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Abstract

The cutoff phenomenon describes a sharp transition in the convergence of an ergodic finite
Markov chain to equilibrium. Of particular interest is understanding this convergence for the
simple random walk on a bounded-degree expander graph. The first example of a family of
bounded-degree graphs where the random walk exhibits cutoff in total-variation was provided
only very recently, when the authors showed this for a typical random regular graph. How-
ever, no example was known for an explicit (deterministic) family of expanders with this phe-
nomenon. Here we construct a family of cubic expanders where the random walk from a worst
case initial position exhibits total-variation cutoff. Variants of this construction give cubic ex-
panders without cutoff, as well as cubic graphs with cutoff at any prescribed time-point.
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1 Introduction

A finite ergodic Markov chain is said to exhibit cutoff in total-variation if its L1-distance from the
stationary distribution drops abruptly from near its maximum to near 0. In other words, one should
run the Markov chain until the cutoff point for it to even slightly mix in L1 whereas running it any
further is essentially redundant.

Let (X t) be an aperiodic irreducible discrete-time Markov chain on a finite state space Ω with sta-
tionary distribution π. The worst-case total-variation distance to stationarity at time t is defined
as

d(t)
4
=max

x∈Ω
‖Px(X t ∈ ·)−π‖TV ,

where Px denotes the probability given X0 = x and where ‖µ− ν‖TV, the total-variation distance of
two distributions µ,ν on Ω, is given by

‖µ− ν‖TV
4
= sup

A⊂Ω

�

�µ(A)− ν(A)
�

�=
1

2

∑

x∈Ω
|µ(x)− ν(x)| .

Define tMIX(ε), the total-variation mixing-time of (X t) for 0< ε < 1, to be

tMIX(ε)
4
=min {t : d(t)< ε} .

Let
�

X (n)t
�

be a family of such chains, each with its total-variation distance from stationarity dn(t), its
mixing-time t(n)

MIX
, etc. This family exhibits cutoff iff the following sharp transition in its convergence

to equilibrium occurs:

lim
n→∞

t(n)
MIX
(ε)
�

t(n)
MIX
(1− ε) = 1 for any 0< ε < 1 . (1.1)

The rate of convergence in (1.1) is addressed by the following notion of a cutoff window: For two
sequences tn, wn with wn = o(tn) we say that

�

X (n)t
�

has cutoff at time tn with window wn if and
only if

t(n)
MIX
(s) =

�

1+O(wn)
�

tn = (1+ o(1))tn for any fixed 0< s < 1 ,

or equivalently, cutoff at time tn with window wn occurs if and only if
¨

limλ→∞ lim infn→∞ dn(tn−λwn) = 1 ,
limλ→∞ lim supn→∞ dn(tn+λwn) = 0 .

The cutoff phenomenon was first identified for random transpositions on the symmetric group
in [10] and for random walks on the hypercube in [2]. The term “cutoff” was coined by Aldous
and Diaconis in [3], where cutoff was shown for the top-in-at-random card shuffling process. While
believed to be widespread, there are relatively few examples where the cutoff phenomenon has
been rigorously confirmed. Even for fairly simple chains, determining whether there is cutoff often
requires the full understanding of their delicate behavior around the mixing threshold. See [8,9,19]
and the references therein for more on the cutoff phenomenon.

A specific Markov chain which found numerous applications in a wide range of areas in mathematics
over the last quarter of a century is the simple random walk (SRW) on a bounded-degree expander
graph. A finite graph is called an expander if every small subset of the vertices has a relatively large
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edge boundary. Formally, the Cheeger constant of a d-regular graph G on n vertices (also referred
to as the edge isoperimetric constant) is defined as

ch(G) = min
;6=S$V (G)

|∂ S|
|S| ∧ |V (G) \ S|

,

where ∂ S is the set of edges with exactly one endpoint in S. We say that G is a c-edge-expander
for some fixed c > 0 if it satisfies ch(G) > c. The well-known discrete analogue of Cheeger’s
inequality [5, 6, 12, 20] implies that the spectral-gap of the SRW on a family of c-edge-expander
graphs on n vertices is uniformly bounded away from 0, hence these chains rapidly converge to
equilibrium within O(log n) steps. See the survey [14] for more on the applications of random
walks on expanders.

In 2004, Peres[16] observed that for any family of reversible Markov chains, total-variation cutoff
can only occur if the inverse spectral-gap has smaller order than the mixing time. Note that this
condition clearly holds for the simple random walk on an n-vertex expander, where the inverse-
gap is O(1) whereas tMIX � log n. It was shown by Chen and Saloff-Coste [8] that when measuring
convergence in Lp-distance for p > 1 this criterion does ensure cutoff, however the case p = 1 (cutoff
in total-variation) has proved to be significantly more complicated. There are known examples
where the above condition does not imply cutoff (see [8, Section 6]), yet it was conjectured by
Peres to be sufficient in many natural families of chains (e.g. [11] confirming this for birth-and-
death chains). In particular, this was conjectured for the lazy random walk on bounded-degree
transitive graphs.

