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Abstract

In this paper we study a Skorohod SDE in a smooth domain with normal reflection at the bound-
ary, in particular we prove that the solution is pathwise differentiable with respect to the de-
terministic starting point. The resulting derivatives evolve according to an ordinary differential
equation, when the process is in the interior of the domain, and they are projected to the tangent
space, when the process hits the boundary.
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1 Introduction

This paper contains a pathwise differentiability result for the solution (X t(x))t≥0 of a stochastic dif-
ferential equation (SDE) of the Skorohod type in a smooth bounded domain G ⊂ Rd , d ≥ 2, with
normal reflection at the boundary. The process (X t(x)) is driven by a d-dimensional standard Brow-
nian motion and by a drift term, whose coefficients are supposed to be continuously differentiable
and Lipschitz continuous, i.e. existence and uniqueness of the solution are ensured by the results of
Lions and Sznitman in [18].

We prove that for every t > 0 the solution X t(x) is differentiable w.r.t. the deterministic initial value
x in every direction v ∈ Rd and we give a representation of the derivatives in terms of an ordinary
differential equation. As an easy side result, we provide a Bismut-Elworthy formula for the gradient
of the transition semigroup.

The resulting derivatives evolve according to a simple linear ordinary differential equation, when the
process is away from the boundary, and they have a discontinuity and are projected to the tangent
space, when the process hits the boundary. This evolution becomes rather complicated because of
the structure of the set of times, when the process is at the boundary, which is known to be a.s. a
closed set with zero Lebesgue measure without isolated points. However, this evolution does not give
a complete characterization of the derivative process. Therefore, we establish a system of SDE-like
equations, whose pathwise unique solution is the derivative process in coordinates w.r.t. a moving
frame. This system is similar to the one introduced by Airault in [1] in order to develop probabilistic
representations for the solutions of linear PDE systems with mixed Dirichlet-Neumann conditions in
a smooth domain inRd . A further similar system appears in Section V.6 in [13], which deals with the
heat equation for diffusion processes on manifolds with boundary conditions. This situation has also
been considered in a more recent work by Hsu [12], where similar to [13] the associated matrix-
valued Feynman-Kac multiplicative functional is constructed which is determined by the curvature
tensor. The multiplicative functional associated with the pathwise derivatives obtained in this paper
is very similar and possibly identical to the multiplicative functional in [12]. Nevertheless, the
papers [1, 12, 13] deal with PDE systems or the heat equation, respectively, on smooth manifolds
with mixed Neumann-Dirichlet boundary conditions, such that the solutions can be interpreted as
the derivatives for the transition semigroup of the reflected Brownian motion. In this sense, our
result can be considered as a pathwise version of the results in [1, 12, 13] with additional drift
term.

In [11] Deuschel and Zambotti proved a pathwise differentiability result w.r.t. the initial data for
diffusion processes in the domain G = [0,∞)d . These results have already been transferred to SDEs
in a convex polyhedron with possibly oblique reflection (see [3]). The proof of the main result in
[11] is based on the fact that a Brownian path, which is perturbed by adding a Lipschitz path with
a sufficiently small Lipschitz constant, attains its minimum at the same time as the original path
(see Lemma 1 in [11]). This is due to the fact that a Brownian path leaves its minimum faster than
linearly. In [11] this is used in order to provide an exact computation of the reflection term in the
difference quotient via Skorohod’s lemma.

Our approach is quite similar: Using localization techniques introduced by Anderson and Orey (cf.
[2]) we transform the SDE locally into an SDE on a halfspace (cf. Section 2.3 below). Then, in order
to compute the local time we need to deal with the pathwise minimum of a continuous martingale
in place of the standard Brownian motion. Since the perturbations are now no longer Lipschitz
continuous, i.e. Lemma 1 in [11] does not apply, and because of the asymptotics of a Brownian
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path around its minimum (cf. Lemma 3.7 below) one cannot necessarily expect that an analogous
statement to Lemma 1 in [11] holds true in this case. Nevertheless, one can show that the minimum
times converge sufficiently fast to obtain differentiability (see Proposition 3.8).

Another crucial ingredient in the proof is the Lipschitz continuity of the solution w.r.t. the initial
data. This was proven by Burdzy, Chen and Jones in Lemma 3.8 in [6] for the reflected Brownian
motion without drift in planar domains, but the arguments can easily be transferred into our setting
(see Proposition 3.2). This will give pathwise convergence of the difference quotients along a sub-
sequence. In order to identify the limit, we shall characterize the limit as the unique solution of the
aforementioned SDE-like equation (cf. Section 4 in [1]).

A pathwise differentiability result w.r.t. the initial position of a reflected Brownian motion in smooth
domains has also been proven by Burdzy in [4] using excursion theory. The resulting derivative
is characterized as a linear map represented by a multiplicative functional for reflected Brownian
motion, which has been introduced in Theorem 3.2 of [7]. In constrast to our main results, the
SDE considered in [4] does not contain a drift term and the differentiability is shown for the trace
process, while we consider the process on the original time-scale. However, we can recover the
term, which is mainly characterizing the derivative in [4], describing the influence of curvature of
∂ G (cf. Remark 2.7 below).

In a series of papers [20, 21, 22] Pilipenko studies flow properties for SDEs with reflection and
obtains Sobolev differentiability in the initial value, see [19] for a review of these results. In gen-
eral, pathwise differentiability of diffusions processes w.r.t. the initial condition is a classical topic
in stochastic analysis, see e.g. Theorem 4.6.5 in [17] for the case without reflection. On the other
hand, reflected Brownian motions have been investigated in several articles, where the question of
coalescence or noncoalescence of the two-point motion of a Brownian flow is of particular inter-
est. For planar convex domains this has been studied by Cranston and Le Jan in [8] and [9], for
some classes of non-smooth domains by Burdzy and Chen in [5], and for two-dimensional smooth
domains by Burdzy, Chen and Jones in [6]. In higher dimension the case, where the domain is a
sphere, has been considered by Sheu in [24] while the case of a general multi-dimensional smooth
domain is still an open problem.

The paper is organized as follows: In Section 2 we give the precise setup and some further prelimi-
naries and we present the main results. Section 3 is devoted to the proof of the main results.

2 Main Results and Preliminaries

2.1 General Notation

Throughout the paper we denote by ‖.‖ the Euclidian norm, by 〈., .〉 the canonical scalar product
and by e = (e1, . . . , ed) the standard basis in Rd , d ≥ 2. Let G ⊂Rd be a connected closed bounded
domain with C3-smooth boundary and G0 its interior and let n(x), x ∈ ∂ G, denote the inner normal
field. For any x ∈ ∂ G, let

πx(z) := z− 〈z, n(x)〉n(x), z ∈Rd ,

denote the orthogonal projection onto the tangent space. The closed ball in Rd with center x and
radius r will be denoted by Br(x). The transposition of a vector v ∈ Rd and of a matrix A ∈ Rd×d

will be denoted by v∗ and A∗, respectively. The set of continuous real-valued functions on G is
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denoted by C(G). For each k ∈ N, Ck(G) denotes the set of real-valued functions that are k-times
continuously differentiable in G. Furthermore, for f ∈ C1(G) we denote by ∇ the gradient of f and
in the case where f isRd -valued by D f the Jacobi matrix. Finally,∆ denotes the Laplace differential
operator on C2(G) and Dv := 〈v,∇〉 the directional derivative operator associated with the direction
v ∈Rd . The symbols c and ci , i ∈N, will denote constants, whose value may only depend on some
quantities specified in a particular context.

2.2 Skorohod SDE

For any starting point x ∈ G, we consider the following stochastic differential equation of the Sko-
rohod type:

X t(x) = x +

∫ t

0

b(X r(x)) dr +wt +

∫ t

0

n(X r(x)) dlr(x), t ≥ 0,

X t(x) ∈ G, dlt(x)≥ 0,

∫ ∞

0

1lG0
(X t(x)) dlt(x) = 0, t ≥ 0,

(2.1)

where w is a d-dimensional Brownian motion on a complete probability space (Ω,F ,P) and l(x)
denotes the local time of X (x) in ∂ G, i.e. it starts at zero, it is non-decreasing and it increases only
at those times, when X (x) is at the boundary of G. The components bi : G → R of b are supposed
to be in C1(G), in particular b is Lipschitz continuous. Then, existence and uniqueness of strong
solutions of (2.1) are guaranteed by the results in [25] in the case, where G is a convex set, and for
arbitrary smooth G by the results in [18]. The local time l(x) is carried by the set

C := {s ≥ 0 : Xs(x) ∈ ∂ G}.

We define
r(t) := sup(C ∩ [0, t])

with the convention sup; := 0. Then C is known to be a.s. a closed set of zero Lebesgue measure
without isolated points. Note that t 7→ r(t) is constant on each excursion interval of X (x) and is
right-continuous. Moreover, for each t > inf C we have X r(t)(x) ∈ ∂ G.

2.3 Localization

In order to prove our main results we shall use the localization technique introduced in [2]. Let
{U0, U1, . . .} be a countable or finite family of relatively open subsets of G covering G. Every Um is
attached with a coordinate system, i.e. with a mapping um : Um→Rd , giving each point x ∈ Um the
coordinates um(x) = (u1

m(x), . . . , ud
m(x)) such that:

i) U0 ⊆ G0 and the corresponding coordinates are the original Euclidian coordinates. If m > 0
the mapping um is one to one and twice continuously differentiable and we have

Um ∩ ∂ G = {x ∈ Um : u1
m(x) = 0}, Um ∩ G0 = {x ∈ Um : u1

m(x)> 0}.

ii) There is a positive constant d0 such that for every x ∈ G there exists an index m(x) ∈N such
that Bd0

(x)∩ G ⊆ Um(x).
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iii) For every m> 0, 〈∇ui
m(x), n(x)〉= δ1i for all x ∈ Um ∩ ∂ G.

iv) For every m≥ 0 and i ∈ {1, . . . , d}, the functions

bi
m : Um→R x 7→ 〈∇ui

m(x), b(x)〉+ 1
2
∆ui

m(x),

σi
m : Um→Rd x 7→ ∇ui

m(x),

satisfy

sup
m

sup
x∈Um

�

|bi
m(x)|+ ‖σ

i
m(x)‖

�

<∞,

and there exists a constant c, not depending on m and i, such that

|bi
m(x)− bi

m(y)|+ ‖σ
i
m(x)−σ

i
m(y)‖ ≤ c ‖x − y‖, ∀x , y ∈ Um.

Note that these conditions imply n(x) = ∇u1
m(x) for all x ∈ Um ∩ ∂ G. Since ∂ G is supposed to be

C3, the functions bi
m and σi

m are continuously differentiable. We extend the functions bi
m and σi

m to
the whole domain G such that they are uniformly bounded and uniformly Lipschitz continuous on
G.

We will now define a sequence of stopping times (τ`)` in such a way that on each interval [τ`,τ`+1)
the process X (x) and small perturbations of it are confined to one of the coordinate patches Um.
Fix now an arbitrary T > 0 and any δ0 ∈ (0, d0) and set ∂̂ Um := ∂ Um\∂ G if Um ∩ ∂ G 6= ; and
∂̂ Um := ∂ Um if Um ⊆ G0. Then, we define the sequence of stopping times (τ`)` by

τ0 := 0, τ`+1 := inf{t > τ` : dist(X t(x), ∂̂ Um`)< δ0} ∧ T, `≥ 0,

where, for every ` ≥ 0, m` := m(Xτ`(x)) ∈ N such that Bd0
(Xτ`(x)) ⊆ Um` . Then τ` 6∈ C for every

` a.s. The dependence of τ` on x will be suppressed in the notation. Note that by construction
X t(x) ∈ Um` for all t ∈ [τ`,τ`+1) and m` 6= m`+1 for every ` since δ0 < d0. For abbreviation we set

C` := C ∩ [τ`,τ`+1) = {s ∈ [τ`,τ`+1) : Xs(x) ∈ ∂ G}.

Using Itô’s formula we get for t ∈ [τ`,τ`+1):

um`(X t(x)) =um`(Xτ`(x)) +

∫ t

τ`

�

〈∇um`(X r(x)), b(X r(x))〉+
1
2
∆um`(X r(x))

�

dr

+

∫ t

τ`

∇um`(X r(x)) dwr + e1
�

lt(x)− lτ`(x)
�

=um`(Xτ`(x)) +

∫ t

τ`

bm`(X r(x)) dr +

∫ t

τ`

σm`(X r(x)) dwr + e1
�

lt(x)− lτ`(x)
�

.

(2.2)

For every ` we define a continuous semimartingale (M x ,`
t )t by

M x ,`
t :=







0 if t ∈ [0,τ`),
∫ t

τ`
b1

m`
(X r(x)) dr +

∫ t

τ`
σ1

m`
(X r(x)) dwr if t ∈ [τ`,τ`+1],

M x ,`
τ`+1 if t > τ`+1.

