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Abstract

Write an integer as finite products of ordered factors belonging to a given subset P of integers
larger than one. A very general central limit theorem is derived for the number of ordered fac-
tors in random factorizations for any subset P containing at least two elements. The method
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Tauberian technique for handling Dirichlet series associated with odd centered moments.
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1 Introduction

Let P be a fixed subset of N2 := {2, 3,4, . . . } (the set of positive integers larger than 1). Let a(n)
denote the number of different ways of writing n as the product of ordered sequences (n1, . . . , nk) of
integers in P . Define a(1) = 1. In particular, if P = N2, then one has

{an}n≥2 = {1,1, 2,1, 3,1, 3,2, 3, · · · }.

Let A(N) :=
∑

1≤n≤N a(n). Assume that all A(N) factorizations of an integer ≤ N are equally likely;
denote by YN the random variable counting the number of factors in a random factorization. We
prove in this paper that the distribution of YN is asymptotically normal under very general conditions
on P .

Denote by P (s) the Dirichlet series of P

P (s) :=
∑

n∈P
n−s.

Assume the abscissa of convergence of P (s) is κ. Then κ = −∞ if |P | < ∞ and 0 ≤ κ ≤ 1 if
|P |=∞. Note that P (κ)≤∞.

Our main result is as follows.

Main Theorem 1.1. Assume |P | ≥ 2 and 1 < P (κ) ≤∞; thus there exists ρ > max{κ, 0} such that
P (ρ) = 1. Let

µ :=−
1

P ′(ρ)
, and σ :=

p

µ3P ′′(ρ)−µ.

Then
YN −µ log N

σ
p

log N

d→N (0, 1),

where
d→ stands for convergence in distribution and N (0,1) denotes the standard normal distribution.

The mean and variance of YN are asymptotic to µ log N and σ2 log N, respectively.

By Cauchy-Schwarz inequality, σ2 > 0. We will indeed prove convergence of all moments.

The case when |P |= 1, say P = {d}, d ≥ 2, is exceptional. In this case, a(n) = 1 when n is a power
of d, and a(n) = 0 otherwise. Then YN is uniformly distributed on the integers {0, . . . , blogd Nc}.
Thus YN/ log N converges in distribution to a uniform distribution on [0, 1/ log d], and therefore,
YN is not asymptotically normal; furthermore, the moment asymptotics differ from those in the
theorem.

Ordered factorization problems in connection with that studied in this paper have a long history,
tracing back to at least MacMahon’s work (see [21]) in the early 1890’s; later they were in many
publications referred to as Kalmár’s problem of “factorisatio numerorum" (see [16, 14]). Diverse
properties of such factorizations have then been widely investigated, often in quite different con-
texts, one reason being that ordered factorizations are naturally encountered in many enumeration
and estimation problems. For example, when P = N2, A(N) + 1 equals the permanent of the Red-
heffer matrix; see [26]; also they appeared as the lower bound of certain biological problems; see
[23]. See also [6, 18] for more information and references.
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The first paper dealing with general ordered factorizations beyond the subset P = N2 similar to our
setting was Erdős [7], extending previous results by Hille [13]; see also [17]. Asymptotic normality
(as well as local limit theorem and convergence rate) of the special case of Theorem 1.1 when
P = N2 was treated in [15]. In this case, ρ ≈ 1.7286 is the unique root > 1 solving ζ(s) = 2, where
ζ denotes Riemann’s zeta function. The proof given there relies on the determination of a zero-free
region of the function 1 − z(ζ(s) − 1), which in turn involves deep estimates from trigonometric
sums (see also [20]). Such refined estimates are for general P hard to establish. We replace
this estimate by applying purely Tauberian arguments of Delange (see [4, 22]), which require only
analytic information of the involved Dirichlet series on its half-plane of convergence.

We will use Dirichlet series and the method of moments and derive asymptotic estimates for centered
moments of integral orders, which, by Fréchet-Shohat’s moment convergence theorem, will suffice
to prove the theorem.

