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Abstract

The moment-transfer approach is a standard tool for deriving limit laws of sequences of random
variables satisfying a distributional recurrence. However, so far the approach could not be ap-
plied to certain “one-sided" recurrences with slowly varying moments and normal limit law. In
this paper, we propose a modified version of the moment-transfer approach which can be applied
to such recurrences. Moreover, we demonstrate the usefulness of our approach by re-deriving
several recent results in an almost automatic fashion.
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1 Introduction

In combinatorics and computer science, one often encounters sequence of random variables which
satisfy a distributional recurrence. For instance, the following recurrence arises in the analysis of
quicksort (see Hwang and Neininger [13] for background): let Xn be a sequence of random variables
satisfying

Xn
d
= X In

+ X ∗n−1−In
+ Tn, (n≥ 1), (1)

where X0 = 0 and In = Uniform{0, . . . , n − 1}, Xn
d
= X ∗n with (In)n≥1, (Xn)n≥0, (X ∗n)n≥0,, (Tn)n≥1

independent. One is then normally interested in properties such as asymptotic behavior of mean
and variance as well as deeper properties such as limit laws, rates of convergence, etc.

As for limit laws, the so-called moment-transfer approach1 has evolved into a major tool in recent
years. Since in this work we only consider sequences of random variables with normal limit law,
we explain the approach for this special case (for the general case see [13]). Roughly speaking,
the approach consists of the following steps (see Figure 1): first, one observes that all moments
(centered or non-centered) of Xn satisfy a recurrence of the same type (the so-called underlying
recurrence). For instance, the underlying recurrence for Xn above is given by

an =
2

n

n−1
∑

j=0

a j + bn, (n≥ 1),

where a0 = 0 and bn is a given sequence (called the toll sequence). Second, one derives general
results that link the asymptotic behavior of bn to that of an (called transfer theorems). Third, one
uses the transfer theorems to obtain an asymptotic expansion for the mean. Forth, one derives
the recurrences of the central moments (this step is called shifting-the-mean). Fifth, one uses the
transfer theorems together with the expansion for the mean to derive an asymptotic expansion for
the variance. Sixth, one uses induction to derive the first order asymptotics of all higher moments
(the last two steps can actually be merged. However, one normally needs the variance to be able
to guess the first order asymptotics of all higher moments). Finally, weak convergence follows from
the Fréchet-Shohat theorem (see Lemma 1.43 in Elliott [7]). This approach has been used to treat
numerous examples; see Chern et al. [3] and the survey article of Hwang [12] for many recent
references.

Overall, the main ingredients in the moment-transfer approach are the transfer theorems, the re-
maining steps being almost automatic. However, maybe surprisingly, the approach does not work
for some sequences of random variables satisfying particular simple distributional recurrences. One
such example is given by the one-sided variant of (1). More precisely, let Xn be a sequence of
random variables satisfying

Xn
d
= X In

+ 1, (n≥ 1), (2)

where X0 = 0 and In = Uniform{0, . . . , n− 1} with (In)n≥1 and (Xn)n≥0 independent.

We provide some more details to illuminate where the approach fails. Therefore, observe that the

1This approach has been called method of moments in most previous works. However, since this name might be
misleading, we decided to use moment-transfer approach instead.
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Figure 1: Steps in the moment-transfer approach.

underlying recurrence is given by

an =
1

n

n−1
∑

j=0

a j + bn, (n≥ 1), (3)

where a0 = 0 and bn is a given sequence. The next step is to obtain transfer theorems. For our crude
purpose the following transfer theorems are enough: for α a non-negative integer, we have

(i) bn ∼ logα n =⇒ an ∼ logα+1 n/(α+ 1)

(ii) bn = O
�

logα n
�

=⇒ an = O
�

logα+1 n
�

(these and more precise results will be proved in the next section; see also [13]). Now, the mean
E(Xn) satisfies (3) with bn = 1. Hence, by transfer (i) above E(Xn)∼ log n. Next, we shift the mean.
Therefore, let A[r]n = E(Xn− E(Xn))r . Then,

A[r]n =
1

n

n−1
∑

j=0

A[r]j + B[r]n , (n≥ 1),

where A[r]0 = 0 and

B[r]n =
r−1
∑

k=0

�

r

k

�

1

n

n−1
∑

j=0

A[k]j

�

1+ E(X j)− E(Xn)
�r−k

. (4)

We first treat the variance which is obtained by setting r = 2. This yields

B[2]n =
1

n

n−1
∑

j=0

�

1+ E(X j)− E(Xn)
�2
∼
∫ 1

0

�

1+ log x
�2 dx = 1,
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where we have used the asymptotics of the mean. Hence, again by transfer (i) above Var(Xn) ∼
log n. Finally, we generalize the latter argument to obtain the first order asymptotics of all central
moments. Since we want to show a central limit theorem, we have to prove that for all m≥ 0

A[2m]
n ∼

(2m)!
2mm!

logm n and A[2m+1]
n = O

�

logm n
�

. (5)

Note that the claim holds for m = 0. As for the induction step assume that the claim is proved for
all m′ < m. Then, in order to prove it for m, we first look at the toll sequence. In the even case, we
have

B[2m]
n =

2m−1
∑

k=0

�

2m

k

�

1

n

n−1
∑

j=0

A[k]j

�

1+ E(X j)− E(Xn)
�2m−k

.

We first consider the term with k = 2m− 1. Here,

2m

n

n−1
∑

j=0

A[2m−1]
j

�

1+ E(X j)− E(Xn)
�

= O
�

logm−1 n
�

.

Similar, all other terms are also O
�

logm−1 n
�

. Hence, B[2m]
n = O

�

logm−1 n
�

. Then, by the transfer
(ii) above, we obtain A[2m]

n = O
�

logm n
�

. This is, however, not strong enough to imply our claim. A
similar problem occurs as well when considering odd central moments.

The problem why the approach fails is that the term with k = 2m−1 has in fact a smaller order due
to an additional cancellation. This cancellation can, however, not be detected if one only assumes
(5). A similar problem arises in a great number of examples all of them having the common feature
that the distributional recurrence is “one-sided", the moments are slowly varying and the limit law
is normal. Here, the “one-sidedness" arises from the underlying process which solves a problem by
breaking it into two parts, throwing one part away and proceeding only with the other one (many
examples will be given below). In some particular examples, the moment-transfer approach still
applies; see Bagchi and Pal [1]. However, in these cases the reason why the approach still works
seems to be problem-specific. Here, we aim for a general method which can be universally applied
to a great number of examples all of them exhibiting the same phenomena as above. For essentially
the same class of examples, Neininger and Rüschendorf already proposed a refinement of their
contraction method in [18]. So, our work can be regarded as an analogue by the moment-transfer
approach of [18].

