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Abstract

Let T be a tree with induced partial order �. We investigate centered Gaussian processes X =
(X t)t∈T represented as

X t = σ(t)
∑

v�t

α(v)ξv

for given weight functions α and σ on T and with (ξv)v∈T i.i.d. standard normal. In a first
part we treat general trees and weights and derive necessary and sufficient conditions for the
a.s. boundedness of X in terms of compactness properties of (T, d). Here d is a special metric
defined via α and σ, which, in general, is not comparable with the Dudley metric generated by
X . In a second part we investigate the boundedness of X for the binary tree. Assuming some
mild regularity assumptions about α, we completely characterize homogeneous weights α and
σ with X being a.s. bounded .

Key words: Gaussian processes, processes indexed by trees, bounded processes, summation on
trees, metric entropy.

AMS 2000 Subject Classification: Primary 60G15; Secondary: 06A06, 05C05.

Submitted to EJP on December 13, 2010, final version accepted March 4, 2011.

739

http://www.math.washington.edu/~ejpecp/


1 Introduction

The aim of the present paper is to investigate boundedness properties of a special class of centered
Gaussian processes X = (X t)t∈T indexed by some tree T . Those processes are represented as

X t := σ(t)
∑

v�t

α(v)ξv , t ∈ T , (1.1)

where α and σ are some (non-negative) weight functions on T , the (ξv)v∈T are i.i.d. standard
normal and ” � ” denotes the partial order on T generated by its tree structure. Similar processes
(with σ ≡ 1) were investigated by X. Fernique in his constructions of majorizing measures [4].

More recently, some processes of this class were extensively studied (by methods very different from
ours) and applied in relation to various topics, see e.g. the literature on Derrida’s random energy
model [1] or displacements in random branching walks [11], to mention just a few. Of course, using
peculiarities of a specific situation one obtains deeper results about processes (1.1) than those for
the general case presented below.

Our interest in this class of processes came from recent investigations about compactness properties
of summation operators on trees (cf. [8], [9] and [10]). Recall that each operator from `2(T )
into `∞(T ) generates in natural way a centered Gaussian process indexed by T . And in that way
processes X as in (1.1) stem from the summation operators treated in the mentioned works (cf. [9]
for more details). Fortunately, many tools and methods used for those operators turned out to be
useful for the generated processes as well.

The basic question investigated in this paper is as follows: Given a tree T , characterize weights α
and σ such that the process X defined by (1.1) is a.s. bounded, i.e., that

P

�

sup
t∈T
|X t |<∞

�

= 1 . (1.2)

Let us put this question into the wider context of general Gaussian processes. Take, for a while, an
arbitrary index set T and let X = (X t)t∈T be a centered Gaussian process indexed by T . Then its
covariance function is given by

RX (t, s) := EX t Xs , t, s ∈ T ,

and the Dudley distance dX on T is defined by

dX (t, s) :=
�

E|X t − Xs|2
�1/2

, t, s ∈ T . (1.3)

A basic question, going back to A.N. Kolmogorov, about Gaussian processes is as follows: Character-
ize covariance functions RX (or, equivalently, metrics dX ) for which X is a.s. bounded. Criteria for
many other sample path properties such as continuity, uniform and local Hölder property, behavior
of suprema, etc. follow relatively easily once the boundedness problem is settled.

A first crucial step to answer the boundedness question was done by R.M. Dudley in 1966 (see [2]).
To formulate his result we have to introduce the concept of covering numbers. Thus let ρ be an
arbitrary metric on T and, if ε > 0, those numbers are defined by

N(T,ρ,ε) := inf







n≥ 1 : T =
n
⋃

j=1

Bε(t j)






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where Bε(t j) are open ε–balls (w.r.t. the metric ρ) in T . Dudley’s theorem asserts that
∫ ∞

0

p

log N(T, dX ,ε)dε <∞ (1.4)

yields the a.s. boundedness of X . Next, in 1969, V.N. Sudakov (see [12]) showed that

sup
ε>0
ε
p

log N(T, dX ,ε)<∞ (1.5)

is necessary for the a.s. boundedness of X . There is a small but important gap between conditions
(1.4) and (1.5). Consequently, processes X in the critical case, i.e. for which (1.5) holds while
(1.4) is violated, are of special interest. Below we will give some examples of bounded as well as
unbounded processes corresponding to the critical case (cf. Corollary 6.3).

Giving necessary and sufficient conditions for the boundedness required a language different from
metric entropy. X. Fernique proved that if there is a probability measure µ (majorizing measure) on
T for which

sup
t∈T

∫ ∞

0

r

log
1

µ(Bε(t))
dε <∞ , (1.6)

where Bε(t) denotes the ε–ball centered at t w.r.t. the Dudley distance dX , then X is a.s. bounded
(cf. [3] and [5]).

Finally, in 1987 M. Talagrand ([13]) answered the question about boundedness of Gaussian pro-
cesses completely. He confirmed an earlier conjecture of Fernique by showing that X is a.s. bounded
if and only if a measure satisfying (1.6) exists, thus establishing the Majorizing Measure Criterion
for boundedness. In subsequent works [15, 16], Talagrand extended his technique to non–Gaussian
processes; majorizing measures were replaced by a so called generic chaining construction.

The previous results illustrate the crucial role of dX and its compactness properties for the bounded-
ness of a Gaussian process X . Note that for X defined by (1.1) the Dudley distance equals

dX (t, s)2 = |σ(t)−σ(s)|2
∑

v�t∧s

α(v)2+σ(t)2
∑

t∧s≺v�t

α(v)2+σ(s)2
∑

t∧s≺v�s

α(s)2 (1.7)

where t ∧ s denotes the infimum of t, s ∈ T in the generated partial order on T .

In our particular setting (1.1), the Majorizing Measure Criterion apparently does not help very much
because it looks hopeless to characterize weights α and σ for which a majorizing measure exists.
Thus a different approach is needed. In a first part we construct a metric d on T such that Dudley’s
and Sudakov’s theorems hold with respect to N(T, d,ε), although d is not comparable with dX . The
main advantage of d is that in many cases its covering numbers are easier to handle than those of
dX . The second part is devoted to binary trees. In the case of homogeneous weights, i.e., the weights
depend only on the order of an element in T , we get an "almost" complete description of weights α
and σ for which X is bounded.