Proposition 1.2. For k ≥ 0

lim
N→∞
E





YN −µ log N

σ
p

log N





k

=







k!

(k/2)!2k/2
, if k is even

0, if k is odd,
(1.1)

A straightforward application of Tauberian theorems does not provide precise asymptotics for cen-
tered moments beyond the first due to cancellation of major dominant terms and due to the fact that
no asymptotic expansion is generally available via application of Tauberian arguments; see however
[19, 24] for more information on Tauberian theorems with remainders.

Note specially that while a direct use of Tauberian theorems leads to typical results of the form

E(YN )∼ µ log N ,

our result indeed gives, still relying on elementary Tauberian arguments, that (Proposition 1.2 with
k = 1)

E(YN ) = µ log N + o(
p

log N).

This shows the power of our approach, notably for odd moments. However, the estimates (1.1) we
derive are not strong enough so as to prove more effective bounds such as the convergence rate to
normality (or the Berry–Esseen bound).

The idea we use in this paper is to take into account the feature that the mean is logarithmic and
to carry out the mean-shift on the associated Dirichlet series, which nicely incorporates the can-
cellations of higher centered moments in a surprisingly neat way. This version of the arguments
with Dirichlet series thus avoids completely the messy calculations and cancellations that the usual
method of moments faces when dealing with higher centered moments. While such a simple idea
may seem standard for number-theorists, we were unable to find references in the number-theoretic
literature for similar arithmetic problems. On the other hand, a similar idea was previously ap-
plied to characterize the phase change of random m-ary search trees, where a nonlinear differential
equation with an additive nature was encountered; see [3]. However, the tools used there are
complex-analytic, in contrast to the purely Tauberian ones used here for which the analytic proper-
ties of the Dirichlet series are reduced to a minimum. For other uses of the method of moments for
arithmetical problems, see [5] and the references cited there.
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In the special case when P = N2, our result may be interpreted as saying that the property of
the zero-free region for the Dirichlet series 1 − z(ζ(s)− 1) lies much deeper than the asymptotic
normality of the random variables YN .

In addition to the generality of our results, we believe that the approach we use here also offers
important methodological value for the study of similar problems. In particular, not only is the use
of the method of moments very simple, but no analytic properties of the Dirichlet series beyond
the abscissa of convergence are needed, which largely simplifies the analysis in many situations.
For example, the approach we use (including method of moments, generating functions and suit-
able Tauberian theorems) can be readily applied to other factorizations such as branching or cyclic
factorizations with algebraic or logarithmic singularities (see [14]). It may also be possible to be
extended, coupling with suitable Tauberian theorems, to deal with ordered factorizations in additive
arithmetic semigroups (see [17]) and component counts in ordered combinatorial structures (see
[9]). Another possible extension is to the analysis of Euclidean algorithms; see [1, 11, 25].

In the periodic case when P ⊆ {dk : k ≥ 1} for some d ≥ 2, P (s) has period 2πi/ log d and
the usual Tauberian theorem does not apply. Instead we write P (s) = P̃ (d−s), where P̃ (z) :=
∑

dk∈P zk, and transform the multiplicative nature of the problem into an additive one on random
compositions by taking logarithms. We replace the Tauberian theorem by the singularity analysis of
Flajolet and Odlyzko (see [8] or [10, Chapter VI]) in the proof; the details are similar to the proof
below, but simpler, so we omit them. In the rest of the paper we thus assume, for every d ≥ 2,

P 6⊆ {dk}k≥1. (1.2)

2 Dirichlet series, Delange’s Tauberian theorem, and proofs

Generating functions. Let am(n) denote the number of ordered factorizations of n into exactly m
factors. Then

P (s)m =
∑

n≥1

am(n)n
−s,

in the formal power series sense; analytically, we can take s satisfying P (ℜ(s)) < ∞. Thus if
eℜ(z)P (ℜ(s))< 1, then by absolute convergence

∑

n≥1

n−s
∑

m≥0

am(n)e
mz =

∑

m≥0

emzP (s)m =
1

1− ezP (s)
. (2.1)

Delange’s Tauberian theorem. We need the following form of Delange’s Tauberian theorem (see
[4] or [22, Ch. III, Sec. 3]).