(2.3)
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Furthermore, we set Lt(x) := lt(x)− lτ`(x) if t ∈ [τ`,τ`+1), `≥ 0, so that

u1
m`
(X t(x)) =u1

m`
(Xτ`(x)) +M x ,`

t + Lt(x), t ∈ [τ`,τ`+1). (2.4)

By the Girsanov Theorem there exists a probability measure P̃`(x), which is equivalent to P and
under which M x ,` is a continuous martingale. The quadratic variation process is given by

[M x ,`]t =

∫ t

τ`

‖σ1
m`
(X r(x))‖2 dr, t ∈ [τ`,τ`+1),

which is strictly increasing in t on [τ`,τ`+1). We set ρ`t := inf{s : [M x ,`]s > t}. We can apply the
Dambis-Dubins-Schwarz Theorem, in particular its extension in Theorem V.1.7 in [23], since in our
case the limit limt→∞[M x ,`]t = [M x ,`]τ`+1

<∞ exists, to conclude that the process

Bx ,`
t := M x ,`

ρt
for t < [M x ,`]τ`+1

, Bx ,`
t := M x ,`

τ`+1
for t ≥ [M x ,`]τ`+1

, (2.5)

is a P̃`(x)-Brownian motion w.r.t. the time-changed filtration stopped at time [M x ,`]τ`+1
and we

have M x ,`
t = Bx ,`

[M x ,`]t
for all t ∈ [τ`,τ`+1). In particular, on [τ`,τ`+1) the path of M x ,` attains a.s.

its minimum at a unique time.

Finally we introduce a moving frame. On each coordinate patch Um of G we define a mapping x 7→
Om(x) taking values in the space of orthogonal matrices, which is twice continuously differentiable,
such that for x ∈ ∂ G ∩ Um the first row of Om(x) coincides with n(x). Moreover, there exists a
constant c, not depending on m such that

‖Om(x)−Om(y)‖ ≤ c ‖x − y‖, ∀x , y ∈ Um.

Again we extend the functions Om to the whole domain G such that they are uniformly Lipschitz
continuous on G.

Now we define the moving frame as the right-continuous process (Ot)t∈[0,T] by Ot := Om`(X t(x)),
t ∈ [τ`,τ`+1), which only jumps at the step times τ`.

We apply Itô’s formula locally on each interval [τ`,τ`+1) to obtain

dOt ·O−1
t =

d
∑

k=1

αk(X t(x)) dwk
t + β(X t(x)) d t + γ(X t(x)) dlt(x), (2.6)

for some coefficient functions αk, β and γ depending on `.

2.4 Main Results

Theorem 2.1. For all t > 0 and x ∈ G a.s. the mapping y 7→ X t(y) is directional differentiable at x,
i.e. the limit ηt := ηv

t (x) := DvX t(x) = limε→0(X t(x + εv)− X t(x))/ε exists a.s. for every v ∈ Rd .
Moreover, there exists a right-continuous modification of η such that a.s. for all t > 0:

ηt = v+

∫ t

0

Db(X r(x)) ·ηr dr, if t < inf C,

ηt = πX r(t)(x)(ηr(t)−) +

∫ t

r(t)
Db(X r(x)) ·ηr dr, if t ≥ inf C.

(2.7)
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Remark 2.2. If x ∈ ∂ G, t = 0 is a.s. an accumulation point of C and we have r(t)> 0 a.s. for every
t > 0. Therefore, in that case η0 = v and η0+ = πx(v), i.e. there is discontinuity at t = 0.

Remark 2.3. The equation (2.7) does not characterize the derivatives, since it does not admit a
unique solution. Indeed, if the process (ηt) solves (2.7), then the process (1+ lt(x))ηt , t ≥ 0, also
does. A characterizing equation for the derivatives is given Theorem 2.5 below.

Note that this result corresponds to that for the domain G = [0,∞)d in Theorem 1 in [11]. The
proof of Theorem 2.1 as well as the proofs of Theorem 2.5 and Corollary 2.9 below are postponed to
Section 3. As soon as pathwise differentiability is established, we can immediately provide a Bismut-
Elworthy formula: Define for all f ∈ Cb(G) the transition semigroup Pt f (x) := E[ f (X t(x))], x ∈ G,
t > 0, associated with X .

Corollary 2.4. For all f ∈ C(G), t > 0, x ∈ G and v ∈Rd we have:

Dv Pt f (x) =
1

t
E



 f (X t(x))

∫ t

0

d
∑

k=1

〈ηv
r (x), dwr〉



 , (2.8)

and if f ∈ C1(G):

Dv Pt f (x) = E
�

∇ f (X t(x)) ·ηv
t (x)

�

. (2.9)

Proof. Formula (2.9) is straightforward from the differentiability statement in Theorem 2.1 and the
chain rule. For formula (2.8) see the proof of Theorem 2 in [11].

From the representation of the derivatives in (2.7) it is obvious that (ηt)t evolves according to a
linear differential equation, when the process X is in the interior of G, and that it is projected to
the tangent space, when X hits the boundary. Furthermore, if X is at the boundary at some time t0
and we have r(t0−) 6= r(t0), i.e. t0 is the endpoint of an excursion interval, then also η may have a
discontinuity at t0 and jump as follows:

ηt0
= πX t0 (x)

(ηt0−). (2.10)

Consequently, we observe that at each time t0 as above, η is projected to the tangent space and
jumps in direction of n(X t0

(x)) or −n(X t0
(x)), respectively. Finally, if X t0

(x) ∈ ∂ G and t 7→ r(t)
is continuous in t = t0, there is also a projection of η, but since in this case ηt0− is in the tangent
space, the projection has no effect and η is continuous at time t0.

Set Yt := Ot · ηt , t ≥ 0, where Ot denotes the moving frame introduced in Section 2.3. Let P =
diag(e1) and Q = Id−P and

Y 1
t = P · Yt and Y 2

t =Q · Yt

to decompose the space Rd into the direct sum Im P⊕Ker P. We define the coefficient functions c(t)
and d(t) to be such that

d
∑

k=1

�

c1
k(t) c2

k(t)
c3

k(t) c4
k(t)

�

dwk
t +

�

d1(t) d2(t)
d3(t) d4(t)

�

d t

=
d
∑

k=1

αk(X t(x)) dwk
t +
�

Ot · Db(X t(x)) ·O−1
t + β(X t(x))

�

d t.
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Furthermore, we set γ2(t) := γ(X t(x)) ·Q.

Theorem 2.5. There exists a right-continuous modification of η and Y , respectively, such that Y is
characterized as the unique solution of

Y 1
t =1l{t<inf C`}

 

Y 1
τ`
+

d
∑

k=1

∫ t

τ`

�

c1
k(s)Y

1
s + c2

k(s)Y
2

s

�

dwk
s +

∫ t

τ`

�

d1(s)Y 1
s + d2(s)Y 2

s

�

ds

!

+ 1l{t≥inf C`}

 

d
∑

k=1

∫ t

r(t)

�

c1
k(s)Y

1
s + c2

k(s)Y
2

s

�

dwk
s +

∫ t

r(t)

�

d1(s)Y 1
s + d2(s)Y 2

s

�

ds

!

Y 2
t =Y 2

τ`
+

d
∑

k=1

∫ t

τ`

�

c3
k(s)Y

1
s + c4

k(s)Y
2

s

�

dwk
s +

∫ t

τ`

�

d3(s)Y 1
s + d4(s)Y 2

s

�

ds

+

∫ t

τ`

�

Φ2
s + γ

2(s)
�

Y 2
s dls(x),

for t ∈ [τ`,τ`+1), where

Φ2
t :=Q ·Ot · Dn(X t(x)) ·O−1

t ·Q, t ∈ C = supp dl(x),

with the initial condition Y 1
τ`
= P ·Oτ` ·O

−1
τ`−
· Yτ`− and Y 2

τ`
= Q ·Oτ` ·O

−1
τ`−
· Yτ`− for ` ≥ 1 as well as

Y 1
0 = P ·Om0

(x) · v and Y 2
0 =Q ·Om0

(x) · v for `= 0.

Remark 2.6. Here and in the sequel integrals of the form
∫ t

r(t)
ξ(s) dws are understood as follows:

Let H : C([0,∞))→ D([0,∞)) be the random map defined by (H f )(t) := f (t)− f (r(t)). Then,
∫ t

r(t)
ξ(s) dws := (HI)(t)

where I(t) is the continuous process I(t) =
∫ t

0
ξ(s) dws.

The equations in Theorem 2.5 show that on every interval [τ`,τ`+1) the decomposition of Y is
a decomposition into a discontinuous and continuous part. The discontinuous part Y 1 becomes
zero whenever X hits the boundary, which corresponds to the projection of η to the tangent space
described above. On the other hand, Y2 is continuous which shows that only the component of η in
normal direction is affected by the projection.

Remark 2.7. Note that for all t ∈ C = supp dl(x),

Φ2
t :=Q ·Ot · Dn(X t(x)) ·O−1

t ·Q =−Q ·Ot · S(X t(x)) ·O−1
t ·Q,

where for every x ∈ ∂ G, S(x) denotes the symmetric linear endomorphism acting on the tangent
space at x , which is known as the shape operator or the Weingarten map, characterized by the
relation S(x)v = −Dvn(x) for all v in the tangent space at x . The eigenvalues of S(x) are the
principal curvatures of ∂ G at x , and in two dimensions its determinant is the Gaussian curvature.
Hence, the linear term in the equation for the derivatives in [4] can be recovered in our results.
However, because of the presence of stochastic integrals in the characterizing equation in Theorem
2.5 it is unlikely that the result in [4] can be directly deduced from this equation.
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Remark 2.8. Define the process (Mt)t≥0, taking values in Rd×d , via

ηv
t (x) =Mt(x) · v, v ∈Rd , t ≥ 0.

Then,M is a multiplicative functional that can possibly be identified with the discontinuous multi-
plicative functional constructed in [12] (cf. also [1, 13]). Indeed, both functionals satisfy the same
Bismut formula, see (2.9) and page 363 in [12]. Nevertheless, the evolution equation for the func-
tional in Theorem 3.4 in [12] is slightly different from the one in Theorem 2.5, since in [12] the
geometry of the domain is described in terms of horizontal lifts rather than in terms of a moving
frame as in the present paper, which makes a direct identification difficult.

Finally, we give another confirmation of the results, namely they will imply that the Neumann
condition holds for X .

Corollary 2.9. For all f ∈ C(G) and t > 0, the transition semigroup Pt f (x) := E[ f (X t(x))], x ∈ G,
satisfies the Neumann condition at ∂ G:

x ∈ ∂ G =⇒ Dn(x)Pt f (x) = 0.

2.5 Example: Processes in the Unit Disc

We end this section by considering the example of the unit disc to illustrate our results. Let the
domain G = B1(0) be the closed unit disc in R2. Then, for x ∈ ∂ G, the inner normal field is given
by n(x) =−x and the orthogonal projection onto the tangent space by πx(z) = z − 〈z, x〉x , z ∈R2.
The Skorohod equation can be written as

X t(x) = x +

∫ t

0

b(X r(x)) dr +wt −
∫ t

0

X r(x) dlr(x), t ≥ 0,

X t(x) ∈ G, dlt(x)≥ 0,

∫ ∞

0

1l{‖X t (x)‖<1} dlt(x) = 0, t ≥ 0,

and the system describing the derivatives becomes

ηt = v +

∫ t

0

Db(X r(x)) ·ηr dr, if t < inf C ,

ηt = ηr(t)−− 〈ηr(t)−, X r(t)(x)〉X r(t)(x) +

∫ t

r(t)
Db(X r(x)) ·ηr dr, if t ≥ inf C .

In this example a possible choice of the coordinate patches is the following. Let U0 := G0 be the
interior of the disc and u0 be the identity on U0. Further, for some small fixed δ we set

U1 := {x = (x1, x2) ∈ G : x1 > δ}, U2 := {x = (x1, x2) ∈ G : x1 <−δ},

U3 := {x = (x1, x2) ∈ G : x2 > δ}, U4 := {x = (x1, x2) ∈ G : x2 <−δ},

and

u1
m(x) :=

1

2
(1−‖x‖2), m= 1, . . . , 4, u2

m(x) :=

(

arctan x2

x1 if m= 1, 2,

arctan x1

x2 if m= 3, 4.
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Finally, in order to define the moving frame, let O0 := Id and

Om(x) :=
1

‖x‖

�

−x1 −x2

−x2 x1

�

:= O−1
m (x), m= 1, . . . , 4.

Hence, dOt ·O−1
t = 0 on [τ`,τ`+1) if m` = 0, and otherwise we use Itô’s formula to obtain

dOt ·O−1
t =

X 2
t (x)

‖X t(x)‖3

�

0 1
−1 0

�

dw1
t +

X 1
t (x)

‖X t(x)‖3

�

0 −1
1 0

�

dw2
t

+

�

X 2
t (x)

‖X t(x)‖3

�

0 1
−1 0

�

b1(X t(x)) +
X 1

t (x)

‖X t(x)‖3

�

0 −1
1 0

�

b2(X t(x)) +
1

2‖X t(x)‖4

�

1 0
0 1

��

d t,

from which the coefficient functions α1, α2 and β can be defined accordingly. Note that in any case
γ= 0. Furthermore, since n(x) =−x for all x ∈ ∂ G, Dn(x) =− Id and therefore Φ2

t =−Q.

For simplicity we restrict ourselves now to the case b = 0. Then, the system in Theorem 2.5 can be
rewritten as follows: For t ∈ [τ`,τ`+1), writing Yt = (y1

t , y2
t ), we get in the case m` = 0 that

y1
t = 1l{t<inf C`} y

1
τ`

, y2
t = y2

τ`
−
∫ t

τ`

y2
s dls(x),

and in the case m` 6= 0 that

y1
t =1l{t<inf C`}

 

y1
τ`
+

∫ t

τ`

X 2
s (x)

‖Xs(x)‖3
y2

s dw1
s −
∫ t

τ`

X 1
s (x)

‖Xs(x)‖3
y2

s dw2
s +

∫ t

τ`

1

2‖Xs(x)‖4
y1

s ds

!