Apart from the moment-transfer approach and the contraction method, there are also many other
approaches which can be used to prove asymptotic normality. For instance for (2), a straightforward
computation shows that the probability generating function Pn(t) = E(etXn) is given by

Pn(t) =
Γ(n+ t)
Γ(t)Γ(n+ 1)

,

where Γ(z) denotes the Γ-function. Then, the central limit theorem follows by singularity analysis
and either classical tools or Hwang’s quasi-power theorem; see page 644 in Flajolet and Sedgewick
[10] for a detailed discussion. Yet another method uses approximation via a sum of an independent
sequence of random variable and was used in [13]; see also Devroye [6] and Mahmoud [16].

Compared to other methods, the moment-transfer approach is sometimes considered as the last
weapon for proving asymptotic normality due to its brute-force character. However, the method
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does offer a couple of advantages. First, it requires less complicated tools and is quite automatic
once the transfer theorems of the underlying recurrence are derived. Secondly, it is well-suited for
sequences of random variables satisfying a distributional recurrence, a situation often encountered
in combinatorics and computer science. Finally, it also proves convergence of all moments which is
stronger than just weak convergence.

We conclude the introduction by giving a short sketch of the paper. In the next section, we introduce
our approach and apply it to Xn above. Then, in the third section, we re-derive recent results on
priority trees. This will put these results in a larger context. Moreover, our approach yields proofs
which are simpler than the previous ones. In a final section, we discuss further examples which can
be handled by our approach as well.

Notations. We use ε to denote a sufficient small constant which might change from one occurrence
to the next. Similarly, Pol(x) denotes an unspecified polynomial which again might change from
one occurrence to the next. Moreover, if needed, we indicate its degree as a subindex.

2 Asymptotic Normality of the Stirling Cycle Distribution

In this section, we show how to modify the moment-transfer approach such that it can be applied to
(2).

Before starting, we give some motivation as for why we are interested in (2). The easiest example
of a sequence Xn leading to (2) is the number of cycles in a random permutation of size n. Indeed,
let σ1 · · ·σk denote the canonical cycle decomposition of a permutation of size n. Then, it is easy to
see that the probability that σk has length j equals 1/n. Consequently,

Xn
d
= Xn−In

+ 1
d
= X In

+ 1.

Hence, Xn satisfies our recurrence. Of course, the probability distribution of Xn is well-known

P(Xn = k) =
c(n, k)

n!
,

where c(n, k) denote the Stirling cycle numbers (or signless Stirling numbers of first kind). The
asymptotic behavior of Xn is important in many applications such as number of data moves in in-
situ permutation, number of key updates in selection sort, root degree in random recursive trees,
depth of the first node in inorder traversal, etc.; for further examples see Bai et al. [2].

Now, we explain our modified moment-transfer approach. Our idea is simple: we only add one ad-
ditional step to the scheme from the introduction. This new step will be added before the treatment
of the variance and higher central moments and consists of showing by induction that all central
moments admit an expansion of a specific form which in all our examples is an unspecified polyno-
mial in log n plus an error term. This allows us to detect the additional cancellation which caused
the problem in the introduction. Moreover, all remaining steps concerning the asymptotic order of
the variance and higher central moments then just become claims about the degree and the leading
coefficient of the polynomial and will be derived by another induction; see Figure 2 for a schematic
diagram illustrating our approach. We mention in passing that the two induction steps could be
combined (by proving two claims in the induction step). However, we keep them separate because
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Asymptotics of Variance

Asymptotics of Higher Central Moments

Central Limit Theorem

Are now just claims about
degree and leading term of
Pol(log n)

Figure 2: Steps in our modified version of the moment-transfer approach.
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of two reasons: first, for the sake of clarity and second to make the comparison of our modified
moment-transfer approach with the previous version easier.

Now, we show how to apply our modified approach to (2). Before we can do so, we however need
a refinement of the transfer theorems from the introduction.

Proposition 1. Consider (3).

(i) Let bn = O (1/nε) with ε > 0 suitable small. Then,

an = c+O (1/nε) ,

where c is a suitable constant.

(ii) Let bn = logα n with α ∈ {0,1, . . .}. Then,

an =
logα+1 n

α+ 1
+Polα(log n) +O (1/nε) ,

where ε > 0 is suitable small.

(iii) Let bn = O
�

logα n
�

with α ∈ {0,1, . . .}. Then, an = O
�

logα+1 n
�

.

(iv) Let bn = o
�

logα n
�

with α ∈ {0, 1, . . .}. Then, an = o
�

logα+1 n
�

.

Proof. It is easy to check that (3) has the general solution

an = bn+
n−1
∑

j=1

b j

j+ 1
, (n≥ 1). (6)

Now, in order to prove (i) observe that

an = O
�

1

nε

�

+
n−1
∑

j=1

b j

j+ 1
=
∞
∑

j=1

b j

j+ 1
+O

�

1

nε

�

,

where the series is absolute convergent due to the assumption.

Also part (ii) immediately follows from (6) by a standard application of Euler-Maclaurin summation
formula (for the latter see Section 4.5 in Flajolet and Sedgewick [9]).

Finally, part (iii) and (iv) are simple consequences of part (ii).

The above transfer theorem can be used to prove the following refinement of the asymptotic expan-
sion of the mean from the introduction

E(Xn) = log n+ c0+O (1/nε) , (7)

where c0 is a suitable constant and ε > 0 is suitable small.

Next, we turn to central moments. As already mentioned, we first show that all central moments
have an asymptotic expansion in powers of log n plus an error term.
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Proposition 2. For all r ≥ 1, we have

A[r]n =Pol(log n) +O (1/nε) ,

where ε > 0 is suitable small.

Proof. Note that the claim is trivial for r = 1. Assume now that it holds for all r ′ < r. In order
to prove it for r, we plug the induction hypothesis and (7) into (4). Then, by applying the Euler-
Maclaurin summation formula, we obtain B[r]n =Pol(log n)+O (1/nε). Hence, the claim follows by
the transfer theorem.

Now, as already mentioned above, (5) is only a claim concerning the degree and the leading term
of the polynomial in the previous proposition.

Proposition 3. For all m≥ 0, we have

A[2m]
n ∼

(2m)!
2mm!

logm n and A[2m+1]
n = O

�

logm n
�

.

Proof. Note that the claim holds for m = 0. Assume now that the claim holds for all m′ < m. We
prove it for m.

First, consider the even case. Then, the toll sequence is given by

B[2m]
n =

2m−1
∑

k=0

�

2m

k

�

1

n

n−1
∑

j=0

A[k]j

�

1+ E(X j)− E(Xn)
�2m−k

.

