers to compactly supported functions, R+ :=
[0,+∞) , R2

+ := R+ ×R , and C1
co(R

2
+) is the space of continuously differentiable ψ : R2 7→ R with

compact support in the interior of R2
+ . The notion of Lax entropy plays a fundamental role in the

study of weak solutions. A couple (h, J) , h, J ∈ C1(R) is a Lax entropy - flux pair for (1.16) if
J ′(u) = (F ′(u)− 2u)h′(u) , that is ∂th(u) + ∂x J(u) = 0 along classical solutions; (h, J) is a convex
entropy - flux pair if h is convex. A locally integrable u(t, x) is a weak entropy solution to (1.16) with
initial data u0 if (1.22) holds true for ψ ∈ C1

c (R
2) , and

∫ ∞

0

∫ ∞

−∞

�

ψ′t(t, x)h(u) +ψ′x(t, x)J(u)
�

d x d t ≥ 0 (1.23)

for all convex entropy - flux pairs (h, J) and compactly supported 0 ≤ ψ ∈ C1
co(R

2
+) . The scaled

density field of charge ω is defined as

Uε(ψ,ω) :=

∫ ∞

0

∫ ∞

−∞
ψ(t, x)uε(t, x) d x d t (1.24)

for ψ ∈ Cc(R2) , where uε(t, x) =ωk(t/ε) if |εk− x |< ε/2 .

The initial conditions are specified in terms of a family µε,0 of probability measures, we are assuming
that

lim
ε→0

∫ ∞

−∞
ϕ(x)uε(0, x) d x =

∫ ∞

−∞
ϕ(x)u0(x) d x (1.25)

in probability for all ϕ ∈ Cc(R) , where −1 ≤ u0 ≤ 1 is a given measurable function. We are
considering the process generated by L = Lo + β(ε)G∗ + σ(ε)S , in its simplest form our main
result can be stated as follows.
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Theorem 1.1. Suppose (1.25) and specify σ = σ(ε) and β = β(ε) such that εσ(ε) → 0 while
εσ2(ε)→+∞ as 0< ε→ 0 , finally εσ2(ε)β−4(ε)→+∞ and εσ2(ε)β2(ε)→+∞ as ε→ 0 . Then

lim
ε→0

Uε(ψ) =

∫ ∞

0

∫ ∞

−∞
ψ(t, x)u(t, x) d x d t

in probability for all ψ ∈ Cc(R2) ; this u(t, x) is the uniquely specified weak entropy solution to (1.16)
with initial value u0 .

Some remarks: The empirical process uε shall be redefined in terms of block averages, in that case
we get convergence in the strong local topology of L1(R) , see Theorem 5.1.

It is quite natural to fix the value of β > 0 because it is a parameter of the basic model, our
conditions mean that β(ε) can not be too small or too large. We can not improve the upper bound
(growth condition) of β , it is needed to control β jω∗k , and βG∗ηk in particular. However, the lower
asymptotic bound εσ2β2 →∞ of β can be relaxed to σ(ε)β(ε)→ +∞ by using a Lax entropy of
(1.13) instead of the trivial Liapunov function H = (1/2)(ρ − F(u))2 , see Theorem 5.2 in the last
section.

The relaxation of the spin - flip dynamics to the Burgers equation is discussed in Sections 5.4. In
this case Hκ = (1/2)(u − κρ)2 is a nice Liapunov function, but the result is weaker that that of
[FN06]. We are sorry to tell that entropy is not really helpful here because, unless κ = 0 , we can
not construct the required Lax entropy - flux pair of the LeRoux system.

2 An Outline of the Proof

As far as possible we follow the argument of [FN06], which is based on the stochastic theory of
compensated compactness, while the necessary a priori bounds follow from the logarithmic Sobolev
inequalities we do have for S and Gκ . In fact, in [FN06] the second LSI is used to replace block av-
erages of ωk with those of κηk ; in the present case this second step should consist in a replacement
of block averages η̄l,k of η with F(ω̄l,k) , where ω̄l,k denotes the corresponding block average of ω .
However, we do not have any effective LSI involving G∗ ; the required replacement will be carried
out by exploiting relaxation of the microscopic system.

2.1. Block averages: As it is more or less obligatory in the microscopic theory of hydrodynamics,
first we rewrite the empirical process in terms of block averages. For l ∈ N and for any sequence
ξ indexed by Z we define two sequences of moving averages, namely ξ̄l = (ξ̄l,k : k ∈ Z) and
ξ̂l = (ξ̂l,k : k ∈ Z) such that

ξ̄l,k :=
1

l

l−1
∑

j=0

ξk+ j and ξ̂l,k :=
1

l2

l
∑

j=−l

|| j| − l|ξk+ j . (2.1)

The usual arithmetic mean ξ̄l,k is preferred in computing canonical expectations, the reason for
using the "more smooth" averages ξ̂l,k is rather technical. 3 For convenience the size l = l(ε) of

3 Our a priori bounds are formulated in terms of block averages of type ξ̄l when l is large. However, on the right
hand side of the evolution equation we see discrete gradients as below, and in contrast to l(ξ̄l,k+1− ξ̄l,k) , l(ξ̂l,k+1− ξ̂l,k) =
ξ̄l,k+1 − ξ̄l,k−l+1 is still a difference of large block averages if l is large. This simple fact is most relevant when we have to
evaluate a Lax entropy, it was exploited in our earlier papers, too.
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these blocks is chosen as the integer part of (σ2/ε)1/4 , then our conditions on σ = σ(ε) imply

lim
ε→0

l(ε)
σ(ε)

= lim
ε→0

σ(ε)
l2(ε)

= lim
ε→0

εl2(ε)
σ(ε)

= lim
ε→0

σ(ε)
εl3(ε)

= lim
ε→0

σ2(ε)
l3(ε)

= 0 , (2.2)

while εl2(ε)→ +∞ as ε → 0 . Because of technical reasons we have to assume that l(ε) exceeds a
certain threshold l0 ∈ N . For convenience we may, and do assume that εl3(ε) ≥ σ(ε) ≥ l(ε) ≥ l0 ≥
1 .

Concerning β = β(ε) we need

lim
ε→0

β(ε)l(ε)
σ(ε)

= lim
ε→0

εβ2(ε)l2(ε)
σ(ε)

= lim
ε→0

σ(ε)
β(ε)l2(ε)

= lim
ε→0

1

β(ε)σ(ε)
=0 (2.3)

and εβ(ε)l2(ε) → +∞ as ε → 0 ; the first and last relations are responsible for the conditions of
Theorem 1.1. From now on the block size l = l(ε) is specified as above, and these relations will
frequently be used in the next coming computations, sometimes without any reference.

Our first statements on HDL will be formulated in terms of a modified empirical process ûε . It is
defined as ûε(t, x) := ω̂l,k(t/ε) if |x − εk| < ε/2 , and P̂ε denotes the distribution of ûε ; several
topologies can be introduced to study limit distributions of P̂ε as ε → 0 . The usual Lp norm of a
measurable ψ : R2

+ is denoted by ‖ψ‖p , and 〈ϕ,ψ〉 is the scalar product in L2(R2
+) . In general

‖ûε‖1 = +∞ , therefore we have to localize convergence by multiplying with a test function φ ∈
C1

co(R
2
+) , say. The local strong convergence ofψn toψ in Lp means that ‖φψn−φψ‖p→ 0 for all φ ,

while the local weak convergence ψn * ψ is defined by 〈φ,ψn〉 → 〈φ,ψ〉 whenever φ ∈ C1
co(R

2
+) .

The allowed class of test functions φ can be enlarged by means of the Banach - Steinhaus theorem.
Since |ûε(t, x)| ≤ 1 for all (t, x) ∈ R2

+ , the set U of all realizations of the empirical process is
relative compact in the local weak topology of L2(R2

+) , thereforeU is a separable metric space, and
the family {P̂ε : ε > 0} is tight in this sense.

2.2. Measure - valued solutions: The notion of Young measure is a most convenient tool for the
description of all limit distributions of our empirical process ûε , cf. [Tar79], [Daf05] or [Ser00].
Let Θ denote the set of measurable families, θ of probability measures θ = {θt,x(du) : (t, x) ∈ R2

+}
such that θt,x is a probability measure on [−1, 1] for each (t, x) ∈ R2

+ , and θt,x(h) is a measurable
function of (t, x) whenever h : [−1,1] 7→ R is measurable and bounded; θt,x(h) denotes expectation
of h with respect to θt,x . We say that θ ∈Θ is a measure - valued solution to the macroscopic equation
∂tu+ ∂x f (u) = 0 with initial value u0 if

∫ ∞

0

∫ ∞

−∞

�

ψ′t(t, x)θt,x(u) +ψ
′
x(t, x)θt,x( f (u))

�

d x d t

+

∫ ∞

−∞
ψ(0, x)u0(x) d x = 0

(2.4)

for all ψ ∈ C1
c (R

2) . A measurable function u : R2
+ 7→ [−1, 1] is represented by a family θ ∈ Θ

of Dirac measures such that θt,x is concentrated on the actual value u(t, x) of u ; this θ is called
the Young representation of u . Therefore any weak solution is a measure - solution. On the other
hand, any θ ∈ Θ can be identified as a locally finite measure mθ by dmθ := d t d x θt,x(du) on
X := R2

+ × [−1,1] ; let Mθ (X) denote the set of such measures mθ equipped with the associated
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local weak topology. In view of the Young representation, our empirical process ûε can be considered
as a random element m̂θ ,ε of Mθ (X) ; let P̂ε,θ denote its distribution. The family {P̂ε,θ : ε > 0} is
obviously tight because the configuration space, Ω is compact; here and also later on P̂θ denotes the
set of weak limits P̂θ := limn→∞ P̂ε(n),θ obtainable as ε(n)→ 0 . In Section 4 we prove the following
preliminary result.

