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Abstract

In a series of papers, Burdzy et al. introduced the mirror coupling of reflecting Brownian motions
in a smooth bounded domain D ⊂ Rd , and used it to prove certain properties of eigenvalues and
eigenfunctions of the Neumann Laplaceian on D.
In the present paper we show that the construction of the mirror coupling can be extended to
the case when the two Brownian motions live in different domains D1, D2 ⊂ Rd .
As applications of the construction, we derive a unifying proof of the two main results concerning
the validity of Chavel’s conjecture on the domain monotonicity of the Neumann heat kernel, due
to I. Chavel ([12]), respectively W. S. Kendall ([16]), and a new proof of Chavel’s conjecture for
domains satisfying the ball condition, such that the inner domain is star-shaped with respect to
the center of the ball.
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1 Introduction

The technique of coupling of reflecting Brownian motions is a useful tool, used by several authors
in connection to the study of the Neumann heat kernel of the corresponding domain (see [2], [3],
[6], [11], [16], [17], etc).

In a series of paper, Krzysztof Burdzy et al. ( [1], [2], [3], [6], [10],) introduced the mirror coupling
of reflecting Brownian motions in a smooth domain D ⊂ Rd and used it in order to derive properties
of eigenvalues and eigenfunctions of the Neumann Laplaceian on D.

In the present paper, we show that the mirror coupling can be extended to the case when the two
reflecting Brownian motions live in different domains D1, D2 ⊂ Rd .

The main difficulty in the extending the construction of the mirror coupling comes from the fact
that the stochastic differential equation(s) describing the mirror coupling has a singularity at the
times when coupling occurs. In the case D1 = D2 = D considered by Burdzy et al. this problem
is not a major problem (although the technical details are quite involved, see [2]), since after the
coupling time the processes move together. In the case D1 6= D2 however, this is a major problem:
after the processes have coupled, it is possible for them to decouple (for example in the case when
the processes are coupled and they hit the boundary of one of the domains).

It is worth mentioning that the method used for proving the existence of the solution is new, and
it relies on the additional hypothesis that the smaller domain D2 (or more generally D1 ∩ D2) is a
convex domain. This hypothesis allows us to construct an explicit set of solutions in a sequence of
approximating polygonal domains for D2, which converge to the desired solution.

As applications of the construction, we derive a unifying proof of the two most important results on
the challenging Chavel’s conjecture on the domain monotonicity of the Neumann heat kernel ([12],
[16]), and a new proof of Chavel’s conjecture for domains satisfying the ball condition, such that
the inner domain is star-shaped with respect to the center of the ball. This is also a possible new
line of approach for Chavel’s conjecture (note that by the results in [4], Chavel’s conjecture does not
hold in its full generality, but the additional hypotheses under which this conjecture holds are not
known at the present moment).

The structure of the paper is as follows: in Section 2 we briefly describe the construction of Burdzy
et al. of the mirror coupling in a smooth bounded domain D ⊂ Rd .

In Section 3, in Theorem 3.1, we give the main result which shows that the mirror coupling can be
extended to the case when D2 ⊂ D1 are smooth bounded domains in Rd and D2 is convex (some
extensions of the theorem are presented in Section 5).

Before proceeding with the proof of theorem, in Remark 3.4 we show that the proof can be reduced
to the case when D1 = Rd . Next, in Section 3.1, we show that in the case D2 = (0,∞)⊂ D1 = R the
solution is essentially given by Tanaka’s formula (Remark 3.5), and then we give the proof of the
main theorem in the 1-dimensional case (Proposition 3.6).

In Section 3.2, we first prove the existence of the mirror coupling in the case when D2 is a half-space
in Rd and D1 = Rd (Lemma 3.8), and then we use this result in order to prove the existence of
the mirror coupling in the case when D2 is a polygonal domain in Rd and D1 = Rd (Theorem 3.9).
In Proposition 3.10 we present some of the properties of the mirror coupling in the particular case
when D2 is a convex polygonal domain and D1 = Rd , which are essential for the construction of the
general mirror coupling.
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In Section 4 we give the proof of the main Theorem 3.1. The idea of the proof is to construct
a sequence

�

Y n
t , X t

�

of mirror couplings in
�

Dn,Rd
�

, where Dn ↗ D2 is a sequence of convex
polygonal domains in Rd . Then, using the properties of the mirror coupling in convex polygonal
domains (Proposition 3.10), we show that the sequence Y n

t converges to a process Yt , which gives
the desired solution to the problem.

The last section of the paper (Section 5) is devoted to the applications and the extensions of the
mirror coupling constructed in Theorem 3.1.

First, in Theorem 5.3 we use the mirror coupling in order to give a simple, unifying proof of the
results of I. Chavel and W. S. Kendall on the domain monotonicity of the Neumann heat kernel
(Chavel’s Conjecture 5.1). The proof is probabilistic in spirit, relying on the geometric properties of
the mirror coupling.

Next, in Theorem 5.4 we show that Chavel’s conjecture also holds in the more general case when
one can interpose a ball between the two domains, and the inner domain is star-shaped with respect
to the center of the ball (instead of being convex). The analytic proof given here is parallel to the
geometric proof of the previous theorem, and it can also serve as an alternate proof of it.

Without giving all the technical details, we discuss the extension of the mirror coupling to the case of
smooth bounded domains D1,2 ⊂ Rd with non-tangential boundaries, such that D1 ∩ D2 is a convex
domain.

The paper concludes with a discussion of the non-uniqueness of the mirror coupling. The lack
of uniqueness is due to the fact that after coupling the processes may decouple, not only on the
boundary of the domain, but also when they are inside the domain.

The two basic solutions give rise to the sticky, respectively non-sticky mirror coupling, and there is
a whole range of intermediate possibilities. The stickiness refers to the fact that after coupling the
processes “stick” to each other as long as possible (“sticky” mirror coupling, constructed in Theorem
3.1), or they can immediately split apart after coupling (“non-sticky” mirror coupling), the general
case (weak/mild mirror coupling) being a mixture of these two basic behaviors.

We developed the extension of the mirror coupling having in mind the application to Chavel’s conjec-
ture, for which the sticky mirror coupling is the “right” tool, but perhaps the other mirror couplings
(the non-sticky and the mild mirror couplings) might prove useful in other applications.

2 Mirror couplings of reflecting Brownian motions

Reflecting Brownian motion in a smooth domain D ⊂ Rd can be defined as a solution of the stochas-
tic differential equation

X t = x + Bt +

∫ t

0

νD
�

Xs
�

d LX
s , (2.1)

where Bt is a d-dimensional Brownian motion, νD is the inward unit normal vector field on ∂ D and
LX

t is the boundary local time of X t (the continuous non-decreasing process which increases only
when X t ∈ ∂ D).

In [1], the authors introduced the mirror coupling of reflecting Brownian motion in a smooth domain
D ⊂ Rd (piecewise C2 domain in R2 with a finite number of convex corners or a C2 domain in Rd ,
d ≥ 3).
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They considered the following system of stochastic differential equations:

X t = x +Wt +

∫ t

0

νD
�

Xs
�

d LX
s (2.2)

Yt = y + Zt +

∫ t

0

νD
�

Xs
�

d LY
s (2.3)

Zt = Wt − 2

∫ t

0

Ys − Xs
�

�

�

�Ys − Xs

�

�

�

�

2

�

Ys − Xs
�

· dWs (2.4)

for t < ξ, where ξ = inf
�

s > 0 : Xs = Ys
	

is the coupling time of the processes, after which the
processes X and Y evolve together, i.e. X t = Yt and Zt =Wt + Zξ−Wξ for t ≥ ξ.

In the notation of [1], considering the Skorokhod map

Γ : C
�

[0,∞) : Rd
�

→ C
�

[0,∞) : D
�

,

we have X = Γ(x +W ), Y = Γ
�

y + Z
�

, and therefore the above system is equivalent to

Zt =

∫ t∧ξ

0

G
�

Γ
�

y + Z
�

s −Γ(x +W )s
�

dWs + 1t≥ξ
�

Wt −Wξ

�

, (2.5)

where ξ= inf
¦

s > 0 : Γ(x +W )s = Γ
�

y + Z
�

s

©

. In [1] the authors proved the pathwise uniqueness
and the strong existence of the process Zt in (2.5) (given the Brownian motion Wt).

In the above G : Rd →Md×d denotes the function defined by

G (z) =

(

H
�

z
‖z‖

�

, if z 6= 0

0, if z = 0
, (2.6)

where for a unitary vector m ∈ Rd , H (m) represents the linear transformation given by the d × d
matrix

H (m) = I − 2m m′, (2.7)

that is
H (m) v = v− 2 (m · v)m (2.8)

is the mirror image of v ∈ Rd with respect to the hyperplane through the origin perpendicular to m
(m′ denotes the transpose of the vector m, vectors being considered as column vectors).

