
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Vol. 16 (2011), Paper no. 27, pages 830–844.

Journal URL
http://www.math.washington.edu/~ejpecp/

Representation theorem for generators of BSDEs with
monotonic and polynomial-growth generators in the space

of processes ∗

ShengJun FAN1

Email: f_s_j@126.com;
Long JIANG1

Email: jianglong365@hotmail.com;
YingYing XU1

Email: xuyy23@hotmail.com.

Abstract

In this paper, on the basis of some recent works of Fan, Jiang and Jia, we establish a representa-
tion theorem in the space of processes for generators of BSDEs with monotonic and polynomial-
growth generators, which generalizes the corresponding results in Fan (2006, 2007), and Fan
and Hu (2008).

Key words: Backward stochastic differential equation; Monotonic generator; Polynomial-growth
generator; Representation theorem of generators.

AMS 2000 Subject Classification: Primary 60H10.

Submitted to EJP on July 20, 2010, final version accepted March 14, 2011.

1College of Sciences, China University of Mining & Technology, Xuzhou, Jiangsu 221116, PR
China.

∗Supported by the National Natural Science Foundation of China (N0. 10971220), the FANEDD (No. 200919), the
National Basic Research Program of China (No. 2007CB814901), the Qing Lan Project and the Fundamental Research
Funds for the Central Universities (No. 2010LKSX04)

830

http://www.math.washington.edu/~ejpecp/


1 Introduction

By Pardoux and Peng (1990), we know that there exists a unique square-integrable and adapted
solution to a backward stochastic differential equation (BSDE for short in the remainder of this
paper) of the type

ys = ξ+

∫ T

s

g(u, yu, zu)du−
∫ T

s

zu · dBu (1)

provided that g is Lipschitz in both variables y and z and that ξ and (g(t, 0, 0))t∈[0,T] are square
integrable. The g is called the generator of BSDE (1), ξ the terminal data and the triple (ξ, T, g) the
parameters of BSDE (1). We denote the unique solution by (yξ,T,g

s , zξ,T,g
s )s∈[0,T], and often denote

yξ,T,g
t by E g

t,T [ξ] for every t ∈ [0, T].

One of the achievements of BSDE theory is the comparison theorem. Recently, many papers have
been devoted to studying the converse comparison theorem. For studying the converse comparison
theorem, Briand et al. (2000) established the following representation theorem of generators for
BSDEs in the space of random variables: For every (t, y, z) ∈ [0, T[×R1+d ,

lim
n→∞

n{E g
t,t+1/n[y + z · (Bt+1/n− Bt)]− y}= g(t, y, z) (2)

holds true in (the space of random variables) L2 when g satisfies two additional assumptions that
E
�

sup0≤t≤T |g(t, 0, 0)|2
�

<∞ and (g(t, y, z))t∈[0,T] is continuous in t for every (y, z). Since then,
much effort has been made to weaken and eliminate these two assumptions mentioned above. For
instance, after weakening these two assumptions step by step in Jiang (2005a, b, c), under the most
elementary conditions that g is Lipschitz in both variables y and z and that ξ and (g(t, 0, 0))t∈[0,T]
are square-integrable, Jiang (2006, 2008) finally proved that (2) holds true in (the space of random
variables) Lp (1 ≤ p < 2) for almost every t ∈ [0, T ). Furthermore, under a continuity condition in
t on stochastic differential equations (SDEs in short), Jiang (2005d) generalized this result to the
case where the terminal data of BSDEs are solutions of the SDEs.

On the other hand, from the point of view of Fan and Hu (2008), it seems to be more appropriate
for this kind of representation theorem to be investigated in the space of processes rather than in
the space of random variables, that is to say, without fixing t, we are to investigate whether (2)
holds in some kinds of spaces of processes. Accordingly, Fan (2006, 2007) and Fan and Hu (2008)
investigated this kind of representation theorem in the space of processes and eliminated the above
continuity condition in t on SDEs used in Jiang (2005d).

Furthermore, Mao (1995) established an existence and uniqueness result of solutions for BSDE
(1) where g satisfies a non-Lipschitz condition in y , the corresponding representation theorem
in Lp (1 ≤ p < 2) was established in Liu and Jiang (2008). Lepeltier and San Martin (1997)
proved the existence and uniqueness of the minimal and maximal solutions for BSDE (1) where
(g(ω, t, 0, 0))t∈[0,T] is a bounded process and g is continuous with linear growth in (y, z), the cor-
responding representation theorem in Lp (1 ≤ p < 2) was obtained in Jia (2008). Very recently,
Fan and Jiang (2010a) extended the existence and uniqueness result in Lepeltier and San Martin
(1997) by eliminating the condition that (g(ω, t, 0, 0))t∈[0,T] is a bounded process, the correspond-
ing representation theorem in the space of processes has also been established in Fan and Jiang
(2010b).

It should be noted that all these representation results dealt with the case that the generator g is of
linear growth in y . In this paper, we are the first time to consider the case that g is of polynomial
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growth in y . More precisely, on basis of the existence and uniqueness result of the minimal and
maximal solutions for BSDE (1) obtained in Briand et al. (2007), we establish a new representation
theorem in the space of processes, where the generator g is continuous in (y, z) and monotonic in y ,
it has a polynomial growth in y and a linear growth in z, and the terminal data are solutions of SDEs
(see Theorem 1 in Section 2). This representation theorem further generalizes the corresponding
results in Fan (2006, 2007) and Fan and Hu (2008).