+ 1l{t≥inf C`}

 

∫ t

r(t)

X 2
s (x)

‖Xs(x)‖3
y2

s dw1
s −
∫ t

r(t)

X 1
s (x)

‖Xs(x)‖3
y2

s dw2
s +

∫ t

r(t)

1

2‖Xs(x)‖3
y1

s ds

!

y2
t =y2

τ`
−
∫ t

τ`

X 2
s (x)

‖Xs(x)‖3
y1

s dw1
s +

∫ t

τ`

X 1
s (x)

‖Xs(x)‖3
y1

s dw2
s +

∫ t

τ`

1

2‖Xs(x)‖4
y2

s ds−
∫ t

τ`

y2
s dls(x),

with initial value Yτ` as specified in Theorem 2.5.

3 Proof of the Main Result

3.1 Lipschitz Continuity w.r.t. the Initial Datum

Before adressing the question of differentiability we establish pathwise continuity properties of x 7→
(X t(x))t w.r.t. the sup-norm topology. For this we will need that the mapping y 7→ lt(y) is bounded.

Lemma 3.1. For every t > 0 we have supx∈G lt(x)<∞ a.s.

Proof. See Lemma 3.3 in [4].

Proposition 3.2. Let T > 0 be arbitrary and let (X t(x)) and (X t(y)), t ≥ 0, be two solutions of (2.1)
for any x , y ∈ G. Then, there exists a positive constant c only depending on T such that

sup
t∈[0,T]

‖X t(x)− X t(y)‖ ≤ ‖x − y‖ exp(c(T + lT (x) + lT (y))) for all x , y ∈ G.
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Note that the Lipschitz continuity in the initial condition, which is stated here, becomes effective
since the Lipschitz constant can be controlled due to the uniform boundedness of lT (x) in x estab-
lished in Lemma 3.1

Proof. The case x = y is clear and it suffices to consider the case T < inf{t : X t(x) = X t(y)}.
We shall proceed similarly to Lemma 3.8 in [6]. Since ∂ G is C2-smooth and G is connected and
compact, there exists a positive constant c1 <∞ such that for all x ∈ ∂ G and all y ∈ G,

〈x − y, n(x)〉 ≤ c1 ‖x − y‖2. (3.1)

Let T0 := 0 and for k ≥ 1,

Tk := inf
¦

t ≥ Tk−1 : ‖X t(x)− X t(y)‖ 6∈
�

1
2
‖XTk−1

(x)− XTk−1
(y)‖, 2‖XTk−1

(x)− XTk−1
(y)‖

�©

∧ T.

Then, by Itô’s formula we obtain for any k ≥ 1 and t ∈ (Tk−1, Tk],

‖X t(x)− X t(y)‖− ‖XTk−1
(x)− XTk−1

(y)‖

=

∫ t

Tk−1




X r(x)− X r(y), b(X r(x))− b(X r(y))
�

‖X r(x)− X r(y)‖
dr

+

∫ t

Tk−1




X r(x)− X r(y), n(X r(x))
�

‖X r(x)− X r(y)‖
dlr(x) +

∫ t

Tk−1




X r(y)− X r(x), n(X r(y))
�

‖X r(x)− X r(y)‖
dlr(y)

≤c2

∫ t

Tk−1

‖X r(x)− X r(y)‖ dr + c1

∫ t

Tk−1

‖X r(x)− X r(y)‖ (dlr(x) + dlr(y))

≤c3 ‖XTk−1
(x)− XTk−1

(y)‖
∫ Tk

Tk−1

(dr + dlr(x) + dlr(y)),

where we have used (3.1) and the Lipschitz continuity of b. Hence, for any t ∈ (Tk−1, Tk],

‖X t(x)− X t(y)‖
‖XTk−1

(x)− XTk−1
(y)‖

≤ 1+ c3

�

Tk − Tk−1+ lTk
(x)− lTk−1

(x) + lTk
(y)− lTk−1

(y)
�

≤ exp
�

c3

�

Tk − Tk−1+ lTk
(x)− lTk−1

(x) + lTk
(y)− lTk−1

(y)
��

,

and

‖X t(x)− X t(y)‖
‖x − y‖

=
‖X t(x)− X t(y)‖

‖XTk−1
(x)− XTk−1

(y)‖

k−1
∏

j=1

‖XT j
(x)− XT j

(y)‖

‖XT j−1
(x)− XT j−1

(y)‖

≤
k
∏

j=1

exp
�

c3

�

T j − T j−1+ lT j
(x)− lT j−1

(x) + lT j
(y)− lT j−1

(y)
��

≤ exp
�

c3

�

Tk + lTk
(x) + lTk

(y)
��

≤ exp
�

c3
�

T + lT (x) + lT (y)
��

,

which proves the proposition.
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Remark 3.3. By Proposition 3.2 there exists for every T > 0 a random ∆T > 0 such that

sup
t∈[0,T]

‖X t(x)− X t(y)‖<
δ0

2
, ∀y ∈ B∆T

(x)∩ G,

with δ0 as in Section 2.3. Then, by the definition of τ` we have for such y and for every ` that
X t(y) ∈ Um` for all t ∈ [τ`,τ`+1) .

Lemma 3.4. For every t ∈ [0, T] we have that for all x ∈ G the mapping y 7→ lt(y) is continuous at
x.

Proof. Fix T > 0 and x ∈ G and set

λt(y) :=

∫ t

0

n(X r(y)) dlr(y), y ∈ G, t ∈ [0, T],

which defines for each y ∈ G a process of bounded variation on [0, T]. Then, we get immediately
by Proposition 3.2, (2.1) and the Lipschitz property of b that λ(y) converges uniformly on [0, T] to
λ(x) as y tends to x .

Let now t ∈ [0, T] and ` be such that t ∈ [τ`,τ`+1). Then, for all y ∈ B∆T
(x) ∩ G with ∆T as in

Remark 3.3 we have that Xs(y), Xs(x) ∈ Um` for all s ∈ [τ`, t). For such y and s we get

dls(y)− dls(x) = 〈∇u1
m`
(Xs(y)), n(Xs(y))〉 dls(y)− 〈∇u1

m`
(Xs(x)), n(Xs(x))〉 dls(x)

=∇u1
m`
(Xs(y)) dλs(y)−∇u1

m`
(Xs(x)) dλs(x)

= σ1
m`
(Xs(y)) dλs(y)−σ1

m`
(Xs(x)) dλs(x).

Hence,

lt(y)− lt(x) =lτ`(y)− lτ`(x) +

∫ t

τ`

σ1
m`
(Xs(x)) (dλs(y)− dλs(x))

+

∫ t

τ`

�

σ1
m`
(Xs(y))−σ1

m`
(Xs(x))

�

dλs(y).

Using Proposition 3.2 and the fact that the functions σm are uniformly Lipschitz the last term con-
verges to zero as y tends to x . Recall that λ(y) converges uniformly on [τ`, t] to λ(x) as y tends
to x . Hence, we have that the associated signed measures dλ(y) on [τ`, t] converge weakly to
dλ(x) as y tends to x . Since s 7→ σ1

m`
(Xs(x)) is bounded and continuous on [τ`, t], the second term

converges to zero as y tends to x . We apply the same argument for lτ`(y)− lτ`(x) on [τ`−1,τ`] and
by iterating this procedure we obtain the claim.

We fix now an arbitrary x ∈ G, v ∈ Rd and T > 0. Then, we set xε := x + ε v for all ε ∈ [ax , bx]
with ax ≤ 0 and bx ≥ 0 such that xε ∈ G for all ε ∈ [ax , bx]. Furthermore, we define for such ε and
t ∈ [0, T],

M x ,`
t (ε) :=







0 if t ∈ [0,τ`),
∫ t

τ`
b1

m`
(X r(xε)) dr +

∫ t

τ`
σ1

m`
(X r(xε)) dwr if t ∈ [τ`,τ`+1],

M x ,`
τ`+1
(ε) if t > τ`+1.
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The index x is there to indicate that the stopping times τ` are the same as in the definition of M x ,`

that are depending on x and not on ε. In particular, M x ,`(ε) is a well-defined object, since the
coefficient functions b1

m and σ1
m have been extended to the whole domain G. Note that M x ,`

t =
M x ,`

t (0), t ∈ [0, T]. Finally, we set

∆M x ,`
t (ε,ε

′) := M x ,`
t (ε)−M x ,`

t (ε
′), t ∈ [0, T], ε,ε′ ∈ [ax , bx],

so that

∆M x ,`
t (ε, 0) =

∫ t

τ`

�

b1
m`
(X r(xε))− b1

m`
(X r(x))

�

dr +

∫ t

τ`

�

σ1
m`
(X r(xε))−σ1

m`
(X r(x))

�

dwr ,

for t ∈ [τ`,τ`+1) and ε ∈ [ax , bx]. In the next lemma we show that M x ,`
t (ε) is pathwise jointly

continuous in t and ε.

Lemma 3.5. Let∆T be as in Remark 3.3. Then, for a.e.ω ∈ Ω the following holds. For every δ1 ∈ (0,1)
and δ2 ∈ (0, 1

2
) there exists a random constant K = K(ω,δ1,δ2, T ) such that

�

�

�∆M x ,`
t (ε,ε

′)−∆M x ,`
s (ε,ε

′)
�

�

�≤ K |ε− ε′|1−δ1 |t − s|
1
2
−δ2 , ∀s, t ∈ [0, T], (3.2)

for all ε,ε′ such that xε, xε′ ∈ B∆T
(x)∩ G. In particular, for every δ ∈ (0,1) we have for all such ε

�

�

�M x ,`
t (ε)−M x ,`

t

�

�

�≤ K |ε|1−δ, ∀t ∈ [0, T],

for some random constant K = K(ω,δ, T ).

Proof. In a first step we use Kolmogorov’s continuity theorem to show the existence of a modification
of (M`,x(ε))t,ε satisfying the above estimate and in a second step we show the claim by a continuity
argument.

Step 1: It follows directly from Proposition 3.2, the uniform Lipschitz continuity of b1
m and σ1

m and
the Burkholder inequality that for every p > 1 there exists a positive constant c1 = c1(p, T ) such that

E

��

�

�M x ,`
t (ε)−M x ,`

t (ε
′)
�

�

�

p�

≤ c1 |ε− ε′|p, ∀t ∈ [0, T], ε,ε′ ∈ [ax , bx].

Moreover, the functions b1
m and σ1

m are uniformly bounded and again by using Burkholder’s inequal-
ity we get that for every p > 1

E

��

�

�M x ,`
t (ε)−M x ,`

s (ε)
�

�

�

p�

≤ c2 |t − s|p/2, ∀s, t ∈ [0, T], ε ∈ [ax , bx]

for some constant c2 = c2(p, T ). Next we will show that for every p > 1 there exists a constant
c3 = c3(p, T ) such that

E

��

�

�∆M x ,`
t (ε,ε

′)−∆M x ,`
s (ε,ε

′)
�

�

�

p�

≤ c3 |ε− ε′|p |t − s|p/2, ∀s, t ∈ [0, T], ε,ε′ ∈ [ax , bx].

For the rest of the proof the symbol c denotes a constant whose value may change from one oc-
curence to the other one. Let 0 ≤ s ≤ t ≤ T and ε,ε′ ∈ [ax , bx]. Recall that both M x ,`(ε) and
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M x ,`(ε′) are defined to be constant on [0, T]\[τ`,τ`+1]. Thus, it is enough to consider the case
where [s, t] intersects [τ`,τ`+1]. Setting ŝi := s ∨ τ` and t̂ := t ∧ τ`+1 we have | t̂ − ŝ| ≤ |t − s|. By
the definition of M x ,`(ε) and M x ,`(ε′) we have

E

��

�

�∆M x ,`
t (ε,ε

′)−∆M x ,`
s (ε,ε

′)
�

�

�

p�

≤cE





�

�

�

�

�

∫ t̂

ŝ

(b1
m`
(X r(xε))− b1

m`
(X r(xε′))) dr

�

�

�

�

�

p



+ cE





�

�

�

�

�

∫ t̂

ŝ

(σ1
m`
(X r(xε))−σ1

m`
(X r(xε′))) dwr

�

�

�

�

�

p

 .

By the uniform Lipschitz continuity of bm and Proposition 3.2 the first term can be estimated by

c |t − s|pE
�

sup
r∈[ŝ, t̂]

‖X r(xε)− X r(xε′)‖p

�

≤ c |ε− ε′|p |t − s|p.

For the second term we get the following estimate by Burkholder’s inequality, the uniform Lipschitz
continuity of σm and again by Proposition 3.2:

cE



 sup
r∈[ŝ, t̂]

�

�

�

�

�

∫ r

ŝ

�

σ1
m`
(X r(xε))−σ1

m`
(X r(xε′))

�

dwr

�

�

�

�

�

p



≤cE







 

∫ t̂

ŝ

‖X r(xε)− X r(xε′)‖2dr

!p/2






≤c |t − s|p/2E
�

sup
r∈[ŝ, t̂]

‖X r(xε)− X r(xε′)‖p

�

≤c |ε− ε′|p |t − s|p/2

and we obtain the desired estimate. We apply now Kolmogorov’s continuity theorem, in particular
the version for double parameter random fields in Theorem 1.4.4 in [17], which implies that for
any given δ1 ∈ (0, 1) and δ2 ∈ (0, 1

2
) there exists a modification of the random field (M x ,`(ε))t,ε

satisfying (3.2) for some random constant K = K(ω,δ1,δ2, T ).