The first example of a family of bounded-degree graphs where the random walk exhibits cutoff in
total-variation was provided only very recently [15], when the authors showed this for a typical
random regular graph. It is well known that for any fixed d ≥ 3, a random d-regular graph is with
high probability (w.h.p.) a very good expander, hence the simple random walk on almost every
d-regular expander exhibits worst-case total-variation cutoff. However, to this date there were no
known examples for an explicit (deterministic) family of expanders with this phenomenon.

In Section 2.1 we provide what is, to the best of our knowledge, the first explicit construction of a
family of bounded-degree expanders where the simple random walk has worst-case total-variation
cutoff.

Theorem 1. There is an explicit family of 3-regular expanders on which the SRW from a worst case
initial position exhibits total-variation cutoff.

The construction mimics the behavior of the SRW on random regular graphs, whose mixing was
shown in [15] (as conjectured by Durrett [13] and Berestycki [7]) to resemble that of a walk
started at a root of a d-regular tree. Two smaller expanders that are embedded into the graph
structure allow careful control over the mixing time from all possible initial positions.

A straightforward modification of the above construction yields an explicit family of cubic expanders
where the SRW from a worst-case initial position does not exhibit cutoff in total-variation (despite
Peres’ cutoff criterion). Note that Peres and Wilson [17] had already sketched an example for a
family of expanders without total-variation cutoff. We describe our simple construction achieving
this in Section 2.2 for completeness.

A final variant of the construction, presented in Section 2.3, provides cubic graphs with cutoff oc-
curring at essentially any prescribed order of location. Namely, there is an explicit family of cubic
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graphs where the SRW has cutoff at any specified order between [log n, n2) whereas for tMIX � n2

there cannot be cutoff (it is well-known that on any family of bounded-degree graphs on n vertices
the SRW has c log n≤ tMIX ≤ c′n2 for some fixed c, c′ > 0).

Theorem 2. Let tn be a monotone sequence with tn ≥ log n and tn = o(n2). There is an explicit
family (Gn) of 3-regular graphs with |Gn| � n vertices where the SRW from a worst-case initial position
exhibits total-variation cutoff at tMIX � tn.

Furthermore, for any family of bounded-degree n-vertex graphs where the SRW has tMIX � n2 (largest
possible order of mixing) there cannot be cutoff.

2 Explicit constructions achieving cutoff

2.1 Proof of Theorem 1: explicit expanders with cutoff

To simplify the exposition, we will first construct a family of 5-regular expanders where the SRW
from a worst initial position exhibits cutoff. Subsequently, we will describe how to modify the con-
struction to yield a family of cubic expanders with this property (as per the statement of Theorem 1).

The graph we construct will contain a smaller explicit expander on a fixed proportion of its vertices,
connected to what is essentially a product of another expander with a “stretched” regular tree (one
where the edges in certain levels are replaced by paths).

Let h→∞ and let H1, H2 be two explicit expanders as follows (cf. e.g. [1] for an explicit construction
of a 3-regular graph, as well as [18] and the references therein for additional explicit constructions
of constant-degree expander graphs):

• H1 : An explicit 3-regular expander on 20 · 22h vertices.

• H2 : An explicit 4-regular expander on 20 · 26h vertices.

Let λ(Hi) denote the largest absolute-value of any nontrivial eigenvalue of Hi for i = 1,2. Finally,
let L be some sufficiently large fixed integer whose value will be specified later.

Our final construction for 5-regular expander will be based on a (modified) regular tree, hence it
will be convenient to describe its structure according to the various levels of its vertices. Let the
vertex ρ denote the root of the tree, and construct the graph G as follows:

1. Levels 0,1, 2: First levels of a 5-regular tree rooted at ρ.

• Denote by U = {u1, . . . , u20} the vertices comprising level 2.

2. Levels 3, . . . , h+ 2: Stretched 4-ary trees rooted at each vertex of U , defined as follows:

• For each ui ∈ U place an h-level 4-ary tree Tui
rooted at ui and identify the vertices of Tui

and Tu j
via the trivial isomorphism.

• Replace every edge of each Tui
by a (disjoint) path of length L.

Connect T ∗u1
, the new interior vertices in Tu1

(with initial degree 2) to their isomorphic
counterparts in T ∗u2

,T ∗u3
,T ∗u4

(add 4-cliques between identified interior vertices) and similarly
for {T ∗u5

, . . . ,Tu∗8
} etc.
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u1 u2 u3  .  .  .  .  . u17 u18 u19 u20U

A .  .  . (H1)

u4

.  .  .

B

(H2)

L

L

 .  .  .  .  .

 .  .  .  .  .

 .  .  .  .  .

.  .  .

.  .  . .  .  .

Figure 1: Explicit construction of a 5-regular graph on which the random walk exhibits total-
variation cutoff.

• Let A denote the final 20 · 4h vertices comprising level h+ 2, and associate the vertices of A
with those of H1.

3. Levels h+ 3, . . . , 2h+ 2: Product of H1 and a stretched 4-ary tree, defined as follows:

• For each a ∈ A place an h-level L-stretched 4-ary tree Ta.
Connect vertices in T ∗a with their counterparts in T ∗b for ab ∈ E(H1).