Finally, we would like to mention that the representation theorem has been playing an important
role in investigating properties of generators of BSDEs by virtue of solutions of BSDEs. In fact, a
lot of problems in BSDE theory and nonlinear mathematical expectation theory are related to the
above representation theorem. For example, it was just with the help of the representation theorem
that many important results have been obtained in Briand et al. (2000),Chen et al. (2003),Jiang
and Chen (2004), Jiang (2004, 2005a, b, c, d, 2006, 2008), Fan (2006, 2007), Fan and Hu (2008)
and Fan and Jiang (2010b).

This paper is organized as follows: In section 2, after introducing some notations and assumptions,
we put forward our main result–Theorem 1. Section 3 is devoted to the proof of the main result.
Finally, some applications are given in Section 4.

2 Notations, assumptions and the main result

Let (Ω,F , P) be a probability space carrying a standard d-dimensional Brownian motion (Bt)t≥0,
and let (Ft)t≥0 be the σ-algebra generated by B augmented by the P-null sets of F . Then (Ft)t≥0
is right continuous and complete. Let T > 0 be a given real number. In this paper, we always work
in the space (Ω,FT , P), and only consider processes indexed by t ∈ [0, T]. For every n ∈ N, let |z|
denote the Euclidean norm of z ∈ Rn. Rm×d is identified with the space of real matrices with m rows
and d columns, and if z ∈ Rm×d , we have |z|2 = trace(zz∗). For every p ∈ [1, 2] and 0≤ t1 ≤ t2 ≤ T ,
we define the following space of processes:

H n
p (t1, t2) = {φ ∈ Rn is (Ft)− progressively measurable; ‖φ(t)‖p

p = E





∫ t2

t1

|φ(t)|pdt



<+∞}.

It is well known that H n
p (t1, t2) is a Banach space endowed with the norm ‖ · ‖p. For simplicity,

H n
p (0, T ) is also denoted byH n

p .

Let b(ω, t, x) : Ω× [0, T]× Rm → Rm, σ(ω, t, x) : Ω× [0, T]× Rm → Rm×d be two functions such
that for any x ∈ Rm, b(·, x) and σ(·, x) are (Ft)-progressively measurable. Let b and σ also satisfy
the following hypotheses (H1) and (H2):

(H1) There exists a constant K1 ≥ 0 such that dP × dt − a.e.,

|b(t, x)− b(t, y)|+ |σ(t, x)−σ(t, y)| ≤ K1|x − y|, ∀ x , y ∈ Rm.

(H2) There exists a constant K2 ≥ 0 such that dP × dt − a.e.,

|b(t, x)|+ |σ(t, x)| ≤ K2(1+ |x |), ∀ x ∈ Rm.

Given (t, x) ∈ [0, T]×Rm, by classical SDE theory, the following SDE:

Xs = x +

∫ s

t

b(u, Xu)du+

∫ s

t

σ(u, Xu)dBu, s ∈ [t, T]; Xs = x , s ∈ [0, t] (3)
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has a unique s-continuous solution, denoted by (X t,x
s )s∈[0,T], with the properties that (X t,x

s )s∈[0,T] is
(Fs)-adapted and for every β ≥ 1,

E

�

sup
0≤s≤T

|X t,x
s |

β

�

< Cβ , and s→ E
�

|X t,x
s − x |β

�

, s ∈ [0, T] is continuous, (4)

where the constant Cβ depends on x , β , K1, K2, T .

In this paper, the generator g of a BSDE is a function g(ω, t, y, z) : Ω× [0, T]× R× Rd → R such
that the process (g(t, y, z))t∈[0,T] is (Ft)-progressively measurable for every (y, z) in R× Rd . The
following Proposition 1 comes from Theorem 4.1 in Briand et al. (2007).

Proposition 1 Let the generator g satisfy the following assumptions:

(A1) dP × dt − a.e., (y, z) 7−→ g(t, y, z) is continuous.

(A2) g is monotonic with respect to y , i.e., there exists a constant µ≥ 0 such that dP × dt − a.e.,

(y1− y2)(g(t, y1, z)− g(t, y2, z))≤ µ|y1− y2|2, ∀ y1, y2, z.

(A3’) There exists a constant A≥ 0, a nonnegative continuous process (gt)t∈[0,T] which belongs to
H 1
β

for some β > 1 and a nondecreasing continuous function ϕ : R+→ R+ with ϕ(0) = 0 such that
dP × dt − a.e.,

|g(t, y, z)| ≤ gt +ϕ(|y|) + A|z|, ∀ y, z.

Then, for every ξ ∈ Lβ(Ω,FT , P), the BSDE with parameters (ξ, T, g) has a unique minimal solution
(y

u
, zu)u∈[0,T] inH 1

β
×H d

β
.

Remark 1 Theorem 4.1 in Briand et al. (2007) pointed out that there also exists a unique maximal
solution (yu, zu)u∈[0,T] inH 1

β
×H d

β
.