We start by looking at the contribution of k = 2m− 1 which is

2m

n

n−1
∑

j=0

A[2m−1]
j

�

1+ E(X j)− E(Xn)
�

∼ c1 logm−1 n

∫ 1

0

(1+ log x)dx ,

where c1 is a suitable constant. Since the above integral vanishes this part contributes o(logm−1 n).
Next, consider k = 2m− 2 which gives

2m(2m− 1)
2n

n−1
∑

j=0

A[2m−2]
j

�

1+ E(X j)− E(Xn)
�2
∼

(2m)!
2m(m− 1)!

logm−1 n

∫ 1

0

�

1+ log x
�2 dx

=
(2m)!

2m(m− 1)!
logm−1 n.

As for all other parts, using a similar reasoning shows that they contribute o(logm−1 n). Hence,

B[2m]
n ∼

(2m)!
2m(m− 1)!

logm−1 n.

Using the transfer theorem proves the claim in the even case.

As for the odd case, here the toll sequence becomes

B[2m+1]
n =

2m
∑

k=0

�

2m+ 1

k

�

1

n

n−1
∑

j=0

A[k]j

�

1+ E(X j)− E(Xn)
�2m+1−k

.
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Using similar reasoning as above, the term with k = 2m contributes o(logm n). All other terms give
a smaller contribution. Hence, B[2m+1]

n = o(logm n). By the transfer theorem A[2m+1]
n = o(logm+1 n).

Due to Proposition 2 this implies our claim in the odd case.

Overall, we have (re-)proved the following result which can be traced at least back to Goncharov
[11].

Theorem 1 (Goncharov). As n→∞, we have

Xn− log n
p

log n

d−→N (0, 1).

To summarize, the only difference of our approach to the previous version of the moment-transfer
approach are two induction steps instead of only one. The first induction step establishes a certain
shape of all central moments. Then, the second induction is used to derive more details concerning
the leading term. Again, the main tool is the transfer theorem. Once such a result is established, the
remaining proof is rather automatic.

We apply our new approach to a couple of other examples in the subsequent sections.

3 Analysis of Priority Trees

Priority trees are a data structure which are used for the implementation of priority queues. They
are defined as binary, labelled trees whose left path has the property that every node except the last
one has a (possibly empty) right subtree which is again a priority tree with all labels smaller than
the label of the root and larger than the label of the left child of the root. A random priority tree is
built from a random permutation on the set {1, . . . , n}. Random priority trees have been analyzed in
several recent papers; see Kuba and Panholzer [15], Panholzer [19] and Panholzer and Prodinger
[20].

In this section, we demonstrate that our modified moment-transfer approach applies straightfor-
wardly to the analysis of random priority trees. Since we are just interested in the applicability
of our approach, we only give the probabilistic problem and direct the interested reader to the
literature for background.

Length of the Left Path. We only briefly discuss this example due to its similarity to the example
from the previous section. Let Xn be the length of the left path in a random priority tree built from
n records. Then, it was shown in [20] that

Xn
d
= YIn

+ Zn−1−In
, (n≥ 1),

Yn
d
= YIn

+ 1, (n≥ 1),

Zn
d
= ZIn

+ 1, (n≥ 1),

where X0 = Z0 = 0, Y0 = 1 and In = Uniform{0, . . . , n− 1} with (In)n≥1, (Yn)n≥0, (Zn)n≥0 indepen-
dent.

So, the central moments of Yn and Zn can be treated as in the previous section. Moreover, due to
the first recurrence, the (centered and non-centered) moments of Xn are connected to those of Yn
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and Zn. Using this connection it is straightforward to prove that E(Xn) ∼ 2 log n and that the r-th
central moment of Xn (denoted as in the previous section) satisfies

A[2m]
n ∼

(2m)!
m!

logm n and A[2m+1]
n = O

�

logm n
�

.

Consequently, we have re-derived the following result.

Theorem 2 (Panholzer and Prodinger). As n→∞, we have

Xn− 2 log n
p

2 log n

d−→N (0, 1).

Number of Key Comparisons for Insertion. This is a more sophisticated example whose proof of
the central limit theorem was only sketched in [15]. We will see that our approach applies quite
straightforwardly. So, let Xn denote the number of key comparisons when inserting a random node
in a random priority tree built from n records. Then, as explained in [15], for n≥ 1,

Xn|
�

In = j
� d
=

(

Yj + Un−1− j , with probability ( j+ 1)/(n+ 1),
Zn−1− j with probability (n− j)/(n+ 1),

Yn|
�

In = j
� d
=

(

Yj + 1, with probability ( j+ 1)/(n+ 1),
Xn−1− j + 2 with probability (n− j)/(n+ 1),

Zn|
�

In = j
� d
=

(

X j + Un−1− j + 2, with probability ( j+ 1)/(n+ 1),
Zn−1− j with probability (n− j)/(n+ 1),

where P(In = j) = 1/n, 0 ≤ j < n, X0 = 0, Y0 = Z0 = 1, the probability generating function of Un is
given by

E
�

wUn
�

=
�

w+ n− 1

n

�

,

and (Un)n≥0, (Xn)n≥0, (Yn)n≥0 are independent.

Now, we apply our modified moment-transfer approach. The first step is to find the underlying
recurrence which needs some tedious (but straightforward) computations. Therefore, let

X (s, t) =
∑

n≥0

(n+ 1)E
�

etXn
�

sn;

Y (s, t) =
∑

n≥0

(n+ 1)E
�

etYn
�

sn;

Z(s, t) =
∑

n≥0

(n+ 1)E
�

etZn
�

sn.

Then, from the above distributional recurrences, we get

∂

∂ s
X (s, t) =

1

(1− s)et Y (s, t) +
1

1− s
Z(s, t);

∂

∂ s
Y (s, t) =

et

1− s
Y (s, t) +

e2t

1− s
X (s, t);

∂

∂ s
Z(s, t) =

e2t

(1− s)et X (s, t) +
1

1− s
Z(s, t)
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with initial conditions X (0, t) = 1 and Y (0, t) = Z(0, t) = et . Eliminating Y (s, t) and Z(s, t) gives

∂ 3

∂ s3 X (s, t)−
3+ 2et

1− s

∂ 2

∂ s2 X (s, t) + 2et

�

2

(1− s)2
−

et

(1− s)et+1

�

∂

∂ s
X (s, t)

+
2e2t

(1− s)et+2
X (s, t) = 0

with initial conditions X (0, t) = 1, ∂
∂ s

X (0, t) = 2et , ∂
2

∂ s2 X (0, t) = 2et + 4e2t . Now, let P̄n(t) = (n+
1)E(etXn). Reading off coefficients from the above differential equation yields

P̄n(t) =
n−1
∑

j=0







2
∑

l=1

cl(t)
l!

3!

� j
l

��n−1− j
2−l

�

�n
3

� +
2e2t

3!