• Let B denote the final 20 · 42h vertices comprising level 2h+ 2.

4. Levels 2h+ 3, . . . , 3h+ 2: A forest of 4-ary trees rooted at each vertex of B.

5. Last level: Associate leaves with H2 and interconnect them accordingly.

Finally, the aforementioned parameter L is chosen as follows: Denote by

gap1 = inf
|H1|

�

1−λ(H1)/3
�

, gap2 = inf
|H2|

�

1−λ(H2)/4
�

the minimum spectral-gaps in the explicit expanders that were embedded in our construction (re-
calling from the introduction that gapi > 0 for both i = 1,2 by the definition of expanders together
with the discrete analogue of Cheeger’s inequality), and define

L =
�

2
p
gap1

∨
16

gap2
∨ 32

�

. (2.1)

See Fig. 1 for an illustration of the above construction.

For some insight to the various building blocks of the construction, observe that the height of the
SRW on a regular tree behaves as a one-dimensional biased random walk with the bias in the
direction of the leaves. As the distribution is concentrated on the levels closest to the leaves, the
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SRW mixes once it is reaches the leaves and is approximately uniform on its level. When the walk
is started from the first h+ 2 levels, the addition of the expander H1 ensures that it is uniform on
its level by the time it reaches the leaves. Walks started from below level h+ 2 are not necessarily
mixed upon reaching the leaves yet subsequently mix after that point due to the expander H2 in a
total time which is strictly less than the time it takes the walk from the root to merely reach the
leaves. Our construction thus ensures that the root is the worst case starting position for mixing and
that the SRW started at it exhibits cutoff.

We begin by establishing the expansion of the above constructed G. Throughout the proof we omit
ceilings and floors in order to simplify the exposition.

Lemma 2.1. Let κ= (ch(H2)∧1)/3 for H2 our explicit 4-regular expander. For any integer L > 0, the
Cheeger constant of the above described 5-regular graph G with parameter L satisfies ch(G) ≥ κ/25L.
Moreover, the induced subgraph G̃ on the last h levels (i.e., levels 2h+ 2, . . . , 3h+ 2) has ch(G̃)≥ κ.

Proof. First consider the entire graph G. Since we are only interested in a lower bound on ch(G),
clearly it is valid to omit edges from the graph, in particular we may erase the cross edges between
any subtrees T ∗u ,T ∗v described in Items 2,3 of the construction. This converts every stretched edge
of the 5-regular tree of G simply into a 2-path (one where all interior vertices have degree 2) of
length L.

Next, we contract all the above mentioned 2-paths into single edges and denote the resulting graph
by F . The next simple claim shows that this decreases the Cheeger constant by at most O(L).

Claim 2.2. Let F be a connected graph with maximal degree ∆ and let G be a graph on at most 3
2
|F |

vertices obtained via replacing some of the edges of F by 2-paths of length L. Then ch(G)≥ ch(F)/∆2 L.

Proof. Let X ⊂ V (G) be a set of cardinality at most |G|/2 achieving the Cheeger constant of G. We
may assume that ∆ ≥ 3 otherwise F is a disjoint union of paths and cycles and the result holds
trivially.

Notice that if X contains two endpoints of a 2-path P = (x0, . . . , xL) while only containing k < L−1
interior vertices of P then we can assume that X ∩P = {x0, . . . , xk, xL}, i.e. all the interior vertices
are adjacent (this maintains the same cardinality of X while not increasing ∂ X ). With this in mind,
modify the set X into the set X ′ by repeating the following operation: As long as there is a 2-path P
as above (with x0, . . . , xk and xL in X for some k < L−1) we replace xL by xk+1. This maintains the
cardinality of the set while increasing its edge-boundary by at most∆−2 (as xL formerly contributed
at least 1 edge to this boundary due to xL−1 /∈ X ). Altogether, this yields a set X ′ where no 2-path
P = (x0, . . . , xL)* X ′ has both x0, xL ∈ X ′, while X ′ satisfies

|∂ X ′|/|X ′| ≤ (∆− 1) ch(G) .

The obtained subset X ′ is possibly disconnected, and we will next argue that its connected compo-
nents satisfy an appropriate isoperimetric inequality. Consider X ′′, the connected component of X ′

that minimizes |∂ X ′′|/|X ′′|. If X ′′ is completely contained in the interior of one of the new 2-paths
then the statement of the claim immediately holds since

ch(G)≥
|∂ X ′|

(∆− 1)|X ′|
≥

|∂ X ′′|
(∆− 1)|X ′′|

≥
2

(L− 1)(∆− 1)
≥

ch(F)
∆2 L

,
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with the last inequality due to the fact ch(F) ≤∆. Suppose therefore that this is not the case hence
we may now assume that X ′′ contains at least one endpoint of any 2-path it intersects.