2 Main results

2.1 Some notation and facts about trees

Before stating our main results, let us shortly recall some basic facts about trees needed later on. In
the sequel T always denotes a finite or an infinite tree. We suppose that T has a unique root which
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we denote by 0 and that each element t ∈ T has a finite number of offsprings. Thereby we do not
exclude that some elements do not possess any offspring, i.e., the progeny of some elements may
"die out". The tree structure leads in natural way to a partial order ,,� ” by letting t � s, respectively
s � t, provided there are t = t0, t1, . . . , tm = s in T such that for 1 ≤ j ≤ m the element t j is an
offspring of t j−1. The strict inequalities have the same meaning with the additional assumption
t 6= s. Two elements t, s ∈ T are said to be comparable provided that either t � s or s � t. In the
following, t ∧ s denotes the infimum of t and s in the induced partial order on T .

For t, s ∈ T with t � s the order interval [t, s] is defined by

[t, s] := {v ∈ T : t � v � s}

and in a similar way we construct (t, s] or (t, s) .

A subset B ⊆ T is said to be a branch provided that all elements in B are comparable and, moreover,
if t � v � s with t, s ∈ B, then this implies v ∈ B as well. Of course, finite branches are of the form
[t, s] for suitable t � s.

For any s ∈ T its order |s| ≥ 0 is defined by

|s| := # {t ∈ T : t ≺ s} .

Let ρ be an arbitrary metric on the tree T . Given ε > 0, a set O ⊆ T is said to be an ε–order net
w.r.t. ρ provided that for each s ∈ T there is a t ∈ O with t � s and ρ(t, s)< ε. Let

Ñ(T,ρ,ε) := inf {#{O } : O is an ε–order net of T} (2.1)

be the corresponding order covering numbers. Clearly, we have

N(T,ρ,ε)≤ Ñ(T,ρ,ε) . (2.2)

2.2 Main results

As already mentioned, throughout this paper a special metric d on T , first introduced in [9], plays
an important role. Given weight functions α and σ on T with σ non-increasing, it is defined by

d(t, s) := max
t≺r�s

σ(r)

 

∑

t≺v�r

α(v)2
!1/2

, (2.3)

whenever t � s and we let d(t, s) := d(t ∧ s, t) + d(t ∧ s, s), if t and s are not comparable. A useful
property of d is that a reverse estimate of (2.2) holds. More precisely, as shown in [9, Proposition
3.2]

Ñ(T, d, 2ε)≤ N(T, d,ε) . (2.4)

We will prove the following version of the Dudley and the Sudakov theorem using the metric d
introduced above.
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Theorem 2.1. Suppose that X is defined by (1.1) with weights α and non–increasing σ. Let d be the
metric on T given by (2.3). If

∫ ∞

0

p

log N(T, d,ε)dε <∞ , (2.5)

then X is a.s. bounded. Conversely, if X is a.s. bounded, then necessarily

sup
ε>0
ε
p

log N(T, d,ε)<∞ .

This theorem is not a direct consequence of the above mentioned results due to Dudley and to
Sudakov. Indeed, these classical results are based on compactness properties of (T, dX ) and not on
those of (T, d). We shall see below that, in general, the covering numbers w.r.t. d and to dX may
behave differently. More precisely, in Section 4 we construct a tree and weights α and σ such that
the associated process X is a.s. bounded, and

lim
ε→0

N(T, dX ,ε)
N(T, d,ε)

=∞ .

Moreover, another example shows that in general also dX (t, s)≤ c d(t, s) with some c > 0 cannot be
valid, i.e., the metrics d and dX are not comparable. Thus Theorem 2.1 may be viewed as a special
version of the Dudley and Sudakov theorem for processes of type (1.1). Hereby the main advantage
of Theorem 2.1 is that in many cases d and its covering numbers, involved in the assertion of the
theorem, are easier to handle than those generated by dX (cf. [9], Sections 6 and 7, for concrete
estimates of N(T, d,ε) and also Proposition 6.1 below).

Although N(T, dX ,ε) and N(T, d,ε)may be quite different, at the logarithmic level they must behave
similarly. Indeed, combining Theorem 2.1 with the classical results implies

∫ ∞

0

p

log N(T, dX ,ε)dε <∞ ⇒ sup
ε>0

ε2 log N(T, d,ε)<∞

and
∫ ∞

0

p

log N(T, d,ε)dε <∞ ⇒ sup
ε>0

ε2 log N(T, dX ,ε)<∞ .

Thus it quite natural to ask whether or not the previous implications may even be improved. This is
in fact the case. More precisely, in Section 5 we will prove the following:

Proposition 2.2. We have
∫ ∞

0

p

log N(T, dX , u)du<∞ ⇔
∫ ∞

0

p

log N(T, d, u)du<∞ .

and
sup
ε>0

ε2 log N(T, dX ,ε)<∞ ⇔ sup
ε>0

ε2 log N(T, d,ε)<∞ .
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Remark: Of course, in view of the results due to Dudley and Sudakov, Proposition 2.2 immediately
implies Theorem 2.1. However, the proofs of both statements are strongly interlaced and proving
first Proposition 2.2 turns out to be inconvenient and unnatural. We prefer to begin with prov-
ing Theorem 2.1 by rather direct probabilistic methods and then add few necessary deterministic
arguments proving Proposition 2.2.

The last part of the paper is devoted to binary trees. First we apply Theorem 2.1 for those trees and
next we suppose that the weights are homogeneous, i.e. α(t) and σ(t) only depend on the order of
t. Our results (cf. Theorems 6.2 and 6.4 below) imply the following:

Theorem 2.3. Let T be a binary tree and suppose α(t) = α|t| and σ(t) = σ|t| for two sequences
(αk)k≥0 and (σk)k≥0 of positive numbers with (σk)k≥0 non-increasing.

1. If

sup
n≥1

sup
n≤k≤2n

αk

αn
<∞ , (2.6)

then X defined by (1.1) is a.s. bounded if and only if

sup
n≥1
σn

n
∑

k=1

αk <∞ . (2.7)

In particular, if (αk)k≥0 is non-increasing, then (2.6) is always satisfied, hence in that case X is
a.s. bounded if and only if (2.7) is valid.

2. If (αk)k≥0 is non-decreasing, then X is a.s. bounded if and only if

sup
n≥1
σn
p

n

 

n
∑

k=0

α2
k

!1/2

<∞ .

The organization of the paper is as follows. Section 3 is devoted to the proof of Theorem 2.1. In
Section 4 we thoroughly investigate the relation between the two metrics d and dX . Here the main
observation is, as already mentioned, that N(T, d,ε) and N(T, dX ,ε) may behave quite differently.
Next, in Section 5 we prove Proposition 2.2. In Section 6 we treat processes X indexed by a binary
tree. In particular we prove slightly more general results than those stated in Theorem 2.3. Finally,
we give some interesting examples of bounded as well as unbounded processes indexed by a bi-
nary tree. In particular, these examples show that the boundedness of X may not be described by
properties of the product ασ only. We investigate the relation between X defined in (1.1) and the
one–weight process with weight ασ more thoroughly in Section 7.