Step 2: The existence of a modification shown in Step 1 immediately implies that a.s. (3.2) holds
for all s, t ∈ [0, T] ∩Q and ε,ε′ ∈ [ax , bx] ∩Q. The claim follows if ∆M x ,`

t (ε,ε
′)−∆M x ,`

s (ε,ε
′) is

pathwise continuous in s and t as well as in ε and ε′. It is enough to show the continuity of M x ,`
t (ε)

in t and ε. The continuity in t is obvious and for every ε such that xε ∈ B∆T
(x) ∩ G we get by an

application of Itô’s formula as in (2.2)

M x ,`
t (ε) = u1

m`
(X t(xε))− u1

m`
(Xτ`(xε))− Lt(xε),

where the right hand side is continuous in ε by Proposition 3.2 and Lemma 3.4.

3.2 Convergence of Minimum Times

In this section we investigate the behaviour of the local time, when the starting point x of X (x) has
been perturbed by a small ε. To that purpose we shall transform the process locally into a process
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on the halfspace as indicated in Section 2.3, which allows us to use Skorohod’s Lemma to compute
the local time in terms of the time when the continuous martingale M x ,` attains its minimum. As a
result we shall obtain that for ε tending to zero the minimum time of M x ,` converges almost surely
faster than polynomially to the minimum time of M x ,`.

We fix from now on an arbitrary T > 0. In the following let (An) be the family of connected
components of [0, T]\C . Then, An is open and recall that for every ` the mapping t 7→ [M x ,`]t
is continuous and increasing on [τ`,τ`+1). Thus, for every n we may choose a random qn ∈ An
a follows: Let ` be such that inf An ∈ [τ`,τ`+1), then we choose qn ∈ [τ`,τ`+1) ∩ An such that
[M x ,`]qn

∈Q.

In order to compute the local time l(x), recall that on every interval [τ`,τ`+1), `≥ 0, l(x) is carried
by the set of times t, when u1

m`
(X t(x)) = 0. Therefore, we can apply Skorohod’s Lemma (see e.g.

Lemma VI.2.1 in [23]) to equation (2.4) to obtain

Lt(x) =
�

−u1
m`
(Xτ`(x))− inf

τ`≤s≤t
M x ,`

s

�+

, t ∈ [τ`,τ`+1).

Fix any qn > inf C and ` such that qn ∈ [τ`,τ`+1) . Since u1
m`
(X r(qn)(x)) = 0 and t 7→ Lt(x) is

non-decreasing, we have for all τ` ≤ s ≤ r(qn):

M x ,`
r(qn)
=−u1

m`
(Xτ`(x))− Lr(qn)(x)≤−u1

m`
(Xτ`(x))− Ls(x)

=−u1
m`
(Xs(x)) +M x ,`

s ≤ M x ,`
s .

Moreover, L(x) is constant on [r(qn), t] for all t ∈ An ∩ [τ`,τ`+1), so that

Lt(x) = Lr(qn)(x) =
h

−u1
m`
(Xτ`(x))−M x ,`

r(qn)

i+
, t ∈ An ∩ [τ`,τ`+1). (3.3)

Note that M x ,`
r(qn)
≤ M x ,`

s for all s ∈ [τ`, qn]. Further, with probability one we have that r(qn) is the

unique time in [τ`, qn], when M x ,` attains its minimum. Analogously we compute the local time of
the process with perturbed starting point. For fixed v ∈ Rd we set xε := x + εv, ε ∈ R, where |ε| is
always supposed to be sufficiently small, such that xε lies in G. Furthermore, there exists a random
∆n > 0 such that for all ε ∈ (−∆n,∆n) we have X t(xε) ∈ Um` for all t ∈ [τ`, qn] (cf. Remark 3.3).
As above we obtain for such ε:

Lqn
(xε) = Lrε(qn)(xε) =

h

−u1
m`
(Xτ`(xε))−M x ,`

rε(qn)
(ε)
i+

, (3.4)

where rε(qn) is defined similarly as r(qn). In particular, M x ,`
rε(qn)
(ε)≤ M x ,`

s (ε) for all s ∈ [τ`, qn].

Lemma 3.6. For all n we have rε(qn)→ r(qn) a.s. for ε→ 0.

Proof. Consider some qn and let ` be such that qn ∈ [τ`,τ`+1). We fix now a typical ω such that
r(qn) is the unique time in [τ`, qn], when M x ,` attains its minimum and such that Lemma 3.5 holds.
For every sequence (εk)k converging to zero we can extract a subsequence of (rεk

(qn)), still denoted
by (rεk

(qn)), converging to some r̂(qn). By construction we have

M x ,`
rεk (qn)

(εk)≤ M x ,`
r(qn)
(εk)
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for every k. Note that on one hand the right hand side converges to M x ,`
r(qn)

as k→∞ by Lemma 3.5.

On the other hand the left hand side converges to M x ,`
r̂(qn)

, since

�

�

�

�

M x ,`
rεk (qn)

(εk)−M x ,`
r̂(qn)

�

�

�

�

≤
�

�

�

�

M x ,`
rεk (qn)

(εk)−M x ,`
rεk (qn)

�

�

�

�

+

�

�

�

�

M x ,`
rεk (qn)

−M x ,`
r̂(qn)

�

�

�

�

,

where the first term tends to zero for k→∞ by Lemma 3.5 and the second term by the continuity of
M x ,`. Thus, M x ,`

r̂(qn)
≤ M x ,`

r(qn)
. Since r(qn) is unique time in [τ`, qn], when M x ,` attains its minimum,

this implies r̂(qn) = r(qn).

Lemma 3.7. Let (Wt)t≥0 be a Brownian motion on (Ω,F ,P). For all T > 0, let ϑ : Ω→ [0, T] be the
random variable such that a.s.

Wϑ <Ws ∀s ∈ [0, T]\{ϑ}.

Then,

lim inf
s→ϑ

Ws −Wϑ
p

|s− ϑ|h(|s− ϑ|)
≥ 1 a.s., (3.5)

for every function h on [0,∞) satisfying 0< h(t) ↓ 0 as t ↓ 0 and
∫ r0

0
h(t) d t

t
<∞ for some r0 > 0.

Proof. It suffices to consider the case T = 1. We recall the following path decomposition of a
Brownian motion, proven in [10]. Denoting by (M , M̂) two independent copies of the standard
Brownian meander (see [23]), we set for all r ∈ (0, 1),

Vr(t) :=

(

−
p

rM(1) +
p

rM( r−t
r
), t ∈ [0, r]

−
p

rM(1) +
p

1− r M̂( t−r
1−r
), t ∈ (r, 1]

Let now (τ, M , M̂) be an independent triple, such that τ has the arcsine law. Then, Vτ
d
= W . This

formula has the following meaning: τ is the unique time in [0, 1], when the path attains minimum
−
p
τM(1). The path starts in zero at time t = 0 and runs backward the path of M on [0,τ] and

then it runs the path of M̂ . Moreover, it was proved in [14] that the law of the Brownian meander
is absolutely continuous w.r.t. the law of the three-dimensional Bessel process (Rt)t≥0 on the time
interval [0,1] starting in zero. We recall that a.s.

lim inf
t→0

Rtp
t h(t)

≥ 1

for every function h satisfying the conditions in the statement (see [15], p. 164). Since the same
asymptotics hold for the Brownian meander at zero, the claim follows.

In the next proposition we will apply Lemma 3.7 to the Brownian motions Bx ,` defined in Section 2.3.
More precisely, Lemma 3.7 gives that a.s. for every ` and every nonnegative q ∈ Q the following
holds: If q ≤ [M x ,`]τ`+1

, denoting by ϑ`q the unique time when Bx ,` attains its minimum over [0, q],
Bx ,` satisfies the asymptotic behaviour stated in (3.5) at ϑ`q.
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Proposition 3.8. Let δ > 0 be arbitrary. Then, for all n we have

|rε(qn)− r(qn)|δ

ε
−→ 0 a.s. as ε→ 0.

Proof. First we fix 0 < δ′ < 1. By construction we have for every qn and ` such that qn ∈ [τ`,τ`+1)
and for ε small enough,

M x ,`
rε(qn)
(ε)≤ M x ,`

r(qn)
(ε).

Since M x ,`
t (ε) = M x ,`

t +∆M x ,`
t (ε, 0) for every t ∈ [τ`, qn] with ∆M x ,`

t (ε, 0) as in Lemma 3.5, this
can be rewritten as

M x ,`
rε(qn)

−M x ,`
r(qn)
≤∆M x ,`

r(qn)
(ε, 0)−∆M x ,`

rε(qn)
(ε, 0),

which implies

M x ,`
rε(qn)

−M x ,`
r(qn)

|rε(qn)− r(qn)|(1−δ
′)/2

1l{rε(qn)6=r(qn)} ≤

�

�

�∆M x ,`
r(qn)
(ε, 0)−∆M x ,`

rε(qn)
(ε, 0)

�

�

�

|rε(qn)− r(qn)|(1−δ
′)/2

1l{rε(qn)6=r(qn)}. (3.6)

Recall that M x ,`
· = Bx ,`

[M x ,`].
, where Bx ,` is a P̃`(x)-Brownian motion (see (2.5)) and Bx ,` attains its

minimum over
�

0, [M x ,`]qn

�

at time ϑ`
[M x ,`]qn

= [M x ,`]r(qn). Note that qn has been chosen such that

[M x ,`]qn
∈Q. Hence, applying Lemma 3.7 with h(t) = tδ

′/2 it follows that a.s.

M x ,`
rε(qn)

−M x ,`
r(qn)
= Bx ,`

[M x ,`]rε (qn)
− Bx ,`

[M x ,`]r(qn)
≥ 1

2

�

�[M x ,`]rε(qn)− [M
x ,`]r(qn)

�

�

(1+δ′)/2

= 1
2

�

�

�

�

�

∫ rε(qn)

r(qn)
‖σ1

m`
(X r(x))‖2 dr

�

�

�

�

�

(1+δ′)/2

for all ε ∈ (−∆n,∆n) for some positive ∆n. Since

‖σ1
m`
(X r(qn)(x))‖

2 = ‖∇u1
ml
(X r(qn)(x))‖

2 = ‖n(X r(qn)(x))‖
2 = 1,

we have by Lemma 3.6, possibly after choosing a smaller ∆n, that ‖σ1
m`
(X r(x))‖2 is bounded away

from zero uniformly in r between r(qn) and rε(qn). Thus,

M x ,`
rε(qn)

−M x ,`
r(qn)
≥ c1

�

�rε(qn)− r(qn)
�

�

(1+δ′)/2

and we derive from (3.6) that a.s.

c1

�

�rε(qn)− r(qn)
�

�

δ′ ≤ sup
s,t∈[0,T]

s 6=t

�

�

�∆M x ,`
t (ε, 0)−∆M x ,`

s (ε, 0)
�

�

�

|t − s|(1−δ′)/2
≤ K |ε|1−δ

′

for some random constant K = K(ω,δ′, T ), where we have used Lemma 3.5. Hence, for every δ > 0
we have |ε|−1|rε(qn)− r(qn)|δ ≤ Kδ for some random constant Kδ. In particular, since

|rε(qn)− r(qn)|δ

ε
≤ Kδ/2 |rε(qn)− r(qn)|δ/2,

the claim follows by Lemma 3.6.
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Corollary 3.9. For any n and let ` be such that qn ∈ [τ`,τ`+1). Then,

i) 1
ε

�

�

�M x ,`
r(qn)
(ε)−M x ,`

rε(qn)
(ε)
�

�

�−→ 0 a.s. as ε→ 0,

ii) 1
ε

�

�lr(qn)(xε)− lrε(qn)(xε)
�

�−→ 0 a.s. as ε→ 0.

Proof. For arbitrary δ ∈ (0, 1
2
) we have

1

ε

�

�

�M x ,`
r(qn)
(ε)−M x ,`

rε(qn)
(ε)
�

�

�≤ 1l{rε(qn)6=r(qn)}
|rε(qn)− r(qn)|

1
2
−δ

ε

�

�

�M x ,`
r(qn)
(ε)−M x ,`

rε(qn)
(ε)
�

�

�

|rε(qn)− r(qn)|
1
2
−δ

≤
|rε(qn)− r(qn)|

1
2
−δ

ε
sup

s,t∈[0,T]
s 6=t

�

�

�M x ,`
t (ε)−M x ,`

s (ε)
�

�

�

|t − s|
1
2
−δ

.

Since

sup
s 6=t

�

�

�M x ,`
t (ε)−M x ,`

s (ε)
�

�

�

|t − s|
1
2
−δ

≤ sup
s 6=t

�

�

�∆M x ,`
t (ε, 0)−∆M x ,`

s (ε, 0)
�

�

�

|t − s|
1
2
−δ

+ sup
s 6=t

�

�

�M x ,`
t −M x ,`

s

�

�

�

|t − s|
1
2
−δ

,

is a.s bounded by a random constant due to Lemma 3.5 and due to the fact that M x ,` is Hölder
continuous of order 1

2
−δ, we obtain i) from Proposition 3.8.

ii) follows from i). Indeed, by Proposition 3.2 and Lemma 3.6 we have for ε sufficiently small that
lr(qn)(xε) = lrε(qn)(xε) = 0 if qn < inf C and lr(qn)(xε), lrε(qn)(xε) > 0 if qn > inf C . In the first case ii)
is trivial and the latter case we have by (3.4)

�

�lr(qn)(xε)− lrε(qn)(xε)
�

�=
�

�Lr(qn)(xε)− Lrε(qn)(xε)
�

�= M x ,`
rε(r(qn))

(ε)−M x ,`
rε(qn)
(ε)

≤ M x ,`
r(qn)
(ε)−M x ,`

rε(qn)
(ε), (3.7)

where we have used the fact that M x ,`(ε) attains its minimum over [τ`, qn] at time rε(qn) and its
minimum over [τ`, r(qn)] at time rε(r(qn)), respectively.