Proposition 2.1. Any limit distribution P̂θ ∈ P̂θ of the Young representation of ûε is concentrated on
a set of measure - valued solutions.

This is easy, but uniqueness of measure - valued solutions is rather problematic, see e.g. [Rez91]
with further references. By means of the stochastic theory of compensated compactness, first we
prove the Dirac property of the limiting Young measure, which means that limit distributions P̂θ ∈
P̂θ of P̂ε,θ are sitting on a set of measurable functions. Therefore we have convergence to a set of
weak solutions, and uniqueness of weak solutions to a single conservation law is a well settled issue.

2.3. Entropy production: The microscopic version of entropy production Xε = ∂th+ ∂x J is defined
as a distribution: for ψ ∈ C1

c (R
2) and entropy - flux pairs (h, J) of (1.16) we introduce

Xε(ψ, h) :=−
∫ ∞

0

∫ ∞

−∞

�

ψ′t(t, x)h(ûε) +ψ
′
x(t, x)J(ûε)

�

d x d t . (2.5)

This follows by a formal integration by parts if ψ ∈ C1
c (R

2
+) and ψ(0, x) = 0 ∀ x ∈ R . Calculating

the stochastic differential of

Hε(t,ψ, h) :=

∫ ∞

−∞
ψ(t, x)h(ûε(t, x)) d x

we get a martingale Mε(t,ψ, h) , see (4.2), such that

dHε =

∫ ∞

−∞
ψ′t(t, x)h(ûε) d x d t + ε−1LHε d t + dMε ,

whence
Xε(ψ, h) = Hε(0,ψ, h) + Lε(ψ, h) + Jε(ψ, h) +Mε(∞,ψ, h) + Nε(ψ, h) , (2.6)

where Lε , Jε and Mε are defined as follows. SinceL =Lo+βG∗+σS , we have Lε = Lo
ε+β L∗ε+σLs

ε

such that

Lq
ε(ψ, h) :=

1

ε

∫ ∞

0

∫ ∞

−∞
ψ(t, x)Aqh(ûε(t, x)) d x d t ,

q ∈ {o,∗, s} andAo =Lo ,A∗ = G∗ ,As = S . Finally,

Jε(ψ, h) :=
1

ε

∫ ∞

0

∫ ∞

−∞
ψ(t, x)

�

J(ûε(t, x))−J(ûε(t, x−ε))
�

d x d t , (2.7)

while Nε(ψ, h) is a numerical error due to the lattice approximation of the space derivative, see
(4.1).

Calculation of Xε is quite easy when h(u)≡ u becauseLωk is a difference of currents along adjacent
bonds, thus rearranging sums by performing discrete integration by parts, the test function nicely
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absorbs the factor ε−1 of L . This is the way of proving convergence to the set of measure - valued
solutions, see the proof of Proposition 2.1 in Section 4.5. Compensated compactness is applied then
to show the Dirac property of these measure - valued solutions, it is based on a delicate evaluation
of entropy production for some couples of entropy - flux pairs.

2.4. Compensated compactness: In view of the stochastic version of the Tartar - Murat theory
of compensated compactness, cf. [Fri01], [Fri04] or [FT04], we have to find a decomposition
Xε = Yε + Zε with the following properties. Yε = Yε(ψ, h) and Zε = Zε(ψ, h) are linear functionals
of ψ ∈ C1

c (R
2) such that

|Yε(φψ, h)| ≤ Aε(φ)‖ψ‖+1 and lim
ε→0

EAε(φ) = 0 , (2.8)

|Zε(φψ, h)| ≤ Bε(φ)‖ψ‖ and lim sup
ε→0

EBε(φ)<+∞ (2.9)

for each φ ∈ C2
co(R

2
+) , where ‖ψ‖ denotes the uniform norm, and ‖ψ‖+1 is the H+1 norm of ψ, i.e.

‖ψ‖2+1 := ‖ψ‖22+‖ψ
′
t‖

2
2+‖ψ

′
x‖

2
2 . Aε(φ) and Bε(φ) are random variables depending only on φ and

h . We say that a random functional X̂ε(ψ, h) is correctly decomposed if X̂ε = Ŷε + Ẑε as summarized
above, i.e. Ŷε satisfies (2.8), while Ẑε satisfies (2.9). The stochastic version of the celebrated Div-
Curl Lemma reads as follows.

Proposition 2.2. Let (h1, J1) and (h2, J2) denote a couple of continuously differentiable entropy -
flux pairs of (1.16), and suppose that both Xε(ψ, h1) and Xε(ψ, h2) are correctly decomposed. With
probability one with respect to any limit distribution, P̂θ ∈ P̂θ of the Young representation of ûε we
have

θt,x(h1J2)− θt,x(h2J1) = θt,x(h1)θt,x(J2)− θt,x(h2)θt,x(J1) (2.10)

for almost every (t, x) ∈ R2
+ .

Our main task now is the verification of conditions (2.8) and (2.9) above. Most terms on the right
hand side of (2.6) will be split into further ones, and we shall show in Section 4 that each of them
satisfies either (2.8) or (2.9). The martingale component and the numerical error both vanish, but
in a regime of shocks σ(ε)Ls

ε 9 0 as ε → 0 . The crucial part of the proof is to show that Lo
ε and

Jε cancel each other, while L∗ε disappears when ε → 0 . The logarithmic Sobolev inequality for S ,
and the relaxation mechanism induced by creation and annihilation are applied at these steps. The
slightly sophisticated construction of the empirical process, ûε is also relevant.

A slightly simplified version of the proof yields limsupε→0 Xε(ψ, h) ≤ 0 in probability if h is convex
and ψ ≥ 0 , whence by tightness of the family {Pε,θ : ε > 0} we get the Lax inequality in terms of
the Young measure. With probability one with respect to any limit distribution P̂θ ∈ P̂θ of P̂θ ,ε we
have

∫ ∞

0

∫ ∞

−∞

�

θt,x(h)ψ
′
t(t, x) + θt,x(J)ψ

′
x(t, x)

�

d x d t ≥ 0 (2.11)

whenever (h, J) is a convex entropy - flux pair and 0≤ψ ∈ C1
co(R

2
+) .

The Dirac property of the Young measure follows from (2.10) in several situations. Since we are
considering a single conservation law, to prove convergence of the empirical process ûε to a set
of weak solutions, it is sufficient to apply (2.10) to two entropy - flux pairs only. Let h1(u) :≡ u ,
J1(u) := F(u)−u2 , and h2(u) := F(u)−u2 with the associated flux J2 ; it is defined by J2(0) = 0 and
J ′2(u) = J ′21 (u) . In view of Theorem 16.4.1 and Theorem 16.4.2 in [Daf05], the following statement
holds true.
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Proposition 2.3. Suppose that the above couple of entropy - flux pairs satisfies (2.10), then any limit
distribution P̂θ ∈ P̂θ of the Young measure is Dirac, i.e. it is concentrated on a set of measurable
functions.

As a direct consequence we obtain (1.22) from Proposition 2.1, while (2.11) turns into the weak
entropy condition (1.23), which imply uniqueness of the limit by Main Theorem of [CR00].

The verification of the conditions of Proposition 2.2 is mainly based on inequalities involving relative
entropy and the associated Dirichlet form; the basic ideas go back to [GPV88], see also [Var94] and
[Yau97] with further references. These computations are supplemented with an extension of the
method of relaxation schemes to microscopic systems, see Lemma 3.6 and Sections 5.4 and 5.6.
Since we are going to treat hydrodynamic limit in infinite volume, we have to control entropy flux
by means of its rate of production, cf. [Fri90], [Fri01] and [FN06] for some earlier results in this
direction. This a priori bound allows us to apply the robust LSI and the relaxation scheme of the
microscopic process, see Lemma 3.3, Lemma 3.4 and Lemma 3.6. Most technical details of this
estimation procedure have been elaborated in [Fri01], [Fri04] and [FT04]; [FN06] is our basic
reference. First we substitute the microscopic time derivative Loh(ûε) with the spatial gradient of
a mesoscopic flux depending on the block averages η̄l,k and ω̄l,k . The replacement of η̄l,k with its
empirical estimator F(ω̄l,k) is based on the microscopic relaxation scheme, see Lemma 3.6 below,
and also Section 5.6.

3 Entropy, Dirichlet Form, LSI and Relaxation

In this section we derive some fundamental estimates based on entropy and the associated Dirichlet
forms. The parameters β , σ and l are almost arbitrary here, their dependence on the scaling pa-
rameter ε > 0 is not important. We only need β > 0, σ ≥ 1 and l ∈ N . We follow calculations of
[FN06] with slight modifications.

3.1. Entropy and its temporal derivative: If µ and λ are probability measures on the same space,
then entropy of µ relative to λ is defined by S[µ|λ] := µ(log f ) if µ � λ and f := dµ/dλ . A
frequently used entropy inequality, µ(ϕ) ≤ S[µ|λ] + logλ(eϕ) follows by convexity, and we have
another definition of relative entropy:

S[µ|λ] := sup
ϕ

�

µ(ϕ)− logλ(eϕ) : λ(eϕ)<+∞
	

; (3.1)

ϕ = log f is the condition of equality. Note that

f log(g/ f ) = 2 f log
p

g/ f ≤ 2
p

g f − 2 f = g − f −
�p

g −
p

f
�2

, (3.2)

whence another useful inequality, Eλ(
p

f − 1)2 ≤ S[µ|λ] follows immediately.

Given a Markov generatorA , the Donsker - Varadhan rate function of large deviations is defined as

D[µ|A ] :=− inf

¨
∫

Aψ
ψ

dµ : 0<ψ ∈ Dom(A )
«

; (3.3)

D[µ|A ] = −λ(
p

fA
p

f ) if A is self-adjoint in L2(λ) and f = dµ/dλ . Of course, λ(ϕAϕ) =
λ(ϕGϕ) if G denotes the symmetric part of A . In view of their variational characterizations (3.1)
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and (3.3), both S and D are lower semi - continuous, convex functionals of µ , and the definitions
and relations above extend to conditional distributions and densities, too.