3 Proof of Theorem 2.1

Let T be an arbitrary tree and let α and σ be weights on T as before. Define X = (X t)t∈T as in (1.1).
Of course, whenever (1.2) holds, then we necessarily have

sup
t∈T

�

E|X t |2
�1/2

= sup
t∈T
σ(t)

 

∑

v�t

α(v)2
!1/2

<∞ . (3.1)
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Thus let us assume that (3.1) is always satisfied.

In order to prove part one of Theorem 2.1 in a first step we replace the process X by a process X̂
which is easier to handle.

To this end, if k ∈Z, define Ik ⊆ T by

Ik :=
¦

t ∈ T : 2−k−1 < σ(t)≤ 2−k
©

and a new weight σ̂ by
σ̂ :=

∑

k∈Z
2−k1Ik

. (3.2)

Let X̂ be the process defined by α and σ̂ via (1.1), i.e., it holds

X̂ t = σ̂(t)
∑

v�t

α(v)ξv , t ∈ T , (3.3)

and let d̂ denote the distance generated via α and σ̂ as in (2.3). Then the following statement is
valid.

Lemma 3.1.

1. If t � s, then it holds
d(t, s)≤ d̂(t, s)≤ 2 d(t, s) .

Consequently, it follows
Ñ(T, d,ε)≤ Ñ(T, d̂,ε)≤ Ñ(T, d,ε/2) ,

where Ñ(T, d,ε) and Ñ(T, d̂,ε) are the order covering numbers corresponding to the respective
metrics.

2. The process X is a.s. bounded if and only if X̂ is a.s. bounded.

Proof. The first assertion follows easily by the definition of d and d̂ while the second one is a direct
consequence of

|X t | ≤ |X̂ t | ≤ 2 |X t | , t ∈ T .

In view of the preceding lemma, we conclude that it suffices to prove Theorem 2.1 in the case of
non-increasing weights σ of the form

σ :=
∑

k∈Z
2−k1Ik

. (3.4)

The property that σ is non-increasing reflects in the following properties of the partition (Ik)k∈Z of
T .

1. Whenever B ⊆ T is a branch, then for each k ∈ Z either B ∩ Ik = ; or it is an order interval in
T .
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2. If l < k, t ∈ B ∩ Il , s ∈ B ∩ Ik, then this implies t ≺ s.

3. Ik = ; whenever k ≤ k0 for a certain k0 ∈Z.

Thus from now on we may suppose that the weight σ is as in (3.4) with a partition (Ik)k∈Z of T
possessing properties (1), (2) and (3) stated before.

In a second step of the proof of Theorem 2.1, first part, we define a process Y := (Yt)t∈T which may
be viewed as a localization of X . To this end let us write t ≡ s provided there is a k ∈ Z such that
t, s ∈ Ik. With this notation we set

Yt := σ(t)
∑

v�t
v≡t

α(v)ξv , t ∈ T . (3.5)

It is an easy deal to relate the boundedness of X with that of Y .

Lemma 3.2. The process Y is a.s. bounded if and only if X is a.s. bounded.

Proof. Actually, we establish simple linear relations between Y and X , see (3.6) and (3.8) below.
For any integers `≤ k and any t ∈ Ik set B`(t) := [0, t]∩ I`. Then we have

X t = 2−k
∑

`≤k

∑

v∈B`(t)

α(v)ξv

=
∑

`≤k

2−(k−`) · 2−`
∑

v∈B`(t)

α(v)ξv

=
∑

`

2−(k−`)Yλ`(t), (3.6)

where the last sum is taken over `≤ k such that B`(t) 6= ; and λ`(t) :=max{s : s ∈ B`(t)}. It follows
from (3.6) that the boundedness of Y yields that of X .

To prove the converse statement of Lemma 3.2, take an arbitrary t ∈ T and consider two different
cases.
If t ≡ 0 (recall that 0 denotes the root of T), then by the definition of Y we simply have Yt = X t .

Otherwise, if t 6≡ 0, let
λ−(t) =max{s : s � t, s 6≡ t}. (3.7)

By the definition of Yt we obtain

Yt = σ(t)
∑

λ−(t)≺v�t

α(v)ξv

= σ(t)







∑

v�t

α(v)ξv −
∑

v�λ−(t)

α(v)ξv







= X t −
σ(t)

σ(λ−(t))
Xλ−(t). (3.8)

Since the weight σ is non-increasing, by λ−(t) � t we get σ(t)
σ(λ−(t)) ≤ 1. It follows from (3.8) that if

X is a.s. bounded this is also valid for Y as claimed. This completes the proof.
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In the next step we calculate the Dudley distance generated by Y and compare Ñ(T, dY ,ε) with
Ñ(T, d,ε). Recall that Ñ(T, dY ,ε) and Ñ(T, d,ε) are the corresponding order covering numbers as
introduced in (2.1).

Lemma 3.3. Suppose α(0) = 0, hence Y0 = 0 a.s. Then it follows that

N(T, dY ,ε)≤ Ñ(T, dY ,ε)≤ Ñ(T, d,ε) + 1 . (3.9)

Proof. If t � s, then we get

dY (t, s)2 = σ(s)2
∑

t≺v�s

α(v)2 = d(t, s)2 if t ≡ s

and
dY (t, s)2 = E|Yt |2+E|Ys|2 if t 6≡ s .

Given ε > 0 let O ⊆ T be an ε–order net w.r.t. the metric d. Take s ∈ T arbitrarily. Then there is a
t ∈ O such that t � s and d(t, s) < ε. If t ≡ s, then this implies dY (t, s) = d(t, s) < ε as well. But if
t 6≡ s, then we get

dY (0, s) =
�

E|Ys − Y0|2
�1/2

=
�

E|Ys|2
�1/2

= σ(s)









∑

v�s
v≡s

α(v)2









1/2

≤ σ(s)

 

∑

t≺v�s

α(v)2
!1/2

≤ d(t, s)< ε .

In different words, the set O ∪{0} is an ε–order net of T w.r.t. dY . Of course, this implies the second
inequality in (3.9), the first one being trivial. Thus the proof is complete.

Proof of Theorem 2.1, first part: Without loosing generality we may assume α(0) = 0. Indeed,
write

X t = σ(t)
∑

v�t

α(v)ξv = σ(t)
∑

0≺v�t

α(v)ξv +σ(t)α(0)ξ0

and observe that supt∈T σ(t) <∞. Moreover, the metric d is independent of α(0). Note that this
number never appears in the evaluation of d(t, s) for arbitrary t, s ∈ T .