Let F(s) :=
∑

n≥1α(n)n
−s be a Dirichlet series with nonnegative coefficients and con-

vergent for ℜ(s) > % > 0. Assume (i) F(s) is analytic for all points on ℜ(s) = % except
at s = %; (ii) for s ∼ %, ℜ(s)> %,

F(s) =
G(s)

(s−%)β
+H(s) (β > 0),
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where G and H are analytic at s = % with G(%) 6= 0. Then

∑

n≤N

α(n)∼
G(%)
%Γ(β)

N%(log N)β−1. (2.2)

Asymptotics of A(N). We begin with the simplest case when z = 0 in (2.1) and obtain the Dirichlet
series for a(n) =

∑

m≥0 am(n)

A (s) =
∑

n≥1

a(n)n−s =
1

1−P (s)
,

as long as ℜ(s) > ρ. Note that the non-periodicity assumption (1.2) implies that P (s) 6= 1 for all s
with ℜ(s) = ρ but s 6= ρ. HenceA (s) is not only analytic in the open half-plane {s : ℜ(s)> ρ} but
also on the boundary {s : ℜ(s) = ρ} except at s = ρ. The same holds true for all Dirichlet series we
consider below.

Now for our P (s), since P ′(ρ) = −
∑

n∈P n−ρ log n < 0, we see that P (s)− 1 has a simple zero at
s = ρ, and thusA (s) has a simple pole at ρ with

A (s) =
1

1−P (s)
∼

−1

P ′(ρ)(s−ρ)
,

as s→ ρ. Hence Delange’s Tauberian theorem applies and we obtain

A(N) =
∑

n≤N

a(n)∼ RNρ, R :=−
1

ρP ′(ρ)
=
µ

ρ
. (2.3)

Furthermore, we also have

∑

n≤N

a(n)(log n)k ∼
µ

ρ
Nρ(log N)k ∼ A(N)(log N)k,

either by repeating the same procedure for the Dirichlet series

(−1)kA (k)(s) =
∑

n≥1

a(n)(log n)kn−s = (−1)k
dk

dsk

1

1−P (s)
, (2.4)

or by using directly (2.3). The estimate will be used later.

The expected value of YN . By taking the derivative with respect to z on both sides of (2.1), we
obtain

∑

n≥1

n−s
∑

m≥0

mam(n) =
P (s)

(1−P (s))2
.

Delange’s Tauberian conditions being easily checked as above, we then obtain

E(YN ) =
1

A(N)

∑

n≤N

∑

m≥0

mam(n)∼ µ log N .
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Shifting-the-mean at the Dirichlet series level. For higher centered moments, the crucial idea
we will use can formally be described by using Perron’s integral representation as follows (using
(2.1) and for simplicity assuming temporarily that N is not an integer).

E
�

e(YN−µ log N)z
�

=
1

2πiA(N)

∫ c+i∞

c−i∞

N s−µz

s

1

1− ezP (s)
ds

=
1

2πiA(N)

∫ c+i∞

c−i∞

N s

s

1

(1+µz/s)(1− ezP (s+µz))
ds,

where c is suitably chosen; the fact that the mean being of order log N is crucial here. We then
formally expect that

E
�

YN −µ log N
�k =

k!

2πiA(N)

∫ c+i∞

c−i∞

N s

s
Qk(s)ds, (2.5)

where Qk(s) is the coefficient of zk in the Taylor expansion (in z) of

1

(1+µz/s)(1− ezP (s+µz))
.

While all steps can be easily justified (as done below), we cannot directly apply Delange’s Tauberian
theorem to Qk(s) here since each Qk (except Q0(s)) is not a proper Dirichlet series, but involves
additional powers of s−1. This can be resolved as follows.