In the remainder of this paper, for notational simplicity, for each t ∈ [0, T] and n ∈ N, we denote
(t + 1/n) ∧ T by tn, and (t + 1/nk) ∧ T by tnk

. Furthermore, we fix a constant α ≥ 1 and always
assume that the g satisfies (A1), (A2) and the following assumption (A3):

(A3) There exists a constant C ≥ 0 and a nonnegative continuous process ( ft)t∈[0,T] which belongs
toH 1

2α such that dP × dt − a.e.,

|g(t, y, z)| ≤ C
�

ft + |y|α+ |z|
�

, ∀ y, z.

Let g satisfy (A1), (A2) and (A3). Given (x , y, q) ∈ Rm+1+m. For every t ∈ [0, T] and n ∈ N, in view
of (4) and the fact that 2α≥ 2, it follows from Proposition 1 with β = 2 that the following BSDE:

Ys = y + q · (X t,x
tn
− x) +

∫ tn

s

g(u, Yu, Zu)du−
∫ tn

s

Zu · dBu, s ∈ [0, tn] (5)

has a unique minimal solution in the spaceH 1
2 (0, tn)×H d

2 (0, tn), denoted by

(Y
y+q·(X t,x

tn −x),tn,g
s , Z

y+q·(X t,x
tn −x),tn,g

s )s∈[0,tn].

Moreover, it follows from (4) and Proposition 1 with β = 2α that this solution also belongs to the

spaceH 1
2α(0, tn)×H d

2α(0, tn). For notational simplicity, we denote Y
y+q·(X t,x

tn −x),tn,g
t by E g

t,tn
[y + q ·
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(X t,x
tn
− x)] for every t ∈ [0, T].

Remark 2 In view of the definition of tn, we know that for every n ∈ N, the random variable X t,x
tn

with t ∈ [0, T] and the process {E g
t,tn
[y+q · (X t,x

tn
− x)]}t∈[0,T] are both well defined. This is exactly

why we let tn = (t + 1/n)∧ T .

With respect to the above sequence of processes, we have the following conclusion which is the
main result of this paper.

Theorem 1 (Representation Theorem I) Let (A1), (A2) and (A3) hold true for the generator g; let
(H1) and (H2) hold true for b and σ. Then for every (x , y, q) ∈ Rm+1+m and every p ∈ [1,2), the
following equality

lim
n→∞

n{E g
t,tn
[y + q · (X t,x

tn
− x)]− y}= g(t, y,σ∗(t, x)q) + q · b(t, x) (6)

holds true in the space of processes H 1
p . And, there exists a subsequence {nk}∞k=1 such that dP ×

dt − a.e.,
lim

k→∞
nk{E

g
t,tnk
[y + q · (X t,x

tnk
− x)]− y}= g(t, y,σ∗(t, x)q) + q · b(t, x). (7)

Moreover, if the process ( ft)t∈[0,T] defined in (A3) also satisfies

E

�

sup
0≤t≤T

| ft |2
�

<+∞, (8)

then (6) holds true in the space of processesH 1
2 and (7) also holds true.

By letting m = d, b ≡ 0, σ ≡ 1 and q = z in Theorem 1, the following Theorem 2 follows immedi-
ately.

Theorem 2 (Representation Theorem II) Let (A1), (A2) and (A3) hold true for the generator g.
Then for every (y, z) ∈ R1+d and every p ∈ [1,2), the equality

lim
n→∞

n{E g
t,tn
[y + z · (Btn

− Bt)]− y}= g(t, y, z) (9)

holds true in the space of processes H 1
p . And, there exists a subsequence {nk}∞k=1 such that dP ×

dt − a.e.,
lim

k→∞
nk{E

g
t,tnk
[y + z · (Btn

− Bt)]− y}= g(t, y, z). (10)

Moreover, if (8) is also satisfied, then (9) holds true in the space of processes H 1
2 and (10) also

holds true.

Remark 3 Obviously, the Lipschitz assumptions of g in Pardoux and Peng (1990) can imply the
assumptions (A1), (A2) and (A3) with α = 1. Hence, Theorems 1-2 generalize the corresponding
results in Fan (2006, 2007) and Fan and Hu (2008).

3 Proof of the main result

This section aims at giving a proof of our main result–Theorem 1. let us first introduce some Lemmas
which will play important roles in the proof of Theorem 1. The following Lemma 1 is a direct
corollary of Proposition 3.2 in Briand et al. (2003).
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Lemma 1 Let the generator ḡ satisfy the following assumption:

(A) There exists two constants µ̄, C̄ ≥ 0 and a nonnegative continuous process ( f̄t)t∈[0,T] which
belongs toH 1

2α such that dP × dt − a.e.,

y · ḡ(t, y, z)≤ µ̄|y|2+ |y|( f̄t + C̄ |z|), ∀ y, z.

Then, there exists a constant K > 0 depending only on (C̄ , µ̄,α, T ) such that for every 0≤ t1 ≤ t2 ≤
T , ξ ∈ L2α(Ω,Ft2

, P) and 1< β ≤ 2α,

E






sup

t1≤s≤t2

|ys|β +

 

∫ t2

t1

|zs|2ds

!β/2





≤ K E






|ξ|β +

 

∫ t2

t1

f̄sds

!β





,

where (ys, zs)s∈[t1,t2] ∈H
1

2α(t1, t2)×H d
2α(t1, t2) solves the following BSDE:

ys = ξ+

∫ t2

s

ḡ(u, yu, zu)du−
∫ t2

s

zu · dBu, s ∈ [t1, t2].