Let Y = X ′′∩V (F), i.e. the subset of the vertices of F obtained from X ′′ by excluding any vertex that
was created in G due to subdivision of edges. Observe that our assumption on X ′ implies that

|∂ Y |= |∂ X ′′| ,

since either a 2-path P is completely contained in X ′′ (not contributing to ∂ X ′′) or P ∩ X =
{x0, . . . , xk} for some k < L (contributing the edge xk, xk+1 to ∂ X ′′, corresponding to the edge
x0, xL in ∂ Y ).

It remains to consider |Y |. Clearly, X ′′ can be obtained from Y by adding at most ∆ new 2-paths
with L− 1 new interior points per vertex, hence

|Y | ≥ |X ′′|/∆L .

On the other hand, since |Y | ≤ |X ′′| ≤ |G|/2 and |G| ≤ 3
2
|F | we have

|Y |/|F | ≤ 3
2
|X ′′|/|G| ≤ 3

4
,

which together with the fact that |X ′′| ≤ |G|/2 implies that

|V (F) \ Y | ≥ 1
4
|F | ≥ 1

6
|G| ≥ 1

3
|X ′′| ≥ |X ′′|/∆L .

Altogether,

ch(F)≤
|∂ Y |

|Y | ∧ |V (F) \ Y |
≤∆L

|∂ X ′′|
|X ′′|

≤∆2 L ch(G) . �

In light of the above claim we have ch(G) ≥ ch(F)/25L where the graph F is the result of taking a
complete 5-regular tree of height 3h+2 levels and connecting its 5 ·43h+1 leaves, denoted by F ′, via
the 4-regular expander H2. It therefore remains to show that ch(F)≥ κ.

Let S be a set of size s ≤ |F |/2 vertices that achieves ch(F). Define its subset of the leaves S′ = S∩ F ′

and set s′ = |S′|. Since |F ′| ≥ 3
4
|F | we clearly have s′ ≤ s ≤ 2

3
|F ′| hence

�

|S′| ∧ |F ′ \ S′|
�

≥ s′/2. We
thus have the following two options:

1. s′ ≥ 2
3
s: In this case

|∂F S| ≥ |∂F ′S
′| ≥ ch(H2)s

′/2≥ ch(H2)s/3 .

2. s′ < 2
3
s: Letting T5 denote the infinite 5-regular tree (whose Cheeger constant equals 3) we

get
|∂F S| ≥ ch(T5)(s− s′)− s′ = 3s− 4s′ > s/3 .

Altogether we deduce that

ch(G)≥ ch(F)≥ (ch(H2)∧ 1)/3= κ .

The second part of the lemma (the statement on the subgraph G̃) follows from essentially the same
argument given above for ch(F), as G̃ is precisely a forest of 5-regular trees of height h where all
the leaves are connected via the expander H2. Again we get ch(G̃)≥ κ, completing the proof. �
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Consider the SRW started k ≤ h levels above the bottom (i.e. at level 3h+2−k) of the graph G. The
height of the walk is then a one-dimensional biased random walk with positive speed 3

5
, implying

that it would reach the bottom after 5
3
k+ o(h) steps with high probability.

On the other hand, if the SRW is started closer to the root, i.e. at level 2h+ 2− k, then the one-
dimensional random walk is delayed by two factors, horizontal (cross-edges) and vertical (stretching
the edges into paths). Until reaching level 2h+ 2 (after which the previous analysis applies), these
delays are encountered along 5

3
k+ o(h) stretched edges with the following effect:

• The former incurs a laziness delay with probability 3
5

whenever the walk is positioned on an
interior vertex of a 2-path.

• The latter delays the walk by the passage time of a SRW through an L-long 2-path, where the
walk leaves the origin with probability 1.

It is well-known (and easy to derive) that the expected passage time of the one-dimensional SRW
from 0 to ±L is precisely L2 and the expected number of visits to the origin by then (including the
starting position) is exactly L. It thus follows that the expected delay of the one-dimensional walk
representing our height in the tree along a single stretched edge is

5
2
(L2− L) + L = 1

2
L(5L− 3) .

Combining the above cases we arrive at the following conclusion:

Claim 2.3. Consider the SRW on the graph G started at a vertex on level s ∈ {0, . . . , 3h+ 1}. Set
α= s/h and let τ` be the hitting time of the walk to the leaves (i.e. to level 3h+ 2). Then w.h.p.

τ` =

¨

(5
3
+ o(1))

�

L(5L− 3)(1− α
2
) + 1

�

h If 0≤ α≤ 2 ,
5
3
(3−α)h+ o(h) If α≥ 2 .

The next lemma relates τ`, the hitting time to the leaves (addressed by the above claim), and the
mixing of the SRW on the graph.

Lemma 2.4. Let ε > 0, let s0 be some vertex on level l0 ∈ {0, . . . , h+ 2} and T = (1+ δ)Es0
τ` for

δ > 0 fixed, where τ` is the hitting time of the SRW to the leaves. Then ‖Ps0
(ST ∈ ·)−π‖TV < ε for

any sufficiently large h.