As a reference measure we can choose any of the equilibrium product measures λ = λ∗u with −1 <
u < 1 fixed, say u = 0 . At a level ε > 0 of scaling, µε,t denotes the evolved measure, µε,t,n is
the distribution of the variables {ωk : |k| ≤ n} , and fn = fε,t,n := dµε,t,n/dλ . Entropy in the box
Λn := [−n, n]∩Z is defined as

Sn(t) := S[µε,t,n|λ] =
∫

log fε,t,n dµε,t .

Local versions of the Dirichlet forms for Lo , S and G∗ at ϕ =
p

fε,t,n can easily be computed; in
the first line below c̃b(ω) := (1/2)(ηk +ηk+1) if b = (k, k+ 1) .

Do
n(t) :=

1

2

∑

b⊂Λn

∫

c̃b(ω)
�
Æ

fε,t,n(ωb)−
p

fε,t,n(ω)
�2
λ(dω) ,

Ds
n(t) :=

1

2

∑

b⊂Λn

∫

�
Æ

fε,t,n(ωb)−
p

fε,t,n(ω)
�2
λ(dω) ,

D∗n(t) :=
1

2

∑

b⊂Λn

∫

�
Æ

fε,t,n(ωb∗)−
p

fε,t,n(ω)
�2
λ(dω) ,

respectively. By convexity, Sn and any of Dq
n , q ∈ {o,∗, s} are nondecreasing sequences.

The Kolmogorov equation yields

∂tSn(t) =

∫

(∂t +L ) log fε,t,n(ω)µε,t(dω)

=

∫

fε,t,n+1(ω)L log fε,t,n(ω)λ(dω)

= β
∑

b∈Z∗

∫

fε,t,n+1(ω) log
fε,t,n(ωb∗)

fε,t,n(ω)
λ(dω)

+
∑

b∈Z∗

∫

(cb(ω) +σ) fε,t,n+1(ω) log
fε,t,n(ωb)

fε,t,n(ω)
λ(dω) .

Taking into account inequality (3.2), it is easy to recover the local Dirichlet forms from the segments
−n≤ k < n of the corresponding sums, the rest gives the so called boundary terms.

3.2. Entropy flux: Our basic a priori bound on local entropy and Dirichlet forms is the content of

Lemma 3.1. If σ ≥ 1 and β ≤ σ then we have a universal constant C0 such that

Sn(t) + β

∫ t

0

D∗n(τ) dτ+σ

∫ t

0

Dn(τ) dτ≤ C0

�

t +
p

n2+σt
�

for any initial distribution µε,0 , n ∈ N and t > 0 .
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Proof. We have to estimate the boundary terms of ∂tSn by means of Sn and its associated Dirichlet
forms Dq

n . Following the lines of the proof of Lemma 3.1 in [FN06], we arrive at a system

∂tSn(t) + 2βD∗n(t) + 2σDn(t)≤ K1
�

Sn+1(t)− Sn(t)
�

+ βK1

p

Sn+1(t)− Sn(t)
p

D∗n+1(t)− D∗n(t)

+σK1

p

Sn+1(t)− Sn(t)
p

Dn+1(t)− Dn(t) ,

(3.4)

of differential inequalities with some universal constant K1 . The cases of boundary term induced by
Lo and S are the same as in [FN06], the asymmetric Lo yields the flux Sn+1−Sn on the right hand
side. When we estimate boundary terms induced by S , we are exploiting its following properties.
The jump rates are constant, and the elementary actions, ω→ωb all preserve λ in a reversible way.
Since G∗ possesses all of these features, replacing ωb with ωb∗ in the computations concerning the
boundary terms induced by G∗ , we get (3.4). This system can explicitly be solved by means of the
following lemma, which is a simple generalization of Lemma 3 in [Fri90].

Lemma 3.2. Suppose that sn+1(t) ≥ sn(t) ≥ 0 , un+1(t) ≥ un(t) ≥ 0 , vn+1(t) ≥ vn(t) ≥ 0 for t ≥ 0
and n ∈ N , moreover

dsn/d t + 2βun+ 2σvn ≤ C(sn+1− sn) + βK
p

(sn+1− sn)(un+1− un)

+σK
p

(sn+1− sn)(vn+1− vn) ,

where 0 < β = O (σ) , C , K > 0 and s0 = u0 = v0 = 0 . Then we have a constant, M depending on C
and K such that for all t ≥ 0 , n ∈ N we have

sn(t) + β

∫ t

0

un(s) ds+σ

∫ t

0

vn(s) ds ≤
M

R

+∞
∑

m=0

sm(0)exp
�

−
m

R

�

,

where R := M
�

t + (n2+σt)1/2
�

.

Proof. Just as in [Fri90], a clever cutoff function gn(r) can be defined by

gn(r) =

∫ ∞

−∞
g(x/r)g(n− x) d x

for n ∈ Z+ and r > 0 , where g(x) = 1 if |x | ≤ 1 , g ′(x) = −g(x)sign x if |x | ≥ 3 and g ′(x) =
−(1/2)g(x)(x − sign x) otherwise. It is easy to check that 0 < gn(r) − gn+1(r) ≤ (2/r)gn+1(r)
if r ≥ 1 , moreover gn(r) − gn+1(r) ≤ 2min {g ′n(r), g ′n+1(r)} . Introduce now s(t, r) := ξ(t, r) if
ξn(t) = sn(t) , u(t, r) := ξ(t, r) if ξn(t) = un(t) and v(t, r) := ξ(t, r) if ξn(t) = vn(t) , where

ξ(t, r) =
+∞
∑

n=0

�

gn(r)− gn+1(r)
�

ξn(t) =
+∞
∑

n=0

gn+1(r)
�

ξn+1(t)− ξn(t)
�

.

Using βun and σvn to estimate the corresponding square roots on the right hand side, we get

∂ s(t, r)
∂ t

+ βu(t, r) +σv(t, r)≤ M1

�

1+
σ

r

� ∂ s(t, r)
∂ r

244



because β = O (σ) , consequently

s(t, r(t)) + β

∫ t

0

u(s, r(s)) ds+σ

∫ t

0

v(s, r(s)) ds ≤ s(0, r(0)) ,

provided that the decay of r(t) is fast enough. More precisely, let r solve rdr/d t +M1r +M1σ = 0
with terminal condition r(t) = n . Since r(0) = O (t + (n2 +σt)1/2) in this case, and gn(r) ≥ e−n/r

if r ≥ 1 , this completes the proof by a direct calculation.

Now we are in a position to complete the proof of Lemma 3.1. Since our reference measure λ∗0 is the
uniform distribution on {0, 1,−1}2n+1 , Sn(0)≤ (2n+ 1) log3 . Therefore choosing sn = Sn , un = D∗n
and vn = Dn we see that (3.4) really implies Lemma 3.1.

This lemma is the fundamental a priori bound we need to materialize hydrodynamic limit in infinite
volume. Since εσ→ 0 , t ≈ τ/ε and n ≈ r/ε in its following consequences, (r + τ)/ε is the order
of the bound, and r + τ ≤ rτ if r,τ ≥ 1 . To simplify formulae, from now on we are assuming that
εσ ≤ 1 and εl3 ≥ σ ≥ l ≥ 1 .

3.3. One block and two blocks estimates: The first replacement lemma for microscopic currents
is based on the logarithmic Sobolev inequality for stirring S . Given ω̄l,k = u and η̄l,k = ρ , let λ̄l,k

ρ,u
denote the conditional distributions ofωk,ωk+1, ...,ωk+l−1 with respect to λ . In view of Proposition
4 of [FT04], we have a universal constant, ℵ such that

S[µ̄|λ̄l,k
ρ,u]≤ ℵ l2

∑

b⊂[k,k+l)

∫

�p

f (ωb)−
p

f (ω)
�2
λ̄l,k
ρ,u(dω) (3.5)

whenever µ̄ � λ̄l,k
ρ,u is a probability measure and f := dµ̄/dλ̄l,k

ρ,u . It is very important that ℵ does
not depend on ρ, u, l and f . This LSI allows us to estimate canonical expectations via the basic
entropy inequality. The moment generating part is also a conditional expectation, consequently its
bound should be independent of the conditions. Let us remark that Lemmas 3.3, 3.4 and 3.6 are
consequences of the local entropy bound Lemma 3.1, therefore methods of [FN06] work also in case
of the creation - annihilation process, and the results are valid for the spin - flip dynamics, too.

Lemma 3.3. Let j(ω0,ω1) denote a given function, J(ρ, u) := λρ,u(j) and jk(ω) := j(ωk,ωk+1) . We
have a threshold l0 ∈ N and a universal constant C1 depending only on C0 and j such that

ε2
∑

|k|<r/ε

∫ τ/ε

0

∫

�

j̄l−1,k − J(η̄l,k, ω̄l,k)
�2

dµε,t d t ≤ C1
εrτl2

σ

whenever r,τ≥ 1 and εl3 ≥ σ ≥ l ≥ l0 .

Proof. In view of Lemma 3.1 the statement is more or less a direct consequence of the first inequality
of Proposition 1 in [FT04], where notation is slightly different from ours. Lemma 3.2 of [FN06]
treats the case of jk = j

ηo
k , our problem is essentially the same.

This is a sharp form of the so called One Block Lemma of [GPV88], the explicit rate due to LSI is
needed for the evaluation of microscopic currents in the expression of the Lax entropy production
Xε . The following comparison of block averages of type ξ̂ and ξ̄ follows also via LSI in much the
same way as the previous lemma did.