�et+n− j−2
n− j−2

�

j−
�et+n− j−2

n− j−3

�

�n
3

�






P̄j(t), (n≥ 3), (8)

where c1(t) = −4et and c2(t) = 3+ 2et and initial conditions P̄0(t) = 1, P̄1(t) = 2et , and P̄2(t) =
et + 2e2t .

From this by differentiating and setting t = 0, we obtain the recurrence for the mean

(n+ 1)E(Xn) =
n−1
∑

j=0





2
∑

l=0

cl
l!

3!

� j
l

��n−1− j
2−l

�

�n
3

�



 ( j+ 1)E(X j) +Mn, (n≥ 3), (9)

where c0 = c1 =−2 and c2 = 5, initial conditions E(X0) = 0,E(X1) = 2,E(X2) = 5, and toll sequence

Mn =
n−1
∑

j=0

d

dt







2
∑

l=1

cl(t)
l!

3!

� j
l

��n−1− j
2−l

�

�n
3

� +
2e2t

3!

�et+n− j−2
n− j−2

�

j−
�et+n− j−2

n− j−3

�

�n
3

�







�

�

�

�

�

t=0

( j+ 1).

The same recurrence is also obtained for all higher moments (with a different toll sequence). Hence,
the underlying recurrence is given by

an =
n−1
∑

j=0





2
∑

l=0

cl
l!

3!

� j
l

��n−1− j
2−l

�

�n
3

�



 a j + bn, (n≥ 3) (10)

with certain initial conditions (note that in slight difference to the previous sections, this is the
recurrence satisfied by the moments of Xn multiplied with n+ 1). So, we need a transfer theorem
for this recurrence. Fortunately, this and more general recurrences were already studied in Chern et
al. [5].

Proposition 4. Consider (10).

(i) Let bn = O
�

n1−ε
�

with ε > 0 suitable small. Then,

an = cn+O
�

n1−ε
�

,

where c is a suitable constant.
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(ii) Let bn = n logα n with α ∈ {0, 1, . . .}. Then,

an =
8n logα+1 n

α+ 1
+ nPolα(log n) +O

�

n1−ε
�

,

where ε > 0 is suitable small.

(iii) Let bn = O
�

n logα n
�

with α ∈ {0, 1, . . .}. Then, an = O
�

n logα+1 n
�

.

(iv) Let bn = o
�

n logα n
�

with α ∈ {0,1, . . .}. Then, an = o
�

n logα+1 n
�

.

Proof. See the method of Section 2 in [5].

Before we use this result to treat mean and central moments, we need a technical lemma.

Lemma 1. We have

dk

dtk

�

et + n

n− 1

�

�

�

�

�

�

t=0

=
n2

2
logk n+ n2Polk−1(log n) +O

�

n2−ε
�

,

where ε > 0 is suitable small.

Proof. The proof uses induction on k. First for k = 1, we have

d

dt

�

et + n

n− 1

�

�

�

�

�

�

t=0

=
�

et + n

n− 1

� n
∑

j=2

et

et + j

�

�

�

�

�

t=0

=
(n+ 1)n

2

�

Hn+1−
3

2

�

,

where Hn =
∑n

j=1 1/ j is the n-th harmonic number. Hence, the claim follows from the well-known
asymptotic expansion Hn = log n+ γ+O (1/n), where γ denotes Euler’s constant.

Assume now that the claim holds for all k′ < k. In order to prove it for k, observe that

dk

dtk

�

et + n

n− 1

�

�

�

�

�

�

t=0

=
dk−1

dtk−1







�

et + n

n− 1

� n
∑

j=2

et

et + j







�

�

�

�

�

t=0

=
k−1
∑

i=0

�

k− 1

i

�

di

dt i

�

et + n

n− 1

�

�

�

�

�

�

t=0

dk−1−i

dtk−1−i

n
∑

j=2

et

et + j

�

�

�

�

�

t=0

.

For the first derivative inside the sum, we can use the induction hypothesis. For the second deriva-
tive, one shows by another induction (left as an exercise) that

dk

dtk

n
∑

j=2

et

et + j

�

�

�

�

�

t=0

= log n+ c0+O (1/n)

for all k ≥ 0 with a suitable constant c0. Plugging this in and doing some straightforward simplifi-
cation yields the claim.
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Corollary 1. We have,

dk

dtk

�

et + n

n

�

�

�

�

�

�

t=0

= n logk n+ nPolk−1(log n) +O
�

n1−ε
�

,

where ε > 0 is suitable small. Moreover, we have

dk

dtk
e2t
�

et + n

n− 1

�

�

�

�

�

�

t=0

=
n2

2
logk n+ n2Polk−1(log n) +O

�

n2−ε
�

and
dk

dtk
e2t
�

et + n

n

�

�

�

�

�

�

t=0

= n logk n+ nPolk−1(log n) +O
�

n1−ε
�

,

where ε > 0 is suitable small.

Proof. All of the claims follow similarly. Hence, we just prove the first one. Therefore, note that

dk

dtk

�

et + n

n

�

�

�

�

�

�

t=0

=
1

n

dk

dtk
(et + 1)

�

et + n

n− 1

�

�

�

�

�

�

t=0

=
2

n

dk

dtk

�

et + n

n− 1

�

�

�

�

�

�

t=0

+
1

n

k
∑

i=1

dk−i

dtk−i

�

et + n

n− 1

�

�

�

�

�

�

t=0

.

Plugging in the result of the above lemma immediately yields the claim.

Now, we can turn to the mean. We start by looking at the toll sequence Mn which we break into the
two parts

αn =
n−1
∑

j=0

d

dt

2
∑

l=1

cl(t)
l!

3!

� j
l

��n−1− j
2−l

�

�n
3

�

�

�

�

�

�

t=0

( j+ 1)

and

βn =
n−1
∑

j=0

d

dt

2e2t

3!

�et+n− j−2
n− j−2

�

j−
�et+n− j−2

n− j−3

�

�n
3

�

�

�

�

�

�

t=0

( j+ 1)

First, for αn observe that

αn =−4
n−1
∑

j=0

j( j+ 1)(n− 1− j)
n(n− 1)(n− 2)

+ 2
n−1
∑

j=0

( j− 1) j( j+ 1)
n(n− 1)(n− 2)

= n

 

−4

∫ 1

0

x2(1− x)dx + 2

∫ 1

0

x3dx +O (1/n)

!