The pair
�

X t , Yt
�

t≥0 constructed above is called a mirror coupling of reflecting Brownian motions in
D starting at (x , y) ∈ D× D.

Remark 2.1. The relation (2.4) can be written in the equivalent form

dZt = G
�

X t − Yt
�

dWt ,

which shows that for t < ξ the increments of Zt are mirror images of the increments of Wt with
respect to the hyperplane Mt of symmetry between X t and Yt , justifying the name of mirror coupling.
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3 Extension of the mirror coupling

The main contribution of the author is the observation that the mirror coupling introduced above
can be extended to the case when the two reflecting Brownian motion have different state spaces,
that is when X t is a reflecting Brownian motion in a domain D1 and Yt is a reflecting Brownian
motion in a domain D2. Although the construction can be carried out in a more general setup (see
the concluding remarks in Section 5), in the present section we will consider the case when one of
the domains is strictly contained in the other.

The main result is the following:

Theorem 3.1. Let D1,2 ⊂ Rd be smooth bounded domains (piecewise C2-smooth boundary with convex
corners in R2, or C2-smooth boundary in Rd , d ≥ 3 will suffice) with D2 ⊂ D1 and D2 convex domain,
and let x ∈ D1 and y ∈ D2 be arbitrarily fixed points.

Given a d-dimensional Brownian motion
�

Wt
�

t≥0 starting at 0 on a probability space (Ω,F , P), there
exists a strong solution of the following system of stochastic differential equations

X t = x +Wt +

∫ t

0

νD1

�

Xs
�

d LX
s (3.1)

Yt = y + Zt +

∫ t

0

νD2

�

Ys
�

d LY
s (3.2)

Zt =

∫ t

0

G
�

Ys − Xs
�

dWs (3.3)

or equivalent

Zt =

∫ t

0

G
�

eΓ
�

y + Z
�

s −Γ(x +W )s
�

dWs, (3.4)

where Γ and eΓ denote the corresponding Skorokhod maps which define the reflecting Brownian motion
X = Γ(x +W ) in D1, respectively Y = eΓ

�

y + Z
�

in D2, and G : Rd →Md×d denotes the following
modification of the function G defined in the previous section:

G (z) =

(

H
�

z
‖z‖

�

, if z 6= 0

I , if z = 0
. (3.5)

Remark 3.2. As it will follow from the proof of the theorem, with the choice of G above, the solution
of the equation (3.4) in the case D1 = D2 = D is the same as the solution of the equation (2.5)
considered by the authors in [1] (as also pointed out by the authors, the choice of G (0) is irrelevant
in this case).

Therefore, the above theorem is a natural generalization of the mirror coupling to the case when the
two processes live in different spaces. We will refer to a solution (X t , Yt) given by the above theorem
as a mirror coupling of reflecting Brownian motions in (D1, D2) starting from

�

x , y
�

∈ D1×D2, with
driving Brownian motion Wt .

As indicated in Section 5, the solution of (3.4) is not pathwise unique, due to the fact that the
stochastic differential equation has a singularity at the times when coupling occurs. The general
mirror coupling can be thought as depending on a parameter which is a measure of the stickiness of
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the coupling: once the processes X t and Yt have coupled, they can either move together until one of
them hits the boundary (sticky mirror coupling - this is in fact the solution constructed in the above
theorem), or they can immediately split apart after coupling (non-sticky mirror coupling), and there
is a whole range of intermediate possibilities (see the discussion at the end of Section 5).

As an application, in Section 5 we will use the former mirror coupling to give a unifying proof
of Chavel’s conjecture on the domain monotonicity of the Neumann heat kernel for domains D1,2
satisfying the ball condition, although the other possible choices for the mirror coupling might prove
useful in other contexts.

Before carrying out the proof, we begin with some preliminary remarks which will allow us to reduce
the proof of the above theorem to the case D1 = Rd .

Remark 3.3. The main difference from the case when D1 = D2 = D considered by the authors in [1]
is that after the coupling time ξ the processes X t and Yt may decouple. For example, if t ≥ ξ is a
time when X t = Yt ∈ ∂ D2, the process Yt (reflecting Brownian motion in D2) receives a push in the
direction of the inward unit normal to the boundary of D2, while the process X t behaves like a free
Brownian motion near this point (we assumed that D2 is strictly contained in D1), and therefore the
processes X and Y will drift apart, that is they will decouple. Also, as shown in Section 5, because
the function G has a discontinuity at the origin, it is possible that the solutions decouple even when
they are inside the domain D2. This shows that without additional assumptions, the mirror coupling
is not uniquely determined (there is no pathwise uniqueness of (3.4)).

Remark 3.4. To fix ideas, for an arbitrarily fixed ε > 0 chosen small enough such that ε <
dist
�

∂ D1,∂ D2
�

, we consider the sequence
�

ξn
�

n≥1 of coupling times and the sequence
�

τn
�

n≥0
of times when the processes are ε-decoupled (ε-decoupling times, or simply decoupling times by an
abuse of language) defined inductively by

ξn = inf
�

t > τn−1 : X t = Yt
	

, n≥ 1,

τn = inf
�

t > ξn : ‖X t − Yt‖> ε
	

, n≥ 1,

where τ0 = 0 and ξ1 = ξ is the first coupling time.

To construct the general mirror coupling (that is, to prove the existence of a solution to (3.1) – (3.3)
above, or equivalent to (3.4)), we proceed as follows.

First note that on the time interval [0,ξ], the arguments used in the proof of Theorem 2 in [1]
(pathwise uniqueness and the existence of a strong solution Z of (3.4)) do not rely on the fact that
D1 = D2, hence the same arguments can be used to prove the existence of a strong solution of (3.4)
on the time interval [0,ξ1] = [0,ξ]. Indeed, given Wt , (3.1) has a strong solution which is pathwise
unique (the reflecting Brownian motion X t in D1), and therefore the proof of pathwise uniqueness
and the existence of a strong solution of (3.4) is the same as in [1] considering D = D2. Also note
that as also pointed out by the authors, the value G (0) is irrelevant in their proof, since the problem
is constructing the processes until they meet, that is for Yt − X t 6= 0, for which their definition of G
is the same as in (3.5).

We obtain therefore the existence of a strong solution Zt to (3.4) on the time interval [0,ξ1]. By this
we understand that the process Z verifies (3.4) for all t ≤ ξ1 and Zt is Ft measurable for t ≤ ξ1,
where (Ft)t≥0 denotes the corresponding filtration of the driving Brownian motion Wt .

For an arbitrarily fixed T > 0, if ξ1 < T , we can extend Z to a solution of (3.4) on the time interval
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[0, T] as follows. Consider ξT
1 = ξ1 ∧ T , and note that if Z solves (3.4), then

ZξT
1+t − ZξT

1
=

∫ ξT
1+t

ξT
1

G
�

eΓ
�

y + Z
�

s −Γ(x +W )s
�

dWs

=

∫ t

0

G
�

eΓ
�

y + Z
�

ξT
1+s −Γ(x +W )ξT

1+s

�

dWξT
1+s.

By the uniqueness results on the Skorokhod map (in the deterministic sense), we have

eΓ
�

y + Z
�

ξT
1+s = eΓ

�

eΓ(y + Z)ξT
1
− ZξT

1
+ ZξT

1+·

�

s

and
Γ(x +W )ξT

1+s = Γ
�

Γ(x +W )ξT
1
−WξT

1
+WξT

1+·

�

s

for s ≥ 0.

It is known that fWs =WξT
1+s −WξT

1
is a Brownian motion starting at the origin, with corresponding

filtration eFs = σ
�

BξT
1+u− BξT

1
: 0≤ u≤ s

�

independent of FξT
1
.

Setting eZt = ZξT
1+t − ZξT

1
and combining the above equations we obtain

eZt =

∫ t

0

G
�

eΓ
�

eΓ
�

y + Z
�

ξT
1
+ eZ
�

s
−Γ

�

Γ(x +W )ξT
1
+fW

�

s

�

dfWs, (3.6)

which is the same as the equation (3.4) for eZ , with the initial points x , y of the coupling replaced
by YξT

1
= eΓ(y + Z)ξT

1
, respectively XξT

1
= Γ(x +W )ξT

1
, and the Brownian motion W replaced by fW .

If we assume the existence of a strong solution eZt of (3.6) until the first ε-decoupling time, by
patching Z and eZ we obtain that

Zt1t≤ξT
1
+ eZt−ξT

1
1ξT

1≤t≤τT
1

is a strong solution to (3.4) on the time interval [0,τT
1 ], where τT

1 = τ1 ∧ T .

If τT
1 = T , we are done. Otherwise, since at time τT

1 the processes X and Y are ε units apart, we
can apply again the results in [1] (with the Brownian motion WτT

1+t −WτT
1

instead of Wt , and the
starting points of the coupling XτT

1
and YτT

1
instead of x and y) in order to obtain a strong solution

of (3.4) until the first coupling time. By patching we obtain the existence of a strong solution of
(3.4) on the time interval

�

0,ξT
2

�

.