3.3 Proof of the Differentiability

The main idea in order to prove the differentiability result is based on a pathwise argument similar
to Step 5 in the proof of Theorem 1 in [11]. Denote by ηt(ε) := 1

ε
(X t(xε)− X t(x)) the difference

quotient, xε = x + εv for any fixed vector v ∈ Rd and let T > 0 be fixed. Then, the first step is to
prove the following

Proposition 3.10. There exists a set Ω0 ⊆ Ω with P[Ω0] = 1 such that for every ω ∈ Ω0 the following
holds. Let (εν)ν = (εν(ω))ν be any random sequence such that limν→∞ εν(ω) = 0 for every ω ∈ Ω0.
Then, there exists a subsequence (ενl

)l with (νl)l = (νl(ω))l such that for all t ∈ [0, T]\C(ω) the limit
of ηt(ε) along the subsequence (ενl

)l , i.e.

lim
l→∞

ηt(ω,ενl (ω)(ω)) =: η̂t(ω, (εn)) =: η̂t(ω),
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exists and is measurable. Furthermore, for all ω ∈ Ω0, (η̂t)t∈[0,T]\C satisfies

η̂t = v +

∫ t

0

Db(X r(x)) · η̂k
r dr, t ∈ [0, inf C),

η̂t = η̂r(t)+

∫ t

r(t)
Db(X r(x)) · η̂k

r dr, t ∈ [inf C , T]\C .

(3.8)

We stress here that the typical ω is fixed at the beginning, in particular before considering any
sequences or subsequences. At the beginning of the proof of Proposition 3.10 we will choose the set
Ω0 with full measure. No sequence or subsequence is involved in this choice. The statement of the
Proposition will then follow by completely pathwise arguments, which are purely deterministic and
do not require any other choice of events.

In the next step we extend η̂(ω), ω ∈ Ω0, to a right-continuous trajectory on [0, T]. Then, we prove
that in coordinates of the moving frame introduced in Section 2.2 η̂ solves the evolution equation
appearing in Theorem 2.5, which is shown to admit a pathwise unique solution.

Finally, we outline how the almost sure directional differentiability can be deduced from this. First
note that ηT (ε) converges a.s. if and only if for every component ηi

T (ε), i = 1, . . . , d,

lim inf
ε→0

ηi
T (ε) = lim sup

ε→0
ηi

T (ε) a.s. (3.9)

Let now (εi,−
ν )ν and (εi,+

ν )ν be two random sequences, along which ηi
T (ε) converges to its limes

inferior and its limes superior, respectively. We apply Proposition 3.10 to these two sequences and
get two limiting objects η̂− and η̂+, being two trajectories in Rd whose i-th components at time
T , η̂i,−

T and η̂i,+
T , coincide with the limes inferior and limes inferior of ηi

T (ε), of course. From the
fact that both η̂− and η̂+ solve an equation having a pathwise unique solution we conclude that

P
h

η̂−t = η̂
+
t , ∀t ∈ [0, T]

i

= 1, which implies η̂i,−
T = η̂

i,+
T a.s. and we obtain (3.9).

3.3.1 The Limit along a Subsequence

Proof of Proposition 3.10. Let T > 0 still be fixed. We choose Ω0 ⊆ Ω with full measure such that
for all ω ∈ Ω0 Lemma 3.1 holds and Corollary 3.9 holds for all n. Let now ω ∈ Ω0 be fixed. Let
t ∈ [0, T]\C and n be such that t ∈ An. Using Proposition 3.2 there exists ∆n = ∆n(ω) > 0 such
that lqn

(x) = lqn
(xε) = 0 if qn < inf C and both of them are strictly positive if qn > inf C for all

|ε| ∈ (0,∆n). Then,

ηt(ε) =ηr(qn)(ε) +
1

ε

∫ t

r(qn)

�

b(X r(xε))− b(X r(x))
�

dr +
1

ε

∫ rε(qn)

0

n(X r(xε)) dlr(xε)

−
1

ε

∫ r(qn)

0

n(X r(xε)) dlr(xε)

=ηr(qn)(ε) +
d
∑

k=1

∫ t

r(qn)





∫ 1

0

∂ b

∂ xk
(Xα,ε

r ) dα



ηk
r (ε) dr + Rqn

(xε), (3.10)
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where Xα,ε
r := αX r(xε) + (1−α)X r(x), α ∈ [0,1], and

Rqn
(xε) :=

1

ε

∫ rε(qn)

r(qn)
n(X r(xε)) dlr(xε). (3.11)

Note that if qn < inf C we have r(qn) = 0, ηr(qn)(ε) = v and Rqn
(xε) = 0. In any case,

‖Rqn
(xε)‖ ≤

1

ε

�

�

�

�

�

∫ rε(qn)

r(qn)
‖n(X r(xε))‖ dls(xε)

�

�

�

�

�

=

�

�

�

�

lrε(qn)(xε)− lr(qn)(xε)

ε

�

�

�

�

−→ 0 as ε→ 0, (3.12)

by Corollary 3.9. Recall that ‖ηt(ε)‖ ≤ exp(c1(T + lT (x) + lT (xε))) ≤ c for all t ∈ [0, T] and ε 6= 0
by Proposition 3.2 and Lemma 3.1. Let (εν)ν = (εν(ω))ν be any random sequence converging to
zero. By a diagonal procedure, we can extract a subsequence (ενl

)l with (νl)l = (νl(ω))l such that
ηr(qn)(ενl

) has a limit η̂r(qn) ∈R
d as l →∞ for all n ∈N.

Let now η̂ : [0, T]\C →Rd be the unique solution of

η̂t := η̂r(qn)+

∫ t

r(qn)
Db(X r(x)) · η̂r dr, t ∈ An.

By (3.10) and Proposition 3.2, we get for |ε| ∈ (0,∆n) and t ∈ An,

‖ηt(ε)− η̂t‖ ≤‖ηr(qn)(ε)− η̂r(qn)‖+ ‖Rqn
(xε)‖

+ sup
r∈An



Db(Xα,ε
r )− Db(X r(x))



exp(c1(T + lT (x) + lT (xε)))

+ c2

∫ t

0

‖ηr(ε)− η̂r‖ dr.

Since ηr(qn)(ενl
) → η̂r(qn), ‖Rqn

(xε)‖ → 0 , X
α,ενl
r → X r(x) uniformly in r ∈ [0, t] and since the

derivatives of b are continuous, we obtain by Gronwall’s Lemma that ηt(ενl
) converges to η̂t uni-

formly in t ∈ An for every n. Thus, since C has zero Lebesgue measure, ηt(ενl
) converges to η̂t for

all t ∈ [0, T]\C as l →∞ and by the dominated convergence theorem we get that (η̂t(ω))t∈[0,T]\C
satisfies (3.8). Finally, the measurability of η̂ is immediate from its construction.

From now on we will denote by η̂ the limiting object constructed in Proposition 3.10 from any
arbitrary but fixed random sequence (εn). The next lemma shows that η̂r(qn) is in the tangent at
X r(qn)(x) for every qn.

Lemma 3.11. For every qn > inf C,

i) 〈ηr(qn)(ε), n(X r(qn)(x))〉 → 0 a.s. and in Lp, p > 1, as ε→ 0,

ii) 〈ηrε(qn)(ε), n(X rε(qn)(xε))〉 → 0 a.s. and in Lp, p > 1, as ε→ 0.

Proof. By dominated convergence it suffices to prove convergence almost surely. Let ` be such that
qn ∈ [τ`,τ`+1). Then, clearly X r(qn)(x) ∈ Um` ∩ ∂ G. Recall that n(X r(qn)(x)) =∇u1

m`
(X r(qn)(x)), and

by Taylor’s formula we get

〈ηr(qn)(ε), n(X r(qn)(x))〉=
1

ε

�

u1
m`
(X r(qn)(xε))− u1

m`
(X r(qn)(x))

�

+O(ε).
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Note that the term of second order in the Taylor expansion is in O(ε) by Proposition 3.2. Recall that
u1

m`
(X r(qn)(x)) = 0, and combining formula (2.4) and (3.4), we get

u1
m`
(X r(qn)(xε)) = u1

m`
(Xτ`(xε)) +M x ,`

r(qn)
(ε) + Lr(qn)(xε) = M x ,`

r(qn)
(ε)−M x ,`

rε(r(qn))
(ε)

for all ε ∈ (−∆n,∆n) for some positive ∆n. Arguing similarly as in (3.7) we obtain from Corollary
3.9 i) that

�

�

�

�

�

u1
m`
(X r(qn)(xε))− u1

m`
(X r(qn)(x))

ε

�

�

�

�

�

≤ 2

�

�

�

�

�

�

M x ,`
r(qn)
(ε)−M x ,`

rε(qn)
(ε)

ε

�

�

�

�

�

�

−→ 0 as ε→ 0,

and i) follows. The proof of ii) is rather analogous. For an appropriate ∆n > 0 we have rε(qn) ∈
[τ`,τ`+1) and lrε(qn)(x) > 0 for all |ε| ∈ (0,∆n). Then, for such ε we get again by using Taylor’s
formula and the fact that u1

m`
(X rε(qn)(xε)) = 0,

〈ηrε(qn)(ε), n(X rε(qn)(xε))〉=〈ηrε(qn)(ε),∇u1
m`
(X rε(qn)(xε))〉

=−
1

ε

�

u1
m`
(X rε(qn)(xε))− u1

m`
(X rε(qn)(x))

�

+O(ε)

=
1

ε

�

M x ,`
rε(qn)

−M x ,`
r(rε(qn))

�

+O(ε).

Since M x ,` attains its minimum over [τ`, qn] at time r(qn) and its minimum over [τ`, rε(qn)] at time
r(rε(qn)), respectively, we finally get

|〈ηrε(qn)(ε), n(X rε(qn)(xε))〉| ≤
1

|ε|

�

M x ,`
rε(qn)

−M x ,`
r(qn)
+M x ,`

r(rε(qn))
−M x ,`

r(qn)

�

+O(ε)

≤
2

|ε|

�

M x ,`
rε(qn)

−M x ,`
r(qn)

�

+O(ε),

which tends to zero again by Corollary 3.9 i).

So far η̂t is not defined for every t ∈ C , only for the left endpoints r(qn) of the excursion intervals.
We will now extend the trajectories of η̂ to the set C . To that aim, note that since for every m≥ 0 the
coordinate mapping um is a diffeomorphism, the set {∇ui

m(x), i = 2, . . . , d} is linear independent
for all x ∈ Um and by construction it is also a basis of the tangent space at x if x ∈ ∂ G ∩ Um. Let
{n̄m

2 (x), . . . , n̄m
d (x)} be the Gram-Schmidt orthonormalization of {∇ui

m(x), i = 2, . . . , d} for every
x ∈ Um and for every m. Then, n̄m(x) := {n(x), n̄m

2 (x), . . . , n̄m
d (x)} is an ONB of Rd for all x ∈

Um ∩ ∂ G. We define now η̂t for t ∈ C ∩ [τ`,τ`+1) in the coordinates w.r.t. the basis nm
`
(X t(x)) on

Um` ∩ ∂ G. For that purpose it is sufficient to define 〈η̂t ,∇ui
m`
(X t(x))〉 for i ∈ {1, . . . , d}. We set

η∗t :=

(

η̂t if t ∈ [0, T]\C ,

0 if t ∈ [0, T]∩ C

and for i = 1, . . . , d we define the process (I∗i (t))t∈[0,T] on [0, T] by

I∗i (t) :=∇ui
m`
(Xτ`(x))·η̂τ`+

∫ t

τ`

∇bi
m`
(X r(x))·η∗r dr+

d
∑

j=1

∫ t

τ`

∇σi j
m`
(X r(x))·η∗r dw j

r , if t ∈ [τ`,τ`+1).
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Now we define for t ∈ C ∩ [τ`,τ`+1)

〈η̂t ,∇u1
m`
(X t(x))〉=〈η̂t , n(X t(x))〉 := 0 and 〈η̂t ,∇ui

m`
(X t(x))〉 := I∗i (t)

for i = 2, . . . , d. Having extended η̂ to a trajectory on [0, T] we can define Îi(t), t ∈ [0, T], similarly
to I∗i (t) locally on each interval [τ`,τ`+1). Note that I∗i and Îi are continuous on each interval
[τ`,τ`+1), in particular they are right-continuous on [0, T], and since C has zero Lebesgue measure,
I∗i (t) = Îi(t) a.s. for every t. Thus, by a continuity argument

P
h

I∗i = Îi on [0, T]
i

= 1. (3.13)

Lemma 3.12. For every `≥ 0, i = 1, . . . , d and p ≥ 2 we have

E





∫ τ`+1

τ`

�

�

�

�

�

∫ 1

0

∇bi
m`
(X
α,ενk
r ) dα ·ηr(ενk

)−∇bi
m`
(X r(x)) · η̂r

�

�

�

�

�

p

dr



→ 0 as k→∞,

and

E



 sup
s∈[τ`,τ`+1)

�

�

�

�

�

∫ s

τ`

 

∫ 1

0

∇σi j
m`
(X
α,ενk
r ) dα ·ηr(ενk

)−∇σi j
m`
(X r(x)) · η̂r

!

dw j
r

�

�

�

�

�

p

→ 0 as k→∞,

for every j = 1, . . . , d, where as before Xα,ε
r := αX r(xε) + (1−α)X r(x), α ∈ [0, 1].