= n/6+O (1) ,

where we have used Euler-Maclaurin summation formula. Next, we treat βn. Here, we apply
Corollary 1 and obtain

βn =
n−1
∑

j=0

2 j( j+ 1)
n(n− 1)(n− 2)

�

(n− j− 2) log(n− j− 2) + c1(n− j− 2) +O
�

(n− j− 2)1−ε
��

−
n−1
∑

j=0

2( j+ 1)
n(n− 1)(n− 2)

�

(n− j− 2)2

2
log(n− j− 2) + c2(n− j− 2)2+O

�

(n− j− 2)2−ε
�

�

,
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where c1 and c2 are suitable constants. By another application of the Euler-Maclaurin summation
formula and a trivial estimate for the remainder,

βn =

 

2

∫ 1

0

x2(1− x)dx −
∫ 1

0

x(1− x)2dx

!

n log n+ c3n+O
�

n1−ε
�

=
1

12
n log n+ c3n+O

�

n1−ε
�

,

where c3 is a suitable constant and ε > 0 is suitable small. Overall,

Mn =
1

12
n log n+ c3n+O

�

n1−ε
�

.

Hence, by the transfer theorem

E(Xn) =
1

3
log2 n+Pol1(log n) +O (1/nε) .

Next, we turn to central moments. Therefore, set Pn(t) = (n+ 1)E(et(Xn−E(Xn))). Then, from (8), we
obtain for n≥ 3,

Pn(t) =
n−1
∑

j=0







2
∑

l=1

cl(t)
l!

3!

� j
l

��n−1− j
2−l

�

�n
3

� +
2e2t

3!

�et+n− j−2
n− j−2

�

j−
�et+n− j−2

n− j−3

�

�n
3

�






et(E(X j)−E(Xn))Pj(t)

with initial conditions P0(t) = 1, P1(t) = 2e−t , and P2(t) = e−4t + 2e−3t . Next, set A[r]n = E(Xn −
E(Xn))r . Taking derivatives r times and setting t = 0 yields

(n+ 1)A[r]n =
n−1
∑

j=0





2
∑

l=0

cl
l!

3!

� j
l

��n−1− j
2−l

�

�n
3

�



 ( j+ 1)Ā[r]j + B[r]n , (n≥ 3) (11)

with initial conditions A[r]0 = 0, A[r]1 = 2(−1)r , A[r]2 = (−1)r(4r + 2 · 3r) and toll sequence

B[r]n =
∑

i1+i2+i3=r
i3 6=r

�

r

i1, i2, i3

� n−1
∑

j=0

di1

dt i1

� 2
∑

l=1

cl(t)
l!

3!

� j
l

��n−1− j
2−l

�

�n
3

� +
2e2t

3!

�et+n− j−2
n− j−2

�

j−
�et+n− j−2

n− j−3

�

�n
3

�

�

�

�

�

�

�

t=0

�

E(X j)− E(Xn)
�i2 ( j+ 1)A[i3]j .

As before, we first show that all central moments admit an expansion in powers of log n plus an
error term.

Proposition 5. For all r ≥ 1, we have

A[r]n =Pol(log n) +O (1/nε) ,

where ε > 0 is suitable small.
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Proof. We use induction on r. Note that the claim for r = 1 is trivial. Next, we assume that the claim
holds for all r ′ < r. In order to show it for r, we again break the toll sequence into two parts αn and
βn, where

αn =
∑

i1+i2+i3=r
i3 6=r

�

r

i1, i2, i3

� n−1
∑

j=0

di1

dt i1

2
∑

l=1

cl(t)
l!

3!

� j
l

��n−1− j
2−l

�

�n
3

�

�

�

�

�

�

t=0

(E(X j)− E(Xn))
i2( j+ 1)A[i3]j

and

βn =
∑

i1+i2+i3=r
i3 6=r

�

r

i1, i2, i3

� n−1
∑

j=0

di1

dt i1

2et

3!

�

�et+n− j−2
n− j−2

�

j−
�et+n− j−2

n− j−3

�

�

�n
3

�

�

�

�

�

�

t=0

(E(X j)− E(Xn))
i2( j+ 1)A[i3]j .

Now, αn and βn are treated with exactly the same ideas as for the mean above. For instance, when
plugging the induction hypothesis and the expansion for the mean into αn one obtains sums such as

n−1
∑

j=1

j( j+ 1)(n− 1− j)
n(n− 1)(n− 2)

�

Pol(log j) +O
�

1/ jε
��

which due to Euler-Maclaurin summation formula yield nPol(log n) + O
�

n1−ε
�

. Hence, αn =
nPol(log n) + O

�

n1−ε
�

. Similarly, by plugging the induction hypothesis and the expansion of
the mean into βn and using Euler-Maclaurin summation formula and Corollary 1 one obtains that
βn = nPol(log n) +O

�

n1−ε
�

. Overall,

B[r]n = nPol(log n) +O
�

n1−ε
�

.

Applying the transform theorem concludes the induction.

Next, we refine the above expansion for the variance. Hence, we choose r = 2 in (11). Again we
start with the toll sequence which we break into two parts

αn =
∑

i1+i2+i3=2
i3 6=2

�

2

i1, i2, i3

� n−1
∑

j=0

di1

dt i1

2
∑

l=1

cl(t)
l!

3!

� j
l

��n−1− j
2−l

�

�n
3

�

�

�

�

�

�

t=0

(E(X j)− E(Xn))
i2(k+ 1)A[i3]j

︸ ︷︷ ︸

:=Pαn
i1,i2,i3

and

βn =
∑

i1+i2+i3=2
i3 6=2

�

2

i1, i2, i3

� n−1
∑

j=0

di1

dt i1

2e2t

3!

�et+n− j−2
n− j−2

�

j−
�et+n− j−2

n− j−3

�

�n
3

�

�

�

�

�

�

t=0

(E(X j)− E(Xn))
i2( j+ 1)A[i3]j

︸ ︷︷ ︸

:=Pβn
i1,i2,i3

.

For αn, we first consider i1 = 0, i2 = 2 and i3 = 0,

Pαn
0,2,0 ∼

n−1
∑

j=0

2
∑

l=1

cl(0)
l!

3!

� j
l

��n−1− j
2−l

�

�n
3

�

�

1

3
log2 j−

1

3
log2 n

�2

( j+ 1)

∼
4

9

 

−4

∫ 1

0

x2(1− x) log2 xdx + 5

∫ 1

0

x3 log2 xdx

!

n log2 n=−
13

1944
n log2 n,

917



where we used the Euler-Maclaurin summation formula. For the other terms in αn, we can use
similar ideas to obtain the bound O

�

n log n
�

. Hence,

αn ∼−
13

1944
n log2 n.

Next, we treat βn. Here, we first consider i3 = 0. Then, after a similar computation as for αn,

∑

i1+i2=2

�

2

i1, i2

�

Pβn
i1,i2,0

∼
∑

i1+i2=2

�

2

i1, i2

� n−1
∑

j=0

di1

dt i1

2e2t

3!