Proceeding inductively as indicated above, since only a finite number of coupling / decoupling times
ξn and τn can occur in the time interval [0, T], we can construct a strong solution Z to (3.4) on
the time interval [0, T] for any T > 0 (and therefore on [0,∞)), provided we show the existence of
strong solutions of equations of type (3.6) until the first ε-decoupling time.

In order to prove this claim, since eΓ(y + Z)ξT
1

and Γ(x +W )ξT
1

are FξT
1

measurable and the σ-

algebra FξT
1

is independent of the filtration eF = ( eFt)t≥0 of the driving Brownian motion fWt , it

suffices to show that for any starting points x = y ∈ D2 of the mirror coupling, there exists a strong
solution of (3.4) until the first ε-decoupling time τ1. Since ε < dist

�

∂ D1,∂ D2
�

, it follows that the
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process X t cannot reach the boundary ∂ D1 before the first ε-decoupling time τ1, and therefore we
can consider that X t is a free Brownian motion in Rd , that is, we can reduce the proof of Theorem
3.1 to the case when D1 = Rd .

We will give the proof of the Theorem 3.1 first in the 1-dimensional case, then we will extend it to
the case of polygonal domains in Rd , and we will conclude with the proof in the general case.

3.1 The 1-dimensional case

From Remark 3.4 it follows that in order to construct the mirror coupling in the 1-dimensional case,
it suffices to consider D1 = R and D2 = (0, a), and to show that for an arbitrary choice x ∈ [0, a] of
the starting point of the mirror coupling, ε ∈ (0, a) sufficiently small and

�

Wt
�

t≥0 a 1-dimensional
Brownian motion starting at W0 = 0, we can construct a strong solution on [0,τ1] of the following
system

X t = x +Wt (3.7)

Yt = x + Zt + LY
t (3.8)

Zt =

∫ t

0

G
�

Ys − Xs
�

dWs (3.9)

where τ1 = inf
�

s > 0 : |Xs − Ys|> ε
	

is the first ε-decoupling time and the function G :
R→M 1×1 ≡ R is given in this case by

G (x) =

¨

−1, if x 6= 0
+1, if x = 0

. (3.10)

Remark 3.5. Before proceeding with the proof, it is worth mentioning that the heart of the con-
struction is Tanaka’s formula. To see this, consider for the moment a = ∞, and note that Tanaka
formula

�

�x +Wt

�

�= x +

∫ t

0

sgn
�

x +Ws
�

dWs + L0
t (x +W )

gives a representation of the reflecting Brownian motion
�

�x +Wt

�

� in which the increments of the
martingale part of

�

�x +Wt

�

� are the increments of Wt when x+Wt ∈ [0,∞), respectively the opposite
(minus) of the increments of Wt in the other case (L0

t (x +W ) denotes here the local time at 0 of
x +Wt).

Since x +Wt ∈ [0,∞) is the same as
�

�x +Wt

�

� = x +Wt , from the definition of the function G it
follows that the above can be written in the form

�

�x +Wt

�

�= x +

∫ t

0

G
��

�x +Ws

�

�−
�

x +Ws
�

�

dWs + L x+W
t ,

which shows that a strong solution to (3.7) – (3.9) above (in the case a =∞) is given explicitly by
X t = x +Wt , Yt =

�

�x +Wt

�

� and Zt =
∫ t

0
sgn
�

x +Ws
�

dWs.

We have the following:
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Proposition 3.6. Given a 1-dimensional Brownian motion
�

Wt
�

t≥0 starting at W0 = 0, a strong
solution on [0,τ1] of the system (3.7) – (3.9) is given by







X t = x +Wt
Yt =

�

�a−
�

�x +Wt − a
�

�

�

�

Zt =
∫ t

0
sgn
�

Ws
�

sgn
�

a−Ws
�

dWs

,

where τ1 = inf
¦

s > 0 :
�

�Xs − Ys

�

�> ε
©

and

sgn (x) =

¨

+1, if x ≥ 0
−1, if x < 0

.

Proof. Since ε < a, it follows that for t ≤ τ1 we have X t = x +Wt ∈ (−a, 2a), and therefore

Yt =
�

�a−
�

�x +Wt − a
�

�

�

�=







−
�

x +Wt
�

, x +Wt ∈ (−a, 0)
x +Wt , x +Wt ∈ [0, a]
2a− x −Wt , x +Wt ∈ (a, 2a)

. (3.11)

Applying the Tanaka-Itô formula to the function f (z) = |a− |z− a|| and to the Brownian motion
X t = x +Wt , for t ≤ τ1 we obtain

Yt = x +

∫ t

0

sgn
�

x +Ws
�

sgn
�

a− x −Ws
�

d
�

x +Ws
�

+ L0
t − La

t

= x +

∫ t

0

sgn
�

x +Ws
�

sgn
�

a− x −Ws
�

dWs +

∫ t

0

νD2

�

Ys
�

d
�

L0
s + La

s

�

,

where L0
t = sups≤t

�

x +Ws
�− and La

t = sups≤t
�

x +Ws − a
�+ are the local times of x +Wt at 0,

respectively at a, and νD2
(0) = +1, νD2

(a) =−1.

From (3.11) and the definition (3.10) of the function G we obtain

sgn
�

x +Ws
�

sgn
�

a− x −Ws
�

=







−1, x +Ws ∈ (−a, 0)
+1, x +Ws ∈ [0, a]
−1, x +Ws ∈ (a, 2a)

=

¨

+1, Xs = Ys
−1, Xs 6= Ys

= G
�

Ys − Xs
�

,

and therefore the previous formula can be written equivalently

Yt = x + Zt +

∫ t

0

νD2

�

Ys
�

d LY
s ,

where

Zt =

∫ t

0

G
�

Ys − Xs
�

dWs

and LY
t = L0

t + La
t is a continuous nondecreasing process which increases only when x+Wt ∈ {0, a},

that is only when Yt ∈ ∂ D2.
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3.2 The case of polygonal domains

In this section we will consider the case when D2 ⊂ D1 ⊂ Rd are polygonal domains (domains
bounded by hyperplanes in Rd). From Remark 3.4 it follows that we can consider D1 = Rd and
therefore it suffices to prove the existence of a strong solution of the following system

X t = X0+Wt (3.12)

Yt = Y0+ Zt +

∫ t

0

νD2

�

Ys
�

d LY
s (3.13)

Zt =

∫ t

0

G
�

Ys − Xs
�

dWs (3.14)

or equivalently of the equation

Zt =

∫ t

0

G
�

eΓ
�

Y0+ Z
�

s − X0−Ws

�

dWs, (3.15)

where Wt is a d-dimensional Brownian motion starting at W0 = 0 and X0 = Y0 ∈ D2.

The construction relies on the following skew product representation of Brownian motion in spher-
ical coordinates:

X t = RtΘσt
, (3.16)

where Rt = ‖X t‖ ∈ BES (d) is a Bessel process of order d and Θt ∈ BM
�

Sd−1
�

is an independent
Brownian motion on the unit sphere Sd−1 in Rd , run at speed

σt =

∫ t

0

1

R2
s

ds, (3.17)

which depends only on Rt .

Remark 3.7. One way to construct the Brownian motion Θt = Θd−1
t on the unit sphere Sd−1 ⊂ Rd

is to proceed inductively on d ≥ 2, using the following skew product representation of Brownian
motion on the sphere Θd−1

t ∈ Sd−1 (see [15]):

Θd−1
t =

�

cosθ1
t , sinθ1

t Θ
d−2
αt

�

,

where θ1 ∈ LEG (d − 1) is a Legendre process of order d − 1 on [0,π], and Θd−2
t ∈ Sd−2 is an

independent Brownian motion on Sd−2, run at speed

αt =

∫ t

0

1

sin2 θ1
s

ds.

Therefore, if θ1
t , . . .θ d−1

t are independent processes, with θ i ∈ LEG (d − i) on [0,π] for i = 1, . . . , d−
2, and θ d−1

t is a 1-dimensional Brownian (note thatΘ1
t =
�

cosθ1
t , sinθ1

t

�

∈ S1 is a Brownian motion
on S1), Brownian motion Θd−1

t on the unit sphere Sd−1 ⊂ Rd is given by

Θd−1
t =

�

cosθ1
t , sinθ1

t cosθ2
t , sinθ1

t sinθ2
t cosθ3

t , . . . , sinθ1
t · . . . · sinθ d−1

t sinθ d−1
t

�

,
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or by
Θd−1

t =
�

θ1
t , . . . ,θ d−2

t ,θ d−1
t

�

(3.18)

in spherical coordinates.

To construct the solution of (3.12) – (3.14), we first consider the case when D2 is a half-space
H +

d =
¦�

z1, . . . , zd
�

∈ Rd : zd > 0
©

.