The following Lemma 2 comes from the Lemma 5 together with its proof in Fan and Jiang (2010b).

Lemma 2 Assume that {φ(t)}t∈[0,T] ∈H 1
2 . We have

lim
n→∞

E





∫ T−1/n

0

 

n

∫ t+1/n

t

|φ(s)|2ds

!

dt



= E





∫ T

0

|φ(t)|2dt



 , (11)

lim
n→∞

E





∫ T

T−1/n

 

n

∫ T

t

|φ(s)|2ds

!

dt



= 0. (12)

And, for every p ∈ [1,2),

lim
n→∞

E





∫ T−1/n

0

�

�

�

�

�

n

∫ t+1/n

t

�

φ(s)−φ(t)
�

ds

�

�

�

�

�

p

dt



= 0. (13)

Moreover, if E
�

sup0≤t≤T |φ(t)|2
�

<+∞, then

lim
n→∞

E







∫ T−1/n

0

�

�

�

�

�

n

∫ t+1/n

t

�

φ(s)−φ(t)
�

ds

�

�

�

�

�

2

dt






= 0. (14)

Combining (11) with (12), in view of tn = (t + 1/n)∧ T , one can obtain the following Corollary.

Corollary 1 Assume that {φ(t)}t∈[0,T] ∈H 1
2 . We have

lim
n→∞

E





∫ T

0

�

n

∫ tn

t

|φ(s)|2ds

�

dt



= E





∫ T

0

|φ(t)|2dt



 .

Inspired by Lepeltier and San Martin (1997), we can establish the following Lemma 3.
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Lemma 3 Assume that f (·) : Rk → R with k ∈ N is a continuous function with polynomial growth,
i.e., there exists constants K̄1, K̄2 ≥ 0 and β ≥ 1 such that

| f (x)| ≤ K̄1(K̄2+ |x |β), ∀ x . (15)

Let fn be the function defined as follows:

fn(x) := inf
u∈Rk
{ f (u) + n2β−1K̄1|u− x |β}. (16)

Then the sequence of functions fn is well defined for every n≥ 1, and it satisfies:

(i) Polynomial growth: | fn(x)| ≤ 2β−1K̄1(K̄2+ |x |β), ∀ x;

(ii) Monotonicity in n: fn(x) increases in n, ∀ x;

(iii) Convergence: If xn −→ x , then fn(xn)−→ f (x).

Remark 4 Note that (16) does not contain the constant K̄2 in (15). This fact will be made full use
of in the proof of the following Proposition 2, which explains why we use (15) rather than the usual
expression (i.e., | f (x)| ≤ K(1+ |x |β), ∀ x) although they are equivalent.

Remark 5 The case of β = 1 in Lemma 3 has been proved in Lepeltier and San Martin (1997). In
addition, in view of the continuity of the f , we can use Qk instead of Rk in (16).

Proof of Lemma 3 The case of K̄1 = 0 being trivial, we assume that K̄1 > 0. Note that (a+ b)β ≤
2β−1(aβ + bβ) holds true for every a, b ≥ 0. It follows from (15) that for every n ≥ 1 and x ∈ Rk,
we have

fn(x) ≥ inf
u∈Rk
{−K̄1(K̄2+ |(u− x) + x |β) + 2β−1K̄1|u− x |β}

≥ −K̄1(K̄2+ 2β−1|x |β)≥−2β−1K̄1(K̄2+ |x |β)

and
fn(x)≤ f (x)≤ 2β−1K̄1(K̄2+ |x |β).

Thus, for every n ≥ 1, fn is well defined and (i) holds true. It is clear from (16) that (ii) holds
true. Hence, it suffices to show (iii). Indeed, assume that xn −→ x . In view of (16), (15) and the
inequality that (a+ b)β ≤ 2β−1(aβ + bβ), we can take a sequence {un} such that

fn(xn) ≥ f (un) + n2β−1K̄1|un− xn|β − 1/n
≥ −K̄1(K̄2+ |(un− xn) + xn|β) + n2β−1K̄1|un− xn|β − 1/n
≥ −K̄1K̄2− 2β−1K̄1|xn|β + (n− 1)2β−1K̄1|un− xn|β − 1/n,

(17)

which means, in view of (i), that

(n− 1)2β−1K̄1|un− xn|β ≤ 2β K̄1(K̄2+ |xn|β) + 1/n

and then lim supn→∞ n2β−1K̄1|un − xn|β < +∞. Therefore, lim
n→∞

un = x . It then follows from (17)

and the continuity of f that

lim inf
n→∞

fn(xn)≥ lim inf
n→∞

f (un) = f (x).

On the other hand, from (16) and the continuity of f we know that

lim sup
n→∞

fn(xn)≤ lim sup
n→∞

f (xn) = f (x).
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Hence, (iii) follows and the proof of Lemma 3 is complete. �

With Lemma 3 in hand, we can establish the following proposition which will play a key role in the
proof of Theorem 1.