Proof. By Proposition 3.2 and Lemma 3.1 the first term can be estimated as follows

E





∫ τ`+1

τ`

�

�

�

�

�

∫ 1

0

∇bi
m`
(Xα,ε

r ) dα ·ηr(ε)−∇bi
m`
(X r(x)) · η̂r

�

�

�

�

�

p

dr





≤c1E





∫ τ`+1

τ`

�

�

�

�

�

∫ 1

0

∇bi
m`
(Xα,ε

r ) dα−∇bi
m`
(X r(x))

�

�

�

�

�

p

dr



+ c2E





∫ τ`+1

τ`

‖ηr(ε)− η̂r‖pdr



 .

For the second term we get similarly, using Burkholder’s inequality,

E



 sup
s∈[τ`,τ`+1)

�

�

�

�

�

∫ s

τ`

 

∫ 1

0

∇σi j
m`
(Xα,ε

r ) dα ·ηr(ε)−∇σi j
m`
(X r(x)) · η̂r

!

dw j
r

�

�

�

�

�

p



≤ c3E





∫ τ`+1

τ`

�

�

�

�

�

∫ 1

0

∇σi j
m`
(Xα,ε

r ) dα ·ηr(ε)−∇σi j
m`
(X r(x)) · η̂r

�

�

�

�

�

p

dr





≤ c4E





∫ τ`+1

τ`

�

�

�

�

�

∫ 1

0

∇σi j
m`
(Xα,ε

r ) dα−∇σ
i j
m`
(X r(x))

�

�

�

�

�

p

dr



+ c5E





∫ τ`+1

τ`

‖ηr(ε)− η̂r‖pdr



 .

Hence both terms converges to zero along (ενk
) by dominated convergence, since X

α,ενk
r → X r(x)

uniformly in r ∈ [0, T], ∇bi
m`

and ∇σi j
m` are continuous and ηr(ενk

) converges to η̂r uniformly in
r ∈ An for every n.

For every i = 1. . . . , d let (Fi(t))t∈[0,T] be the process defined by Fi(t) := 〈η̂t ,∇ui
m`
(X t(x))〉 if

t ∈ [τ`,τ`+1).
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Lemma 3.13. For almost every ω the following holds.

i) For all t ∈ [0, T]

F1(t) = I (t) :=

(

Î1(t) if t < inf C`,

Î1(t)− Î1(r(t)) if t ≥ inf C`,

with ` such that t ∈ [τ`,τ`+1).

ii) For every i ∈ {2, . . . , d} we have for all t ∈ [0, T]

Fi(t) = Îi(t) =∇ui
m`
(Xτ`(x)) · η̂τ` +

∫ t

τ`

∇bi
m`
(X r(x)) · η̂r dr

+
d
∑

j=1

∫ t

τ`

∇σi j
m`
(X r(x)) · η̂r dw j

r ,

(3.14)

with ` such that t ∈ [τ`,τ`+1).

In particular, the trajectories of η̂ are right-continuous on [0, T].

Proof. i) First note that since Î1 is continuous on each interval [τ`,τ`+1) and t 7→ r(t) is right-
continuous, the paths of I are also right-continuous on [0, T]. Let t ∈ [0, T] be fixed, ` be such
that t ∈ [τ`,τ`+1) and ∆T > 0 be as in Remark 3.3. Then, t 6∈ C a.s. Further, if t < inf C` and
|ε|<∆T then lt(x) = lτ`(x) and lt(xε) = lτ`(xε) . So we have by Taylor’s formula and (2.2) that

F1(t) =〈η̂t ,∇u1
m`
(X t(x))〉= lim

k→∞

1

ενk

�

u1
m`
(X t(xενk

))− u1
m`
(X t(x))

�

1l{0<|ενk
|<∆T }

= lim
k→∞

1

ενk

 

u1
m`
(Xτ`(xενk

))− u1
m`
(Xτ`(x)) +

∫ t

τ`

�

b1
m`
(X r(xενk

))− b1
m`
(X r(x))

�

dr

+
d
∑

j=1

∫ t

τ`

�

σ1 j
m`
(X r(xενk

))−σ1 j
m`
(X r(x))

�

dw j
r







= lim
k→∞

 

∇u1
m`
(Xτ`(x)) ·ητ`(ενk

) +

∫ t

τ`

∫ 1

0

∇b1
m`
(X
α,ενk
r ) ·ηr(ενk

) dα dr

+
d
∑

j=1

∫ t

τ`

∫ 1

0

∇σ1 j
m`
(X
α,ενk
r ) ·ηr(ενk

) dα dw j
r






,

where as before Xα,ε
r := αX r(xε) + (1−α)X r(x), α ∈ [0,1]. On the other hand, if t > inf C` we get

F1(t) =〈η̂t ,∇u1
m`
(X t(x))〉

= lim
k→∞

 

∇u1
m`
(X r(t)(x)) ·ηr(t)(ενk

) +

∫ t

r(t)

∫ 1

0

∇b1
m`
(X
α,ενk
r ) ·ηr(ενk

) dα dr

+
d
∑

j=1

∫ t

r(t)

∫ 1

0

∇σ1 j
m`
(X
α,ενk
r ) ·ηr(ενk

) dα dw j
r +

1

ενk

�

lrενk
(t)(xενk

)− lr(t)(xενk
)
�






,
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where the first term and the last term converge to zero by Corollary 3.9ii) and Lemma 3.11, re-
spectively. The remaining terms converge in L2 to the corresponding terms in the definition of Î1
by Lemma 3.12. Hence, we obtain that F1(t) = I (t) a.s. for every t. Since the trajectories of η̂
are continuous on every excursion interval An, the paths of F1 are right-continuous on every An and
have only possibly jumps at the step times τ`. Hence,

P
h

F1(t) = I on [0, T]\C
i

= P
h

〈η̂.,∇ui
m`
(X .(x))〉= I on An for all n

i

= 1.

Finally, since by definition F1 = 〈η̂.,∇ui
m`
(X .(x))〉= 0= I on C ∩ [τ`,τ`+1) for every `, we obtain

P
h

F1 = I on [0, T]
i

= 1,

which gives i).

ii) We proceed similarly to i). Let i ∈ {2, . . . , d} and t ∈ [0, T] be fixed and ` be such that t ∈
[τ`,τ`+1). Then, t 6∈ C a.s. and we have by Taylor’s formula and (2.2)

Fi(t) =〈η̂t ,∇ui
m`
(X t(x))〉= lim

k→∞

 

∇ui
m`
(Xτ`(x)) ·ητ`(ενk

) +

∫ t

τ`

∫ 1

0

∇bi
m`
(X
α,ενk
r ) ·ηr(ενk

) dα dr

+
d
∑

j=1

∫ t

τ`

∫ 1

0

∇σi j
m`
(X
α,ενk
r ) ·ηr(ενk

) dα dw j
r






,

The sequence on the right hand side converges in L2 to the right hand side of (3.14) by Lemma
3.12. Hence, we obtain that Fi(t) = Îi(t) = I∗i (t) a.s. for every t. Since the trajectories of η̂ are
continuous on every excursion interval An, the path of Fi are right-continuous on every An and we
get

P
�

Fi = Îi = I∗i on [0, T]\C
�

= P
�

Fi = Îi = I∗i on An for all n
�

= 1.

Finally, since by definition Fi = 〈η̂.,∇ui
m`
(X .(x))〉= I∗i on C ∩ [τ`,τ`+1), we use (3.13) to obtain

P
�

Fi = Îi = I∗i on [0, T]
�

= 1,

and we obtain ii).

The right-continuity of the trajectories of η̂ is now immediate from i) and ii). Indeed, writing η̂t in
the basis nm

`
(X t(x)), we get that on one hand the basis vectors are continuous in t on [τ`,τ`+1) and

on the other hand the coordinates are right-continuous in t by i) and ii).

The extension of η̂ on C and Lemma 3.11 imply that 〈η̂t ,∇u1
m`
(X t(x))〉 = 〈η̂t , n(X t(x))〉 = 0 for all

t ∈ [τ`,τ`+1)∩C , i.e. when the process X (x) is at the boundary η̂ is at the tangent space, while the
projection of η̂ is a continuous process as indicated by (3.14).

Let now for all x ∈ Um, m≥ 0 and η ∈Rd

Π̃m
x (η) :=

d
∑

k=2

〈η, n̄m
k (x)〉 n̄

m
k (x), (3.15)
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so that obviously
Π̃m

x (η) = πx(η), ∀x ∈ ∂ G ∩ Um, ∀η ∈Rd .

For later use we prove now uniform convergence of Π̃m`
X t (xε)

(ηt(ε)) to Π̃m`
X t (x)
(η̂t) along the chosen

subsequence. The proof is based on the fact that there are no local time terms appearing in equation
(2.2) for ui

m`
, i = 2, . . . , d. In particular, note that Π̃m`

X t (x)
(η̂t) is not the same as Q ·Ot · η̂t . Later we

will identify that process with Y 2
t appearing in Theorem 2.5, which does depend on the local time.

Both processes do only coincide for t ∈ [τ`,τ`+1)∩ C .

Lemma 3.14. Let ∆T > 0 be as in Remark 3.3 such that, for every `≥ 0, Π̃m`
Xs(xε)

(ηs(ε)) is well defined
for all s ∈ [τ`,τ`+1) and all 0< |ε|<∆T . Then,

sup
s∈[τ`,τ`+1)

�

�

�

�

Π̃m`
Xs(xενk

)(ηs(ενk
))− Π̃m`

Xs(x)
(η̂s)

�

�

�

�

1l{0<|ενk
|<∆T }→ 0 in Lp, p ≥ 2 as k→∞.

Proof. Since every function n̄m
k is continuous on Um, it suffices by Proposition 3.2 to show that

sup
s∈[τ`,τ`+1)

�

�

�Π̃m`
Xs(x)
(ηs(ενk

))− Π̃m`
Xs(x)
(η̂s)

�

�

�1l{0<|ενk
|<∆T }→ 0 in Lp, p ≥ 2, as k→∞,

and for this it is enough to prove that for every i ∈ {2, . . . , d},

sup
s∈[τ`,τ`+1)

�

�

�〈ηs(ενk
),∇ui

m`
(Xs(x))〉 − 〈η̂s,∇ui

m`
(Xs(x))〉

�

�

�1l{0<|ενk
|<∆T }→ 0 in Lp as k→∞.

For |ε|<∆T we use as before Taylor’s formula and (2.2) to obtain

〈ηs(ε),∇ui
m`
(Xs(x))〉=

1

ε

�

ui
m`
(Xs(xε))− ui

m`
(Xs(x))

�

+O(ε)

=∇ui
m`
(Xτ`(x)) ·ητ`(ε) +

∫ s

τ`

∫ 1

0

∇bi
m`
(Xα,ε

r ) ·ηr(ε) dα dr

+
d
∑

j=1

∫ s

τ`

∫ 1

0

∇σi j
m`
(Xα,ε

r ) ·ηr(ε) dα dw j
r +O(ε), (3.16)

where again Xα,ε
r := αX r(xε) + (1−α)X r(x), α ∈ [0, 1]. Comparing (3.14) and (3.16) leads to

E



 sup
s∈[τ`,τ`+1)

�

�

�〈ηs(ε),∇ui
m`
(Xs(x))〉 − 〈η̂s,∇ui

m`
(Xs(x))〉

�

�

�

p
1l{0<|ε|<∆T }





≤c1E
h

‖∇ui
m`
(Xτ`(x))‖

p ‖ητ`(ε)− η̂τ`‖
p
i

+ c1E





∫ τ`+1

τ`

�

�

�

�

�

∫ 1

0

∇bi
m`
(Xα,ε

r ) dα ·ηr(ε)−∇bi
m`
(X r(x)) · η̂r

�

�

�

�

�

p

dr





+ c1

d
∑

j=1

E



 sup
s∈[τ`,τ`+1)

�

�

�

�

�

∫ s

τ`

 

∫ 1

0

∇σi j
m`
(Xα,ε

r ) dα ·ηr(ε)−∇σi j
m`
(X r(x)) · η̂r

!

dw j
r

�

�

�

�

�

p

+O(ε).

The claim follows now from Lemma 3.12 and the fact that ητ`(ενk
)→ η̂τ` .
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3.3.2 A Characterizing Equation for the Derivatives

The next step to prove the differentiability result is to identify the derivative. To that aim we shall
establish a system of SDE-like equations, which admits a unique solution and which is solved by
Ŷt := Ot · η̂t , t ∈ [0, T], Ot denoting the moving frame defined in Section 2.3. In other words, we
shall show that Ŷ is the unique solution of the system in Theorem 2.5.

We shall proceed similarly to Section 4 in [1] (see also Section V.6 in [13]), namely we shall derive
an equation for Yt(ε) := Ot · ηt(ε), t ∈ [0, T], which converges in L2 to the equation in Theo-
rem 2.5. However, it is a general principle in the theory of stochastic differential equations that if
pathwise uniqueness holds, then any ‘reasonable’ approximation converges at least in probability to
the solution (see [16]).