Given an angle ϕ ∈ R, we introduce the rotation matrix R
�

ϕ
�

∈ Md×d which leaves invariant the
first d − 2 coordinates and rotates clockwise by the angle α the remaining 2 coordinates, that is

R (α) =

















1 0 0 0
... · · · · · ·

0 1 0 0
0 · · · 0 cosϕ − sinϕ
0 · · · 0 sinϕ cosϕ

















. (3.19)

We have the following:

Lemma 3.8. Let D2 =H +
d =

¦�

z1, . . . , zd
�

∈ Rd : zd > 0
©

and assume that

Y0 = R
�

ϕ0
�

X0 (3.20)

for some ϕ0 ∈ R.

Consider the reflecting Brownian motion eθ d−1
t on [0,π] with driving Brownian motion θ d−1

t , where
θ d−1

t is the (d − 1) spherical coordinate of G
�

Y0− X0
�

X t , given by (3.16) – (3.18) above, that is:

eθ d−1
t = θ d−1

t + L0
t

�

eθ d−1
�

− Lπt
�

eθ d−1
�

, t ≥ 0,

and L0
t

�

eθ d−1
�

, Lπt
�

eθ d−1
�

represent the local times of eθ d−1 at 0, respectively at π.

A strong solution of the system (3.12) – (3.14) is explicitly given by

Yt =

¨

R
�

ϕt
�

G
�

Y0− X0
�

X t , t < ξ
�

�X t

�

�

d , t ≥ ξ (3.21)

where ξ= inf
�

t > 0 : X t = Yt
	

is the coupling time, the rotation angle ϕt is given by

ϕt = L0
t

�

eθ d−1
�

− Lπt
�

eθ d−1
�

, t ≥ 0,

and for z =
�

z1, z2 . . . , zd
�

∈ Rd we denoted by |z|d =
�

z1, z2, . . . ,
�

�zd
�

�

�

.

Proof. Recall that for m ∈ Rd − {0}, G (m) v denotes the mirror image of v ∈ Rd with respect to the
hyperplane through the origin perpendicular to m.

By Itô formula, we have

Yt∧ξ = Y0+

∫ t∧ξ

0

R
�

ϕs
�

G
�

Y0− X0
�

dXs +

∫ t∧ξ

0

R
�

ϕs +
π

2

�

G
�

Y0− X0
�

d Ls. (3.22)
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Xt

Yt = R(ϕt)G(Y0 −X0)Xt

M0

Mt

X0

Y0

G(Y0 −X0)Xt

H+
d

νH+
d

m0

mt

R(ϕt)

Figure 1: The mirror coupling of a free Brownian motion X t and a reflecting Brownian motion Yt in
the half-spaceH +

d .

Note that the composition R ◦ G (a symmetry followed by a rotation) is a symmetry, and since
‖Yt‖ = ‖X t‖ for all t ≥ 0, it follows that X t and Yt are symmetric with respect to a hyperplane
passing through the origin for all t ≤ ξ. Therefore, from the definition (3.5) of the function G it
follows that we have Yt = G

�

Yt − X t
�

X t for all t ≤ ξ.

Also note that when L0
s

�

eθ d−1
�

increases, Ys ∈ ∂ D2 and we have

R
�

ϕs +
π

2

�

G
�

Y0− X0
�

Xs = R
�π

2

�

Ys = νD2

�

Ys
�

,

and if Lπs
�

eθ d−1
�

increases, Ys ∈ ∂ D2 and we have

R
�

ϕs +
π

2

�

G
�

Y0− X0
�

Xs = R
�π

2

�

Ys =−νD2

�

Ys
�

.

It follows that the relation (3.22) can be written in the equivalent form

Yt∧ξ = Y0+

∫ t∧ξ

0

G
�

Ys − Xs
�

dXs +

∫ t∧ξ

0

νD2

�

Ys
�

d LY
s ,

where LY
t = L0

t

�

eθ d−1
�

+ Lπt
�

eθ d−1
�

is a continuous non-decreasing process which increases only
when Yt ∈ ∂ D2, and therefore Yt given by (3.21) is a strong solution of the system (3.12) – (3.14)
for t ≤ ξ.

For t ≥ ξ, we have Yt =
�

�X t

�

�

d =
�

X 1
t , X 2

t , . . . ,
�

�X d
t

�

�

�

, and proceeding similarly to the 1-dimensional
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case, by Tanaka formula we obtain:

Yt∨ξ = Yξ+

∫ t∨ξ

ξ

�

1, . . . , 1, sgn
�

X d
s

��

dXs +

∫ t∨ξ

ξ

(0, . . . , 0, 1) L0
t

�

X d
�

(3.23)

= Yξ+

∫ t∨ξ

ξ

G
�

Ys − Xs
�

dXs +

∫ t∨ξ

ξ

νD2

�

Ys
�

LY
t ,

since in this case

G
�

Ys − Xs
�

=

¨

(1, . . . , 1,+1) , Xs = Ys
(1, . . . , 1,−1) , Xs 6= Ys

=

¨

(1, . . . , 1,+1) , X d
s ≥ 0

(1, . . . , 1,−1) , X d
s < 0

=
�

1, . . . , 1, sgn
�

X d
s

��

.

The process LY
t = L0

t

�

X d
�

in (3.23) is a continuous non-decreasing process which increases only

when Yt ∈ ∂ D2 (L0
t

�

X d
�

represents the local time at 0 of the last cartesian coordinate X d of X ),
which shows that Yt also solves (3.12) – (3.14) for t ≥ ξ, and therefore Yt is a strong solution of
(3.12) – (3.14) for t ≥ 0, concluding the proof.

Consider now the case of a general polygonal domain D2 ⊂ Rd . We will show that a strong so-
lution of the system (3.12) – (3.14) can be constructed from the previous lemma by choosing the
appropriate coordinate system.

Consider the times
�

σn
�

n≥0 at which the solution Yt hits different bounding hyperplanes of ∂ D2,
that is σ0 = inf

�

s ≥ 0 : Ys ∈ ∂ D2
	

and inductively

σn+1 = inf

¨

t ≥ σn :
Yt ∈ ∂D2 and Yt ,Yσn

belong to different1

bounding hyperplanes of ∂ D2

«

, n≥ 0. (3.24)

If X0 = Y0 ∈ ∂ D2 belong to a certain bounding hyperplane of D2, we can chose the coordinate
system so that this hyperplane is Hd =

¦�

z1, . . . , zd
�

∈ Rd : zd = 0
©

and D2 ⊂ H +
d , and we let Hd

be any bounding hyperplane of D2 otherwise.

By Lemma 3.8 it follows that on the time interval [σ0,σ1), the strong solution of (3.12) – (3.14) is
given explicitly by (3.21).

If σ1 < ∞, we distinguish two cases: Xσ1
= Yσ1

and Xσ1
6= Yσ1

. Let H denote the bounding
hyperplane of D which contains Yσ1

, and let νH denote the unit normal toH pointing inside D2.

If Xσ1
= Yσ1

∈ H , choosing again the coordinate system conveniently, we may assume that H is
the hyperplane isHd =

¦�

z1, . . . , zd
�

∈ Rd : zd = 0
©

, and on the time interval [σ1,σ2) the coupling
�

Xσ1+t , Yσ1+t

�

t∈[0,σ2−σ1)
is given again by Lemma 3.8.

If Xσ1
6= Yσ1

∈H , in order to apply Lemma 3.8 we have to show that we can choose the coordinate
system so that the condition (3.20) holds. If Yσ1

− Xσ1
is a vector perpendicular toH , by choosing

1Since 2-dimensional Brownian motion does not hit points a.s., the d-dimensional Brownian motion Yt does not hit
the edges of D2 ((d − 2)-dimensional hyperplanes in Rd) a.s., thus there is no ambiguity in the definition.
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the coordinate system so that H =Hd =
¦�

z1, . . . , zd
�

∈ Rd : zd = 0
©

, the problem reduces to the
1-dimensional case (the first d − 1 coordinates of X and Y are the same), and it can be handled as
in Proposition 3.6 by the Tanaka formula. The proof being similar, we omit it.

If Xσ1
6= Yσ1

∈ H and Yσ1
− Xσ1

is not orthogonal to H , consider eXσ1
= prH Xσ1

the projection of
Xσ1

onto H , and therefore eXσ1
6= Yσ1

. The plane of symmetry of Xσ1
and Yσ1

intersects the line
determined by eXσ1

and Yσ1
at a point, and we consider this point as the origin of the coordinate

system (note that the intersection cannot be empty, for otherwise the vectors Yσ1
−Xσ1

and Yσ1
− eXσ1

were parallel, which is impossible since then Yσ1
− Xσ1

, Yσ1
− eXσ1

and Yσ1
− eXσ1

, Xσ1
− eXσ1

were
perpendicular pairs of vectors, contradicting eXσ1

6= Yσ1
– see Figure 2).

Yσ1

Xσ1

X̃σ1

H
0

Mσ1

ed = νH

ed−1{e1, . . . , ed−2}

Figure 2: Construction of the appropriate coordinate system.