245



Lemma 3.4. We have a threshold l0 ∈ N and a universal constant C2 such that if r,τ ≥ 1 and
εl3 ≥ σ ≥ l ≥ l0 , then

ε2
∑

|k|<r/ε

∫ τ/ε

0

ξ2
l,k dµε,t d t ≤ C2

rτεl2

σ

where ξl,k = ω̂l,k − ω̄l,k , or ξl,k = η̂l,k − η̄l,k , or ξl,k = ω̂l,k+l − ω̂l,k .

The statement on block averages of η is a direct consequence of Lemma 3.3 in [FN06], the bound for
ξl,k = ω̂l,k − ω̄l,k can be proven in the same way. The argument works even if ξl,k = ω̄l,k+m− ω̄l,k ,
or ξl,k = η̄l,k+m − η̄l,k , but an integration by parts trick yields better results in these cases when
m is large. By means of the Cauchy inequality the deviation of blocks of different size can also be
estimated.

Lemma 3.5. We have universal constants l0 ∈ N and C3 <+∞ such that if l0 ≤ l ≤ m but εl3 ≥ σ ≥ l
and r,τ≥ 1 , then

ε2
∑

|k|<r/ε

∫ τ/ε

0

∫

(ξ̄m,k − ξ̄l,k)
2 dµε,t d t ≤ C3

rτεm2

σ

with ξ=ω or ξ= η .

For block averages of η the statement is proven in [FN06], see Lemma 3.4 and Section 6 there, the
case of ω is the same. To estimate the deviation of consecutive block averages, set m = 2l . We see
that m= δ

p

σ/ε , δ→ 0 is the maximal size of the bigger block, but εσ→ 0 , thus large microscopic
block averages can not be replaced with small macroscopic ones: a strong compactness argument in
not available.

3.4. The first relaxation inequality: To complete the evaluation of entropy production, we have to
replace η̄l,k with its empirical estimator F(ω̄l,k) .

Lemma 3.6. For all r,τ≥ 1 we have universal constants l0 ∈ N and C4 <+∞ such that

ε2
∑

|k|<r/ε

∫ τ/ε

0

∫

�

η̄l,k − F(ω̄l,k)
�2

dµε,t d t ≤ C4

�

rτσ

β l2 +
rτεl2

σ

�

whenever τ, r ≥ 1 and εl3 ≥ σ ≥ l ≥ l0 .

Proof. Let us consider the evolution of

H̄(t,ψ) :=

∫ ∞

−∞
ψ(t, x)H(v̄ε(t, x)) d x

along the modified empirical process

v̄ε(t, x) =
�

ρ̄ε(t, x), ūε(t, x)
�

:=
�

η̄l,k(t/ε), ω̄l,k(t/ε)
�

if |x − εk|< ε/2 ,

where 0 ≤ ψ ∈ C1
c (R

2) , and H(ρ, u) := (1/2)
�

ρ− F(u)
�2 is our Liapunov function. Of course, the

evolution of v̄ε is governed by L , thus the Kolmogorov equation yields

H̄(t,ψ) = H̄(0,ψ) + Ī(t,ψ′t) +
1

ε

∫ t

0

L H̄(s,ψ) ds+ M̄ε(t,ψ) ,
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where M̄ε(t,ψ) is a martingale and I(t,ψ′t) :=
∫ t

0
H̄(s,ψ′t) ds , whence

EH̄(∞,ψ) = 0= EH̄(0,ψ) +E Ī(∞,ψ′t) +
1

ε

∫ ∞

0

EL H̄(t,ψ) d t . (3.6)

Here, and also later on, most calculations are done at the microscopic level. Since v̄ε is a step
function, the integral mean,

ψk(t) :=
1

ε

∫ εk+ε/2

εk−ε/2
ψ(εt, x) d x

of ψ appears in such expressions. We write Vk(t) := V (η̄l,k(t), ω̄l,k(t)) whenever V is a function
of the empirical process; for instance H ′u,k(t) = H ′u(v̄ε(εt,εk)) . In the forthcoming calculations
notation and facts from Sections 1.2 and 1.3 may be used without any reference.

The first and second terms, EH̄(0,ψ) and E Ī(∞,ψ′t) on the right hand side of (3.6) are bounded;
to evaluate the third one, let us consider its decomposition:

1

ε

∫ ∞

0

L H̄(t,ψ) d t = L̄o
ε (ψ) +σ L̄s

ε(ψ) + β L̄∗ε(ψ) ,

cf. L =Lo + βG∗+σS , where

L̄o
ε (ψ) := ε

∑

k∈Z

∫ ∞

0

ψk(t)LoH
�

η̄l,k(t), ω̄l,k(t)
�

d t ,

L̄s
ε(ψ) and L̄∗ε(ψ) are defined analogously: we have to replace Lo by S or G∗ , respectively.

LoH(η̄l,k, ω̄l,k) =
∑

b∈Z∗
cb(ω)

�

H(η̄b
l,k, ω̄b

l,k)−H
�

η̄l,k, ω̄l,k

�

�

;

ω̄b
l,k and η̄b

l,k are block averages of the sequences (ωb) j and (ηb) j = (ωb)2j , respectively. Next we
expand S H by means of the Lagrange theorem. From

H(η̄b
l,k, ω̄b

l,k)−H(η̄l,k, ω̄l,k) = H ′ρ,k(t)(η̄
b
l,k − η̄l,k) +H ′u,k(t)(ω̄

b
l,k − ω̄l,k)

+ Bk(η̄
b
l,k − η̄l,k, ω̄b

l,k − ω̄l,k) ,

where Bk is a quadratic form with bounded coefficients, we get L̄s
ε = Rs

ε +Qs
ε ,

Rs
ε(ψ) := ε

∑

k∈Z

∫ ∞

0

ψk(t)
�

H ′ρ,k(t)∆1η̄l,k +H ′u,k(t)∆1ω̄l,k

�

d t ,

and Qs
ε(ψ) is a quadratic form of the differences η̄b

l,k − η̄l,k and ω̄b
l,k − ω̄l,k . Remember now that

G∗H(η̄l,k, ω̄l,k) =
∑

b∈Z∗

�

H(η̄b∗
l,k, ω̄b∗

l,k)−H(η̄l,k, ω̄l,k)
�

and H(η̄b∗
l,k, ω̄b∗

l,k)−H(η̄l,k, ω̄l,k) = H(η̄b∗
l,k, ω̄b∗

l,k)−H(η̄b∗
l,k, ω̄l,k)+H(η̄b∗

l,k, ω̄l,k)−H(η̄l,k, ω̄l,k) , where

ω̄b∗
l,k and η̄b∗

l,k are again block averages, those of ωb∗ and ηb∗ , respectively. Moreover,

H(η̄b∗
l,k, ω̄l,k)−H(η̄l,k, ω̄l,k)=H ′ρ(η̄l,k, ω̄l,k)(η̄

b∗
l,k−η̄l,k) + (1/2)(η̄

b∗
l,k−η̄l,k)

2
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and H ′ρ(ρ, u) = ρ− F(u) , finally from (1.12)

G∗η̄l,k =
∑

b∈Z∗
(η̄b∗

l,k−η̄l,k) =
1

l

∑

b⊂[k,k+l]

�

c+b (ω)− c×b (ω) + c+b−(ω)− c×b−(ω)
�

.

Having in mind also Lemma 3.3, we now decompose L̄∗ε as L̄∗ε = Gu
ε +Qρε +Γ

ρ
ε + Rρε , where

Gu
ε (ψ) :=

∑

k∈Z
ε
∑

b∈Z∗

∫ ∞

0

ψk(t)
�

H(η̄b∗
l,k, ω̄b∗

l,k)−H(η̄b∗
l,k, ω̄l,k)

�

,

Γρε (ψ) := ε
∑

k∈Z

∫ ∞

0

ψk(t)
�

η̄l,k − F(ω̄l,k)
�

C∗l,k(ω) d t ,

C∗l,k(ω) :=
2

l − 1

∑

b⊂[k,k+l)

�

c+b (ω)− c×b (ω)
�

,

Rρε (ψ) := ε
∑

k∈Z

∫ ∞

0

ψk(t)
�

η̄l,k − F(ω̄l,k)
�

�

G∗η̄l,k − C∗l,k(ω)
�

d t ,

finally Qρε (ψ) is the contribution of the squared differences (1/2)(η̄b∗
l,k − η̄l,k)2 .

Γρε (ψ) is the critical term here, it looks much larger than the others: its order seems to be 1/ε .
However, due to some cancelations we have

−EΓρε (ψ)≤ K(ψ)
�

1+ β
εβ l

+
σ

εβ l2

�

≤ K(ψ)
�

1

εl
+

2σ

εβ l2

�

, (3.7)

where K(ψ)<+∞ is a constant depending only on ψ . To prove this, observe first that

ω̄b
l,k − ω̄l,k = η̄

b
l,k − η̄l,k = ω̄

b∗
l,k − ω̄l,k = 0

unless b = (k− 1, k) or b = (k+ l − 1, k+ l) , while any of |ω̄b
l,k − ω̄l,k| , |η̄b

l,k − η̄l,k| , |ω̄b∗
l,k − ω̄l,k|

and |η̄b∗
l,k − η̄l,k| is bounded by 2/l , finally η̄b∗

l,k − η̄l,k = 0 if b ⊂ (−∞, k) or b ⊂ [k + l,+∞) . The
derivation of (3.7) reduces to these deterministic bounds by simple computations.

Indeed, H̄ε(0,ψ) and H̄ε(∞,ψ′t) are uniformly bounded, while L̄o
ε (ψ) = O (1/εl) , Gu

ε (ψ) =
O (1/εl) , Qs

ε(ψ) = O (ε
−1l−2) , Qρε (ψ) = O (1/εl) and Rρε (ψ) = O (1/εl) . In the case of Rs

ε we
do discrete integration by parts to get

Rs
ε(ψ) :=−ε

∑

k∈Z

∫ ∞

0

�

∇1(ψk(t)H
′
ρ,k(t))

�

∇1η̄l,k(t)) d t

− ε
∑

k∈Z

∫ ∞

0

�

∇1(ψk(t)H
′
u,k(t))

�

∇1ω̄l,k(t) d t ,

where ∇1ξk = ξk+1 − ξk , whence Rs
ε(ψ) = O (1/εl

2) . Summarizing these computations we get
(3.7) because l ≤ σ and β ≤ σ .