Let the rows of Ot be denoted by nk
t = nk(X t(x)), k = 1, . . . d. Then, we obtain by the chain rule

that for every t

1

ε

�

b(X t(xε))− b(X t(x))
�

=
d
∑

k=1

∫ 1

0

Dnk
t
b(Xα,ε

t ) · 〈ηt(ε), nk
t 〉 dα=

∫ 1

0

Db(Xα,ε
t ) dα ·O

−1
t · Yt(ε),

where again Xα,ε
t := αX t(xε) + (1 − α)X t(x), α ∈ [0,1]. By applying Itô’s integration by parts

formula on each interval [τ`,τ`+1) we get

dYt(ε) =Ot · dηt(ε) + dOt ·ηt(ε)

=Ot ·
1

ε

�

b(X t(xε))− b(X t(x))
�

d t +Ot ·
1

ε

�

n(X t(xε))dlt(xε)− n(X t(x))dlt(x)
�

+ dOt ·O−1
t · Yt(ε)

=



Ot ·
∫ 1

0

Db(Xα,ε
t ) dα ·O

−1
t + β(X t(x))



 · Yt(ε) d t

+
d
∑

k=1

αk(X t(x)) · Yt(ε) dwk
t + γ(X t(x)) · Yt(ε) dlt(x)

+Ot ·
1

ε

�

n(X t(xε))dlt(xε)− n(X t(x))dlt(x)
�

,

with coefficient functions αk and β and γ as in (2.6). Let P = diag(e1) and Q = Id−P and set

Y 1,ε
t = P · Yt(ε) and Y 2,ε

t =Q · Yt(ε)

to decompose the space Rd into the direct sum Im P ⊕ Ker P. We define the coefficients c and dε to
be such that

d
∑

k=1

�

c1
k(t) c2

k(t)
c3

k(t) c4
k(t)

�

dwk
t +

�

d1
ε (t) d2

ε (t)
d3
ε (t) d4

ε (t)

�

d t

=
d
∑

k=1

αk(X t(x)) dwk
t +



Ot ·
∫ 1

0

Db(Xα,ε
t ) dα ·O

−1
t + β(X t(x))



 d t.
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As before let t ∈ [0, T]\C and let n and ` be such that t ∈ An ∩ [τ`,τ`+1). Then we choose ∆T > 0
as in Remark 3.3 and such that a.s. lqn

(x) = lqn
(xε) = 0 if qn < inf C and both of them are strictly

positive if qn > inf C for all 0< |ε|<∆T . For such ε we get

Y 1,ε
t = Y 1,ε

τ`
+

d
∑

k=1

∫ t

τ`

�

c1
k(s)Y

1,ε
s + c2

k(s)Y
2,ε

s

�

dwk
s +

∫ t

τ`

�

d1
ε (s)Y

1,ε
s + d2

ε (s)Y
2,ε

s

�

ds, (3.17)

if t < inf C` and

Y 1,ε
t = Y 1,ε

r(t)+
d
∑

k=1

∫ t

r(t)

�

c1
k(s)Y

1,ε
s + c2

k(s)Y
2,ε

s

�

dwk
s +

∫ t

r(t)

�

d1
ε (s)Y

1,ε
s + d2

ε (s)Y
2,ε

s

�

ds+ Rt(ε),

(3.18)

if t ≥ inf C`, where C` := C ∩ [τ`,τ`+1) and Rt(ε) := P · Ot · Rqn
(xε) with Rqn

(xε) as in (3.11).
Moreover, since ηt(ε) is continuous in t, the initial value is given by

Y 1,ε
τ`
= Y 1,ε

τ`−+ P ·
�

Oτ` −Oτ`−
�

·ητ`−(ε) = P ·Oτ` ·O
−1
τ`−
· Yτ`−(ε)

for `≥ 1 and Y 1,ε
0 = P ·Om0

(x) · v.

Next we compute the corresponding equation for Y 2,ε. For s ∈ [τ`, t] let the rows of Om`(Xs(xε))
be denoted by nk(Xs(xε)), k = 1, . . . d. In particular, for k ∈ {2, . . . , d} we have nk(Xs(x)) ·
n(Xs(x)) dls(x) = 0 and nk(Xs(xε)) ·n(Xs(xε)) dls(xε) = 0. For such k we use again Taylor’s formula
to obtain

nk(Xs(x)) ·
1
ε

�

n(Xs(xε)) dls(xε)− n(Xs(x)) dls(x)
�

=1
ε
nk(Xs(x)) · n(Xs(xε)) dls(xε)

=1
ε

�

(nk(Xs(x))− nk(Xs(xε))) · n(Xs(xε)) dls(xε)
�

=−ηs(ε)
∗ · Dnk(Xs(xε))

∗ · n(Xs(xε)) dls(xε) +O(ε)

=ηs(ε)
∗ · (Dn(Xs(xε)))

∗ · nk(Xs(xε))
∗ dls(xε) +O(ε)

=nk(Xs(xε)) · Dn(Xs(xε)) ·ηs(ε) dls(xε) +O(ε)

=nk(Xs(xε)) · Dn(Xs(xε)) ·O−1
s · Ys(ε) dls(xε) +O(ε).

Hence,

Q ·Os ·
1
ε

�

n(Xs(xε))dls(xε)− n(Xs(x))dls(x)
�

= Φε(s) · Ys(ε) dls(xε) +O(ε)

=
�

Φ1
ε(s) · Y

1,ε
s +Φ2

ε(s) · Y
2,ε

s

�

+O(ε),

where

Φε(s) :=Q ·Om`(Xs(xε)) · Dn(Xs(xε)) ·O−1
s and Φ1

ε(s) := Φε(s) · P, Φ2
ε(s) := Φε(s) ·Q.

Finally, we obtain the following equation for Y 2,ε:

Y 2,ε
t =Y 2,ε

τ`
+

d
∑

k=1

∫ t

τ`

�

c3
k(s)Y

1,ε
s + c4

k(s)Y
2,ε

s

�

dwk
s +

∫ t

τ`

�

d3
ε (s)Y

1,ε
s + d4

ε (s)Y
2,ε

s

�

ds

+

∫ t

τ`

�

Φ1
ε(s)Y

1,ε
s +Φ2

ε(s)Y
2,ε

s

�

dls(xε) +

∫ t

τ`

�

γ1(s)Y 1,ε
s + γ2(s)Y 2,ε

s

�

dls(x) +O(ε),

(3.19)
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with γ1(s) := γ(Xs(x)) · P and γ2(s) := γ(Xs(x)) ·Q. The initial value is given by

Y 2,ε
τ`
= Y 2,ε

τ`−+Q ·
�

Oτ` −Oτ`−
�

·ητ`−(ε) =Q ·Oτ` ·O
−1
τ`−
· Yτ`−(ε)

for `≥ 1 and Y 2,ε
0 =Q ·Om0

(x) · v.

Setting Ŷt = Ot · η̂t and Ŷ 1
t = P · Ŷt , Ŷ 2

t =Q · Ŷt , t ∈ [0, T], the next step is to prove the following

Proposition 3.15. (Ŷt)t∈[0,T] solves the equation in Theorem 2.5.

Obviously, from the second equation in Theorem 2.5 it follows that Ŷ 2
t is a continuous semimartin-

gale in t on every interval [τ`,τ`+1). Hence, the mapping t 7→ πX r(qn)(x)
(η̂t) is continuous at time

t = r(qn) for every n. To complete the proof of Theorem 2.1 we need to show Proposition 3.15 and
that the system in Theorem 2.5 admits a unique solution. First, we prove two preparing lemmas.

Lemma 3.16. For every t ∈ [0, T] and ` such that t ∈ [τ`,τ`+1),

i)
∫ t

τ`
Φ1
ε(s)Y

1,ε
s dls(xε)→ 0 in L2 as ε→ 0,

ii)
∫ t

τ`
γ1(s)Y 1,ε

s dls(x)→ 0 in L2 as ε→ 0.

Proof. Since Φ1
ε is uniformly bounded, we get











∫ t

τ`

Φ1
ε(s)Y

1,ε
s dls(xε)











≤ c1

∫ t

τ`

�

�〈ηs(ε), n1(Xs(x))〉
�

� dls(xε)

≤c1

∫ t

0

�

�〈ηs(ε), n(Xs(xε))〉
�

� dls(xε) + c1

∫ t

τ`

�

�〈ηs(ε), n1(Xs(xε))− n1(Xs(x))〉
�

� dls(xε), (3.20)

where the second term tends to zero by Proposition 3.2. Let now σεs := inf{r : lr(xε) ≥ s} be the
left-continuous inverse of l(xε). For any fixed s > 0 we have a.s. Xs(x) 6∈ ∂ G and by Proposition 3.2
Xs(xε) 6∈ ∂ G if |ε| <∆s for some positive random ∆s. Hence, for such ε, σεs is a.s. the left endpoint
of an excursion interval of X (xε). In particular, σεs = rε(qn) a.s. for some qn depending on s. Then,
by Lemma 3.11ii) we get

E

�

�

�

�〈ησεs (ε), n(Xσεs (xε))〉
�

�

�

2
1l{|ε|<∆s}

�

= E
h

�

�〈ηrε(qn)(ε), n(X rε(qn)(xε))〉
�

�

2
1l{|ε|<∆s}

i

→ 0,

as ε → 0. Thus, E
�

�

�

�〈ησεs (ε), n(Xσεs (xε))〉
�

�

�

2
�

tends to zero for every s, so we can apply the domi-

nated convergence theorem to obtain that for every positive M

E





∫ M

0

�

�

�〈ησεs (ε), n(Xσεs (xε))〉
�

�

�

2
ds



=

∫ M

0

E

�

�

�

�〈ησεs (ε), n(Xσεs (xε))〉
�

�

�

2
�

ds→0, as ε→ 0.

(3.21)
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We show now that also the first term in (3.20) tends to zero. On one hand, we use the change of
variables formula for Stieltjes integrals (see e.g. Proposition 4.9 in Chapter 0 in [23]) to obtain for
an arbitrary M > 0

∫ t

0

�

�〈ηs(ε), n(Xs(xε))〉
�

� dls(xε)1l{lt (xε)≤M} =

∫ lt (xε)

0

�

�

�〈ησεs (ε), n(Xσεs (xε))〉
�

�

� ds 1l{lt (xε)≤M}

≤
∫ M

0

�

�

�〈ησεs (ε), n(Xσεs (xε))〉
�

�

� ds,

which converges to zero in L2 by (3.21). On the other hand, using the Cauchy-Schwarz inequality
and Proposition 3.2 we get

E





�
∫ t

0

�

�〈ηs(ε), n(Xs(xε))〉
�

� dls(xε)

�2

1l{lt (xε)>M}



≤E
�

exp(c2(t + lt(x) + lt(xε))) lt(xε)
4
�1/2

×P[lt(xε)> M]1/2.

Hence,

limsup
ε→0

E





�
∫ t

0

�

�〈ηs(ε), n(Xs(xε))〉
�

� dls(xε)

�2

≤ E[exp(c4(lt(x)+ t))lt(x)
4]1/2P[lt(x)> M]1/2.

Finally, we let M tend to infinity and obtain that i) holds. ii) follows by an analogous, simpler
proceeding. Note that the finiteness of the exponential moments of the local time, which is needed
in the final step, can be deduced for instance from (2.4). Indeed, the stochastic integral does have
finite exponential moments and the remaining terms are uniformly bounded.

So far Φ(t) and Φε(t) are only defined on the support of l(x) and l(xε), respectively. For the next
proof we extend them to the whole interval [0, T] by setting

Φε(t) :=Q ·Om`(X t(xε)) · Dn1(X t(xε)) ·O−1
t , Φ(t) :=Q ·Ot · Dn1(X t(x)) ·O−1

t ,

if t ∈ [τ`,τ`+1) and we define Φ1
ε(t), Φ

2
ε(t) as well as Φ1(t) and Φ2(t) as before.

Lemma 3.17. For every t ∈ [0, T] and ` such that t ∈ [τ`,τ`+1),

i)
∫ t

τ`
Φ2
ενk
(s)Y

2,ενk
s dls(xενk

)→
∫ t

τ`
Φ2(s) Ŷ 2

s dls(x) in L2 as k→∞,

ii)
∫ t

τ`
γ2(s)Y

2,ενk
s dls(x)→

∫ t

τ`
γ2(s) Ŷ 2

s dls(x) in L2 as k→∞.

Proof. Again we only prove i). Recall the definition of Π̃m
x in (3.15). By construction we have for

s ∈ [τ`,τ`+1),

Φ2(s) Ŷ 2
s dls(x) = Φ

2(s) ·Q ·Os · η̂s dls(x) = Φ
2(s) ·Q ·Os ·πXs(x)(η̂s) dls(x)

= Φ2(s) ·Q ·Os · Π̃
m`
Xs(x)
(η̂s) dls(x).
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Analogously, setting Oεs := Om`(Xs(xε)), we have for sufficiently small ε

Φ2
ε(s)Y

2,ε
s dls(xε) =

¦

Φ2
ε(s) ·Q ·O

ε
s ·ηs(ε) +Φ

2
ε(s) ·Q ·

�

Os −Oεs
�

·ηs(ε)
©

dls(xε)

=
n

Φ2
ε(s) ·Q ·O

ε
s · Π̃

m`
Xs(xε)

(ηs(ε)) +Φ
2
ε(s) ·Q ·

�

Os −Oεs
�

·ηs(ε)
o

dls(xε).

Hence,
∫ t

τ`

Φ2
ε(s)Y

2,ε
s dls(xε)−Φ2(s)Y 2

s dls(x)

=

∫ t

τ`

h

Φ2
ε(s) ·Q ·O

ε
s · Π̃

m`
Xs(xε)

(ηs(ε))−Φ2(s) ·Q ·Os · Π̃
m`
Xs(x)
(η̂s)

i

dls(xε)

+

∫ t

τ`

Φ2
ε(s) ·Q ·

�

Os −Oεs
�

·ηs(ε) dls(xε) +

∫ t

τ`

Φ2(s) ·Q ·Os · Π̃
m`
Xs(x)
(η̂s) (dls(xε)− dls(x)).