Choose an orthonormal basis
�

e1, . . . , ed
	

in Rd such that ed = νH is the normal vector to H
pointing inside D2, ed−1 =

1
‖Yσ1

−Xσ1
‖

�

Yσ1
− Xσ1

�

is a unit vector lying in the 2-dimensional plane

determined by the origin and the vectors ed and Yσ1
− Xσ1

, and
�

e1, . . . , ed−2
	

is a completion of
�

ed−1, ed
	

to an orthonormal basis in Rd (see Figure 2).

Note that by the construction, the vectors e1, . . . , ed−2 are orthogonal to the 2-dimensional hyper-
plane containing the origin and the points Xσ1

and Yσ1
, and therefore Xσ1

and Yσ1
have the same

(zero) first d − 2 coordinates; also, since Xσ1
and Yσ1

are at the same distance from the origin,
it follows that Yσ1

can be obtained from Xσ1
by a rotation which leaves invariant the first d − 2

coordinates, which shows that the condition (3.20) of Lemma 3.8 is satisfied.

Since by construction the bounding hyperplane H of D2 at Yσ1
is given by Hd =

¦�

z1, . . . , zd
�

∈ Rd : zd = 0
©

and D2 ⊂ H +
d =

¦�

z1, . . . , zd
�

∈ Rd : zd > 0
©

, we can apply Lemma
3.8 to deduce that on the time interval [σ1,σ2) a solution of (3.12) – (3.14) is given by
�

Xσ1+t , Yσ1+t

�

t∈[0,σ2−σ1)
.

Repeating the above argument we can construct inductively (in the appropriate coordinate systems)
the solution of (3.12) – (3.14) on any time interval [σn,σn+1), n ≥ 1, and therefore we obtain a
strong solution of (3.12) – (3.14) defined for t ≥ 0.

We summarize the above discussion in the following:

Theorem 3.9. If D2 ⊂ Rd is a polygonal domain, for any X0 = Y0 ∈ D2, there exists a strong solution
of the system (3.12) - (3.14).
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Moreover, between successive hits of different bounding hyperplanes of D2 (i.e. on each time interval
[σn,σn+1) in the notation above), the solution is given by Lemma 3.8 in the appropriately chosen
coordinate system.

We will refer to the solution
�

X t , Yt
�

t≥0 constructed in the previous theorem as a mirror coupling of
reflecting Brownian motions in

�

Rd , D2

�

with starting point X0 = Y0 ∈ D2.

If X t 6= Yt , the hyperplane Mt of symmetry between X t and Yt (the hyperplane passing through
X t+Yt

2
with normal mt =

1
‖Yt−X t‖

�

Yt − X t
�

) will be referred to as the mirror of the coupling. For
definiteness, when X t = Yt we let Mt denote any hyperplane passing through X t = Yt , for example
we can choose Mt such that it is a left continuous function with respect to t.

In the particular case of a convex polygonal domain D2, some of the properties of the mirror coupling
are contained in the following:

Proposition 3.10. If D2 ⊂ Rd is a convex polygonal domain, for any X0 = Y0 ∈ D2, the mirror coupling
given by the previous theorem has the following properties:

i) If the reflection takes place in the bounding hyperplane H of D2 with inward unitary normal
νH , then the angle ∠(mt ;νH ) decreases monotonically to zero.

ii) When processes are not coupled, the mirror Mt lies outside D2.

iii) Coupling can take place precisely when X t ∈ ∂ D2. Moreover, if X t ∈ D2, then X t = Yt .

iv) If Dα ⊂ Dβ are two polygonal domains and (Y αt ; X t), (Y
β
t ; X t) are the corresponding mirror

coupling starting from x ∈ Dα, for any t > 0 we have

sup
s≤t
‖Y αs − Y βs ‖ ≤ Dist

�

Dα, Dβ
�

:= max
xα∈∂ Dα,xβ∈∂ Dβ
(xβ−xα)·νDα(xα)≤0

‖xα− xβ‖. (3.25)

Proof. i) In the notation of Theorem 3.9, on the time interval [σ0,σ1) we have Yt = X t , so
∠
�

mt ,νH
�

= 0 and therefore the claim is verified in this case.

On an arbitrary time interval [σn,σn+1), in the appropriately chosen coordinate system, Yt is given
by Lemma 3.8. For t < ξ, Yt is given by the rotation R

�

ϕt
�

of G
�

Y0− X0
�

X t which leaves invariant
the first (d − 2) coordinates, and therefore

∠
�

mt ,νH
�

= ∠
�

m0,νH
�

+
L0

t − Lπt
2

,

which proves the claim in this case (note that before the coupling time ξ only one of the non-
decreasing processes L0

t and Lπt is not identically zero).

Since for t ≥ ξ we have Yt =
�

X 1
t , . . . ,

�

�X d
t

�

�

�

, we have ∠
�

mt ,νH
�

= 0 which concludes the proof of
the claim.

ii) On the time interval [σ0,σ1) the processes are coupled, so there is nothing to prove in this case.

On the time interval [σ1,σ2), in the appropriately chosen coordinate system we have
Yt =

�

X 1
t , . . . ,

�

�X d
t

�

�

�

, thus the mirror Mt coincides with the boundary hyperplane Hd =
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¦�

z1, . . . , zd
�

∈ Rd : zd = 0
©

of D2 where the reflection takes place, and therefore Mt ∩ D2 = ∅
in this case.

Inductively, assume the claim is true for t < σn. By continuity, Mσn
∩ D2 = ∅, thus D2 lies on one

side of Mσn
. By the previous proof, the angle ∠

�

mt ,νH
�

between mt and the inward unit normal
νH to bounding hyperplaneH of D2 where the reflection takes place decreases to zero. Since D2 is
a convex domain, it follows that on the time interval [σn,σn+1) we have Mt ∩ D2 = ∅, concluding
the proof.

iii) The first part of the claim follows from the previous proof (when the processes are not coupled,
the mirror (hence X t) lies outside D2; by continuity, it follows that at the coupling time ξ we must
have Xξ = Yξ ∈ ∂ D2).

To prove the second part of the claim, consider an arbitrary time interval [σn,σn+1) between two
successive hits of Yt to different bounding hyperplanes of D2. In the appropriately chosen coordinate
system, Yt is given by Lemma 3.8. After the coupling time ξ, Yt is given by Yt =

�

X 1
t , . . . ,

�

�X d
t

�

�

�

, and

therefore if X t ∈ D2 (thus X d
t ≥ 0) we have Yt =

�

X 1
t , . . . , X d

t

�

= X t , concluding the proof.

iv) Let Mα
t and Mβ

t denote the mirrors of the coupling in Dα, respectively Dβ , with the same driving
Brownian motion X t .

Since Y αt and X t are symmetric with respect to Mα
t , and Y βt and X t are symmetric with respect to

Mβ
t , it follows that Y βt is obtained from Y βt by a rotation which leaves invariant the hyperplane

Mα
t ∩ Mβ

t , or by a translation by a vector orthogonal to Mα
t (in the case when Mα

t and Mβ
t are

parallel).

The angle of rotation (respectively the vector of translation) is altered only when either Y αt or

Y βt are on the boundary of Dα, respectively Dβ . Since Dα ⊂ Dβ are convex domains, the angle

of rotation (respectively the vector of translation) decreases when Y βt ∈ Dβ or when Y αt ∈ ∂ Dα
and

�

Y βt − Y αt
�

· νDα

�

Y αt
�

> 0 (in these cases Y βt and Y αt receive a push such that the distance

‖Y αt − Y βt ‖ is decreased), thus the maximum distance ‖Y αt − Y βt ‖ is attained when Y αt ∈ ∂ Dα and
�

Y βt − Y αt
�

· νDα

�

Y αt
�

≤ 0, and the formula follows.

4 The proof of Theorem 3.1

By Remark 3.4, it suffices to consider the case when D1 = Rd and D2 ⊂ Rd is a convex bounded
domain with smooth boundary. To simplify the notation, we will drop the index and write D for D2
in the sequel.

Let
�

Dn
�

n≥1 be an increasing sequence of convex polygonal domains in Rd with Dn ⊂ Dn+1 and
∪n≥1Dn = D.

Consider
�

Y n
t , X t

�

t≥0
a sequence of mirror couplings in

�

Dn,Rd
�

with starting point x ∈ D1 and
driving Brownian motion

�

Wt
�

t≥0 with W0 = 0, given by Theorem 3.9.

By Proposition 3.10, for any t > 0 we have

sup
s≤t

�

�Y m
s − Y n

s

�

�≤ Dist
�

Dn, Dm
�

= max
xn∈∂ Dn,xm∈∂ Dm

(xm−xn)·νDn(xn)≤0

�

�xn− xm

�

� →
n,m→∞

0,
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hence Y n
t converges a.s. in the uniform topology to a continuous process Yt .