Remember now again that

λρ,u(C
∗
l,k) = 2C(ρ, u) = (3/2)(ρ− F∗(u))(ρ− F(u)) ,
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and ρ− F∗(u)≤−2/3 . That is why we set

Wρ
ε (ψ) :=

3ε

2

∑

k∈Z

∫ ∞

0

ψk(t)
�

η̄l,k − F∗(ω̄l,k)
��

η̄l,k − F(ω̄l,k)
�2

d t

≤−ε
∑

k∈Z

∫ ∞

0

ψk(t)
�

η̄l,k − F(ω̄l,k)
�2

d t ,

and consider 2Γρε −Wρ
ε = 2Γρε − 2Wρ

ε +Wρ
ε . From

2Γρε − 2Wρ
ε = 2ε

∑

k∈Z

∫ ∞

0

ψk(t)
�

η̄l,k − F(ω̄l,k)
�

Dk(t) d t ,

where Dk := C∗l,k(ω)− 2C(η̄l,k, ω̄l,k) we obtain

2Γρε −Wρ
ε ≤ ε

∑

k∈Z

∫ ∞

0

ψk(t)D
2
k(t) d t .

Now we are in a position to apply Lemma 3.3 to conclude 2EΓρε (ψ) − EWρ
ε (ψ) ≤ K ′(ψ)(l2/σ) ,

whence by (3.7)

−EWρ
ε (ψ)≤ K̄(ψ)

�

1

εl
+

2σ

εβ l2 +
l2

σ

�

≤ 2K̄(ψ)

�

σ

εβ l2 +
l2

σ

�

,

where K ′(ψ) and K̄(ψ) depend only on ψ in a simple way. Choosing ψ such that ψ(t, x) = 1 if
0 ≤ t ≤ τ and |x | ≤ 1+ r , while ψ(t, x) = 0 if t > τ+ 1 and |x | > 2+ r , we obtain the statement
of the lemma by a direct computation.

The full power of our tools has not been exploited in the proof of (3.7), it is possible to improve
Lemma 3.6, thus also Theorem 1.1 a bit. Namely, the lower bound εσ2(ε)β2(ε) → +∞ can be
replaced with εσ2(ε)β3(ε)→+∞ as ε→ 0 . We do not go into details because by means of a clever
Lax entropy - flux pair a much better condition, σ(ε)β(ε) → +∞ can be proven, see Sections 5.5
and 5.6.

4 Estimation of Entropy Production

The main part of this section is devoted to the verification of the conditions of Proposition 2.2, first
of all the components Lε , Mε , Jε and Nε of entropy production Xε have to be evaluated. We are
assuming that h, J ∈ C2(R) with bounded first and second derivatives; J ′(u) = (F ′(u)− 2u)h′(u)
is the relation of h and J . Our calculations are based on the a priori bounds of Section 3, the
argument follows [FN06] with some modifications. Although h and J here are now functions of
ω̂ , considerable differences are coming only from the replacement of αGκ with βG∗ . Spin - flips
are simple because Gκηk = 0 , and the linear expression, Gκωk = −2(κηk − ωk) is also easily
controlled; G∗ηk and G∗ωk are more complicated, cf. Section 1.3. Nevertheless, the main lines of
our computations are essentially the same as in [FN06], just Lemma 3.6 of this paper is used instead
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of Lemma 3.5 of [FN06] at the final evaluation of entropy production. Among others, we have to
show that due to reversibility of G∗ , the microscopic current jω∗ vanishes in the limit.

The a priori bounds (2.8) and (2.9) we need for compensated compactness are localized by a smooth
function φ ∈ C2

co(R
2
+) of compact support, thus Hε(0,φψ, h) = 0 , see (2.6) also for the basic

decomposition of Xε(ψ, h) . Since ûε(t, x) is a step function of x ∈ R , the integral mean,

ψk(t) :=
1

ε

∫ εk+ε/2

εk−ε/2
ϕ(εt, x) d x

of ϕ(t, x) := φ(t, x)ψ(t, x) appears quite frequently in our equations. Finally, ∇εϕ(x) :=
ε−1(ϕ(x+ε)−ϕ(x)) for functions, while in the case of sequences we write ∇lξk := l−1(ξk+l−ξk) ,
∇∗l ξk := l−1(ξk−l − ξk) , and ∆lξk := −∇∗l∇lξk . Note that ∇∗l is the adjoint of ∇l in `2(Z) ,
∇1ξ̂l,k =∇l ξ̄l,k+1−l and ∇∗1ξ̂l,k =∇∗l ξ̄l,k . For ∇1ψk we have an identity:

∇1ψk(t) =
1

ε

∫ ε

−ε
(ε− |x |)ϕ′x(εt,εk+ x + ε/2) d x ,

where ϕ = φψ , whence by the Schwarz inequality

�

∇1ψk(t)
�2 ≤

2ε

3

∫ εk+3ε/2

εk−ε/2
ϕ′2x (εt, x) d x .

A similar bound of (∇lψk)2 follows easily because ∇lψk =∇1ψ̄l,k , thus

�

∇lψk(t)
�2 ≤

1

l

k+l−1
∑

j=k

�

ψ j+1(t)−ψ j(t)
�2

.

Such estimates are frequently used in the following calculations to obtain bounds in terms of ‖ψ‖+1 .
From now on we are assuming that the parameters σ(ε) , β(ε) and l(ε) of our problem are specified
as in Theorem 1.1 and before (2.2).

4.1. The numerical error: This is the easiest case, by a direct calculation

Nε(φψ, h) = ε
∑

k∈Z

∫ ∞

0

�

∇1ψk(t)− ε∇εϕ(εt,εk− ε/2)
�

Jk(t) d t . (4.1)

Since J ′ is bounded, without any modification of the argument of the proof of Lemma 4.1 of [FN06],
we obtain that the numerical error, Nε satisfies (2.8) with a vanishing bound.

4.2. The martingale: We estimate the H−1 norm of Mε(∞,ψ, h) as follows. The stochastic dif-
ferential dh(ûε) = ε−1L h(ûε) + dmε defines a martingale mε = mε(t, x) for each x ∈ R such that
mε(t, x) = mε(t,εk) if |x − εk|< ε/2 and

Mε(t,φψ, h) =

∫ ∞

−∞

∫ t

0

ψ(s, x)φ(s, x)mε(ds, x) d x . (4.2)
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The martingale mε is identified by the intensity qε of its quadratic variation:

qε(t, x) :=
1

ε

�

L h2(ûε)− 2h(ûε)L h(ûε)
�

=
1

ε

∑

b∈Z∗
(cb(ω) +σ(ε))

�

h(ω̂b
l,k)− h(ω̂l,k)

�2

+
β(ε)
ε

∑

b∈Z∗

�

h(ω̂b∗
l,k)− h(ω̂l,k)

�2

if |x − εk|< ε/2 , where ω̂b∗
l,k denotes the block average of ωb∗ .

Lemma 4.1. Mε(∞,φψ, h) satisfies (2.8) with a vanishing bound.

Proof. Let ṁε(t, x) denote the time derivative of mε in the H−1 sense, we have to show that
E‖ϕ ṁε‖2−1→ 0 as ε→ 0 . Since φṁε = ∂t(φmε)−φ′t mε in H−1 , we have

|Mε| ≤ ‖ψ‖+1‖φṁε‖−1 ≤ ‖ψ‖+1

�

‖φmε‖2+ ‖φ′t mε‖2
�

,

consequently we have to estimate

E m2
ε(t, x) =

∫ t

0

E qε(τ, x) dτ .

However, |ω̂b
l,k − ω̂l,k| ≤ 2/l2 and |ω̂b∗

l,k − h(ω̂l,k| ≤ 1/l2 , thus independently of the configuration
we have qε(t, x) = O ((σ+ β)/εl3(ε)) , which completes the proof.

4.3. The microscopic current: The starting point of the estimation of Lε is an identity,

L h(ω̂l,k) = h′(ω̂l,k)L ω̂l,k +
1

2

∑

b∈Z∗
h′′(ω̃b

k)(cb(ω) +σ(ε))(ω̂
b
l,k − ω̂l,k)

2

+
β(ε)

2

∑

b∈Z∗
h′′(ω̃b∗

k )(ω̂
b∗
l,k − ω̂l,k)

2 , (4.3)

where ω̃b
k and ω̃b∗

k are intermediate values. The contribution of the quadratic remainders vanishes in
the space of measures in an obvious way, cf. (2.9), because O (l−2) is the order of both differences,
and σ/εl3→ 0 .

Therefore we are facing with the resultant of

L ω̂l,k =∇∗l j̄
ωo
l,k + β(ε)∇

∗
l j̄
ω∗
l,k +σ(ε)∇

∗
l ω̄l,k ,

see Section 1.3 for the definition of currents. Let us consider first the easy case of

Lωs
ε (φψ, h) := εσ(ε)

∑

k∈Z

∫ ∞

0

ψk(t)h
′
k(t)∆1ω̂l,k(t) d t , (4.4)
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it is the contribution of σS . We have Lωs
ε = Yωs

ε + Zωs
ε , where

Yωs
ε (φψ, h) :=−εσ(ε)

∑

k∈Z

∫ ∞

0

(∇1ψk(t))h
′
k(t)∇1ω̂l,k(t) d t ,

Zωs
ε (φψ, h) :=−εσ(ε)

∑

k∈Z

∫ ∞

0

ψk+1(t)(∇1h′k(t))∇1ω̂l,k(t) d t .