Proof. Let (St) denote the SRW started at some vertex s0 in level l0 ≤ h+ 2 and π be the uniform
distribution on V (G). Let (S̃t) be a random walk started from the uniform distribution S̃0 ∼ π. Write
Li for i ∈ {0, . . . , 3h+2} for the vertices of level i in G (accounting for all the vertices except interior
ones along the 2-paths of length L corresponding to stretched edges) and letψ : G→ {0, . . . , 3h+2}
map vertices in the graph to their level (while mapping interior vertices of 2-paths to the lower of
their endpoint levels).

Further let Ω = {2h+ 3, . . . , 3h+ 2}. Clearly, for large enough h we have

P
�

ψ(S̃0) /∈ Ω
�

<
ε

10
.

Furthermore, due to the bias of the SRW towards the leaves and the fact that τ` = (1+o(1))Eτ` � h
(recall Claim 2.3 and that L is fixed) we deduce that ψ(ST ) >

5
2
h except with probability exponen-

tially small in h, and in particular for any sufficiently large h

P
�

ψ(ST ) /∈ Ω
�

<
ε

10
.
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Therefore, an elementary calculation shows that if ψ(ST ) and ψ(S̃T ) are close in total-variation and
so are ST given ψ(ST ) = i and S̃T given ψ(S̃T ) = i for all i ∈ Ω, then the required statement on
‖P(ST ∈ ·)−π‖ would follow. Namely, if we should show that at time t = T we have





P
�

St ∈ · |ψ(St) = i
�

−P
�

S̃t ∈ · |ψ(S̃t) = i
�







TV <
ε

5
for all i ∈ Ω , (2.2)





P
�

ψ(St) ∈ ·
�

−P
�

ψ(S̃t) ∈ ·
�







TV <
ε

5
, (2.3)

then we would get that ‖P(St ∈ ·)−π‖TV < ε (with room to spare).

Examine the period spent by (St) in levels {h+2, . . . , 2h+2}. The graph in these levels is essentially
a product of a 4-ary tree whose edges are stretched into L-long 2-paths and the expander H1. Let
ϕ : G → H1 map the vertices in these levels to their corresponding vertices in H1, and let τ0,τ1 be
the hitting times of (St) to levels 3

2
h and 2h+ 2 respectively.

As argued above, the SRW started at level 2h+2− k is a one-dimensional biased random walk that
w.h.p. passes through (1+ o(1))5

3
k + o(h) stretched edges until reaching level 2h+ 2 for the first

time. In particular, between times τ0,τ1 the walk w.h.p. passes through (1 + o(1))5
6
h stretched

edges.

Along each stretched edge among levels {h+ 2, . . . , 2h+ 2}, the walk traverses a cross-edge in H1
(that is, ϕ(St+1) is uniformly distributed over the neighbors of ϕ(St) in H1) with probability 3

5
whenever it is in an interior vertex in the 2-path, for a total expected number of 3

2
(L2 − L) such

moves.

Finally, due to its bias towards the leaves, with high probability the SRW from level 3
2
h reaches level

2h+ 2 (the vertices B) before hitting level h+ 2. Applying CLT we conclude that the SRW w.h.p.
traverses

(5
4
+ o(1))L(L− 1)h> L2h

cross-edges (each corresponding to a single step of the SRW on H1) between times τ0,τ1, where
the last inequality holds for L > 5 and large enough h. This amounts to at least L2h consecutive
steps of a SRW along H1.

Aiming for a bound on the total-variation mixing, we may clearly condition on events that occur
with high probability: Condition therefore throughout the proof that indeed the above statement
holds.

In particular, letting (X t) be the SRW on the expander H1 and recalling that |A| = |H1| = 20 · 22h

and r = L2h it follows that

max
s0








Ps0

�

ϕ(Sτ1
) ∈ ·

�

− |A|−1









TV
≤max

x0





Px0

�

X r ∈ ·
�

− |A|−1






TV

≤
1

2
max

x0





Px0

�

X r ∈ ·
�

− |A|−1






2 .

Recalling that H1 is a 3-regular with second largest (in absolute value) eigenvalue λ(H1) and writing
γ
4
= 1− λ(H1)

3
,

max
x0





Px0

�

X r ∈ ·
�

− |A|−1






2 ≤
p

|A|exp
�

−γr
�

< 5exp
�

−(γL2− log 2)h
�

< |A|−2 ,
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with the last inequality justified for any sufficiently large h provided that

L >

p

5 log2
p

1−λ(H1)/3
, (2.4)

a fact inferred from the choice of L in (2.1). In this case, for any s0

Ps0

�

Sτ1
= u
�

=
1+ o(1)
|A|

for every u ∈ A .

By symmetry we now conclude that for any i ∈ Ω and t ≥ τ1 we have

Ps0

�

St ∈ · |ψ(St) = i
�

=
1+ o(1)
|Li|

for every i ∈ {2h+ 2, . . . , 3h+ 2} .

This immediately establishes (2.2).

To obtain (2.3), note that S̃t for t = τ1 w.h.p. satisfies ψ(S̃0) >
5
2
h. Conditioned on this event

we can apply a monotone-coupling to successfully couple (St) and (S̃t) such that ψ(Sτ`) = ψ(S̃τ`),
yielding (2.3).