Since (Y n)n≥1 are reflecting Brownian motions in
�

Dn
�

n≥1 and Dn ↗ D, the law of Yt is that of a
reflecting Brownian motion in D, that is Yt is a reflecting Brownian motion in D starting at x ∈ D
(see [8]). Also note that since Y n

t are adapted to the filtration FW =
�

Ft
�

t≥0 generated by the
Brownian motion Wt , so is Yt .

By construction, the driving Brownian motion Zn
t of Y n

t satisfies

Zn
t =

∫ t

0

G
�

Y n
t − X t

�

dWt , t ≥ 0.

Consider the process

Zt =

∫ t

0

G
�

Ys − Xs
�

dWs,

and note that since Y is FW -adapted and ||G|| = 1, by Lévy’s characterization of Brownian motion,
Zt is a free d-dimensional Brownian motion starting at Z0 = 0, also adapted to the filtration FW .

We will show that Z is the driving process of the reflecting Brownian motion Yt , that is, we will
show that

Yt = x + Zt + LY
t = x +

∫ t

0

G
�

Ys − Xs
�

dWs + LY
t , t ≥ 0.

Note that the mapping z 7−→ G (z) is continuous with respect to the norm ||A|| =
�

�

�

�

�

�

�

ai j

�

�

�

�

�

�

� =
∑d

i, j=1 a2
i j of d × d matrices at all points z ∈ Rd − {0}, hence G

�

Y n
s − Xs

�

→
n→∞

G
�

Ys − Xs
�

if

Ys − Xs 6= 0. If Ys − Xs = 0, then either Ys = Xs ∈ D or Ys = Xs ∈ ∂ D.

If Ys = Xs ∈ D, since Dn ↗ D, there exists N ≥ 1 such that Xs ∈ DN , hence Xs ∈ Dn for all
n ≥ N . By Proposition 3.10, it follows that Y n

s = Xs for all n ≥ N , hence in this case we also have
G
�

Y n
s − Xs

�

= G (0) →
n→∞

G (0) = G
�

Ys − Xs
�

.

If Ys = Xs ∈ ∂ D, since Dn ⊂ D we have Y n
s − Xs 6= 0, and therefore by the definition (3.5) of G we
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have:
∫ t

0

�

�

�

�

�

�G
�

Y n
s − Xs

�

− G
�

Ys − Xs
�

�

�

�

�

�

�

2
1Ys=Xs∈∂ Dds

=

∫ t

0

�

�

�

�

�

�

�

�

�

�

H

 

Y n
s − Xs

�

�

�

�Y n
s − Xs

�

�

�

�

!

− I

�

�

�

�

�

�

�

�

�

�

2

1Ys=Xs∈∂ Dds

=

∫ t

0

�

�

�

�

�

�

�

�

�

�

�

�

I − 2
Y n

s − Xs
�

�

�

�Y n
s − Xs

�

�

�

�

 

Y n
s − Xs

�

�

�

�Y n
s − Xs

�

�

�

�

!′

− I

�

�

�

�

�

�

�

�

�

�

�

�

2

1Ys=Xs∈∂ Dds

=

∫ t

0

�

�

�

�

�

�

�

�

�

�

�

�

2
Y n

s − Xs
�

�

�

�Y n
s − Xs

�

�

�

�

 

Y n
s − Xs

�

�

�

�Y n
s − Xs

�

�

�

�

!′
�

�

�

�

�

�

�

�

�

�

�

�

2

1Ys=Xs∈∂ Dds

= 4

∫ t

0

1Ys=Xs∈∂ Dds

≤ 4

∫ t

0

1∂ D
�

Ys
�

ds

= 0,

since Yt is a reflecting Brownian motion in D, and therefore it spends zero Lebesgue time on the
boundary of D.

Since ||G||= 1, using the above and the bounded convergence theorem we obtain

lim
n→∞

∫ t

0

�

�

�

�

�

�G
�

Y n
s − Xs

�

− G
�

Ys − Xs
�

�

�

�

�

�

�

2
ds = 0,

and therefore by Doob’s inequality it follows that

E sup
s≤t
‖Zn

s − Zs‖2 ≤ cE‖Zn
t − Zt‖2 ≤ cE

∫ t

0

‖G
�

Y n
s − Xs

�

− G
�

Ys − Xs
�

‖2ds →
n→∞

0,

for any t ≥ 0, which shows that Zn
t converges uniformly on compact sets to Zt =

∫ t

0
G
�

Ys − Xs
�

dWs.

By construction, Zn
t is the driving Brownian motion for Y n

t , that is

Y n
t = x + Zn

t +

∫ t

0

νDn

�

Y n
s

�

d LYn
s ,

and passing to the limit with n→∞ we obtain

Yt = x + Zt + At = x +

∫ t

0

G
�

Ys − Xs
�

dWs + At , t ≥ 0,

where At = limn→∞
∫ t

0
νDn

�

Y n
s

�

d LYn
s .
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It remains to show that At is a process of bounded variation. For an arbitrary partition 0= t0 < t1 <

. . . t l = t of [0, t] we have

E
l
∑

i=1

‖At i
− At i−1

‖ = lim
n→∞

E
l
∑

i=1
















∫ t i

t i−1

νDn

�

Y n
s

�

d LYn
s
















≤ limsup E LYn
t

= limsup

∫ t

0

∫

∂ Dn

pDn

�

s, x , y
�

σn
�

d y
�

ds

≤ c
p

t,

where σn is the surface measure on ∂ Dn, and the last inequality above follows from the estimates
in [5] on the Neumann heat kernels pDn

�

t, x , y
�

(see the remarks preceding Theorem 2.1 and the
proof of Theorem 2.4 in [7]).

From the above it follows that At = Yt − x − Zt is a continuous, FW -adapted process (since Yt , Zt
are continuous, FW -adapted processes) of bounded variation.

By the uniqueness in the Doob-Meyer semimartingale decomposition of the reflecting Brownian
motion Yt in D, it follows that

At =

∫ t

0

νD
�

Ys
�

d LY
s , t ≥ 0,

where LY is the local time of Y on the boundary ∂ D. It follows that the reflecting Brownian motion
Yt in D constructed above is a strong solution to

Yt = x +

∫ t

0

G
�

Ys − Xs
�

dWs +

∫ t

0

νD
�

Ys
�

d LY
s , t ≥ 0,

or equivalent, the driving Brownian motion Zt =
∫ t

0
G
�

Ys − Xs
�

dWs of Yt is a strong solution to

Zt =

∫ t

0

G
�

eΓ
�

y + Z
�

s − Xs

�

dWs, t ≥ 0,

concluding the proof of Theorem 3.1.

5 Extensions and applications

As an application of the construction of mirror coupling, we will present a unifying proof of the two
most important results on Chavel’s conjecture.

It is not difficult to prove that the Dirichlet heat kernel is an increasing function with respect to the
domain. Since for the Neumann heat kernel pD

�

t, x , y
�

of a smooth bounded domain D ⊂ Rd we
have

lim
t→∞

pD
�

t, x , y
�

=
1

vol (D)
,

the monotonicity in the case of the Neumann heat kernel should be reversed.

The above observation was conjectured by Isaac Chavel ([12]), as follows:
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Conjecture 5.1 (Chavel’s conjecture, [12]). Let D1,2 ⊂ Rd be smooth bounded convex domains in Rd ,
d ≥ 1, and let pD1

�

t, x , y
�

, pD2

�

t, x , y
�

denote the Neumann heat kernels in D1, respectively D2. If
D2 ⊂ D1, then

pD1

�

t, x , y
�

≤ pD2

�

t, x , y
�

, (5.1)

for any t ≥ 0 and x , y ∈ D1.

Remark 5.2. The smoothness assumption in the above conjecture is meant to insure the a.e. exis-
tence of the inward unit normal to the boundaries of D1 and D2, that is the boundaries should have
a locally differentiable parametrization. Requiring that the boundary of the domain is of class C1,α

(0< α < 1) is a convenient hypothesis on the smoothness of the domains D1,2.

In order to simplify the proof, we will assume that D1,2 are smooth C2 domains (the proof can be
extended to a more general setup, by approximating D1,2 by less smooth domains).

Among the positive results on Chavel conjecture, the most general known results (and perhaps the
easiest to use in practice) are due to I. Chavel ([12]) and W. Kendall ([16]), and they show that if
there exists a ball B centered at either x or y such that D2 ⊂ B ⊂ D1, then the inequality (5.1) in
Chavel’s conjecture holds for any t > 0.

While there are also other positive results which suggest that Chavel’s conjecture is true for certain
classes of domains (see for example [11], [14]), in [4] R. Bass and K. Burdzy showed that Chavel’s
conjecture does not hold in its full generality (i.e. without additional hypotheses).

We note that both the proof of Chavel (the case when D1 is a ball centered at either x or y) and
Kendall (the case when D2 is a ball centered at either x or y) relies in an essential way that one
of the domains is a ball: the first uses an integration by parts technique, while the later uses a
coupling argument of the radial parts of Brownian motion, and none of these proofs seem to be
easily applicable to the other case.