Since the entropic Dirichlet form of S also has a factor σ(ε) in our fundamental a priori bound,
Lemma 3.1, we have

Lemma 4.2. Yωs
ε satisfies (2.8) with a vanishing bound, while Zωs

ε satisfies (2.9). The bound of Zωs
ε

does not vanish, and Zωs
ε ≤ 0 if h is convex and φψ≥ 0 .

Proof. It is exactly the same as that of the second part of Lemma 4.2 in [FN06]. First we separate the
factors by means of the Cauchy - Schwarz inequality to let Lemma 3.5 work. For example, suppose
that φ is supported in the rectangle [0,τ]× [−r−1, r+1] , then |Yωs

ε | ≤ (σ/ε)‖h
′‖
p

Ψ1Q1 , where

Ψ1 := ε2
∑

k∈Z

∫ ∞

0

�

∇1ψk(t)
�2 d t , Q1 := ε2

∑

|k|<r/ε

∫ τ/ε

0

(∇1ω̂l,k)
2 d t .

It is plain that Ψ1 ≤ ε2‖φ‖2‖ψ‖2+1 , while Q1 = O (ε/σ) follows by Lemma 3.5 because ∇1ω̂l,k =
∇lω̄l,k . This trick will be used several times in the next coming computations.

By means of the one and two blocks estimates the contributions of the microscopic currents jωo and
jω∗ can be reduced as follows. Let

Lωo
ε (φψ, h) := ε

∑

k∈Z

∫ ∞

0

ψk(t)h
′
k(t)∇

∗
l j̄
ωo
l,k (ω(t)) d t , (4.5)

Lω∗ε (φψ, h) := εβ(ε)
∑

k∈Z

∫ ∞

0

ψk(t)h
′
k(t)∇

∗
l j̄
ω∗
l,k (ω(t)) d t , (4.6)

and introduce their mesoscopic counterparts:

Vωo
ε (φψ, h) := ε

∑

k∈Z

∫ ∞

0

ψk(t)h
′
k(t)∇

∗
l J

uo(η̄l,k(t), ω̄l,k(t)) d t , (4.7)

Vω∗ε (φψ, h) := εβ(ε)
∑

k∈Z

∫ ∞

0

ψk(t)h
′
k(t)∇

∗
l J

u∗(η̄l,k(t), ω̄l,k(t)) d t , (4.8)

where Juo(ρ, u) = λρ,u(jωo
k ) and Ju∗(ρ, u) = λρ,u(jω∗k ) , see Section 1.3. Now we split the corre-

sponding differences by doing discrete integration by parts such that Lωo
ε − Vωo = Yωo

ε + Zωo
ε and

Lω∗ε − Vω∗ = Yω∗ε + Zω∗ε , where

Yωo
ε (φψ, h) := ε

∑

k∈Z

∫ ∞

0

(∇lψk)h
′
k(t)(̄j

ωo
l,k − Juo(η̄l,k, ω̄l,k)) d t ,
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Zωo
ε (φψ, h) := ε

∑

k∈Z

∫ ∞

0

ψk+l(t)(∇lh
′
k)(̄j

ωo
l,k − Juo(η̄l,k, ω̄l,k)) d t ,

Yω∗ε (φψ, h) := εβ(ε)
∑

k∈Z

∫ ∞

0

(∇lψk)h
′
k(t)(̄j

ω∗
l,k − Ju∗(η̄l,k, ω̄l,k)) d t ,

Zω∗ε (φψ, h) := εβ(ε)
∑

k∈Z

∫ ∞

0

ψk+l(t)(∇lh
′
k)(̄j

ω∗
l,k − Ju∗(η̄l,k, ω̄l,k)) d t .

The following bounds are more or less direct consequences of Lemma 3.3 and Lemma 3.4 or 3.5; β
can not be too large here.

Lemma 4.3. Yωo
ε and Yω∗ε satisfy (2.8) while Zωo

ε and Zω∗ε satisfy (2.9); all bounds vanish as ε→ 0 .

Proof. It follows the argument of the first part of Lemma 4.2 in [FN06]. First we separate j̄ωo
l,k −

Juo(η̄l,k, ω̄l,k) and j̄ω∗l,k − Ju∗(η̄l,k, ω̄l,k) by means of the Cauchy inequality from their factors, then
we can use Lemma 3.3 and Lemma 3.4 or Lemma 3.5 in both cases. The procedure is terminated by
the elementary computation of ∇lψk . We get

E|Yωo
ε |= ‖ψ‖+1Oφ

�

l
p

ε/σ
�

, E|Yω∗ε |= ‖ψ‖+1Oφ
�

β l
p

ε/σ
�

and E|Zωo
ε | = ‖ψ‖Oφ(l/σ) , while E|Zω∗ε | = ‖ψ‖Oφ(β l/σ) , which complete the proof as

β l
p

ε/σ→ 0 and β l/σ→ 0 as ε→ 0 , cf. (2.3).

So far we have replaced the dominant parts of the microscopic currents of ω̂k,l with their canonical
expectations, when η̄k,l and ω̄l,k are given. The crucial step of the whole proof follows right now, it
is the replacement of η̄l,k with F(ω̄l,k) .

4.4. Relaxation in action: As we have indicated above, the last step of the evaluation of entropy
production consists in a comparison of Jε and Vωo

ε , see (2.7) and (4.7). Indeed, as total charge is
preserved by the creation - annihilation mechanism, we expect that Vω∗ε vanishes in the limit, while
Jε and Vωo

ε cancel each other. By a direct calculation we get

Jε(φψ, h) =−ε
∑

k∈Z

∫ ∞

0

ψk(t)∇∗1Jk(t) d t , (4.9)

where Jk(t) = J(ω̂l,k(t)) , h′k = h′(ω̂l,k(t)) and J ′(u) = h′(u) f ′(u) with f (u) := F(u)−u2 , see (1.6)
for the definition of F . We are going to replace Jk−1− Jk with h′k∇

∗
l f (ω̄l,k) . We have

Jk−1− Jk − h′k∇
∗ f (ω̄l,k) = h′k f ′k∇

∗
l ω̄l,k − h′k f ′(ω̃l,k)∇∗l ω̄l,k

= h′k f ′′(ω̃′l,k)(ω̂l,k − ω̃l,k)∇∗l ω̄l,k

with some intermediate values ω̃l,k and ω̃′l,k such that the quadratic remainders on the right hand
side can be neglected. More precisely, the contribution of these remainders to Jε satisfies (2.9) with
a vanishing bound; this follows by Lemma 3.4 and Lemma 3.5 in the usual way.

Therefore

J jo
ε (φψ, h) :=−ε

∑

k∈Z

∫ ∞

0

ψk(t)h
′
k(t)∇

∗
l f (ω̄l,k(t)) d t , (4.10)
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is the essential component of Jε , we split J jo − Vωo
ε into two parts:

Y jo
ε (φψ, h) := ε

∑

k∈Z

∫ ∞

0

(∇lψk)h
′
k(t)

�

Juo(η̄l,k, ω̄l,k)− f (ω̄l,k)
�

d t ,

Z jo
ε (φψ, h) := ε

∑

k∈Z

∫ ∞

0

ψk+l(t)(∇lh
′
k)
�

Juo(η̄l,k, ω̄l,k)− f (ω̄l,k)
�

d t ,

i.e. J jo − Vωo
ε = Y jo

ε + Z jo
ε . Similarly, Vω∗ = Y j∗

ε + Z j∗
ε , where

Y j∗
ε (φψ, h) := εβ(ε)

∑

k∈Z

∫ ∞

0

(∇lψk)h
′
k(t)J

u∗(η̄l,k, ω̄l,k) d t ,

Z j∗
ε (φψ, h) := εβ(ε)

∑

k∈Z

∫ ∞

0

ψk+l(t)(∇lh
′
k)J

u∗(η̄l,k, ω̄l,k) d t .

Since Juo(ρ, u)− f (u) = ρ − F(u) and Ju∗(ρ, u) = −(3/4)(ρ − F(u))(ρ − F∗(u)) , see Section 1.3,
we are now in a position to apply Lemma 3.6.

Lemma 4.4. Y jo
ε and Y j∗ satisfy (2.8), while Z jo

ε and Z j∗ satisfy (2.9); all bounds do vanish.

Proof. In much the same way as in the proof of Lemma 4.3, by means of Lemma 3.6 we get

E|Y jo
ε |= ‖ψ‖+1Oφ

�p

σ/β l2+ εl2/σ
�

and
E|Y i∗

ε |= ‖ψ‖+1Oφ
�p

βσ/l2+ εβ2l2/σ
�

.

Finally, as in the case of Zωε , Lemma 3.4 and Lemma 3.6 imply

E|Z jo
ε |= ‖ψ‖Oφ

�p

(εβ l2)−1+ l2/σ2
�

and
E|Z i∗

ε |= ‖ψ‖Oφ
�p

β/εl2+ β2l2/σ2
�

.

Therefore we need

lim
ε→0

σ

β l2 = lim
ε→0

βσ

l2 = lim
ε→0

εβ2l2

σ
= lim
ε→0

1

εβ l2 = lim
ε→0

β

εl2 = lim
ε→0

β2l2

σ2 = 0 ,

which complete the proof as l2 ≈ σ/
p
ε , see also (2.2) and (2.3).