The concentration of τ` established in Claim 2.3 carries the above two bounds to time T , thus
completing the proof. �

Let tMIX(ε; x) denote the total-variation mixing time from a given starting position x . That is, if (X t)
is an ergodic Markov chain on a finite state space Ω with stationary distribution π then

tMIX(ε; x)
4
=min

�

t : ‖Px(X t ∈ ·)−π‖TV < ε
	

.

The above lemma gives an upper bound on this quantity for the SRW started at one of the levels
{0, . . . , h+ 2}, which we now claim is asymptotically tight:

Corollary 2.5. Consider the SRW on G started at some vertex s0 on level l0 ∈ {0, . . . , h+ 2} and let
τ` be the hitting time of the walk to the leaves. Then for any fixed 0 < ε < 1 we have tMIX(ε; s0) =
(1+ o(1))Es0

τ`.

Proof. The upper bound on tMIX(ε; s0) was established in Lemma 2.4.

For a matching lower bound on tMIX(1− ε; s0) choose some fixed integer K = O(log(L/ε)) such that
the bottom K levels of the graph comprise at least a (1− ε)-fraction of the vertices of G, i.e.

∑

i>3h+2−K

�

�Li

�

�> (1− ε)|G| .

The lower bound now follows from observing that, by the same arguments that established
Claim 2.3, the hitting time from level l0 to level 3h+ 2 − K is w.h.p. (1 − o(1))Eτ` for any suf-
ficiently large h. �

Having established the asymptotic mixing time of the SRW started at the top h levels, we next wish
to show that from all other vertices the mixing time is faster.
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Claim 2.6. Let (St) be the SRW started at some vertex x in level ψ(x) > h. For every 0 < ε < 1 and
any sufficiently large h we have tMIX(ε; x)< 6L2h.

Proof. Let G′ denote the induced subgraph on the bottom h + 1 levels of the graph (i.e., levels
2h+ 2, . . . , 3h+ 2). Since |G′| = (1 − o(1))|G| it clearly suffices to show that (St) mixes within
total-variation distance ε on G′.

By Claim 2.3 (taking the worst case α = 1 corresponding to ψ(x) = h) with high probability we
have

τ` ≤ (
5
6
+ o(1))[L(5L− 3) + 2]h< 5L2h

4
= t1 ,

where the above strict inequality holds for any sufficiently large h (as L ≥ 1).

Recall that ch(G′)≥ κ= (ch(H2)∧ 1)/3 by Lemma 2.1, where H2 is the explicit 4-regular expander
with second largest (in absolute value) eigenvalue λ(H2). Further consider the graph G′′ obtained
by adding to G′ a perfect matching on level 2h+ 2, thus making it 5-regular. Clearly, adding edges
can only increase the Cheeger constant and so ch(G′′) ≥ κ as well. Moreover, the discrete form
of Cheeger’s inequality ([5, 6, 12, 20]), which for a d-regular expander H with second largest (in
absolute value) eigenvalue λ states that

d −λ
2
≤ ch(H)≤

p

2d(d −λ) ,

here gives the following:

4−λ(H2)
6

∧
1

3
≤ κ≤ ch(G′′)≤

p

10(5−λ(G′′)) .

In particular we obtain that γ
4
= 1− λ(G′′)

5
satisfies

γ >

�

4− (λ(H2) ∨ 2)

6
p

50

�2

(2.5)

while a simple random walk (X t) on G′′ is well-known to satisfy

max
x0





Px0

�

X t ∈ ·
�

− |G′′|−1






2 ≤
p

|G′′|exp
�

−γt
�

.

As |G′′| � 26h we infer that after

3 log 2

γ
h+

O(log(1/ε))
γ

<
9

4γ
h
4
= t2

(the strict inequality holding for large enough h) steps we have

max
x0








Px0

�

X t2
∈ ·
�

− |G′′|−1









TV
≤ ε/2 .

Recall that our choice of t1 is such that τ` < t1 w.h.p., i.e. the SRW reaches level 3h+ 2 by that
time, and thereafter (due to its bias towards the leaves) it does not revisit level 2h+ 2 until time
t1 + t2 except with a probability that is exponentially small in h. Since G and G′′ are identical
on levels 2h+ 3, . . . , 3h+ 2 we deduce that w.h.p. the SRW performs at least t2 consecutive steps
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in G′′ following τ`. Altogether, for large enough h we have







Px

�

St1+t2
∈ ·
�

−π









TV
< ε and so

tMIX(ε; x)< t1+ t2.