A probabilistic approximation. Given N , consider a random factorization of a number n ≤ N ,
namely, a random product p1 · · · pm ≤ n with all p j ∈ P (uniformly distributed over all A(N) possible
factorizations). Let YN be the number of factors (= m) and νN be their product (= n). Then

A(N)E(YN −µ logνN )
k =

∑

n≤N

bk(n),

where
bk(n) :=

∑

m≥0

am(n)(m−µ log n)k.

We will show that for each k

E(YN −µ logνN )
k ∼ E(YN −µ log N)k. (2.6)

In other words, we may replace logνN = log n by log N (as often is the case in similar number-
theoretic situations).

Shifting-the-mean at the coefficients level. To prove (2.6), we will rely on (2.5). By definition

A(N)E
�

e(YN−µ log N)z
�

=
∑

n≤N

∑

m≥0

am(n)e
(m−µ log N)z

=
∑

n≤N

∑

m≥0

am(n)e
(m−µ log n)z−µz log(N/n).
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Then, by taking the coefficients of zk on both sides, we obtain

A(N)E
�

YN −µ log N
�k =

∑

0≤`≤k

�

k

`

�

(−µ)k−`
∑

n≤N

b`(n)
�

log
N

n

�k−`
. (2.7)

We will see that the growth order of
∑

n≤N bk(n) is the power Nρ times an additional logarithmic
term; it then follows that the weighted sum on the right-hand side is of the same order by a simple
partial summation (see below for more details).

Now observe that (assuming again that N is not an integer)

1

2πi

∫ c+i∞

c−i∞

N s

sm

∑

j≥1

α( j) j−s ds =
1

(m− 1)!

∑

n≤N

α(n)
�

log
N

n

�m−1

,

for m = 1,2, . . . , where c is taken to be any real number greater than the abscissa of absolute
convergence of the function defined by the series

∑

j≥1α( j) j
−s. So, this, together with (2.7), justifies

(2.5).

A probabilistic interpretation. Given N , consider a random factorization of a number n ≤ N ,
namely, a random product p1 · · · pm ≤ n with all p j ∈ P (uniformly distributed over all A(N) possible
factorizations). Let YN be the number of factors (= m) and νN be their product (= n). Then

A(N)E(YN −µ logνN )
k =

∑

n≤N

bk(n),

which gives a probabilistic interpretation of the partial sum.

The Dirichlet series of bk(n). Define the Dirichlet series

Mk(s) :=
∑

n≥1

bk(n)n
−s =

∑

n≥1

n−s
∑

m≥0

am(n)(m−µ log n)k. (2.8)

Note that am(n)> 0 implies that m≤ log2 n, so that

(m−µ log n)k = O
�

(log n)k
�

,

for all non-zero terms. Hence Mk(s) is absolutely convergent when ℜ(s) > ρ because A (s) =
1/(1−P (s)) is. Now if ℜ(s)> ρ and |z| is sufficiently small, then, by (2.1),

∑

k≥0

Mk(s)
k!

zk =
∑

n≥1

n−s
∑

m
an(m)e

(m−µ log n)z =
1

1− ezP (s+µz)
. (2.9)

With theseMk(s), the generating function Qk(s) can be decomposed as

Qk(s) =
∑

0≤`≤k

�−µ
s

�k−`M`(s)
`!

. (2.10)

Our strategy will then to apply Delange’s Tauberian theorem toMk for even k and some auxiliary
Dirichlet series for odd k, and then the asymptotics of the k-th centered moment can be obtained
easily since terms with index ` < k in (2.10) will be asymptotically negligible. Indeed, we will use
(2.7).
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Recurrence ofMk(s). We now focus on properties ofMk(s). By writing (2.9) in the form

�

1− ezP (s+µz)
�

∑

`≥0

M`(s)
`!

z` = 1,

we see thatMk(s) satisfies the recurrence

Mk(s) =
1

1−P (s)

∑

0≤ j<k

�

k

j

�

M j(s)Bk− j(s) (k ≥ 1), (2.11)

withM0(s) = 1/(1−P (s)), where

Bk(s) :=
∑

0≤`≤k

�

k

`

�

µ`P (`)(s).