Using the mirror coupling, we can derive a simple, unifying proof of these two important results, as
follows:

Theorem 5.3. Let D2 ⊂ D1 ⊂ Rd be smooth bounded domains and assume that D2 is convex. If for
x , y ∈ D2 there exists a ball B centered at either x or y such that D2 ⊂ B ⊂ D1, then for all t ≥ 0 we
have

pD1

�

t, x , y
�

≤ pD2

�

t, x , y
�

. (5.2)

Proof. Consider x , y ∈ D2 arbitrarily fixed and assume that D2 ⊂ B = B
�

y, R
�

⊂ D1 for some R> 0.

By eventually approximating the convex domain D2 by convex polygonal domains, it suffices to
prove the claim in the case when D2 is a convex polygonal domain.

Let
�

X t , Yt
�

be a mirror coupling of reflecting Brownian motions in
�

D1, D2
�

starting at x ∈ D2. The
idea of the proof is to show that for all times t ≥ 0, Yt is at a distance from y is no greater than the
distance from X t to y .

Let t0 ≥ 0 be a time when the processes are at the same distance from y , and let t1 ≥ t0 be the first
time after t0 when the process X t hits the boundary of D1.

Note that by the ball condition we have ‖X t − y‖ = R > ‖Yt − y‖ for any t ≥ 0, and in particular
this holds for t = t1. Since the processes X t and Yt are continuous, the distances from X t and Yt to
y are continuous functions of t, and therefore in order to prove the claim it suffices to show that
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‖Yt − y‖ ≤ ‖X t − y‖ for all t ∈ [t0, t1]. Also note that on the time interval [t0, t1] the process X t
behaves like a free Brownian motion.

We distinguish the following cases:

i) The processes are coupled at time t0 (i.e. X t0
= Yt0

);

In this case, the distances from X t and Yt to y will remain equal until the first time when the
processes hit the boundary of D2. Since on the time interval [t0, t1] the process X t behaves like a
free Brownian motion, by Proposition 3.10 ii) it follows that when processes are not coupled, the
mirror Mt of the coupling lies outside the domain D2. Since the domain D2 is assumed convex, this
shows in particular that the mirror Mt of the coupling cannot separate the points Yt and y , and
therefore the distance from Yt to y is smaller than or equal to the distance from X t to y , for all
t ∈ [t0, t1].

ii) The processes are decoupled at time t0;

In this case, since
�

�Yt0
− y
�

�=
�

�X t0
− y
�

� and X t0
6= Yt0

, the hyperplane Mt0
of symmetry between X t0

and Yt0
passes through the point y , so Mt0

does not separate the points Yt0
and y .

The processes X t and Yt will remain at the same distance from y until the first time when Yt ∈ ∂ D2.
Since on the time interval [t0, t1] the process X t behaves like a free Brownian motion, by Theorem
3.9, it follows that between successive hits of different boundary hyperplanes of D2, the mirror
Mt of the coupling describes a rotation which leaves invariant d − 2 coordinate axes. Moreover, by
Proposition 3.10 the rotation is directed in such a way that the angle ∠(mt ,νH ) between the normal
mt =

1
‖Yt−X t‖

�

Yt − X t
�

of Mt and the inner normal νH of the bounding hyperplaneH of D2 where
the reflection takes place decreases monotonically to zero (see Figure 1).

Since the hyperplane Mt0
does not separate the points Yt0

and y , simple geometric considerations
show that Mt will not separate the points Yt and y for all t ∈ [t0, t1], and therefore ‖Yt − y‖ ≤
‖X t − y‖ for all t ∈ [t0, t1], concluding the proof of the claim.

We showed that for any t ≥ 0 we have ‖Yt − y‖ ≤ ‖X t − y‖, and therefore

P x �‖X t − y‖< ε
�

≤ P x �‖Yt − y‖< ε
�

,

for any ε > 0 and t ≥ 0.

Dividing the above inequality by the volume of the ball B
�

y,ε
�

and passing to the limit with ε↘ 0,
from the continuity of the transition density of the reflecting Brownian motion in the space variable
we obtain

pD1

�

t, x , y
�

≤ pD2

�

t, x , y
�

, t ≥ 0,

concluding the proof of the theorem.

As also pointed out by Kendall in [16], we note that in the above theorem the convexity of the larger
domain D1 is not needed in order to derive the validity of condition (5.1) in Chavel’s conjecture. We
can also replace the hypothesis on the convexity of the smaller domain D2 by the weaker hypothesis
that D2 is a star-shaped domain with respect to either x or y , as follows:

Theorem 5.4. Let D2 ⊂ D1 ⊂ Rd be smooth bounded domains. If for x , y ∈ D2 there exists a ball B
centered at either x or y such that D2 ⊂ B ⊂ D1 and D2 is star-shaped with respect to the center of the
ball, then for all t ≥ 0 we have

pD1

�

t, x , y
�

≤ pD2

�

t, x , y
�

. (5.3)
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Proof. We will present an analytic proof which parallels the geometric proof of the previous theorem.

Consider x , y ∈ D2 arbitrarily fixed and assume that D2 ⊂ B = B
�

y, R
�

⊂ D1 for some R> 0 and D2
is a star-shaped domain with respect to y .

By eventually approximating D2 with star-shaped polygonal domains, it suffices to prove the claim
in the case when D2 is a polygonal star-shaped domain.

Let
�

X t , Yt
�

be a mirror coupling of reflecting Brownian motions in
�

D1, D2
�

starting at x ∈ D2. The
idea of the proof is to show that for all times t ≥ 0, Yt is at a distance from y is no greater than the
distance from X t to y .

We can reduce the proof to the case when D1 = Rd as follows. Consider the sequences of stopping
times (ξn)n≥1 and (τn)n≥1 defined inductively by

τ0 = 0,

ξn = inf
�

t > τn−1 : X t ∈ ∂ D1
	

, n≥ 1,

τn = inf
�

t > ξn : ‖X t − y‖= ‖Yt − y‖
	

, n≥ 1.

Note that by the ball condition we have ‖Xξn
− y‖ > ‖Yξn

− y‖ for any n ≥ 1, and therefore
‖X t − y‖ ≥ ‖Yt − y‖ for any n≥ 1 and any t ∈

�

ξn,τn
�

. In order to prove that the same inequality
holds on the intervals

�

τn,ξn+1
�

for n≥ 0, we proceed as follows.

On the set {τn <∞}, the pair (eX t , eYt) =
�

Xτn+t , Yτn+t

�

defined for t ≤ ξn+1−τn is a mirror coupling
in (Rd , D2) with driving Brownian motion fWt = Wτn+t −Wτn

(and eZt = Zτn+t − Zτn
), and starting

points (eX0, eY0) = (Xτn
, Yτn
) independent of the filtration of eBt (see Remark 3.4). In order to prove

the claim it suffices therefore to show that for any points u ∈ Rd and v ∈ D2 with ‖u− y‖= ‖v− y‖,
the mirror coupling (X t , Yt) in (Rd , D2) with starting points (X0, Y0) = (u, v) verifies

‖X t − y‖ ≥ ‖Yt − y‖, t ≥ 0. (5.4)

Consider therefore a mirror coupling (X t , Yt) in (Rd , D2) with starting points (X0, Y0) = (u, v) ∈
Rd × D2 satisfying ‖u− y‖= ‖v− y‖.
If u = v, from the construction of the mirror coupling it follows that X t = Yt until the process Yt
hits the boundary of D2, and therefore the inequality in (5.4) holds for these values of t. After
the process Yt hits a bounding hyperplane of D2, by Lemma 3.8 it follows that in an appropriate
coordinate system Yt is given by Yt = (X 1

t , . . . , X d−1
t , |X d

t |), until the time σ when the process Y hits
a different bounding hyperplane of D2, and therefore the inequality in (5.4) is again verified for
the corresponding values of t (in the chosen coordinate system we must have y = (y1, . . . , yd) with
yd > 0, and therefore ‖X t − y‖2 − ‖Yt − y‖2 = 2yd

�

|X d
t | − X d

t

�

≥ 0). If at time σ the processes
are coupled (i.e. Xσ = Yσ ∈ ∂ D2), we can apply the above argument inductively, and find a time σ1
when the processes are decoupled and ‖X t − y‖ ≥ ‖Yt − y‖ for all t ≤ σ1.

The above discussion shows that without loss of generality we may further reduce the proof of the
claim to the case when (u, v) ∈ Rd×D2 with u 6= v and ‖u− y‖ ≥ ‖v− y‖. Also, the above discussion
shows that it is enough to prove (5.4) for all values of t ≤ ζ, where ζ = inf{s > 0 : Xs = Ys} is the
first coupling time.
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The mirror coupling defined by (3.1) – (3.3) becomes in the case

X t = u+Wt (5.5)

Yt = v+ Zt +

∫ t

0

νD2

�

Ys
�

d LY
s (5.6)

Zt =

∫ t

0

G
�

Ys − Xs
�

dWs (5.7)

where G is given by (3.5). In order to prove the claim we will show that

Rt = ‖X t − y‖2−‖Yt − y‖2 ≥ 0, t ≤ ζ, (5.8)

where ζ is the first coupling time.