Finally, bearing (2.5) and the choice of L in (2.1) in mind,

L ≥
64

4− (λ(H2) ∨ 2)
>

Æ

9
4
· 6
p

50

4− (λ(H2) ∨ 2)
, (2.6)

hence L2 > 9/4γ and so t2 ≤ L2h and t1+ t2 ≤ 6L2h, as required. �

We now claim that the worst-case mixing time within any 0< ε < 1 is attained by an initial vertex at
distance o(h) from the root. Fix 0< ε < 1, let x be the initial vertex maximizing tMIX(ε; x) and recall
that ψ(x) denotes its level in the graph. The combination of Claim 2.3 and Corollary 2.5 ensures
that if ψ(x)≤ h then necessarily ψ(x) = o(h), in which case

tMIX(ε; x) =
�

5
3
+ o(1)

�

(5L2− 3L+ 1)h
4
= t? . (2.7)

An immediate consequence of the requirement 2.6 on L is that L ≥ 50, hence t? > 8L2h for any
sufficiently large h. Therefore, we cannot have ψ(x) > h since by Claim 2.6 that would imply that
tMIX(ε; x)< 6L2h contradicting the fact that x achieves the worst-case mixing time.

Overall we deduce that for any 0< ε < 1 we have

tMIX(ε) =max
x

tMIX(ε; x) = (1+ o(1))t? ,

thus confirming that the SRW on the above constructed family of 5-regular expanders exhibits total-
variation cutoff from a worst starting location.

It remains to describe how our construction can be (relatively easily) modified to be 3-regular rather
than 5-regular.

The immediate step is to use binary trees instead of 4-ary trees, after which we are left with the
problem of embedding the explicit expanders H1 and H2 without increasing the degree. This will be
achieved via the line-graphs of these expanders, hence our explicit expanders will now have slightly
different parameters:

• H1 : An explicit 3-regular expander on 2h+1 vertices.

• H2 : An explicit 3-regular expander on 23h+1 vertices.

Recall that given a tree rooted at some vertex u, denoted by Tu, its edge-stretched version is obtained
by replacing each edge by a 2-path of length L, and the collection of all new interior vertices (due
to subdivision of edges) is denoted by T ∗u . The modified construction is as follows:

1. Levels 0,1,2: First levels of a binary tree.

• Denote by U = {u1, . . . , u6} the vertices in level 2.

2. Levels 3, . . . , h+ 2: Stretched binary trees rooted at U:
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• Connect vertices from T ∗ui
(interior vertices along 2-paths) to the corresponding (isomor-

phic) vertices in T ∗u2i
, i.e. inter-connect the interior vertices via perfect matchings.

• Denote by A the 6 · 2h vertices in level h+ 2.

3. Levels h+ 3, . . . , 2h+ 2: Edge-stretched binary trees rooted at A and inter-connected via the
line-graph of H1 using auxiliary vertices:

• Associate each binary tree Tai
rooted at A to an edge of H1.

• For each x ∈ T ∗ai
(interior vertex on a 2-path) we connect it to a new auxiliary vertex x ′

and associate x ′ with a unique edge of H1.

• We say that x ∈ T ∗ai
and y ∈ T ∗a j

are isomorphic if the isomorphism from Tai
to Ta j

maps x to y . Add |H1| new auxiliary vertices per equivalence class of |A| such isomorphic
vertices, identify them with the vertices of H1 and connect every new vertex v to the
auxiliary vertices x ′, y ′, z′ representing the edges incident to it.

4. Levels 2h+ 3, . . . , 3h+ 2: A forest of binary trees.

5. Last level: leaves are inter-connected via the line-graph of H2:

• Associate the 6 · 23h vertices with the edges of H2.

• Add |H2| new auxiliary vertices, each connected to the leaves corresponding to edges that
are incident to it in H2.

It is easy to verify that the walk along the cross-edges of the T ∗ai
’s now corresponds to a lazy (un-

biased) random walk on the edges of H1. Similarly, the walk along the cross-edges connecting
the leaves corresponds to the SRW on the edges of H2. Hence, all of the original arguments re-
main valid in this modified setting for an appropriately chosen fixed L. This completes the proof of
Theorem 1. �

2.2 Explicit expanders without total-variation cutoff

The explicit cubic expanders with cutoff constructed in the previous section (illustrated in Fig. 1)
can be easily modified so that the SRW on them from a worst starting position would not exhibit
total-variation cutoff.

To do so, recall that in the above-described family of graphs, each vertex of the subset U was the
root of a regular tree of height h whose edges were stretched into L-long 2-paths (see Item 2 of
the construction). We now tweak this construction by stretching some of the edges into 2-paths
of length L′. Namely, for subtrees rooted at the odd vertices in level h/2 of these trees we stretch
the edges into paths of length L′ > L. Under this modified stretching the trees Tui

are clearly still
isomorphic, hence the cross edges are inter-connecting 2-paths of the same lengths.

By the arguments above, starting from any level ` > h/2 the mixing is faster compared to the root,
and if L′/L is sufficiently small then the root remains the asymptotically worst starting position.
However, starting from the root (and in fact, starting from any level ` ≤ h/2) the hitting time to
the set A is no longer concentrated due to the odd/even choice of subtree at level h/2. Therefore,
from the worst starting position we have that the hitting time to the leaves is concentrated on two
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G

. . .

Figure 2: Extension of the explicit expanders with cutoff to graphs with prescribed order of cutoff
location.

distinct values (differing by a fixed multiplicative constant), each with probability 1
2
− o(1). This

implies that the ratio tMIX(
1
4
)/tMIX(

3
4
) is bounded away from 1 and in particular this explicit family

of expanders does not have total-variation cutoff.