For example,M1(s) =B1(s)/(1−P (s))2 = (P (s) +µP ′(s))/(1−P (s))2.

Note that eachBk(s) is analytic for ℜ(s) > κ and, in particular, for ℜ(s) ≥ ρ. Moreover, the crucial
property here is

B1(ρ) =P (ρ) +µP ′(ρ) = 1− 1= 0,

by our construction. Similarly,

B2(ρ) =P (ρ) + 2µP ′(ρ) +µ2P ′′(ρ) = µ2P ′′(ρ)− 1= σ2/µ,

andB ′1(ρ) = σ
2/µ2.

On the other hand, by (2.11), we see thatMk(s) is analytic for ℜ(s)> ρ and for ℜ(s) = ρ except at
s = ρ. Furthermore, because B1(ρ) = 0, it follows by induction from (2.11), that at s = ρ,Mk(s)
has a pole of order at most bk/2c+ 1.

Even moments. More precisely, for even k = 2`, we get by induction

Mk(s)∼ ck(s−ρ)−k/2−1,

where

ck =
�

k

2

�

µB2(ρ)ck−2 =
k(k− 1)

2
σ2ck−2,

with c0 = µ, which is solved to be

ck = µ

�

σ2

2

�k/2

k!.

We now apply Delange’s Tauberian theorem and obtain

E(YN −µ logνN )
k =

1

A(N)

∑

n≤N

bk(n)

∼
ck

ρΓ(k/2+ 1)A(N)
Nρ(log N)k/2

∼
k!

2k/2(k/2)!
σk(log N)k/2. (2.12)
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Odd moments. Let now k = 2`− 1, ` ≥ 1. Since the coefficients bk(n) are not necessarily non-
negative, we cannot directly apply Delange’s Tauberian theorem. Instead, we consider the following
two auxiliary Dirichlet series

D1(s) :=
∑

n≥1

n−s
∑

m≥0

am(n)
�

(m−µ log n)k + (log n)k/2
�2

,

and, see (2.8) and (2.4),

D2(s) :=
∑

n≥1

n−s
∑

m≥0

am(n)
�

(m−µ log n)2k + (log n)k
�

=M2k(s) + (−1)kA (k)(s).

The two Dirichlet series have only nonnegative coefficients, and we will show that Delange’s Taube-
rian theorem can be applied to both series. The leading terms will cancel and we will have

1

A(N)

∑

n≤N

bk(n)(log n)k/2 = o
�

(log N)k
�

. (2.13)

From this, we use the monotonicity of (log n)k/2 and elementary arguments to recover the desired
estimate

E(YN −µ logνN )
k =

1

A(N)

∑

n≤N

bk(n) = o
�

(log N)k/2
�

. (2.14)

Proof of (2.13). Let
D3(s) :=

∑

n≥1

(log n)k/2 bk(n)n
−s.

Then D1(s) = D2(s) + 2D3(s). By the discussions above, we can apply Delange’s theorem to D2(s)
and obtain

1

A(N)

∑

n≤N

∑

m≥0

am(n)
�

(m−µ log n)2k + (log n)k
�

∼ Ck(log N)k, (2.15)

where Ck = (2k)!σ2k/(2kk!) + 1 (this value is however immaterial).

We now show that the partial sum of the coefficients of D1(s) has asymptotically the same dominant
term. We start from the representation (k = 2`− 1)

D3(s) = (−1)`π−1/2

∫ ∞

0

M (`)
k (s+ t)t−1/2 dt,

for ℜs > ρ, because (−1)`M (`)
k (s) =

∑

n≥1 bk(n)(log n)`n−s and

(−1)`
∫ ∞

0

M (`)
k (s+ t)t−1/2 dt =

∑

n≥1

bk(n)(log n)`n−s

∫ ∞

0

e−t log n t−1/2 dt

= Γ(1
2
)
∑

n≥1

bk(n)(log n)k/2n−s

=
p
πD3(s).
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We now consider the local behavior of D3(s) when s ∼ ρ. First, Mk(s) has a pole at s = ρ with
leading term c′k(s − ρ)