Thus let us assume now that (2.5) is valid. Then (2.4) implies
∫ ∞

0

p

log Ñ(T, d,ε)dε <∞

as well. Hence Lemma 3.3 yields
∫ ∞

0

p

log N(T, dY ,ε)dε <∞ .

Consequently, Dudley’s theorem (cf. (1.4) or [7], p.179) applies for Y and dY , hence Y possesses
a.s. bounded paths. In view of Lemma 3.2, the paths of X are also a.s. bounded and this completes
the proof of the first part of Theorem 2.1.
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Proof of Theorem 2.1, second part: Take ε > 0. As proved in [9, Proposition 5.2] there are at least
m := N(T, d, 2ε)− 1 disjoint order intervals (t i , si] in T with d(t i , si) ≥ ε. By the definition of d we
find t i ≺ ri � si such that

σ(ri)





∑

t i≺v�ri

α(v)2




1/2

≥ ε , 1≤ i ≤ m .

Next, set

ηi := X ri
−
σ(ri)
σ(t i)

X t i
, 1≤ i ≤ m . (3.10)

Then it follows that

ηi = σ(ri)





∑

v�ri

α(v)ξv −
∑

v�t i

α(v)ξv



= σ(ri)





∑

t i≺v�ri

α(v)ξv





and, consequently, the ηi are independent centered Gaussian with

(E
�

�ηi

�

�

2
)1/2 = σ(ri)





∑

t i≺v�ri

α(v)2




1/2

≥ ε . (3.11)

Since σ is assumed to be non-increasing, we get

sup
1≤i≤m

�

�ηi

�

�≤ 2sup
t∈T

�

�X t

�

� . (3.12)

Suppose now that X is a.s. bounded. By Fernique’s theorem (cf. [5] or [7], p.142), this implies

C := E sup
t∈T
|X t |<∞ ,

hence (3.12) leads to
E sup

1≤i≤m

�

�ηi

�

�≤ 2 C ,

and by the choice of m the assertion follows by

c ε
p

log m≤ E sup
1≤i≤m

�

�ηi

�

�

where we used (3.11) and the classical Fernique–Sudakov bound recalled below in (6.4). �

Remark: One can give a geometric interpretation of the relations between the processes that we con-
structed in the proof of Theorem 2.1. Recall that an arbitrary Gaussian process X = (X t)t∈T defined
on a probability space (Ω,A ,P) can be regarded as a subset of the Hilbert space L2(Ω,A ,P), i.e.,
we identify X with

�

X t : t ∈ T
	

. We denote by aco(X ) the absolutely convex hull of X in L2(Ω,A ,P)
. It is easy to prove the processes X , X̂ and Y defined in (1.1), (3.3), and (3.5), respectively, are in
this sense connected by the simple geometric relation

aco(X )⊆ aco(X̂ )⊆ 2aco(Y )⊆ 4aco(X̂ )⊆ 8 aco(X ).

This again shows that the boundedness of one of these processes implies the boundedness of the
two others.

748



4 Compactness properties of (T, d) versus those of (T, dX )

The aim of this section is to compare the metric d on T defined in (2.3) with the Dudley distance
dX introduced in (1.7). Note that by (1.7) for t � s we have

dX (t, s)2 = |σ(t)−σ(s)|2
∑

v�t

α(v)2+σ(s)2
∑

t≺v�s

α(v)2 . (4.1)

while in that case

d(t, s) = max
t≺r�s

σ(r)

 

∑

t≺v�r

α(v)2
!1/2

. (4.2)

Comparing (4.1) with (4.2), it is not clear at all how these two distances are related in general.

In a first result we show that the covering numbers w.r.t. d and to dX may be of quite different order.

Proposition 4.1. There are non-increasing weights α and σ on a tree T such that the generated process
X is a.s. bounded and, moreover,

lim
ε→0

N(T, dX ,ε)
N(T, d,ε)

=∞ .

Proof. Take T =N0 = {0,1, . . .} and let α(0) = σ(0) = 1. If k ≥ 1 set

α(k) = k−ν and σ(k) = k−θ

for some θ ,ν > 0, i.e.,

Xk = k−θ







k
∑

j=1

j−ν ξ j + ξ0






, k ≥ 1 . (4.3)

The law of iterated logarithm tells us that the process X is a.s. bounded if and only if θ + ν > 1/2.
Thus let us assume that this is satisfied.

Take now any 1≤ k < l. Then by (4.1) it follows

dX (k, l)≥ k−θ − l−θ ≥ k−θ − (k+ 1)−θ ≥ cθ k−θ−1 .

Hence, if 1≤ k < l ≤ n for some n≥ 2, this implies

dX (k, l)≥ cθn−θ−1

which yields
N(T, dX ,ε)≥ c ε−1/(θ+1) (4.4)

for some c > 0 only depending on θ .

On the other hand, we have α(k)σ(k) = k−(θ+ν). As shown in [9, Proposition 6.3] (apply this
proposition with q = 2, H = 0 and γ= 2(θ + ν)) a bound α(k)σ(k)≤ k−(θ+ν) implies

N(T, d,ε)≤ c ε−1/(θ+ν) . (4.5)

Of course, if ν > 1, then (4.4) and (4.5) lead to

lim
ε→0

N(T, dX ,ε)
N(T, d,ε)

=∞, (4.6)

completing the proof.
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Let us state an interesting consequence of the preceding proposition. To this end, recall a result
due to M. Talagrand (cf. [14] and [6]). Suppose X = (X t)t∈T is a centered Gaussian process on
an arbitrary index set T and let dX , as in (1.3), be the Dudley metric on T generated by X . If
N(T, dX ,ε)≤ψ(ε) for a non-increasing function ψ satisfying

c1ψ(ε)≤ψ(ε/2)≤ c2ψ(ε) (4.7)

for certain 1< c1 < c2, then this implies

− logP
�

sup
t∈T

�

�X t

�

�< ε

�

≤ cψ(ε) (4.8)

for some c > 0.

We claim now that in the case of processes X defined by (4.3) even holds

− logP






sup
k≥1

�

�

�

�

�

�

k−θ







k
∑

j=1

j−νξ j + ξ0







�

�

�

�

�

�

< ε






≈ ε−1/(θ+ν) . (4.9)

Here and later on ” ≈ ” has to be understood as follows: Given functions f and g on (0,ε0), we
write f (ε)≈ g(ε) provided that

0< lim inf
ε→0

f (ε)
g(ε)

≤ lim sup
ε→0

f (ε)
g(ε)

<∞ .

To verify (4.9), apply Proposition 7.1 in [9] with ϕ(x) = x−γ where γ = 2(θ + ν). Then it follows
that (4.5) is sharp, i.e., we obtain

N(T, d,ε)≈ ε−1/(θ+ν) .