2.3 Proof of Theorem 2: cutoff at any prescribed location order

Suppose H is an explicit 3-regular expander on m vertices provided by Theorem 1, and recall that
the SRW on this graph exhibits cutoff at C log m where C > 0 is some absolute constant. Our graph
G will be the result of replacing every edge of H by the 3-regular analogue of a 2-path, which we
refer to as a “cylinder”, illustrated in Fig. 2. The length of each cylinder is set to be L = L(m)
satisfying L ≡ 1 (mod 4). Notice that the total number of vertices in G is

n= |V (H)|+ |E(H)|3
2
(L− 1) =

�

1+ 9
4
(L− 1)

�

m . (2.8)

Since m→∞ and the SRW on H, started at a worst-case starting position, traverses (C+o(1)) log m
edges until mixing, we infer from CLT, as well as the fact that the expected passage-time through an
L-long cylinder is L2, that the analogous random walk on G has cutoff at

tMIX = C L2 log m= (C + o(1))L2 log(n/L) . (2.9)

When L(m) = O(1) we have tMIX � log n. On the other extreme end, when L grows arbitrarily
fast as a function of m we obtain that it approaches n arbitrarily closely but we must still having
L = o(n) since n/L � m → ∞. In that case tMIX approaches n2 arbitrarily closely while having a
strictly smaller order.

To complete the construction it remains to observe that we may choose L and m so that |Gn| � n
and tMIX � tn. This can be achieved by first selecting L so that tn � (C + o(1))L2 log(n/L) and then
selecting a graph constructed through Theorem 1 on m vertices for some m � n/L (note that in the
theorem we construct graphs of size essentially (c+ o(1))23h so this is always possible).
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To show that there is no cutoff whenever tMIX � n2 we will argue that in that case we have gap =
O(n−2), in contrast to the necessary condition for cutoff gap−1 = o(tMIX) due to Peres (cf. [16]),
discussed in the introduction.

Lemma 2.7. Let G be a graph on n vertices with degrees bounded by some ∆ fixed on which the SRW
has tMIX � n2. Then the spectral-gap of the walk satisfies gap � n−2. In particular, the SRW on G does
not exhibit cutoff.

Proof. Observe that the above graph must satisfy diam(G) ≥ cn for some fixed c > 0 as it is well-
known (cf., e.g., [4]) that the lazy walk on any graph H has tMIX = O(diam(H)vol(H)) and in our
case vol(G)≤∆n= O(n).

Let x , y ∈ V (G) be two vertices whose distance in G is

N
4
= distG(x , y) = diam(G)≥ cn .

Our lower bound on the gap will be derived from its representation via the Dirichlet form, according
to which

gap= inf
f

E ( f )
Var( f )

= inf
f

1
2

∑

x ,y∈Ω
�

f (x)− f (y)
�2
π(x)P(x , y)

Varπ f
, (2.10)

where π is the (uniform) stationary measure and P is the transition kernel of the SRW. As a test-
function f : V (G)→R in the above form choose

f (v)
4
= distG(x , v) .

Clearly we have E ( f ) ≤ 1 and a lower bound of order n2 on the variance follows from the fact that
two sets of linear size each have a linear discrepancy according to f . Namely,

π
�

f −1({0, . . . , bN/4c})
�

≥
c

4
, π
�

f −1({d3N/4e, . . . , N})
�

≥
c

4
,

as a result of which
Var( f )≥ (c/4)(N/4)2 > c′n2 .

We conclude that gap= O(n−2), thus completing the proofs of Lemma 2.7 and Theorem 2. �

3 Concluding remarks and open problems

• Recent results in [15] showed that almost every regular expander graph has total-variation
cutoff (prior to that there were no known examples for bounded-degree graphs with this phe-
nomenon); here we provided a first explicit construction for bounded-degree expanders with
cutoff.

• The expanders constructed in this work are non-transitive. Moreover, our proof exploits their
highly asymmetric structure in order to control the mixing time of the random walk from var-
ious starting locations. It would be interesting to obtain an explicit construction of transitive
expanders with total-variation cutoff.
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• A slight variant of our construction gives an example of a family of expanders where the SRW
does not exhibit cutoff, thereby disagreeing with Peres’ cutoff-criterion. Both here and in an-
other such example due to Peres and Wilson [17] the expanders are non-transitive (hence the
restriction to transitive graphs in Peres’ conjecture stated next).

• While it is conjectured by Peres that the random walk on any family of transitive bounded-
degree expanders exhibits total-variation cutoff, there is not even a single example of such a
transitive family where cutoff was proved (or disproved).

• For general (not necessarily expanding) bounded-degree graphs on n vertices it is well-known
that tMIX = O(n2). Here we showed that cutoff can occur essentially anywhere up to o(n2) by
constructing cubic graphs with cutoff at any such prescribed location. Furthermore, this is tight
as we prove that if tMIX � n2 then cutoff cannot occur.
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