Proposition 2 Let the generator g satisfy (A1) and (A3), let σ satisfy (H1) and (H2), and let
(x , y, q) ∈ Rm+1+m. Then there exists a non-negative process sequence {(ψn(t))t∈[0,T]}∞n=1 in H 1

2α
depending on (x , y, q) such that lim

n→∞
‖ψn(t)‖2α = 0 and dP×dt−a.e., for every n ∈ N and ( ȳ , z̄, x̄) ∈

R1+d ,

|g(t, ȳ , z̄+σ∗(t, x̄)q)− g(t, y,σ∗(t, x))q| ≤ n2αC̃(| ȳ − y|α+ |z̄|+ | x̄ − x |) +ψn(t),

where the constant C̃ = C(1+ |q|K2).

Proof. Let (x , y, q) ∈ Rm+1+m and define g̃(t, ỹ , z̃, x̃) := g
�

t, ỹ , z̃+σ∗(t, x̃)q
�

. It is easy to see from
(A1) and (H1) that g̃ is continuous with respect to the variables ( ỹ , z̃, x̃). Moreover, it follows from
(A3) and (H2) that

| g̃(t, ỹ , z̃, x̃)| ≤ C( ft + | ỹ|α+ |z̃|+ |q|K2(1+ | x̃ |))
≤ C̃(1+ ft + | ỹ|α+ |z̃|+ | x̃ |),

where C̃ = C(1+ |q|K2) is a constant. Thus, similar to Lemma 3, we can prove that the following
processes ψn

1(t) and ψn
2(t) are well defined for every n ∈ N:

ψn
1(t) = sup

(u,v,w)∈R1+d+m
{ g̃(t, u, v, w)− n2α−1C̃(|u− y|α+ |v|+ |w− x |)},

ψn
2(t) = inf

(u,v,w)∈R1+d+m
{ g̃(t, u, v, w) + n2α−1C̃(|u− y|α+ |v|+ |w− x |)}.

We can also prove that
|ψn

1(t)| ≤ 2α−1C̃(1+ ft + |y|α+ |x |) ∈H 1
2α,

|ψn
2(t)| ≤ 2α−1C̃(1+ ft + |y|α+ |x |) ∈H 1

2α,

and dP × dt − a.e.,
lim

n→∞
ψn

1(t) = lim
n→∞

ψn
2(t) = g̃(t, y, 0, x).

Furthermore, it follows from Lebesgue’s dominated convergence theorem that the above limit also
holds true in the process spaceH 1

2α.

On the other hand, it is clear that for every n ∈ N and ( ȳ , z̄) ∈ R1+d ,

g̃(t, ȳ , z̄, x̄)− g̃(t, y, 0, x)≤ n2α−1C̃(| ȳ − y|α+ |z̄|+ | x̄ − x |) +ψn
1(t)− g̃(t, y, 0, x),

g̃(t, ȳ , z̄, x̄)− g̃(t, y, 0, x)≥−n2α−1C̃(| ȳ − y|α+ |z̄|+ | x̄ − x |) +ψn
2(t)− g̃(t, y, 0, x).

Thus, by letting
ψn(t) = |ψn

1(t)− g̃(t, y, 0, x)|+ |ψn
2(t)− g̃(t, y, 0, x)|,

we have
| g̃(t, ȳ , z̄, x̄)− g̃(t, y, 0, x)| ≤ n2α−1C̃(| ȳ − y|α+ |z̄|+ | x̄ − x |) +ψn(t),

which is the desired result. The proof of Proposition 2 is complete. �
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Now we are in a position to prove our main result–Theorem 1.

The Proof of Theorem 1. Given (x , y, q) ∈ Rm+1+m and p ∈ [1,2). For notational simplicity, we
denote the unique solution of SDE (3) by (X t

s )s∈[0,T] for every t ∈ [0, T], and denote the minimal
solution of BSDE (5) in H 1

2α(0, tn) ×H d
2α(0, tn) by (Y t,n

s , Z t,n
s )s∈[0,tn] for every n ∈ N. For every

s ∈ [t, tn], set
eY t,n

s := Y t,n
s − (y + q · (X t

s − x)), eZ t,n
s := Z t,n

s −σ
∗(s, X t

s )q,

then applying Itô’s formula to eY t,n
u yields that

eY t,n
s =

∫ tn

s

g
�

u, eY t,n
u + y + q · (X t

u − x), eZ t,n
u +σ

∗(u, X t
u)q
�

du

+

∫ tn

s

q · b(u, X t
u)du−

∫ tn

s

eZ t,n
u · dBu, s ∈ [t, tn].

(18)

Let

M n
t := nE





∫ tn

t

g
�

u, eY t,n
u + y + q · (X t

u − x), eZ t,n
u +σ

∗(u, X t
u)q
�

du

�

�

�

�

�

Ft



 ,

N n
t := nE





∫ tn

t

g
�

u, y,σ∗(u, x)q
�

du

�

�

�

�

�

Ft



 .

By letting s = t in (18) and then taking the conditional expectation with respect to Ft , it follows

that n{E g
t,tn
[y + q · (X t

tn
− x)]− y} = n(Y t,n

t − y) = neY t,n
t = M n

t + nE
�

∫ tn

t
q · b(u, X t

u)du
�

�

�Ft

�

and

then dP × dt − a.e. in Ω× [0, T],

n{E g
t,tn
[y + q · (X t

tn
− x)]− y} −

�

g(t, y,σ∗(t, x)q) + q · b(t, x)
�

= M n
t − N n

t + N n
t − g(t, y,σ∗(t, x)q)

+nE





∫ tn

t

q · b(u, X t
u)du

�

�

�

�

�

Ft



− q · b(t, x).
(19)

Thus, in view of the relation between the moment convergence and almost sure convergence, for
completing the proof of Theorem 1 it suffices to prove that the right hand side of equality (19) tends
to 0 in the space of process H 1

p as n→∞, and that if (8) also holds true, then the right hand side
of equality (19) tends to 0 inH 1

2 as n→∞.