Consequently, (4.9) follows by Proposition 9.1 in [9].

Comparing (4.9) with (4.4) shows that for ν > 1 estimate (4.8) cannot lead to sharp estimates
while, as seen above, the use of N(T, d,ε) does so. In some sense this observation proves that the
metric d fits better to those processes X than dX does.

One may ask now whether or not there are examples of trees and weights such that the quotient in
(4.6) tends to zero, i.e., whether there are examples with

lim
ε→0

N(T, d,ε)
N(T, dX ,ε)

=∞ . (4.10)

Although we do not know the answer to this question let us shortly indicate why such examples are
hard to construct provided they exist. Indeed, if N(T, d,ε) ≈ ε−a

�

�logε
�

�

b
for some a > 0 and b ≥ 0,

then by Proposition 9.1 in [9] this implies

− logP
�

sup
t∈T

�

�X t

�

�< ε

�

≈ ε−a
�

�logε
�

�

b
.

Consequently, whenever N(T, dX ,ε)≈ψ(ε) with ψ satisfying (4.7), then by (4.8) we get

N(T, d,ε)≤ cψ(ε)≤ c′ N(T, dX ,ε) ,
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hence in that situation examples satisfying (4.10) cannot exist.

In spite of this observation we will show now that dX (t, s) may become arbitrarily small while
d(t, s)≥ C > 0. Hence an estimate d(t, s)≤ c dX (t, s) cannot be valid in general. Recall that in view
of Proposition 4.1 a relation dX (t, s)≤ c d(t, s) is impossible as well.

Proposition 4.2. There are weights α and σ on T = N0 such that the corresponding process X is
a.s. bounded and such that limk→∞ dX (0, k) = 0 while d(0, k) = C > 0 for all k ≥ 1.

Proof. For k ∈ N0 choose σ(k) = 2−k while α(0) = 0 and α(k) = k−1 for k ≥ 1. Of course, the
generated process X is a.s. bounded. Moreover, if k ≥ 1, then it follows that

dX (0, k) = 2−k

 

k
∑

v=1

v−2

!1/2

.

In particular, dX (0, k)→ 0 quite rapidly as k→∞. On the other hand,

d(0, k) = 2−1α(1) = 2−1

and this completes the proof with C = 2−1.

5 Proof of Proposition 2.2

Before proving Proposition 2.2, let us come back to a geometric interpretation of Gaussian processes
briefly mentioned at the end of Section 3. We identify a process X = (X t)t∈T on a probability space
(Ω,A ,P) with the subset {X t : t ∈ T} of the Hilbert space L2(Ω,A ,P). The induced distance
equals

‖X t − Xs‖2 = (E|X t − Xs|2)1/2 = dX (t, s) ,

hence also
N(T, dX ,ε) = N(X ,‖ · ‖2,ε).

Proof of Proposition 2.2: We first give the lower bounds for N(T, dX ,ε). By (3.10) and (3.11) it
follows that

N(X − [0,1] · X , || · ||2,
ε
p

2
)≥ N(T, d, 2ε)− 1. (5.1)

Our next task is to replace X − [0,1] · X by X in (5.1) by using the following trivial fact.

Lemma 5.1. Let X be a subset of a normed space and MX := supx∈X ||x ||. Then

N([0,1] · X ,‖ · ‖ , 2ε)≤ N(X ,‖ · ‖ ,ε)
MX

ε
and (5.2)

N(X − [0, 1] · X ,‖ · ‖ , 3ε)≤ N(X ,‖ · ‖ ,ε)2
MX

ε
. (5.3)
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of the lemma. Let B be an ε–net for X and set

C =
�

jε

MX
y : y ∈ B, j ∈N , 1≤ j ≤

MX

ε

�

.

Clearly,

#{C} ≤ #{B}
MX

ε
.

Take any z = θ x ∈ [0, 1] · X with x ∈ X , θ ∈ [0, 1]. Find y ∈ B and a positive integer j ≤ MX
ε

such
that

||x − y||< ε,
�

�

�

�

j−
θMX

ε

�

�

�

�

≤ 1 .

Then z′ := jε
MX

y ∈ C and observe that

||z− z′|| =












θ x −
jε

MX
y













≤ θ ||x − y||+
�

�

�

�

θ −
jε

MX

�

�

�

�

||y||

< ε+
ε

MX
MX = 2ε.

Hence, C is a 2ε–net for [0, 1] ·X and the first claim of the lemma is proved. The second one follows
immediately.

We may proceed now with the proof of Proposition 2.2. Combining (5.3) with (5.1) leads to

N(T, dX ,ε)2 ≥
ε

MX

�

N(T, d, 6
p

2ε)− 1
�

.

Hence, we conclude
∫ ∞

0

p

log N(T, dX , u)du<∞ ⇒
∫ ∞

0

p

log N(T, d, u)du<∞

and
sup
ε>0
ε2 log N(T, dX ,ε)<∞ ⇒ sup

ε>0
ε2 log N(T, d,ε)<∞ .

Conversely, we will move now towards an upper bound for N(T, dX ,ε). By Lemma 3.3 and Proposi-
tion 3.2 of [9] we have

N(T, dY ,ε)≤ Ñ(T, d̂,ε) + 1≤ Ñ(T, d,ε/2) + 1≤ N(T, d,ε/4) + 1. (5.4)

Next, if X̂ is defined as in (3.3), then (3.6) yields

X̂ ⊆
∞
∑

m=0

2−mY,
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and from this inclusion we trivially obtain that

N(T, dX̂ , 2ε) ≤ N
�

T, dX̂ ,

 

∞
∑

m=0

(m+ 1)−2

!

ε
�

≤
∞
∏

m=0

N(T, d2−mY , (m+ 1)−2ε)

=
∞
∏

m=0

N(T, dY , 2m(m+ 1)−2ε).

≤
∞
∏

m=0

N∗(T, d, 2m−2(m+ 1)−2ε),

where we used (5.4) on the last step and

N∗(T, d, r) :=

¨

N(T, d, r) + 1 : N(T, dY , 4r)> 1,
1 : N(T, dY , 4r) = 1.

It follows that

log N(T, dX̂ , 2ε)≤
∑

{m≥0:2m(m+1)−2ε≤MY }

log
�

N(T, d, 2m−2(m+ 1)−2ε) + 1
�

, (5.5)

where MY := supt∈T ||Yt ||2. For the Dudley integral this implies
∫ ∞

0

p

log N(T, dX̂ , 2ε)dε ≤
∞
∑

m=0

∫

MY
2m(m+1)−2

0

p

log
�

N(T, d, 2m−2(m+ 1)−2ε) + 1
�

dε

≤
∞
∑

m=0

(m+ 1)2

2m−2

∫ ∞

0

p

log (N(T, d, u) + 1)du

= C

∫ ∞

0

p

log (N(T, d, u) + 1)du .