The results of this section can be summarized as follows. We have decomposed entropy production
Xε(ψ, h) in a correct way, therefore Proposition 2.2 applies. Apart from Z s

ε , all terms of the decom-
position vanish, while Z s

ε(ψ, h)≤ 0 if h is convex andψ≥ 0 , thus limsup Xε(ψ, h)≤ 0 in probability
as ε→ 0 holds true in this case.
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Proof of Theorem 1.1: First we prove Proposition 2.1. In fact we have to evaluate Xε(ψ, h) when
h(u) = u , which is easy. Non - gradient analysis is not needed at all, and Z s

ε is missing from the
decomposition of Xε . For ψ ∈ C1

c (R
2) by Kolmogorov

lim
t→∞

∫ ∞

−∞
ψ(t, x)ûε(t, x) d x = 0=

∫ ∞

−∞
ψ(0, x)ûε(t, x) d x +Mε(∞,ψ)

+

∫ ∞

0

∫ ∞

−∞
ψ′t(t, x)ûε(t, x) d x d t +

∫ ∞

0

∫ ∞

−∞

�

∇lεψ(t, x)
�

j̄ε(t, x) d x d t ,

where Mε is the terminal value of a martingale, and j̄ε is a block average, j̄ε(t, x) := j̄ωo
l,k (t/ε) +

β(ε) j̄ω∗l,k (t/ε) +σ(ε) j̄
ωs
l,k(t/ε) if |x − εk| < ε/2 , see Section 1.3. In view of Lemma 4.2, EM2

ε → 0
as ε → 0 , and the replacement of j̄ε with f (ūε) is a consequence of Lemma 3.3 and Lemma 3.6;
remember that f (u) = F(u)− u2 is just the flux of (1.16). Finally, Lemma 3.4 implies that ūε − ûε
also vanish in the limit, thus we have E|Xε(ψ, u)| → 0 as ε→ 0 , which completes the proof because
the distributions P̂ε,θ of the Young measures form a tight family.

Now we are in a position to finish the proof of Theorem 1.1. Proposition 2.1 and Proposition
2.3 imply that any limit distribution, P̂θ of the Young measures is concentrated on a set of weak
solutions. On the other hand, lim sup Xε(ψ, h) ≤ 0 in probability if ψ ≥ 0 and h is convex, thus first
we get (2.11), whence Proposition 2.3 yields (1.23) almost surely with respect to any P̂θ . Therefore
the uniqueness of the limiting solution follows by the Main Theorem of [CR00] on uniqueness of
entropy solutions. Since the limit is deterministic, for ψ ∈ Cc(R2) we have

lim
ε→0

∫ t

0

∫ ∞

−∞
ψ(t, x)ûε(t, x) d x d t =

∫ t

0

∫ ∞

−∞
ψ(t, x)u(t, x) d x d t

in probability. The space integral on the left hand side is actually a sum, thus the block average can
be transposed on ψ , which completes the proof of Theorem 1.1 because ψ is uniformly continuous.

5 Concluding Remarks

Here we summarize some improvements and explanations of our main result including further re-
marks on the method of relaxation schemes.

5.1. Strong convergence: The last step of the argument yields a stronger form of Theorem 1.1, cf.
[FT04]. Let ūε denote the empirical process of Section 3.4, ūε(t, x) = ω̄l,k(t/ε) if |x − εk| < ε/2 ,
l = l(ε) as in (2.2). This version is certainly more natural than ûε , which has been introduced
because of technical reasons: l∇∗1̂j

ωo is a difference of block averages, and j̄ωo is well controlled by
Lemma 3.3;∇∗1 j̄

ωo is more singular. The second statement of the following theorem is a consequence
of Lemma 3.4.

Theorem 5.1. Under conditions of Theorem 1.1, for τ, r > 0 we have

lim
ε→0

E

∫ τ

0

∫ r

−r

|u(t, x)− ûε(t, x)| d x d t

= lim
ε→0

E

∫ τ

0

∫ r

−r

|u(t, x)− ūε(t, x)| d x d t = 0 ,
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where u denotes the unique entropy solution to (1.16) with initial value u0 .

5.2. Microscopic block averages: By means of Lemma 3.5 we can fill in the gap between large
microscopic and small macroscopic block averages of the evolved configuration, see [FN06]. Let
ūε,l(t, x) := ω̄l,k(t/ε) if |x − εk| < ε/2 , where l ∈ N does not depend on ε , then for all τ, r > 0 we
have

lim
l→∞

lim sup
ε→0

E

∫ τ

0

∫ r

−r

|ūε(t, x)− ūε,l(t, x)| d x d t = 0 ,

whence

lim
l→∞

limsup
ε→0

E

∫ τ

0

∫ r

−r

|u(t, x)− ūε,l(t, x)| d x d t = 0 .

5.3. Measure - valued solutions: Convergence of the empirical process ūε,l to a set of measure-
valued solutions holds true under fairly general conditions. Let us consider CRANNI, that is the
process generated by L ∗ =Lo + β G∗ with a fixed value of β > 0 . Let ψ ∈ C1

c (R
2) , then following

the proof of Proposition 2.1 we write

lim
t→∞

∫ ∞

−∞
ψ(t, x)ūε,l(t, x) d x = 0=

∫ ∞

−∞
ψ(0, x)ūε,l(t, x) d x + M̄ε(∞,ψ)

+

∫ ∞

0

∫ ∞

−∞
ψ′t(t, x)ūε,l(t, x) d x d t +

∫ ∞

0

∫ ∞

−∞

�

∇εψ(t, x)
�

j̄ε,l(t, x) d x d t ,

where M̄ε is the terminal value of a martingale, and j̄ε,l is a block average, j̄ε,l(t, x) := j̄ωo
l,k (t/ε) +

β(ε) j̄ω∗l,k (t/ε) if |x − εk| < ε/2 ; remember that l ∈ N does not depend on ε > 0 . It is easy to show
that EM̄2

ε → 0 as ε→ 0 , and the replacement of j̄ε,l with f (ūε,l) follows by the standard One - Block
Lemma of [GPV88]. For τ, r > 0 we have

lim
l→∞

lim sup
ε→0

∫ τ

0

∫ r

−r

E|̄jε,l(t, x)− f (ūε,l(t, x))| d x d t = 0

because the usual entropy argument shows that every translation invariant stationary measure is
a superposition of product measures of type λ∗u . Therefore all limit distributions of the Young rep-
resentation of ūε,l are concentrated on a set of measure - valued solutions, cf. (1.22); these limit
distributions are obtained by sending ε→ 0 first, and l →+∞ next. The weak Lax inequality (2.11)
can not be proven in this easy way, we are facing with a non - gradient problem there.

5.4. Relaxation of the spin flip model: Let Hκ(ρ, u) := (1/2)(u− κρ)2 , 0 ≤ ψ ∈ C1
c (R

2) , and
consider the evolution of

H̄κ(t,ψ) :=

∫ ∞

−∞
ψ(t, x)Hκ(v̄ε(t, x)) d x ,

where the empirical process v̄ε is the same as in Section 3.4, but it is now generated by Lκ =
Lo+α(ε)Gκ+σ(ε)S . We follow the lines of the derivation of (3.7), the only difference consists in
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the evaluation of the effect of Gκ . Due to Gκηk = 0 , these computations are considerably simpler
than those of Section 3.4. Denote ω̄ j

l,k the block average of the sequence ω j , then

GκH(η̄l,k, ω̄l,k) =
1

2

∑

j∈Z
(η j −κω j)

�

(ω̄ j
l,k −κη̄l,k)

2− (ω̄l,k −κη̄l,k)
2
�

=
1

l

k+l−1
∑

j=k

(κη j −ω j)(ω̄
j
l,k + ω̄l,k − 2κη̄l,k)

=−2(ω̄l,k −κη̄l,k)
2+ (2/l)(η̄l,k −κω̄l,k)

is an identity, whence by a direct calculation we obtain the final a priori bound:

ε2
∑

|k|<r/ε

∫ τ/ε

0

∫

(ω̄l,k −κη̄l,k)
2 dµε,t d t ≤ C̄4

� rτ

l
+

rτσ

αl2

�

.

Let us remark that the second LSI in [FN06] yields a considerably better order, O (1/l + ε/α) , see
Lemma 3.5 there. Our present bound is effective if α(ε)> 0 is not too small, namely

lim
ε→0

σ(ε)
α(ε)l2(ε)

= 0 and lim
ε→0

εα(ε)l2(ε) = +∞ .

This means εα(ε)σ2(ε)→+∞ as ε→ 0 ; the condition α(ε)σ(ε)→+∞ of Theorem 1.1 in [FN06]
has not been improved in this way.

5.5. Entropy - flux pairs of the LeRoux system: Regular entropy - flux pairs of (1.13) can easily
be constructed because besides the trivial Sa(ρ, u) := 1−ρ+ au− a2 and Φa(ρ, u) := −(a+ u)Sa ,
also |Sa(ρ, u)|+ and −(a+ u)|Sa(ρ, u)|+ are convex entropy - flux pairs for all a ∈ R , where |S|+ :=
max{S, 0} . Observe that Sa(ρ, u) > 0 means w < a < z , where z and w are the Riemann invariants
of the LeRoux system:

−1≤ w := u
2
− 1

2

p

u2+ 4− 4ρ ≤ 0≤ u
2
+ 1

2

p

u2+ 4− 4ρ =: z ≤ 1 ;

notice that u= z+w and ρ = 1+ zw , moreover Sz(ρ, u) = Sw(ρ, u) = 0 in this case. Therefore

Sν(ρ, u) =

∫

|Sa(ρ, u)|+ ν(da) =

∫ z

w

Sa(ρ, u)ν(da)

is again an entropy with flux

Φν(ρ, u) :=−
∫ z

w

(a+ u)Sa(ρ, u)ν(da)

whenever ν is a finite signed measure on [−1, 1] . Suppose that ν is absolutely continuous on the
set [−1, 0)∪ (0, 1] , then

∂ρSν(ρ, u) =−
∫ z

w

ν(da) =−
�

ν ({0}) + G+(z) + G−(w)
�

,
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where G+(a) = ν((0, a)) if a ≥ 0 , and G−(a) = ν((a, 0)) if a < 0 .