First, it should be noted that the following statement has been proved in Fan and Hu (2008)(see
(3.11) in Fan and Hu (2008)):

lim
n→∞

E







∫ T

0

�

�

�

�

�

nE





∫ tn

t

q · b(u, X t
u)du

�

�

�

�

�

Ft



− q · b(t, x)

�

�

�

�

�

2

dt






= 0. (20)
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Second, it follows from (3.16) and (3.19) in Fan and Hu (2008) that

E





∫ T

0

�

�N n
t − g(t, y,σ∗(t, x)q)

�

�

p
d t





≤ E





∫ T−1/n

0

�

�

�

�

�

n

∫ t+1/n

t

�

g(u, y,σ∗(u, x)q)− g(t, y,σ∗(t, x)q)
�

du

�

�

�

�

�

p

dt





+ E





∫ T

T−1/n

�

�

�

�

�

nE





∫ T

t

g(u, y,σ∗(u, x)q)du

�

�

�

�

�

Ft



− g(t, y,σ∗(t, x)q)

�

�

�

�

�

p

dt





(21)

and

E







∫ T

T−1/n

�

�

�

�

�

nE





∫ T

t

g(u, y,σ∗(u, x)q)du

�

�

�

�

�

Ft



− g(t, y,σ∗(t, x)q)

�

�

�

�

�

2

dt







≤ 2E





∫ T

T−1/n

 

n

∫ T

t

�

�g(u, y,σ∗(u, x)q)
�

�

2
du

!

dt



+ 2E





∫ T

T−1/n

�

�g(t, y,σ∗(t, x)q)
�

�

2
dt



 .

(22)
Since g satisfies (A3) and σ satisfies (H2), it is not difficult to verify that the process
(g
�

t, y,σ∗(t, x)q
�

)t∈[0,T] belongs to H 1
2α and then H 1

2 . Then, it follows from the absolute con-
tinuity of integral that the second term of the right hand side of (22) tends to zero as n → ∞.
Applying (12) with φ(t) = g

�

t, y,σ∗(t, x)q
�

yields that the first term of the right hand side of (22)
also tends to zero as n→∞. Thus, we have

lim
n→∞

E







∫ T

T−1/n

�

�

�

�

�

nE





∫ T

t

g(u, y,σ∗(u, x)q)du

�

�

�

�

�

Ft



− g(t, y,σ∗(t, x)q)

�

�

�

�

�

2

dt






= 0, (23)

and then the second term of the right hand side of (21) tends to zero as n → ∞. Furthermore,
applying (13) with φ(t) = g

�

t, y,σ∗(t, x)q
�

yields that the first term of the right hand side of (21)
also tends to zero as n→∞. Consequently, we can conclude that

lim
n→∞

E





∫ T

0

�

�N n
t − g(t, y,σ∗(t, x)q)

�

�

p
dt



= 0. (24)

Third, let us prove that

lim
n→∞

E





∫ T

0

|M n
t − N n

t |
2dt



= 0. (25)

It follows from Proposition 2 that there exists a non-negative process sequence {(ψk(t))t∈[0,T]}∞k=1
inH 1

2α depending on (x , y, q) such that lim
k→∞
‖ψk(t)‖2α = 0 and for every k ∈ N, dP × dt − a.e.,

P t,n
u :=

�

�

�g
�

u, eY t,n
u + y + q · (X t

u − x), eZ t,n
u +σ

∗(u, X t
u)q
�

− g
�

u, y,σ∗(u, x)q
�

�

�

�

≤ kC̃2α
�

|eY t,n
u + q · (X t

u − x)|α+ |eZ t,n
u |+ |X

t
u − x |

�

+ψk(u)
≤ kC1(|eY t,n

u |
α+ |X t

u − x |α+ |eZ t,n
u |+ |X

t
u − x |) +ψk(u),

(26)
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where the constant C̃ = C(1+ |q|K2) and the constant C1 depends only on (α, q, C̃). Note that we
also have lim

k→∞
‖ψk(t)‖2 = 0. By Fubini’s Theorem, Jensen’s inequality and Hölder’s inequality, we

can deduce that

E





∫ T

0

|M n
t − N n

t |
2dt



=

∫ T

0

¦

E[|M n
t − N n

t |
2]
©

dt ≤
∫ T

0

�

E

�

n

∫ tn

t

|P t,n
u |

2du

��

dt,

then, it follows from (26) that there exists a constant C2 > 0 depending only on C1 such that for
every k ∈ N,

E





∫ T

0

|M n
t − N n

t |
2dt





≤ k2C2

∫ T

0

¨

E

�

n

∫ tn

t

�

|eY t,n
u |

2α+ |eZ t,n
u |

2
�

du

�«

dt

+2

∫ T

0

�

E

�

n

∫ tn

t

|ψk(u)|2du

��

dt

+k2C2

∫ T

0

�

E

�

n

∫ tn

t

|X t
u − x |2du

��

dt + k2C2

∫ T

0

�

E

�

n

∫ tn

t

|X t
u − x |2αdu

��

dt.