Hence,
∫ ∞

0

p

log N(T, d, u)du<∞ ⇒
∫ ∞

0

p

log N(T, dX̂ , u)du<∞ .

Moreover, (5.5) yields

sup
ε>0
ε2 log N(T, d,ε)<∞ ⇒ sup

ε>0
ε2 log N(T, dX̂ ,ε)<∞ .

The final passage goes from X̂ to X . Since X ⊆ [0, 1] · X̂ , by applying (5.2) to X̂ we obtain

log N(T, dX , 2ε)≤ log N([0, 1] · X̂ , || · ||2, 2ε)≤ log N(T, dX̂ ,ε) + log
�

MX̂

ε

�

.

Hence
∫ ∞

0

p

log N(T, dX̂ , u)du<∞ ⇒
∫ ∞

0

p

log N(T, dX , u)du<∞,

as well as
sup
ε>0
ε2 log N(T, dX̂ ,ε)<∞ ⇒ sup

ε>0
ε2 log N(T, dX ,ε)<∞.

By combining the preceding estimates we finish the proof. �
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6 Applications to binary trees

6.1 General weights

Let us first demonstrate how the general estimates of N(T, d,ε) in [9] combined with Theorem 2.1
lead to concrete assertions about the boundedness of processes X defined by (1.1) in the case of a
binary tree.

Proposition 6.1. Let T be a binary tree and suppose that

α(t)σ(t)≤ c |t|−γ , t ∈ T ,

for some γ > 1. Then X defined by (1.1) is a.s. bounded. Conversely, if

α(t)≥ c |t|−γ

for some γ < 1 and σ(t)≡ 1, then the generated process X is a.s. unbounded.

Proof. As shown in [9], an estimate α(t)σ(t) ≤ c |t|−γ implies log N(T, d,ε) ≤ c ε−2/(2γ−1) for each
γ > 1/2. Hence, if γ > 1, then (2.5) holds, hence Theorem 2.1 applies and completes the proof of
the first part.

The second part follows by log N(T, d,ε) ≥ c ε−2/(2γ−1) whenever α(t) ≥ c |t|−γ for some γ > 1/2
and σ(t) ≡ 1 (cf. [9, Proposition 7.7]). Thus, by Theorem 2.1 the process X cannot be bounded if
γ < 1.

Remark: The second part of Proposition 6.1 does no longer hold for non-constant weights σ. In
different words, an estimate α(t)σ(t) ≥ c |t|−γ with 1/2 < γ < 1 does not always imply that X is
unbounded (cf. the remark after Corollary 6.5 below).

6.2 Homogeneous weights

Before investigating Gaussian processes with homogeneous weights let us shortly recall some basic
facts about suprema of Gaussian sequences.

Let (X1, . . . , Xn) be a centered Gaussian random vector. Introduce the following notations:

σ2
1 :=min

j
EX 2

j , σ2
2 :=max

j
EX 2

j , S :=max
j

X j ,

and let mS be a median of S. Then the following is well known.

• It is true that
mS ≤ ES. (6.1)

See [7], p.143.

• The following concentration principle is valid:

P(S > mS + r)≤ Φ̂(r/σ2)≤ exp(−r2/2σ2
2), ∀r > 0,
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where

Φ̂(r) =
1
p

2π

∫ ∞

r

e−
u2

2 du

is the standard Gaussian tail. See [7], p.142. By combining this with (6.1) we also have

P(S > ES+ r)≤ exp(−r2/2σ2
2), ∀r > 0. (6.2)

• It is true that
ES ≤

p

2 log n σ2 . (6.3)

See [7], p.180.

• If X1, . . . , Xn are independent, then

ES ≥ c
p

log n σ1 . (6.4)

with c = 0.64. See [7], p.193–194.

Remark that the same properties hold true for

S′ :=max
j≤n
|X j|=max

j≤n
max{X j ,−X j}.

Let T be a binary tree and suppose that the weights depend only on the level numbers, i.e. α(t) =
α|t| and σ(t) = σ|t| for some sequences (αk)k≥0 and (σk)k≥0 of positive numbers with (σk)k≥0
non-increasing. The following two theorems give, with a certain overlap, necessary and sufficient
conditions for the boundedness of (X t)t∈T in that case.

Theorem 6.2. a) If X = (X t)t∈T is a.s. bounded, then

G := sup
n≥1

σn

n
∑

k=1

αk <∞. (6.5)

b) Moreover, if (αk)k≥0 satisfies the regularity assumption

Q := sup
n≥1

sup
n≤k≤2n

αk

αn
<∞, (6.6)

then X is a.s. bounded if and only if (6.5) holds.

Proof. a) Let us construct a random sequence (tn)n≥0 in T and a sequence of random variables
(ζn)n≥1 by the following inductive procedure. Let t0 = 0. Next, assuming that tn is constructed, let
t ′ and t ′′ be the two offsprings of tn. We let

ζn+1 :=max{ξt ′ ,ξt ′′}, tn+1 := argmax{ξt ′ ,ξt ′′}.

It is obvious that (ζn) are i.i.d. random variables with strictly positive expectation. Our construction
yields

X tn
= σn






α0ξ0+

n
∑

j=1

α j ζ j






, n≥ 1.
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It follows that

E sup
t∈T

X t ≥ sup
n≥1
EX tn

= C sup
n≥1

σn

n
∑

j=1

α j ,

where C := Eζ j > 0. Since the assumption "(X t)t∈T is a.s. bounded" implies E supt∈T X t <∞, we
obtain (6.5).

b) Let us assume that G < ∞, Q < ∞ and prove that (X t)t∈T is a.s. bounded. For any m ≥ 0 set
Bm = [2m, 2m+1) and Jm := {t ∈ T : |t| ∈ Bm}. For any M ≥ 1 and t ∈ JM write

∑

v�t
|v|≥2

α(v)ξv =
M
∑

m=1

∑

v�t
v∈Jm

α(v)ξv ≤
M
∑

m=1

Um, (6.7)

where

Um := sup
u∈Jm

�

�

�

�

�

�

�

∑

v�u
v∈Jm

α(v)ξv

�

�

�

�

�

�

�

.