�et+n− j−2
n− j−2

�

j−
�et+n− j−2

n− j−3

�

�n
3

�

�

�

�

�

�

t=0

�

1

3
log2 j−

1

3
log2 n

�i2
( j+ 1)

∼−
41

1944
n log2 n−

1

108
n log2 n+

1

12
n log2 n=

103

1944
n log2 n,

where we used Corollary 1 and the Euler-Maclaurin summation formula. The other terms in βn are
easily shown to contribute only O

�

n log n
�

. Hence,

βn ∼
103

1944
n log2 n.

Overall, we obtain for the toll sequence

B[2]n ∼−
13

1944
n log2 n+

103

1944
n log2 n=

5

108
n log2 n.

Using our transfer theorem yields

Var(Xn)∼
10

81
log3 n.

Now, the final step is to generalize these arguments to all central moments.

Proposition 6. For all m≥ 0, we have

A[2m]
n ∼

(2m)!
2mm!

�

10

81

�m

log3m n and A[2m+1]
n = O

�

log3m+1 n
�

.

Proof. We use induction on m. Note that the claim holds for m = 0. Next assume that the claim
holds for all m′ < m. We show that it holds for m as well.

First, let us consider the even case. Then, as before, we are going to break the toll sequence of (11)
into two parts αn and βn, where

αn =
∑

i1+i2+i3=2m
i3 6=2m

�

2m

i1, i2, i3

� n−1
∑

j=0

di1

dt i1

2
∑

l=1

cl(t)
l!

3!

� j
l

��n−1− j
2−l

�

�n
3

�

�

�

�

�

�

t=0

(E(X j)− E(Xn))
i2( j+ 1)A[i3]j

︸ ︷︷ ︸

:=Pαn
i1,i2,i3
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and

βn =
∑

i1+i2+i3=2m
i3 6=2m

�

2m

i1, i2, i3

� n−1
∑

j=0

di1

dt i1

2et

3!

�

�et+n− j−2
n− j−2

�

j−
�et+n− j−2

n− j−3

�

�

�n
3

�

�

�

�

�

�

t=0

(E(X j)− E(Xn))
i2( j+ 1)A[i3]j

︸ ︷︷ ︸

:=Pβn
i1,i2,i3

.

We first treat αn which we again break into two parts x[α]n and y[α]n according to whether i3 is even
or not, i.e.,

x[α]n =
∑

i1+i2+2i3=2m
i3 6=m

�

2m

i1, i2, 2i3

�

Pαn
i1,i2,2i3

and

y[α]n =
∑

i1+i2+2i3+1=2m

�

2m

i1, i2, 2i3+ 1

�

Pαn
i1,i2,2i3+1.

As for x[α]n , we first consider i1 = 0, i2 = 2 and i3 = m− 1. Then,

Pαn
0,2,2m−2 ∼

n−1
∑

j=0

2
∑

l=1

cl(0)
l!

3!

� j
l

��n−1− j
2−l

�

�n
3

�

�

1

3
log2 j−

1

3
log2 n

�2

( j+ 1)
(2m− 2)!

2m−1(m− 1)!

�

10

81
log3 j

�m−1

∼−
13

972

�

10

81

�m−1

n log3m−1 n.

Similar, all other terms are shown to be O
�

n log3m−2
�

. Hence,

x[α]n =
�

2m

0,2, 2m− 2

�

Pαn
0,2,2m−2+O

�

n log3m−2
�

∼−
13

1944

(2m)!
2m(m− 1)!

�

10

81

�m−1

n log3m−1 n.

Next, for y[α]n , we first consider the term with i1 = 0, i2 = 1 and i3 = m−1. Note that by Proposition

5 we know that A[2m−1]
j is a polynomial in log n. Therefore, by induction hypothesis, we know that

A[2m−1]
j ∼ c4 log3m−2 j with a suitable constant c4. Consequently,

Pαn
0,1,2m−1 ∼

n−1
∑

j=0

2
∑

l=1

cl(0)
l!

3!

� j
l

��n−1− j
2−l

�

�n
3

�

�

1

3
log2 j−

1

3
log2 n

�

( j+ 1)c4 log3m−2 j

∼−
17c4

216
n log3m−1 n.

For all other terms, again by similar ideas, we obtain the bound O
�

n log3m−2 n
�

. Therefore,

y[α]n = 2mPαn
0,1,2m−1+O

�

n log3m−2 n
�

∼−
34c4m

216
n log3m−1 n.

Overall, we obtain for the contribution of αn,

αn = x[α]n + y[α]n ∼−
13

1944

(2m)!
2m(m− 1)!

�

10

81

�m−1

n log3m−1 n−
34c4m

216
n log3m−1 n.
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Next, we turn to βn which is handled in exactly the same manner. So, we again break it into two
parts x[β]n and y[β]n according to whether i3 is even or not. Consequently,

x[β]n =
∑

i1+i2+2i3=2m
i3 6=m

�

2m

i1, i2, 2i3

�

Pβn
i1,i2,2i3

and

y[β]n =
∑

i1+i2+2i3+1=2m

�

2m

i1, i2, 2i3+ 1

�

Pβn
i1,i2,2i3+1.

As for x[β]n , we first consider i3 = m− 1. Here, by Corollary 1 and the induction hypothesis,

∑

i1+i2=2

�

2m

i1, i2, 2m− 2

�

Pβn
i1,i2,2m−2

∼ 2
∑

i1+i2=2

�

2m

i1, i2, 2m− 2

� n−1
∑

j=0

�

(n− j− 2) j−
(n− j− 2)2

2

�

logi1(n− j− 2)

�

1

3
log2 j−

1

3
log2 n

�i2
( j+ 1)

(2m− 2)!
2m−1(m− 1)!

�

10

81

�m−1

n log3m−3 n

∼
�

−
41

1944

�

2m

0,2, 2m− 2

�

−
1

216

�

2m

1,1, 2m− 2

�

+
1

12

�

2m

2,0, 2m− 2

�

�

(2m− 2)!
2m−1(m− 1)!

�

10

81

�m−1

n log3m−1 n

=
103

1944

(2m)!
2m(m− 1)!

�

10

81

�m−1

n log3m−1 n.

Similar all other terms are shown to be O
�

n log3m−2 n
�

. Hence,

x[α]n ∼
103

1944

(2m)!
2m(m− 1)!

�

10

81

�m−1

n log3m−1 n.

For y[β]n , we again start by looking at i3 = m− 1 for which due to Proposition 5 we have A[2m−1]
j ∼

c4 log3m−2 j with a suitable constant c4. Hence, as above

∑

i1+i2=1

�

2m

i1, i2, 2m− 1

�

Pβn
i1,i2,2m−2

∼
∑

i1+i2=1

�

2m

i1, i2, 2m− 1

� n−1
∑

j=0

�

(n− j− 2) j−
(n− j− 2)2

2

�

logi1(n− j− 2)
�

1

3
log2 j−

1

3
log2 n

�i2
( j+ 1)c4 log3m−3 n

∼
34c4m

216
n log3m−1 n.
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Similar arguments show that all other terms are of order O
�

n log3m−2 n
�

. Therefore,

y[β]n ∼
34c4m

216
n log3m−1 n.