Using the Itô formula it can be shown that the process Rt verifies the stochastic differential equation

Rt = R0− 2

∫ t

0

Rs
Ys − Xs

‖Ys − Xs‖2
· dWs − 2

∫ t

0

(Ys − y) · νD2

�

Ys
�

d LY
s , t ≤ ζ. (5.9)

The process Bt = −2
∫ t

0
Ys−Xs

‖Ys−Xs‖2
· dWs is a continuous local martingale on [0,ζ), with quadratic

variation

At = 4
d
∑

i=1

∫ t∧ζ

0

(Y i
s − X i

s)
2

‖Ys − Xs‖4
ds =

∫ t∧ζ

0

4

‖Ys − Xs‖2
ds, t ≥ 0, (5.10)

and therefore by Lévy’s characterization of Brownian motion it follows that eBt = Bαt∧ζ is a 1-
dimensional Brownian motion (possibly stopped at time ζ, if Aζ < ∞), where the time change
αt = inf{s ≥ 0 : As > t} is the inverse of the nondecreasing process At .

Setting eX t = Xαt∧ζ, eYt = Yαt∧ζ, eRt = Rαt∧ζ and eLY
t = LY

αt∧ζ
, from (5.9) we obtain

eRt = eR0+

∫ t

0

eRsdeBs −
∫ t

0

(eYs − y) · νD2

�

eYs

�

deLY
s , t ≥ 0. (5.11)

Since the polygonal domain D2 is assumed star-shaped with respect to the point y , geometric con-
siderations show that

(z− y) · νD2
(z)≤ 0, (5.12)

for all the points z ∈ ∂ D2 for which the inside pointing normal νD2
(z) at the boundary point z of D2

is defined, that is for all points z ∈ ∂ D2 not lying on the intersection of two bounding hyperplanes
of D2. Since the reflecting Brownian motion Yt does not hit the set of these exceptional points with
positive probability, we may assume that the above condition is satisfied for all points, and therefore

(eYs − y) · νD2
(eYs)≤ 0 a.s, (5.13)

for all times s ≥ 0 when eYs ∈ ∂ D2.

Since eLY
t is a nondecreasing process of t ≥ 0, a standard comparison argument for solutions of

stochastic differential equations shows that the solution eRt of (5.11) satisfies eRt ≥ ρt for all t ≥ 0,
where ρt is the solution of the stochastic differential equation

ρt = eR0+

∫ t

0

ρsdeBs, t ≥ 0. (5.14)
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The last equation has the explicit solution ρt = R0eeBt−
1
2

t , and since by hypothesis R0 = ‖u− y‖2 −
‖v− y‖2 ≥ 0, we obtain

Rαt∧ζ = eRt ≥ ρt = eR0eeBt−
1
2

t ≥ 0, t ≥ 0, (5.15)

and therefore Rt = ‖X t − y‖2−‖Yt − y‖2 ≥ 0 for all t ≤ ζ, concluding the proof of the claim.

By the initial remarks, it follows that if (X t , Yt) is a mirror coupling in (D1, D2) with starting point
X0 = Y0 = x , then

‖X t − y‖ ≥ ‖Yt − y‖, t ≥ 0. (5.16)

As in the proof of the last theorem, this shows that pD1

�

t, x , y
�

≤ pD2

�

t, x , y
�

for all t ≥ 0, con-
cluding the proof.

We have chosen to carry out the construction of the mirror coupling in the case of smooth domains
with D2 ⊂ D1 and D2 convex, having in mind the application to Chavel’s conjecture. However, al-
though the technical details can be considerably longer, it is possible to construct the mirror coupling
in a more general setup.

For example, in the case when D1 and D2 are disjoint domains, none of the difficulties encountered
in the construction of the mirror coupling occur (the possibility of coupling/decoupling), so the
constructions extends immediately to this case.

The two key ingredients in our construction of the mirror coupling were the hypothesis D2 ⊂ D1
(needed in order to reduce by a localization argument the construction to the case D1 = Rd) and
the hypothesis on the convexity of the inner domain D2 (which allowed us to construct a solution of
the equation of the mirror coupling in the case D1 = Rd).

Replacing the first hypothesis by the condition that the boundaries ∂ D1 and ∂ D2 are not tangential
(needed for the localization of the construction of the mirror coupling) and the second one by
condition that D1∩D2 is a convex domain, the arguments in the present construction can be modified
in order to give rise to a mirror coupling of reflecting Brownian motion in

�

D1, D2
�

(see Figure 3).

D1

D2

Figure 3: Generic smooth domains D1,2 ⊂ Rd for the mirror coupling: D1, D2 have non-tangential
boundaries and D1 ∩ D2 is a convex domain.

Remark 5.5. Even though the construction of the mirror coupling was carried out without the ad-
ditional assumption on the convexity of the inner domain D2 in the case when D2 is a polygonal
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domain (see Theorem 3.9), we cannot extend the construction of the mirror coupling to the general
case of smooth domains D2 ⊂ D1.

This is due to the fact that the stochastic differential equation which defines the mirror coupling
has a singularity (discontinuity) when the processes couple, and we cannot prove the convergence
of solutions in the approximating domains (as in the proof of Theorem 3.1). The convexity of the
inner domain is an essential argument for this proof, which allowed us to handle the discontinuity
of the stochastic differential equation which defines the mirror coupling: considering an increasing
sequence of approximating domains Dn ↗ D2, the convexity of D2 was used to show that if the
coupling occurred in the case of the mirror coupling in (Rd , DN ), then coupling also occurred in the
case of the mirror coupling in (Rd , Dn), for all n≥ N .

It is easy to construct an example of a non-convex domain D2 and a sequence of approximating
domains Dn ↗ D2 such that the mirror coupling (X t , Y n

t ) in (Rd , Dn) does not have the above-
mentioned property, and therefore we cannot prove the existence of the mirror coupling using the
same ideas as in Theorem 3.1. However, this does not imply that the mirror coupling cannot be
constructed by other methods in a more general setup.

We conclude with some remarks on the non-uniqueness of the mirror coupling in general domains.
To simplify the ideas, we will restrict to the 1-dimensional case when D2 = (0,∞)⊂ D1 = R.

Fixing x ∈ (0,∞) as starting point of the mirror coupling
�

X t , Yt
�

in
�

D1, D2
�

, the equations of the
mirror coupling are

X t = x +Wt (5.17)

Yt = x + Zt + LY
t (5.18)

Zt =

∫ t

0

G
�

Ys − Xs
�

dWs (5.19)

where in this case

G (z) =

¨

−1, if z 6= 0
+1, if z = 0

.

Until the hitting time τ =
�

s > 0 : Ys ∈ ∂ D2
	

of the boundary of ∂ D2 we have LY
t ≡ 0, and with the

substitution Ut =−
1
2

�

Yt − X t
�

, the stochastic differential for Yt becomes

Ut =

∫ t

0

1− G
�

Ys − Xs
�

2
dWs =

∫ t

0

σ
�

Us
�

dWs, (5.20)

where

σ (z) =
1− G (z)

2
=

¨

1, if z 6= 0
0, if z = 0

.

By a result of Engelbert and Schmidt ([13]) the solution of the above problem is not even weakly
unique, for in this case the set of zeroes of the function σ is N = {0} and σ−2 is locally integrable
on R.

In fact, more can be said about the solutions of (5.20) in this case. It is immediate that both Ut ≡ 0
and Ut = Wt are solutions to 5.20, and it can be shown that an arbitrary solution can be obtained
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from Wt by delaying it when it reaches the origin (sticky Brownian motion with sticky point the
origin).

Therefore, until the hitting time τ of the boundary, we obtain as solutions

Yt = X t = x +Wt (5.21)

and
Yt = X t − 2Wt = x −Wt , (5.22)

and an intermediate range of solutions, which agree with (5.21) for some time, then switch to (5.22)
(see [18]).

Correspondingly, this gives rise to mirror couplings of reflecting Brownian motions for which the
solutions stick to each other after they have coupled (as in (5.21)), or they immediately split apart
after coupling (as in (5.22)), and there is a whole range of intermediate possibilities. The first
case can be referred to as sticky mirror coupling, the second as non-sticky mirror coupling, and the
intermediate possibilities as weak/mild sticky mirror coupling.

The same situation occurs in the general setup in Rd , and it is the cause of lack uniqueness of the
stochastic differential equations which defines the mirror coupling. In the present paper we detailed
the construction of the sticky mirror coupling, which we considered to be the most interesting, both
from the point of view of the construction and of the applications, although the other types of mirror
coupling might prove useful in other applications.
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