−(k+1)/2, for some c′k. Thus M (`)
k (s) has a pole with local behavior c′′k (s −

ρ)−k−1. It follows that for small |w| and ℜ(w)> 0,

D3(ρ+w) = (−1)`π−1/2

∫ ∞

0

M (`)
k (ρ+w+ t)t−1/2 dt

= O

�
∫ ∞

0

|w+ t|−k−1 t−1/2 dt

�

= O

 

∫ |w|

0

|w|−k−1 t−1/2 dt +

∫ ∞

|w|
t−k−3/2 dt

!

= O
�

|w|−k−1/2
�

= o
�

|w|−k−1
�

.

Since D1(s) = D2(s) + D3(s) has all coefficients nonnegative, we can now apply Delange’s theorem
to D1(s) and conclude that

1

A(N)

∑

n≤N

∑

m≥0

am(n)
�

(m−µ log n)k + (log n)k/2
�2
∼ Ck(log N)k.

This, together with (2.15), proves (2.13).

Proof of (2.14). Let
Bk(x) :=

∑

n≤x

bk(n)(log n)k/2,

and for x ≥ 2, ϕ(x) := (log x)−k/2. Then
∫ N

2

Bk(x)ϕ
′(x)dx =

∑

2≤n≤N

bk(n)(log n)k/2
∫ N

n

ϕ′(x)dx

=
∑

2≤n≤N

bk(n)(log n)k/2
�

(log N)−k/2− (log n)−k/2
�

= Bk(N)(log N)−k/2−
∑

2≤n≤N

bk(n).

Thus, by (2.13),

∑

1≤n≤N

bk(n) = bk(1) + Bk(N)(log N)−k/2−
∫ N

2

Bk(x)ϕ
′(x)dx

= O(1) + o
�

Nρ(log N)k/2
�

+
k

2

∫ N

2

Bk(x)x
−1(log x)−k/2−1 dx

= O(1) + o
�

Nρ(log N)k/2
�

+ o

 

∫ N

2

xρ−1(log x)k/2−1 dx

!

= o
�

Nρ(log N)k/2
�

,

as required.
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From YN −µ logνN to YN −µ log N . The two estimates (2.12) and (2.14) imply

E





YN −µ logνN

σ
p

log N





k

→







k!

(k/2)!2k/2
, if k is even

0, if k is odd,
(2.16)

which in turn implies, by the method of moments, that

YN −µ logνN

σ
p

log N

d→N (0, 1).

Our final task is to prove the same asymptotics (1.1) from the two estimates (2.12) and (2.14). To
that purpose, define Sk(x) = 0 if x < 2 and

Sk(x) :=
∑

n≤x

bk(n) (x ≥ 2).

We use (2.7) and the cruder estimates (by (2.12), (2.14) and (2.3))

S`(x) = O
�

A(x)(log x)`/2
�

= O
�

xρ(log x)`/2
�

,

for `= 0, . . . , k− 1. With this, we have

∑

0≤`<k

�

k

`

�

(−µ)k−`
∑

n≤N

b`(n)
�

log
N

n

�k−`

= O

 

(log N)k +
∑

0≤`<k

�

k

`

�

µk−`
∫ N

2

�

log
N

x

�k−`
dS`(x)

!

.

Now for each `= 0, . . . , k− 1,
∫ N

2

�

log
N

x

�k−`
dS`(x) = O

 

∫ N

2

�

log
N

x

�k−`−1

x−1S`(x)dx

!

= O

 

∫ N

2

�

log
N

x

�k−`−1

xρ−1(log x)`/2 dx

!

.

Splitting the integral at x = N/2, and making the change of variables x 7→ N/x for the first half, we
see that

∫ N

2

�

log
N

x

�k−`−1

xρ−1(log x)`/2 dx

= O

 

Nρ
∫ N/2

2

x−ρ−1(log x)k−1−`
�

log
N

x

�`/2

dx

+

∫ N

N/2

xρ−1(log x)`/2 dx

!