Overall, we have

βn ∼
103

1944

(2m)!
2m(m− 1)!

�

10

81

�m−1

n log3m−1 n+
34c4m

216
n log3m−1 n.

Now, collecting everything gives

B[2m]
n = αn+ βn

∼−
13

1944

(2m)!
2m(m− 1)!

�

10

81

�m−1

n log3m−1 n−
34c4m

216
n log3m−1 n

+
103

1944

(2m)!
2m(m− 1)!

�

10

81

�m−1

n log3m−1 n+
34c4m

216
n log3m−1 n

=
5

108

(2m)!
2m(m− 1)!

�

10

81

�m−1

n log3m−1 n.

and using the transfer theorem concludes the proof in the even case.

Next, we briefly sketch the odd case which can be treated with the same ideas as the even case.
Again, we break the toll sequence into two parts αn and βn which are defined as above (with the
only difference that 2m is replaced by 2m+ 1). Then, as above, one shows that

αn ∼−(2m+ 1)
17

216

(2m)!
2mm!

n log3m+1 n

and

βn ∼ (2m+ 1)
17

216

(2m)!
2mm!

n log3m+1 n.

Hence,

B[2m+1]
n = αn+ βn

∼−(2m+ 1)
17

216

(2m)!
2mm!

n log3m+1 n+ (2m+ 1)
17

216

(2m)!
2mm!

n log3m+1 n

= o
�

n(log n)3m+1
�

.

Using the transfer theorem shows that A[2m+1]
n = o

�

n(log n)3m+1
�

and due to Proposition 5 the
claim is established.

Finally, by the Fréchet-Shohat theorem, the last proposition implies the following theorem.

Theorem 3 (Kuba and Panholzer). As n→∞, we have

Xn− log2 n/3
p

10 log3 n/81

d−→N (0,1).

Another example which is very similar to the one above is the depth of a random node in a random
priority tree of size n; see [19]. Here, the underlying recurrence is as above. Hence, one can again
use the transfer theorem to derive the central limit theorem. Since the details are straightforward,
we do not give them.
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4 Further Examples

In this final section, we briefly sketch some further examples. It should by now be clear that our
approach essentially rests on the transfer theorem. Once such a result is established, the remaining
proof is rather automatic. Hence, for the subsequent examples, we only give the distributional
recurrence, the underlying recurrence, the transfer theorem and the final result.

Number of Key Comparisons for Insertion and Depth in Binary Search Trees. These examples
are similar but easier than the examples discussed in the previous section. For instance, let Xn denote
the number of key comparisons when inserting a random node in a random binary search tree built
from n records (this quantity is also called “unsuccessful search"; see Chapter 2 in Mahmoud [16]
for background). Then, for n≥ 1,

Xn|
�

In = j
� d
=

(

X j + 1, with probability ( j+ 1)/(n+ 1),
Xn−1− j + 1, with probability (n− j)/(n+ 1)

with P(In = j) = 1/n, 0 ≤ j < n and X0 = 0. From this, a straightforward computation reveals that
the underlying recurrence (with a scaling factor n+ 1 as in the previous section) is given by

an =
2

n

n−1
∑

j=0

a j + bn, (n≥ 1) (12)

with a0 = 0. A transfer theorem for this recurrence of similar type as in the previous section is easily
derived and can be found in [13].

Proposition 7. Consider (12).

(i) Let bn = O
�

n1−ε
�

with ε > 0 suitable small. Then,

an = cn+O
�

n1−ε
�

,

where c is a suitable constant.

(ii) Let bn = n logα n with α ∈ {0,1, . . .}. Then,

an =
2n logα+1 n

α+ 1
+ nPolα(log n) +O

�

n1−ε
�

,

where ε > 0 is suitable small.

(iii) Let bn = O
�

n logα n
�

with α ∈ {0, 1, . . .}. Then, an = O
�

n logα+1 n
�

.

(iv) Let bn = o
�

n logα n
�

with α ∈ {0,1, . . .}. Then, an = o
�

n logα+1 n
�

.

Hence, our approach applies as in the last section (the technical details being easier) and we obtain
the following theorem which was first obtained by Brown and Shubert; see [16].
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Theorem 4 (Brown and Shubert). As n→∞, we have

Xn− 2 log n
p

2 log n

d−→N (0, 1).

Similarly, the depth of a random node satisfies almost the same distributional recurrence (again see
Chapter 2 in [16] for background). Hence, again a central limit theorem follows from the above
transfer theorem by applying our approach (this result was first obtained by Louchard; see [16]).

Depth of Variants of Binary Search Trees. The previous example of the depth can be extended to
several extensions of binary search trees. A very general model was given in [6]. Here, we discuss
two special cases of this model, namely fringe-balanced m-ary search trees and d-dimensional grid
trees; see Chern et al. [3] for the latter and Chern and Hwang [4] for the former.

Subsequently, let Xn denote the depth of a randomly chosen record in the random tree built from
n records. Moreover, the underlying recurrence will be satisfied by all centered and non-centered
moments multiplied by n.

First, for fringe-balanced m-ary search trees, Xn satisfies the distributional recurrence for n ≥ τ :=
m(t + 1)− 1,

Xn|
�

I[1]n = j1, . . . , I[m]n = jm
� d
=















X j1 + 1, with probability j1/n,
...

X jm + 1, with probability jm/n,

0, with probability (m− 1)/n

with P(I[1]n = j1, . . . , I[m]n = jm) =
� j1

t

�� j2− j1−1
t

�

· · ·
� jm− jm−1−1

t

��n− jm−1
t

�

/
�n
τ

�

, j1, . . . , jm ≥ 0, j1 + . . .+
jm = n−m+ 1 and suitable initial conditions. Hence, the underlying recurrence is given by

an =
m
�n
τ

�

n−τ+t
∑

j=t

�

j

t

��

n− 1− j

τ− t − 1

�

a j + bn, (n≥ τ) (13)

with suitable initial conditions. This recurrence was extensively studied in [4]. In particular, the
following transfer theorem can be proved with the tools of the latter paper.

Proposition 8. Consider (13).

(i) Let bn = O
�

n1−ε
�

with ε > 0 suitable small. Then,

an = cn+O
�

n1−ε
�

,

where c is a suitable constant.