Let
eX t = σt

∑

v�t
|v|≥2

α(v)ξv , t ∈ T,

be the process that differs from X by the two terms of order 0 and 1. By using that (σk)k≥0 is
non-increasing, we infer from (6.7) for any M ≥ 1 and t ∈ JM

eX t ≤ σ2M

M
∑

m=1

Um = σ2M

M
∑

m=1

(EUm+ (Um−EUm))

≤ σ2M

M
∑

m=1

(EUm+ (Um−EUm)+)

≤ σ2M

M
∑

m=1

EUm+
∞
∑

m=1

σ2m(Um−EUm)+.

Hence,

sup
t∈T
eX t ≤ sup

M≥1
σ2M

M
∑

m=1

EUm+
∞
∑

m=1

σ2m(Um−EUm)+. (6.8)

We will use now standard Gaussian techniques in order to evaluate the quantities on the r.h.s. Note
that on the binary tree

#{Jm} ≤ #{t : |t|< 2m+1} ≤ 22m+1
, as m≥ 0.

Moreover, we have
h2

m := sup
u∈Jm

∑

v�u
v∈Jm

α(v)2 ≤
∑

k∈Bm

α2
k, as m≥ 0.
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Assuming (6.6) to hold, we obtain

h2
m ≤

∑

k∈Bm

α2
k ≤Q2 2mα2

2m , as m≥ 0.

Using (6.6) again we arrive at

hm ≤Q 2m/2α2m ≤Q2 21−m/2
∑

k∈Bm−1

αk, as m≥ 1. (6.9)

Now by (6.3) it follows that

EUm ≤
p

2 log(#{Jm})hm ≤ 4Q2
∑

k∈Bm−1

αk, as m≥ 1.

Hence, for any M ≥ 1 we get

σ2M

M
∑

m=1

EUm ≤ σ2M 4Q2
M
∑

m=1

∑

k∈Bm−1

αk = σ2M 4Q2
2M−1
∑

k=1

αk ≤ 4Q2G.

On the other hand, by the Gaussian concentration principle (6.2),

E(Um−EUm)+ =

∫ ∞

0

P(Um−EUm > r)dr ≤
∫ ∞

0

exp(−r2/2h2
m)dr ≤ 2hm.

From (6.9) it follows that

σ2mE(Um−EUm)+ ≤ 2σ2mhm

≤ 2σ2mQ2 21−m/2
∑

k∈Bm−1

αk

≤ 22−m/2Q2σ2m

2m
∑

k=1

αk

≤ 22−m/2Q2G, as m≥ 1.

By plugging this into (6.8), we arrive at

E sup
t∈T
eX t ≤ sup

M≥1
σ2M

M
∑

m=1

EUm+
∞
∑

m=1

Eσ2m(Um−EUm)+ ≤ 4Q2G+Q2G
∞
∑

m=1

22−m/2 <∞

and (eX t)t∈T is a.s. bounded. Since we have a bound

|X t − eX t |= σt

�

�

�

�

�

�

�

∑

v�t
|v|≤1

α(v)ξv

�

�

�

�

�

�

�

≤ σ0(α0+α1)max
|v|≤1
|ξv|

uniformly over t ∈ T , we conclude that (X t)t∈T is also a.s. bounded.
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Let us give an example where Theorem 6.2 applies efficiently. Take the binary tree T and suppose
that either α(t) = (|t|+ 1)−1 and σ(t) ≡ 1 or that α(t) ≡ 1 and σ(t) = (|t|+ 1)−1. Note that these
weights lead to critical cases, namely, we have log N(T, d,ε)≈ ε−2 for both pairs of weights.

Corollary 6.3. The process
X ′t := (|t|+ 1)−1

∑

v�t

ξv , t ∈ T ,

is a.s. bounded, while
X ′′t :=

∑

v�t

(|v|+ 1)−1ξv , t ∈ T ,

is a.s. unbounded.

Proof. In the first case (6.5) and (6.6) are satisfied while in the second one (6.5) fails. Thus both
assertions follow by Theorem 6.2.

Remark: The preceding corollary is of special interest because α(t)σ(t) = (|t|+1)−1 in both cases.
Consequently, the boundedness of the process X cannot be described by the behavior of ασ. This
is in contrast to the main results about metric entropy in [9] which only depend on this product
behavior.

Theorem 6.2 does not apply in the case of rapidly increasing sequences (αk)k≥0 because (6.6) fails
for them. The next theorem fills this gap.

Theorem 6.4. a) If X = (X t)t∈T is a.s. bounded, then

G1 := sup
n

sup
m≤n

σn
p

m

 

n
∑

k=m

α2
k

!1/2

<∞. (6.10)

b) If

G2 := sup
n
σn
p

n

 

n
∑

k=0

α2
k

!1/2

<∞, (6.11)

then (X t)t∈T is a.s. bounded.

c) Moreover, if (αk)k≥0 is non-decreasing, then the conditions (6.10) and (6.11) are equivalent, thus X
is a.s. bounded if and only if either of them holds.

Proof. a) Let us fix a pair of integers m ≤ n. Take any mapping L : {t : |t| = m} → {t : |t| = n} such
that t � L(t) for all t. Consider

Yt := σn

∑

t�s�L(t)

α|s|ξs, |t|= m.

Notice that the variables (Yt)|t|=m are independent and that

EY 2
t = σ

2
n

∑

m≤k≤n

α2
k .
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By (6.4) it follows

Emax
|t|=m

Yt ≥ c
p

log(2m) σn

 

∑

m≤k≤n

α2
k

!1/2

= c̃
p

m σn

 

∑

m≤k≤n

α2
k

!1/2

.

On the other hand
Yt = X L(t)−

σn

σm
X t ,

hence
max
|t|=m

Yt ≤ 2sup
t∈T
|X t |.

We arrive at

2 E sup
t∈T
|X t | ≥ c̃

p
m σn

 

∑

m≤k≤n

α2
k

!1/2

,

and achieve the proof of a) by taking the supremum over m and n.

b) Let Sn :=max|t|=n X t . By (6.3) we have

ESn ≤
p

2 log(2n) σn

 

n
∑

k=0

α2
k

!1/2

≤ 2G2. (6.12)

We also have

EX 2
t = σ

2
n

n
∑

k=0

α2
k ≤

G2
2

n
, |t|= n. (6.13)

Since supt∈T X t = supn Sn, for any r > 0 it follows that

P

�

sup
t∈T

X t > 2G2+ r
�

≤
∞
∑

n=0

P
�

Sn ≥ 2G2+ r
�

≤
∞
∑

n=0

P
�

Sn ≥ ESn+ r
�

(by (6.12) )

≤ P
�

S0 ≥ ES0+ r
�

+
∞
∑

n=1

exp

�

−
r2n

2G2
2

�

(by (6.13) and (6.2) )

= P
�

X0 ≥ r
�

+
exp
�

− r2

2G2
2

�

1− exp
�

− r2

2G2
2

� → 0, as r →∞.