= O
�

Nρ(log N)`/2
�

= o
�

Nρ(log N)k/2
�

,
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for 0≤ `≤ k− 1. This proves that

E
�

YN −µ log N
�k =

1

A(N)

∑

n≤N

bk(n) + o
�

(log N)k/2
�

,

and thus the estimates in (1.1) hold by (2.12) and (2.14).

An alternative argument. To bridge (2.16) and (1.1), we can also argue as follows. Consider the
sum

E
�

log N − logνN
�k =

1

A(N)

∑

n≤N

a(n)
�

log
N

n

�k

,

which is O(1) by a similar summation by parts argument as used above. Then for even k

|| log N − logνN ||k = O(1).

By Hölder’s inequality, this holds true also for every k ≥ 0. Consequently, using again Hölder’s
inequality, we deduce (1.1).

3 Conclusions and additional remarks

A corollary to our moment convergence result is the following asymptotic approximations to all
absolute centered moments

E|YN −µ log N |β ∼ 2β/2π−1/2Γ
�

β + 1

2

�

(log N)β/2,

for all β ≥ 0, which seem difficult to get directly from Dirichlet series.

On the other hand, when z ∈ (− logP (κ),∞), one can apply directly Delange’s Tauberian theorem
to the generating function

1

1− ez P(s)
,

(instead of to the Dirichlet series of higher moments obtained above by Taylor expansions in z); this
results in the asymptotic approximation

E
�

ezYN
�

∼
ρP ′(ρ)

ρ(z)ez P ′(ρ(z))
Nρ(z)−ρ,

where ρ(z) solves the equation 1 = ez P(ρ(z)) with ρ(0) = ρ. From this approximation, one might
expect asymptotic normality by straightforward argument. However, the asymptotic result so ob-
tained holds only pointwise, and the uniformity in z is missing here. While the gap of uniformity may
be filled by applying suitable Tauberian theorems with remainders, the use of Delange’s Tauberian
theorems is conceptually simpler and technically less involved, with the required analysis reduced
to almost minimum.

It is clear from our proof that Theorem 1.1 actually holds for any Dirichlet series P (s) with nonneg-
ative coefficients and satisfying the conditions of Theorem 1.1. Thus the restriction of P to a subset
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of positive integers is not essential. For example, one can consider the ordered totient factorizations
with P (s) =

∑

n≥3φ(n)
−s, where φ(n) is Euler’s totient function, namely, the number of positive

integers ≤ n and relatively prime to n. In this case, κ= 1 and ρ ≈ 2.26386 since
∑

n≥1

φ(n)−s = ζ(s)
∏

p : prime

�

1− p−s + (p− 1)−s
�

;

see [2] for a detailed study of this Dirichlet series.

How can we compute ρ to high degree of precision? In general, the problem is not easy, for example,
if P (s) =

∑

n≥2dn
β(log n)ce−s for β , c > 0; the case of totient factorization is similar. The easy cases

are when P (s) can be expressed in terms of ζ-functions such as P (s) = ζ(s)− 1 (all integers > 1)
or P (s) = ζ(s)/ζ(2s)− 1 (square-free integers > 1). Take now P (s) =

∑

p : prime p−s. The zero of
P (s) = 1 can also be easily computed by using the relation (see [12])

∑

p : prime

p−s =
∑

k≥1

µ(k)
k

logζ(ks) (ℜ(s)> 1),

where µ(k) is Möbius function. This readily gives

ρ ≈ 1.3994333287 2633031820 28072 . . . ,

and

µ≈ 0.5776486251 9513805440 61351 . . . ,

σ2 ≈ 0.4843965045 1359828128 07456 . . . .

We indicated a few directions to which our approach may be extended in the Introduction. But can
a similar idea be modified so as to deal with arithmetic functions whose means have an order other
than log N?
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