(ii) Let bn = n logα n with α ∈ {0,1, . . .}. Then,

an =
n logα+1 n

(Hτ+1−Ht+1)(α+ 1)
+ nPolα(log n) +O

�

n1−ε
�

,

where ε > 0 is suitable small and Hn =
∑n

j=1 1/ j denotes the n-th harmonic number.
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(iii) Let bn = O
�

n logα n
�

with α ∈ {0, 1, . . .}. Then, an = O
�

n logα+1 n
�

.

(iv) Let bn = o
�

n logα n
�

with α ∈ {0,1, . . .}. Then, an = o
�

n logα+1 n
�

.

Hence, our approach applies and yields the following result.

Theorem 5. As n→∞, we have

Xn− log n/(Hτ+1−Ht+1)
Æ

(H(2)τ+1−H(2)t+1) log n/(Hτ+1−Ht+1)3
d−→N (0,1),

where H(2)n =
∑n

j=1 1/ j2.

There are two interesting special cases of this result. First, for m = 2, the result gives the central
limit theorem of the depth in random median-of-(2t+1) binary search trees, a result first derived in
[6]. Second, for t = 0, the result gives the central limit theorem of the depth in m-ary search trees,
a result first proved by Mahmoud and Pittel in [17].

Next, we consider d-dimensional grid trees. Here, we have for n≥ m− 1,

Xn|
�

I[1]n = j1, . . . , I[m
d]

n = jmd

�

d
=



















X j1 + 1, with probability j1/n,
...

X jmd
+ 1, with probability jmd/n,

0, with probability (m− 1)/n

with X0 = X1 = · · ·= Xm−2 = 0 and

P(I[1]n = j1, . . . , I[m
d]

n = jmd ) =
�

n−m+ 1

j1, . . . , jmd

�
∫

([0,1]d )m−1

∏

1≤h≤md

qh(x1, . . . ,xm−1)
jhdx1 · · ·dxm−1,

where j1, . . . , jmd ≥ 0, j1+ · · ·+ jmd = n−m+ 1,xi = (x
(1)
i , . . . , x (d)i ), 1≤ i ≤ m− 1 and

qh(x1, . . . ,xm−1) =
∏

1≤i≤d

∑

0≤l<m

1{l}(bi)
�

x (i)(l+1)− x (i)(l)

�

, (1≤ h≤ md)

with (b1, . . . , bd)m the m-ary digital representation of h− 1 and x(l) denoting the l-th order statistic
of x1, . . . , xm−1 (x(0) := 0, x(m) := 1). From this, we obtain for the underlying recurrence

an = md
n−m+1
∑

j=0

πn, ja j + bn, (n≥ m− 1) (14)

with a0 = a1 = · · ·= am−2 = 0 and

πn, j =
∑

j≤ j1≤···≤ jd−1≤n−m+1

�n− jd−1−1
m−2

�

� n
m−1

�

∏

1≤i<d

� ji− ji−1+m−2
m−2

�

� ji+m−1
m−1

�

.

This recurrence was studied in [3]. The following transfer theorem can be proved with tools from
the latter paper.

924



Proposition 9. Consider (14).

(i) Let bn = O
�

n1−ε
�

with ε > 0 suitable small. Then,

an = cn+O
�

n1−ε
�

,

where c is a suitable constant.

(ii) Let bn = n logα n with α ∈ {0,1, . . .}. Then,

an =
n logα+1 n

d(Hm− 1)(α+ 1)
+ nPolα(log n) +O

�

n1−ε
�

,

where ε > 0 is suitable small and Hn =
∑n

j=1 1/ j denotes the n-th harmonic number.

(iii) Let bn = O
�

n logα n
�

with α ∈ {0, 1, . . .}. Then, an = O
�

n logα+1 n
�

.

(iv) Let bn = o
�

n logα n
�

with α ∈ {0,1, . . .}. Then, an = o
�

n logα+1 n
�

.

Using our approach then gives the following result.

Theorem 6. As n→∞, we have

Xn− log n/(d(Hm− 1))
Æ

(H(2)m − 1+ (d − 1)(Hm− 1)2) log n/(d2(Hm− 1)3)

d−→N (0,1).

For d = 1, this again gives the central limit theorem for the depth in m-ary search trees. Moreover,
for m = 2, we obtain the central limit theorem for the depth in d-dimensional quadtrees, a result
first proved by Flajolet and Lafforgue [8].

Number of Collisions in the β(2, b)-Coalescent. This is an example from coalescent theory (see
Iksanov, Marynych and Möhle [14] for background). Let Xn be a sequence of random variables
satisfying

Xn
d
= Xn−In

+ 1. (n≥ 2)

with X1 = 0 and (In)n≥1 independent of (Xn)n≥1 with distribution

πn, j = P(In = j) =
Γ(n− j+ b− 1)Γ(n+ 1)

( j+ 1)Γ(n− j)Γ(n+ b)H(n, b)
(1≤ j ≤ n− 1),

where b > 0 and

H(n, b) =
b

b+ n− 1
+Ψ(b+ n− 1)−Ψ(b)− 1.

The authors of [14] asked for a proof of their main result (a central limit theorem for Xn suitable
centralized and normalized) directly from the above recurrence. Indeed, our approach is able to
solve this problem once a suitable transfer theorem for the underlying recurrence is proved. There-
fore, note that the underlying recurrence (without a scaling factor) is given by

an =
n−1
∑

j=1

πn, jan− j + bn, (n≥ 2), (15)
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where a1 = 0. Unfortunately, due to the more complicated nature of πn, j this recurrence is more
involved. In particular, we have not been able to prove an analogous result to part (i) of the transfer
results above. However, we strongly conjecture that the following claim holds true.

Conjecture 1. Consider (15). Let bn = O (1/nε) with ε > 0 suitable small. Then,

an = c+O (1/nε) ,

where c is a suitable constant.

As before, apart from this property, we need a couple of other transfer properties. However, once
this conjecture is established, the other properties can be deduced from it.

Proposition 10. Assume that the above conjecture holds.

(i) Let bn = logα n with α ∈ {−1,0, 1, . . .}. Then,

an =
logα+2 n

(α+ 2)m1
+ nPolα+1(log n) +O (1/nε) ,

where ε > 0 is suitable small and m1 = ζ(2, b) with ζ(z, b) the Hurwitz zeta function.

(ii) Let bn = O
�

logα n
�

with α ∈ {−1,0, 1, . . .}. Then, an = O
�

logα+2 n
�

.

(iii) Let bn = o
�

logα n
�

with α ∈ {−1, 0,1, . . .}. Then, an = o
�

logα+2 n
�

.

Proof. All these properties follow from the conjecture by using similar ideas as in [14].

Finally, by applying our approach, we obtain the following result.

Theorem 7 (Iksanov, Marynych and Möhle). As n→∞, we have

Xn− log2 n/(2m1)
p

m2 log3 n/(3m3
1)

d−→N (0,1),

where m2 = 2ζ(3, b).
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