It follows that (X t)t∈T is a.s. bounded. Thus assertion b) is proved.

c) The inequality G1 ≤ G2 is obvious for any (αk)k≥0. We only need to show that a bound in the
opposite direction holds, too. Let

mn :=

¨ n
2

: n even
n+1

2
: n odd.
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Assuming that (αk)k≥0 is non-decreasing, we have
∑

mn≤k≤n

α2
k ≥

∑

0≤k<mn

α2
k,

hence
2
∑

mn≤k≤n

α2
k ≥

∑

0≤k≤n

α2
k.

It follows that

G1 ≥ sup
n
σn
p

mn







∑

mn≤k≤n

α2
k







1/2

≥
1

2
sup

n
σn
p

n
∑

0≤k≤n

α2
k =

G2

2
.

Corollary 6.5. Let αk = kb 2k for some b ∈R. Then (X t)t∈T is a.s. bounded if and only if

sup
n
σn n1/2+b 2n <∞.

Remark: Note that criterion (6.5) from Theorem 6.2 fails to work in that case. Moreover, letting
b = −γ with 1/2 < γ < 1 and σn = 2−n, by Corollary 6.5 the corresponding process is bounded
although α(t)σ(t)≥ |t|−γ for t ∈ T . This shows that the second part of Proposition 6.1 is no longer
valid for non-constant weights σ.

Another example where Theorem 6.2 does not apply is as follows.

Corollary 6.6. Let α2
k = exp((log k)β) with β > 1. Then (X t)t∈T is a.s. bounded if and only if

sup
n
σn

n

(log n)
β−1

2

exp((log n)β/2)<∞.

Proof. Easy calculation shows that

n
∑

k=0

α2
k ∼

∫ n

1

exp((log u)β)du=

∫ (log n)β

0

exp(z+ z1/β)
dz

βz1−1/β

∼
n

β(log n)β−1
exp((log n)β).

An application of Theorem 6.4 yields the result.

Our message is that Theorems 6.2 and 6.4 should jointly cover any reasonable case. Let us illustrate
this by the following example. Recall that by the first part of Proposition 6.1, if T is the binary
tree and α(t)σ(t) ≤ c |t|−γ for some γ > 1, then the generated process X is a.s. bounded. For
homogeneous (level-dependent) weights this means that αkσk ≤ c k−γ for some γ > 1 yields the
a.s. boundedness of X . Let us see how this fact is related to Theorems 6.2 and 6.4.

Essentially, we have the following
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• If (αk)k≥0 is decreasing, then

σn

∑

k≤n

αk ≤ σn

∑

k≤n

c k−γ

σk
≤
∑

k≤n

c k−γ ≤ c
∞
∑

k=1

k−γ,

hence (6.5) and (6.6) hold and Theorem 6.2 yields the boundedness.

• If (αk)k≥0 is increasing, then

σn
p

n

 

∑

k≤n

α2
k

!1/2

≤ σn
p

n
�

nα2
n

�1/2
= σnαn n≤ c n1−γ,

thus (6.11) holds even for γ≥ 1, and Theorem 6.4 yields the boundedness.

Finally let us relate the results in Theorems 6.2 and 6.4 to those about compactness properties of
(T, d) with d defined in (2.3). Here we have the following partial result.

Proposition 6.7. The expression G1 in (6.10) is finite if and only if there is a constant c > 0 such that

d(t, s)≤ c |t|−1/2 (6.14)

for all t, s ∈ T with t ≺ s.

Proof. First note that in the case of homogeneous weights we get

d(t, s) = max
|t|<l≤|s|

σl







l
∑

k=|t|+1

α2
k







1/2

.

Next we remark that G1 <∞ if and only if there is a constant c > 0 such that

σn

 

n
∑

k=m+1

α2
k

!1/2

≤ c m−1/2 (6.15)

for all 0≤ m< n<∞.

Suppose now that (6.14) holds and take integers m < n. Next, choose two elements t, s ∈ T with
t ≺ s such that m= |t| and n= |s|. Note that (6.14) implies

σn

 

n
∑

k=m+1

α2
k

!1/2

≤ d(t, s)≤ c |t|−1/2 = c m−1/2

which proves (6.15).

Conversely, assume (6.15) and take any two elements t ≺ s in T . Furthermore, let v ∈ (t, s] be a
node where

d(t, s) = σ|v|







|v|
∑

k=|t|+1

α2
k







1/2

.

Applying (6.15) with m := |t| and n := |v| leads to

d(t, s)≤ c m−1 = c |t|−1/2

as claimed. This completes the proof.
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Remark: Clearly (6.14) implies log N(T, d,ε)≤ c ε−2, as we already know by combining Theorems
2.1 and 6.4. But it says a little bit more. Namely, an ε–net giving this order may be chosen as
¦

t ∈ T : |t| ≤ c ε−1/2
©

for a certain c > 0. Of course, this heavily depends on the fact that we deal
with homogeneous weights.

7 Two–weight processes vs one–weight ones

Proposition 6.1 suggests that the boundedness of a process with weights α(t) and σ(t) might be
determined by the product σ(t)α(t). In other words, it is natural to ask what is the relation between
the boundedness of this process and the process generated by the weights eσ(t) :≡ 1 and eα(t) :=
σ(t)α(t). It turns out that (only) a one–sided implication is valid.

To investigate this question, write now Xα,σ for the process defined in (1.1).

Proposition 7.1. If Xασ,1 is a.s. bounded, then this is also true for Xα,σ.

Proof. We only give a sketch of the proof.

1. Recall a general fact from the theory of Gaussian processes: If X and Y are two independent
centered Gaussian processes, then X + Y bounded yields X bounded. This is an immediate
consequence of Anderson’s inequality (cf. [7, p.135]).

2. By applying this fact we obtain: If two weights are related by α1 ≤ cα2 and Xα2,1 is bounded,
then Xα1,1 is bounded as well.

3. Suppose now that Xασ,1 is bounded, then Xασ̂,1 is bounded, where the binary weight σ̂ is
defined in (3.2). Set X ′ := Xασ̂,1.

4. Let now Y be the process constructed in the article associated to Xα,σ. Then we get Yt =
X ′t − X ′

λ−(t) with λ−(t) defined by (3.7). From this we see that if X ′ is bounded, then Y is
bounded as well.

5. Recall that we know that the boundedness of Y is equivalent to that of Xα,σ.

The examples in Corollary 6.3 show that the statement of Proposition 7.1 cannot be reversed, i.e.,
in general the boundedness of Xα,σ does not yield that of Xασ,1.
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