To demonstrate relaxation to (1.16), we need

∂ρSν(ρ, u)C(ρ, u)≤−b
�

ρ− F(u)
�2 (5.1)

with some universal constant b > 0 , which implies ∂ρSν(ρ, u) = 0 if ρ = F(u) . In terms of the
Riemann invariants this means

0= C(ρ, u) = (1/4)(z2+w2+ 3z2w2− 1) ,

whence z2 = (1 − w2)/(1 + 3w2) . Therefore setting G+(z) = z2 , ν ({0}) = −1 and G−(w) =
1− (1−w2)/(1+ 3w2) , we obtain

∂ρSν(ρ, u) =
1− z2−w2− 3z2w2

1+ 3w2 =−
4C(ρ, u)
1+ 3w2 (5.2)

by a direct computation. However, w2 ≤ 1 and |C(ρ, u)| ≥ (1/2)|ρ− F(u)| , consequently the above
choice of ν yields (5.1) with b = 1/4 .

5.6. The second relaxation inequality: Using Sν instead of the trivial Liapunov function H =
(1/2)(F(u)−ρ)2 , we can improve Lemma 3.6 as follows.

Lemma 5.1. There exist two universal constants l0 ∈ N and C5 <+∞ such that

ε2
∑

|k|<r/ε

∫ τ/ε

0

∫

�

η̄l,k − F(ω̄l,k)
�2

dµε,t d t ≤ C5

�

rτε

β
+

rτεl2

σ

�

whenever r,τ≥ 1 and εl3 ≥ σ ≥ l ≥ l0 .

Proof. Let us consider

X νε (ψ) :=−
∫ ∞

0

∫ ∞

−∞

�

ψ′t(t, x)Sν(v̂ε) +ψ
′
x(t, x)Φν(v̂ε

�

d x d t (5.3)

for 0≤ψ ∈ C1
c (R

2) , where

v̂ε(t, x) =
�

ρ̂ε(t, x), ûε(t, x)
�

:=
�

η̂l,k(t/ε), ω̂l,k(t/ε)
�

if |x − εk|< ε/2 ;

the process is generated by L = Lo + β(ε)G∗ +σ(ε)S . The evaluation of X νε follows the lines of
the proof of Lemma 3.6 in Section 3.4; considerably better bounds are obtained in the first part
of the argument. Concerning the decomposition of entropy production and estimation techniques
we refer to Section 2.3 and Section 4. However, just as in case of Lemma 3.6, it suffices to control
expectations only, which simplifies the argument. The main steps are outlined below with a concrete
emphasis on nontrivial differences. It is not really problematic that our empirical process v̂ε consists
of two components, cf. [FT04], the crucial issue is to control the effect of G∗ .

Due to formal conservation of entropy, the contribution of Lo is compensated by the mesoscopic
flux Φν(v̂ε) , the vanishing εl2/σ is the order of this difference. Indeed, apart from some quadratic
remainders we have

L0Sν(v̂ε)≈ ∂ρSν(v̂ε)L0ρ̂ε + ∂uSν(v̂ε)L0ûε ,
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whereL0ρ̂ε =∇∗l j̄
ηo
l,k ,L0ûε =∇∗l j̄

ωo
l,k , and O (ε−1l−3)→ 0 is the total contribution of the remainders.

The microscopic currents are replaced by their canonical expectations via Lemma 3.3 at a total cost
of O (l/σ) , that is j̄

ηo
l, j ≈ ω̄l,k − ω̄l,kη̄l,k and j̄ωo

l, j ≈ η̄l,k − (ω̄l,k)2 . In a similar way, by means of
Lemma 3.4 we get

Φν(η̂l,k−1, ω̂l,k−1)−Φν(ω̂l,k, η̂l,k)

≈ (∂ρSν − η̄l,k∂ρSν − 2ω̄l,k∂uSν)∇∗l ω̄l,k + (∂uSν − ω̄l,k∂ρSν)∇∗l η̄l,k ;

again O (l/σ) is the total order of our error terms. By Lemma 4.1 the numerical error coming from
the substitution of ψ′x by ε−1(ψ(t, x + ε)−ψ(t,ε)) also vanishes, thus (1.18) implies the desired
cancelation. Finally, again by Lemma 3.4 the contribution of σS Sν is bounded, see also Lemma 4.2,
while the martingale component in the evolution equation of Sν has zero expectation, consequently
O (1) is the total order of those terms of X νε which have been considered so far.

Therefore, just as in case of Lemma 3.6, we have to concentrate on the effect of G∗ . Apart from the
usual quadratic remainders

G∗Sν(η̂l,k, ω̂l,k)≈ ∂ρSν(η̂l,k, ω̂l,k)G∗η̂l,k + ∂uSν(η̂l,k, ω̂l,k)G∗ω̂l,k ,

and G∗ω̂l,k is a difference of mesoscopic block averages, therefore

Γνε (ψ) := ε
∑

k∈Z

∫ ∞

0

ψk(t)∂ρSν(η̂l,k, ω̂l,k) Ĉ
ν∗
l,k(ω) d t

is the critical term, where

Ĉν∗l,k(ω) :=
2

l2− l

l−1
∑

m=1

∑

b⊂[k−m,k+m]

�

c×b (ω)− c+b (ω)
�

;

remember that Ĉν∗l,k/2 is a mean value of arithmetic averages with weights (2m− 1)/(l2 − l) . Since

|G∗η̂l,k− Ĉν∗l,k(ω)|= O (1/l) , moreover |ω̂b∗
l,k− η̂l,k|= O (l−2) while |η̂b∗

l,k− η̂l,k|= O (1/l) , we obtain

−EΓνε (ψ)≤ Kν(ψ)
�

1

β
+

1

εl

�

(5.4)

by a direct computation, see the derivation of (3.7). Note that σ/βεl2 ≈ ε−1/2/β is much bigger
then the corresponding 1/β above.

Now we are in a position to continue the argument of Section 3.4. Having in mind (5.2), let us
introduce

W ν
ε (ψ) := 2ε

∑

k∈Z

∫ ∞

0

ψk(t)∂ρSν(η̂l,k, ω̂l,k)C(η̂l,k, ω̂l,k) d t

≤−
ε

2

∑

k∈Z

∫ ∞

0

ψk(t)(F(ω̂l,k)− η̂l,k)
2 d t

and D̂k(t) := Ĉν∗l,k(ω)− 2C(η̂l,k, ω̂l,k) , whence

2Γνε −W ν
ε = 2Γνε − 2W ν

ε +W ν
ε ≤

ε

4

∑

k∈Z

∫ ∞

0

ψk(t)D̂
2
k(t) d t .
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In order to estimate the right hand side via Lemma 3.3, first of all we have to get rid of the block
averages of type ξ̂l,k ; note that we have to control squared differences. Lemma 3.4 allows us
to replace C(η̂l,k, ω̂l,k) by Ck := C(η̄2l,k−l+1, ω̄2l,k−l+1) , while Cm ≈ Cl follows by Lemma 3.5 if
l0 ≤ m< l . On the other hand, due to Cauchy

Dk ≤ 4
l−1
∑

m=1

2m− 1

l2− l
(C̃m− Cm)

2 ,

where

C̃m :=
1

2m− 1

∑

b⊂[k−m,k+m]

�

c×b (ω)− c+b (ω)
�

≈ Cm

is a consequence of Lemma 3.3 if m≥ l0 , therefore 2Γνε −W ν
ε = O (l

2/σ) ; the constant does depend
on l0 , too.

Since −W ν
ε = 2Γνε − W ν

ε − 2Γνε , (5.4) implies a preliminary version of Lemma 5.1: instead of
(F(ω̄l,k)− η̄l,k)2 we have (F(ω̂l,k)− η̂l,k)2 in the sum on the left hand side of the second relaxation
inequality. The required substitution is immediate, Lemma 3.4 completes the proof of this lemma.

The second relaxation inequality allows us to improve the previous lower bound on β = β(ε) .

Theorem 5.2. The conclusion of Theorem 1.1 holds true even if its condition εσ2(ε)β2(ε)→ +∞ is
replaced with β(ε)σ(ε)→+∞ as ε→ 0 .

Proof. Applying the above bound instead of Lemma 3.6, and following the proof of Lemma 4.4, we
see that

lim
ε→0

ε

β
= lim
ε→0

εβ2l2

σ
= lim
ε→0

1

βσ
= lim
ε→0

β2l2

σ2 = 0

are the requirements of an effective relaxation, which completes the proof as l2 ≈ σ/
p
ε .

Of course, Theorem 5.1 also holds true under the above condition on β = β(ε) of Theorem 5.2.

5.7. Entropy for the spin - flip model: In view of Section 5.5, in case of the spin - flip dynamics

∂uSν(ρ, u) =

∫ z

w

a ν(da) = M(z)−M(w)

is the relevant derivative; dM = a ν(da) . The condition u = κρ of equilibrium means z + w =
κ+ κzw , consequently it is tempting to set M(a) := a2 if a ≥ 0 and M(a) := (κ− a)2 (1− κa)−2 if
a < 0 , then

∂uSν(ρ, u) =
(u−κρ)

p

u2+ 4− 4ρ

1− 2κw+κ2w2 ,

whence an extremely strong bound,

ε2
∑

|k|<r/ε

∫ τ/ε

0

∫

(1− η̄l,k)
2(ω̄l,k −κη̄l,k)

2 dµε,t d t ≤ C̄ ′4

�

rτε+
rτε

α

�
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would follow, see Lemma 4.3 in [FN06] and Section 5.4 here, provided that ν and Sν are well
defined. The bound above is effective if α(ε)σ(ε)→ +∞ as ε → 0 ; this condition on α is the very
same as that of [FN06]. Unfortunately, unless κ = 0 , no version of our construction is correct:
the underlying measure ν can not be defined because the map z = (κ − w)/(1 − κw) does not
interchange the ranges of z and w if κ 6= 0 . The case of κ = 0 is trivial at the level of hyperbolic
scaling, nevertheless it is interesting to note that relaxation via entropy may be just as strong as LSI.
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