(27)

Furthermore, it follows from (4) and (H2) that (eY t,n
s , eZ t,n

s )s∈[t,tn] ∈ H
1

2α(t, tn) ×H d
2α(t, tn), and

from (18) that it solves the following BSDE:

eY t,n
s =

∫ tn

s

g̃(u, eY t,n
u , eZ t,n

u )du−
∫ tn

s

eZ t,n
u · dBu, s ∈ [t, tn], (28)

where for every (ω, u, ỹ , z̃) ∈ Ω× [0, T]×R×Rd ,

g̃(u, ỹ , z̃) := g(u, ỹ + y + q · (X t
u − x), z̃+σ∗(u, X t

u)q) + q · b(u, X t
u).

It is not difficult to verify that g̃ satisfies assumption (A). In fact, for every ( ỹ , z̃), we write

ỹ · g̃(u, ỹ , z̃) = ỹ ·
�

g(u, ỹ + y + q · (X t
u − x), z̃+σ∗(u, X t

u)q)
−g(u, y + q · (X t

u − x), z̃+σ∗(u, X t
u)q)

�

+ ỹ ·
�

g(u, y + q · (X t
u − x), z̃+σ∗(u, X t

u)q) + q · b(u, X t
u)
�

,

then, it follows from (A2), (A3) and (H2) that dP × dt − a.e., ∀ ỹ , z̃,

ỹ · g̃(u, ỹ , z̃) ≤ µ| ỹ|2+ C | ỹ|
�

fu+ |y + q · (X t
u − x)|α+ |z̃+σ∗(u, X t

u)q|
�

+ | ỹ||q · b(u, X t
u)|

≤ µ| ỹ|2+ | ỹ|( f̃u+ C |z̃|)

with f̃u = C fu + C2α[|y|α + |2q|α(|X t
u|
α + |x |α)] + (C + 1)K2|q|(1+ |X t

u|). Since ( ft)t∈[0,T] belongs
to H 1

2α and E
�

sup0≤u≤T |X t
u|
β
�

< Cβ for every β ≥ 1 (see (4)), the process ( f̃t)t∈[0,T] belongs to
the space H 1

2α. Consequently, g̃ satisfies the assumption (A) with µ̄ = µ, C̄ = C and f̄t = f̃t . Thus,
applying Lemma 1 with t1 = t, t2 = tn, β = 2α and β = 2 for BSDE (28) yields that there exists a
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constant K̄ > 0 depending only on (µ, C ,α, T ) such that for every t ∈ [0, T],

nE

�
∫ tn

t

�

|eY t,n
u |

2α+ |eZ t,n
u |

2
�

du

�

≤ nK̄

(

E





�
∫ tn

t

f̃udu

�2α

+ E





�
∫ tn

t

f̃udu

�2



)

≤ nK̄

¨

E

�
∫ tn

t

| f̃u|2αdu

�

· (tn− t)2α−1+ E

�
∫ tn

t

| f̃u|2du

�

· (tn− t)

«

≤ K̄

¨

E

�
∫ tn

t

| f̃u|2αdu

�

+ E

�
∫ tn

t

| f̃u|2du

�«

,

(29)

where we have used Hölder’s inequality and the fact that 0≤ tn−t ≤ 1/n and 2α−1≥ 1. Combining
(27) with (29) implies that for every n ∈ N and k ∈ N,

E





∫ T

0

|M n
t − N n

t |
2dt





≤ k2C2K̄

∫ T

0

¨

E

�
∫ tn

t

| f̃u|2αdu

�

+ E

�
∫ tn

t

| f̃u|2du

�«

dt

+2E





∫ T

0

�

n

∫ tn

t

|ψk(u)|2du

�

dt





+k2C2

∫ T

0

�

E

�

n

∫ tn

t

|X t
u − x |2du

��

dt + k2C2

∫ T

0

�

E

�

n

∫ tn

t

|X t
u − x |2αdu

��

dt.

(30)

Note that the process ( f̃t) belongs toH 1
2α andH 1

2 . It follows from the absolute continuity of integral
and Lebesgue’s dominated convergence theorem that the first term of the right hand side in (30)
tends to zero as n → ∞. Note that the process (ψk(t)) belongs to H 1

2α and then H 1
2 . Applying

Corollary 1 with φ(t) = ψk(t) yields that the second term of the right hand side in (30) tends to
2‖ψk(t)‖22 as n → ∞. And, Fan and Hu (2008) has proved that the third term of the right hand
side in (30) tends to zero as n→∞ (see (3.5) in Fan and Hu (2008)), similar to their proof we can
show that the last term of the right hand side in (30) tends to zero as n→∞. In fact, noticing that
E
�

|X t
t − x |2α

�

= 0, by (4) and Fubini’s Theorem we can get that for every t ∈ [0, T ),

lim
n→∞

E

�

n

∫ tn

t

|X t
u − x |2αdu

�

= lim
n→∞

n

∫ tn

t

E
¦�

|X t
u − x |2α

�©

du

= lim
n→∞

E
h

|X t
tn
− x |2α

i

= 0

and

∀ n ∈ N, E

�

n

∫ tn

t

|X t
u − x |2αdu

�

≤ 22α(C2α+ |x |2α),

then the desired result follows from Lebesgue’s dominated convergence theorem. Consequently, for
every k ∈ N, we have

lim sup
n→∞

E





∫ T

0

|M n
t − N n

t |
2dt



≤ 2E





∫ T

0

|ψk(t)|2dt



= 2‖ψk(t)‖22,
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from which (25) follows immediately by letting k→∞. Thus, combining (20), (24) with (25) yields
that the right hand side of equality (19) tends to 0 in the space of processH 1

p as n→∞.