The first term converges to zero in L2 along ενk
for k→∞ by Lemma 3.14 and Proposition 3.2. The

second term converges also to zero in L2 again by Proposition 3.2. Finally, the third term tends to
zero by the weak convergence of l(xε) to l(x) on [τ`, t] and i) is proven. Note that Π̃m`

Xs(x)
(η̂s) is

continuous in s on [τ`, t].

Proof of Proposition 3.15. Let t ∈ [0, T] be fixed. Since t 6∈ C a.s. we have by Proposition 3.10
that Y 1,ε

t and Y 2,ε
t converge a.s. to Ŷ 1

t and Ŷ 2
t , respectively, along the chosen subsequence ενl

, and
by the dominated convergence theorem we have also convergence in L2 . Furthermore, the right
hand sides in (3.17), (3.18) and (3.19) converge along ενl

in L2 to the corresponding terms in the

equation describing Y 1 and Y 2. Indeed, Lemma 3.11 gives convergence of Y 1,ε
r(t) to zero and Rt(ε)

tends to zero arguing as in (3.12) and in Corollary 3.9. The convergence of the terms involving the
local times follows from Lemma 3.16 and Lemma 3.17. The convergence of the remaining integral
terms is clear. Hence, a.s. Ŷt satisfies the system in Theorem 2.5. Since t ∈ [0, T] is arbitrary, by the
right-continuity of the paths we finally get that with probability one this holds for all t ∈ [0, T].

It remains to show uniqueness, which is carried out in the next proposition.

Proposition 3.18. The system in Theorem 2.5 admits a pathwise unique solution on [0, T], i.e. if (Yt)
and (Ỹt) are two solutions then Yt = Ỹt for all t ∈ [0, T] a.s.

Proof. Let (Ut)t∈[0,T] be a right-continuous process defined on every interval [τ`,τ`+1) as the
unique solution of the matrix-valued equation

Ut = Id−
∫ t

τ`

Us · (Φ2(s) + γ2(s)) dls(x), t ∈ [τ`,τ`+1).

Then, introducing the stopping times T`,N := inf{s ≥ τ` : max(‖U−1
s ‖,‖Us‖) ≥ N} ∧ τ`+1, N ∈ N,

we have T`,N ↑ τ`+1 a.s. as N tends to infinity. Using integration by parts we get

d(Ut · Y 2
t ) =

d
∑

k=1

Ut

�

c3
k(t)Y

1
t + c4

k(t)Y
2
t

�

dwk
t + Ut

�

d3(t)Y 1
t + d4(t)Y 2

t

�

d t

+ Ut (Φ
2(t) + γ2(t))Y 2

t dlt(x)− Ut (Φ
2(t) + γ2(t))Y 2

t dlt(x).
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The last two terms cancel, so we can rewrite the system in Theorem 2.5 as

Y 1
t =1l{t<inf C`}

 

Y 1
τ`
+

d
∑

k=1

∫ t

τ`

�

c1
k(s)Y

1
s + c2

k(s)Y
2

s

�

dwk
s +

∫ t

τ`

�

d1(s)Y 1
s + d2(s)Y 2

s

�

ds

!

+ 1l{t≥inf C`}

 

d
∑

k=1

∫ t

r(t)

�

c1
k(s)Y

1
s + c2

k(s)Y
2

s

�

dwk
s +

∫ t

r(t)

�

d1(s)Y 1
s + d2(s)Y 2

s

�

ds

!

Y 2
t =U−1

t · Y
2
τ`
+ U−1

t ·
d
∑

k=1

∫ t

τ`

Us ·
�

c3
k(s)Y

1
s + c4

k(s)Y
2

s

�

dwk
s

+ U−1
t ·

∫ t

τ`

Us ·
�

d3(s)Y 1
s + d4(s)Y 2

s

�

ds,

for t ∈ [τ`,τ`+1) with the initial condition Y 1
τ`
= P ·Oτ` ·O

−1
τ`−
· Yτ`− and Y 2

τ`
= Q ·Oτ` ·O

−1
τ`−
· Yτ`−

for `≥ 1 as well as Y 1
0 = P ·Om0

(x) · v and Y 2
0 =Q ·Om0

(x) · v for `= 0.

We shall prove existence and pathwise uniqueness of the solution on every interval [τ`,τ`+1) by
induction over `. For every interval we shall first show existence and uniqueness of Y on [τ`, T`,N )
for every N , from which we shall derive existence and uniqueness of Y on [τ`,τ`+1) by taking the
limit N →∞.

We proceed as in Lemma 4.3 in [1]. Let H be the totality of Rd -valued adapted processes (ϕt),
t ∈ [0, T], whose paths are a.s. càdlàg and which satisfy supt∈[0,T]E[‖ϕt‖2] < ∞. On H we
introduce the norm

‖ϕ‖H = sup
t∈[0,T]

E
�

‖ϕt‖2
�1/2

.

Fix now an arbitrary `. Then, the initial condition Yτ` is either uniquely specified in terms of Yτ`− by
the induction assumption if ` > 0 or it is given by Y0 if ` = 0. For any ϕ ∈ H we define the process
I(ϕ) by

I(ϕ)1t =1l{t<inf C`}

 

Y 1
τ`
+

d
∑

k=1

∫ t

τ`

�

c1
k(s)ϕ

1
s + c2

k(s)ϕ
2
s

�

dwk
s +

∫ t

τ`

�

d1(s)ϕ1
s + d2(s)ϕ2

s

�

ds

!

+ 1l{t≥inf C`}

 

d
∑

k=1

∫ t

r(t)

�

c1
k(s)ϕ

1
s + c2

k(s)ϕ
2
s

�

dwk
s +

∫ t

r(t)

�

d1(s)ϕ1
s + d2(s)ϕ2

s

�

ds

!

I(ϕ)2t =U−1
t · Y

2
τ`
+ U−1

t ·
d
∑

k=1

∫ t

τ`

Us ·
�

c3
k(s)ϕ

1
s + c4

k(s)ϕ
2
s

�

dwk
s

+ U−1
t ·

∫ t

τ`

Us ·
�

d3(s) ·ϕ1
s + d4(s)ϕ2

s

�

ds,

if t ∈ [τ`, T`,N ) and I(ϕ)t = 0 if t ∈ [0, T]\[τ`, T`,N ). By definition of T`,N , we have for fixed N that
all the coefficient functions are uniformly bounded in t ∈ [τ`, T`,N]. Hence, one can easily verify
that

E
�

‖I(ϕ)t‖2
�

≤ c1

¨

1+

∫ t

0

E
�

‖ϕr‖2
�

dr

«

≤ c2

¨

1+ sup
s∈[0,T]

E
�

‖ϕs‖2
�

«

,

875



where the constants only depend on N and T and not on ϕ and t. This proves that I(ϕ) ∈ H for
every ϕ ∈ H. Similarly, one can show that for any ϕ,ψ ∈ H,

E
�

‖I(ϕ)t − I(ψ)t‖2
�

≤ c3

∫ t

0

E
�

‖ϕs −ψs‖2
�

ds ≤ c4 sup
s∈[0,T]

E[‖ϕs −ψs‖2],

and hence,
‖I(ϕ)− I(ψ)‖H ≤ c‖ϕ−ψ‖H .

For every N , existence and uniqueness of Y on [τ`, T`,N ) follow now by standard arguments via
Picard-iteration, the details are omitted. Since T`,N ↑ τ`+1 a.s. as N →∞ we get existence of Y on
[τ`,τ`+1). Moreover, for any two solutions (Yt) and (Ỹt) we have for every ` and every N

E
h

‖Ỹt − Yt‖21l{t∈[τ`,T`,N )}
i

≤ sup
s∈[0,T]

E
h

‖Ỹs − Ys‖21l{s∈[τ`,T`,N )}
i

= 0.

By taking the limit N →∞ we obtain E
�

‖Ỹt − Yt‖21l{t∈[τ`,τ`+1)}
�

= 0 for every `, so that

E
�

‖Ỹt − Yt‖2
�

=
∑

`

E
�

‖Ỹt − Yt‖21l{t∈[τ`,τ`+1)}
�

= 0,

and therefore Ỹt = Yt a.s. for all t ∈ [0, T]. The claim follows by the right-continuity of the trajecto-
ries.

Let Ω0 be the subset of Ω constructed in Proposition 3.10. Combining Proposition 3.10, Proposition
3.15 and Proposition 3.18 gives immediately

Corollary 3.19. Fix ω ∈ Ω0. Let (ε(1)ν )ν , (ε(2)ν )ν two random sequences converging to zero. There exist

subsequences (ε(i)νl
)l such that Yt(ε(i)νl

) has a limit Ŷ (i)t as l → ∞ for all t ∈ [0, T]\C. Moreover, the

paths of Ŷ (i) can be extended to right-continuous trajectories on [0, T], so that Ŷ (i)t is a solution to the
equation in Theorem 2.5. Therefore,

P
h

Ŷ (1)t = Ŷ (2)t , ∀t ∈ [0, T]
i

= 1.

Proof of Theorem 2.1 and Theorem 2.5. It remains to show that ηT (ε) converges a.s. as ε tends to
zero or equivalently that YT (ε) = OT ·ηT (ε) converges a.s.

With a slight abuse of notation we denote by Y i
T (ε), i ∈ {1, . . . , d}, the components of YT (ε) ∈ Rd .

Then, it is enough to show that for every i ∈ {1, . . . , d}

Y i,−
T := lim inf

ε→0
Y i

T (ε) = limsup
ε→0

Y i
T (ε) =: Y i,+

T a.s. (3.22)

Fix an arbitrary i ∈ {1, . . . , d}. Let now (ε+ν )ν be a random sequence converging to zero such that
limν→∞ Y i

T (ε
+
ν ) = Y i,+

T . By Proposition 3.10 there exists a subsequence ε+νl
such that YT (ε+νl

) has a

limit Y+T as l →∞ for every ω ∈ Ω0. In particular, the i-th component of Y+T is equal to Y i,+
T .

Analogously, we choose a random sequence (ε−ν )ν converging to zero such that limν→∞ Y i
T (ε
−
ν ) =

Y i,−
T . Then, there exists a subsequence ε−νl

such that YT (ε−νl
) converges to Y−T as l →∞ and Y i,−

T is
the i-th component of Y−T .

Corollary 3.19 implies Y+T = Y−T a.s., in particular Y i,+
T = Y i,−

T a.s., and since i is arbitrary, we obtain
that (3.22) holds for every i. Hence, ηT (ε) converges a.s.

Finally, since also T > 0 is arbitrary, Theorem 2.1 and Theorem 2.5 follow.
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3.4 The Neumann Condition

In this final section we prove the Neumann condition stated in Corollary 2.9. Let x ∈ ∂ G. By a den-
sity argument it is sufficient to consider bounded functions f , which are continuously differentiable
and have bounded derivatives. Then, for each t > 0 we obtain by dominated convergence and the
chain rule:

Dn(x)Pt f (x) =E
�

∇ f (X t(x))Dn(x)X t(x)
�

.

Thus, it suffices to show Dn(x)X t(x) = 0 for all t ∈ [0, T] for some arbitrary fixed T , which is
equivalent to Yt = 0 for all t ∈ [0, T], where Yt = Ot · ηv

t with v = n(x). Again we shall prove
this separately on every interval [τ`,τ`+1) by an induction argument over `. We shall use the same
notation as in Proposition 3.18. For t ∈ [0,τ1) Yt satisfies

Y 1
t =

d
∑

k=1

∫ t

r(t)

�

c1
k(s)Y

1
s + c2

k(s)Y
2

s

�

dwk
s +

∫ t

r(t)

�

d1(s)Y 1
s + d2(s)Y 2

s

�

ds

Y 2
t =U−1

t ·
d
∑

k=1

∫ t

0

Us ·
�

c3
k(s)Y

1
s + c4

k(s)Y
2

s

�

dwk
s + U−1

t ·
∫ t

0

Us ·
�

d3(s)Y 1
s + d4(s)Y 2

s

�

ds.

Note that inf C = 0 and Y 2
0 = Q · Om0

(x) · n(x) = 0. Setting Y N
t := Yt∧T0,N

and Y 1,N
t = P · Y N

t ,

Y 2,N
t = Q · Y N

t as well as Mt :=
∑d

k=1

∫ t

0

�

c1
k(s)Y

1
s + c2

k(s)Y
2

s

�

dwk
s for t ∈ [0, T], we obtain by

Doob’s inequality for every N that

E

�

sup
t∈[0,T]



Y N
t





2
�

≤E



 sup
t∈[0,T0,N ]





Y 1,N
t







2


+E



 sup
t∈[0,T0,N ]





Y 2,N
t







2




≤E



 sup
t∈[0,T0,N ]



Mt −Mr(t)





2



+ c1

∫ T

0

E

�

sup
r∈[0,s]



Y N
r





2
�

ds

≤2E



 sup
t∈[0,T0,N ]



Mt





2



+ c1

∫ T

0

E

�

sup
r∈[0,s]



Y N
r





2
�

ds

≤c2

∫ T

0

E

�

sup
r∈[0,s]



Y N
r





2
�

ds,

which implies by Gronwall’s Lemma that Y N
t = 0 for all t ∈ [0, T] a.s. We let N tend to infinity to

obtain that Yt = 0 for all t ∈ [0,τ1) a.s. Similarly one obtains Yt = 0 on [τ`,τ`+1) for an arbitrary
`, note that Yτ` = 0 by the induction assumption.
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