Finally, we assume that (8) also holds true. It is easy to see from (A3), (H2) and (8) that
E
�

sup0≤t≤T |g
�

t, y,σ∗(t, x)q
�

|2
�

< +∞. Then, applying (14) with φ(t) = g
�

t, y,σ∗(t, x)q
�

yields that

lim
n→∞

E







∫ T−1/n

0

�

�

�

�

�

n

∫ t+1/n

t

�

g
�

u, y,σ∗(u, x)q
�

− g
�

t, y,σ∗(t, x)q
��

du

�

�

�

�

�

2

dt






= 0.

Note that (21) also holds true in the case of p = 2. We can derive from the above equality and (23)
that

lim
n→∞

E





∫ T

0

�

�N n
t − g(t, y,σ∗(t, x)q)

�

�

2
d t



= 0. (31)

Thus, combining (20), (31) with (25) yields that the right hand side of equality (19) tends to 0 in
H 1

2 as n→∞. The proof of Theorem 1 is then completed. �

4 Some Applications

In this section, we will give some applications relating to Theorem 1 and Theorem 2. The follow-
ing Theorem 3 gives a converse comparison theorem for generators of BSDEs with monotonic and
polynomial-growth generators.

Theorem 3 (Converse Comparison Theorem) Let the generators gi (i = 1,2) satisfy (A1), (A2) and
(A3). If for every t ∈ [0, T] and ξ ∈ L2(Ω,Ft , P), the minimal solutions (yξ,t,gi

u
, zξ,t,gi

u )u∈[0,t] ∈
H 1

2 (0, t)×H d
2 (0, t) (i = 1, 2) of BSDEs with parameters (ξ, t, gi) satisfy that for every s ∈ [0, t],

yξ,t,g1
s

≥ yξ,t,g2
s

, dP − a.s., (32)

then for every (y, z) ∈ R1+d , we have

g1(t, y, z)≥ g2(t, y, z), dP × dt − a.e.. (33)

Proof. For every given (y, z) ∈ R1+d , it follows from the condition (32) that for every n ∈ N and
t ∈ [0, T], the minimal solutions (yξ,tn,gi

u
, zξ,tn,gi

u )u∈[0,tn] ∈H
1

2 (0, tn)×H d
2 (0, tn) (i = 1, 2) of BSDEs

with parameters (ξ := y + z · (Btn
− Bt), tn, gi) satisfy

E g1
t,tn
[y + z · (Btn

− Bt)]≥ E
g2
t,tn
[y + z · (Btn

− Bt)], dP − a.s..

Then, dP × dt − a.e.,

E g1
t,tn
[y + z · (Btn

− Bt)]− y ≥ E g2
t,tn
[y + z · (Btn

− Bt)]− y. (34)

It follows from Theorem 2 that there exists a subsequence {nk}∞k=1 such that dP × dt − a.e.,

lim
k→∞

nk{E
g1
t,tnk
[y + z · (Btnk

− Bt)]− y}= g1(t, y, z). (35)
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lim
k→∞

nk{E
g2
t,tnk
[y + z · (Btnk

− Bt)]− y}= g2(t, y, z). (36)

Thus, coming back to (34), by (35) and (36) we can easily get (33). �
Like the representation theorem for generators of BSDEs with Lipschitz generators, Theorem 2 can
be used to investigate properties of generators of BSDEs with monotonic and polynomial-growth
generators by virtue of their solutions. The following Theorem 4 and Theorem 5 are two specific
examples which are both direct corollaries of Theorem 2. Some further results can be obtained like
Section 2.3.2 in Jia (2008).

Theorem 4 (Self-financing Condition) Let the generator g satisfy (A1), (A2) and (A3). If the min-
imal solution (y0,T,g

t
, z0,T,g

t )t∈[0,T] ∈ H 1
2 ×H

d
2 of the BSDE with parameters (0, T, g) satisfies that

for every t ∈ [0, T],
y0,T,g

t
= 0, dP − a.s.,

then dP × dt − a.e., g(t, 0, 0) = 0.

Theorem 5 (Zero-interest Condition) Let the generator g satisfy (A1), (A2) and (A3). For every
constant c, if the minimal solution (y c,T,g

t
, zc,T,g

t )t∈[0,T] ∈ H 1
2 ×H

d
2 of the BSDE with parameters

(c, T, g) satisfies that for every t ∈ [0, T],

y c,T,g
t
= c, dP − a.s.,

then dP × dt − a.e., for every y , g(t, y, 0) = 0.

Remark 6 It is easy to see that if the minimal solutions of BSDEs are replaced by the maximal
solutions (see Remark 1), Theorems 1-5 also hold true.
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