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Abstract

In this paper we prove the stochastic homeomorphism flow property and the strong Feller prop-
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1 Introduction and Main Result

Consider the following stochastic differential equation (SDE) in Rd :

dX t = bt(X t)dt +σt(X t)dWt , (1.1)

where b : R+ ×Rd → Rd and σ : R+ ×Rd → Rd ×Rd are two Borel measurable functions, and
{Wt}t¾0 is a d-dimensional standard Brownian motion defined on some complete filtered probability
space (Ω,F , P; (Ft)t¾0). When σ is Lipschitz continuous in x uniformly with respect to t and b
is bounded measurable, Veretennikov [14] first proved the existence of a unique strong solution
for SDE (1.1). Recently, Krylov and Röckner [10] proved the existence and uniqueness of strong
solutions for SDE (1.1) with σ ≡ Id×d and

∫ T

0

�
∫

Rd

|bt(x)|pdx

�

q
p

dt <+∞, ∀T > 0, (1.2)

provided that

d

p
+

2

q
< 1. (1.3)

More recently, following [10], Fedrizzi and Flandoli [4] proved the α-Hölder continuity of x 7→
X t(x) for any α ∈ (0, 1) basing on Girsanov’s theorem and Khasminskii’s estimate. In the case of
non-constant and non-degenerate diffusion coefficient, the present author [15] proved the pathwise
uniqueness for SDE (1.1) under stronger integrability assumptions on b and σ (see also [6] for
Lipschitz σ and unbounded b). Moreover, there are many works recently devoted to the study
of stochastic homeomorphism (or diffeomorphism) flow property of SDE (1.1) under various non-
Lipschitz assumptions on coefficients (see [3, 16, 5] and references therein).

We first introduce the class of local strong solutions for SDE (1.1). Let τ be any (Ft)-stopping time
and ξ any F0-measurable Rd -valued random variable. Let S τ

b,σ(ξ) be the class of all Rd -valued
(Ft)-adapted continuous stochastic process X t on [0,τ) satisfying

P

(

ω :

∫ T

0

|bs(Xs(ω))|ds+

∫ T

0

|σs(Xs(ω))|2ds <+∞,∀T ∈ [0,τ(ω))

)

= 1,

and such that

X t = ξ+

∫ t

0

bs(Xs)ds+

∫ t

0

σs(Xs)dWs, ∀t ∈ [0,τ), a.s.

We now state our main result as follows:

Theorem 1.1. In addition to (1.2) with p, q ∈ (1,∞) satisfying (1.3), we also assume that

(Hσ1 ) σt(x) is uniformly continuous in x ∈ Rd locally uniformly with respect to t ∈ R+, and there
exist positive constants K and δ such that for all (t, x) ∈R+×Rd ,

δ|λ|2 ¶
∑

ik

|σik
t (x)λ

i|2 ¶ K |λ|2, ∀λ ∈Rd ;
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(Hσ2 ) |∇σt | ∈ Lq
loc(R+; Lp(Rd)) with the same p, q as required on b, where ∇ denotes the generalized

gradient with respect to x.

Then for any (Ft)-stopping time τ (possibly being infinity) and x ∈ Rd , there exists a unique strong
solution X t(x) ∈ S τ

b,σ(x) to SDE (1.1), which means that for any X t(x), Yt(x) ∈ S τ
b,σ(x),

P{ω : X t(ω, x) = Yt(ω, x),∀t ∈ [0,τ(ω))}= 1.

Moreover, for almost all ω and all t ¾ 0,

x 7→ X t(ω, x) is a homeomorphism on Rd ,

and for any t > 0 and bounded measurable function φ, x , y ∈Rd ,

|Eφ(X t(x))−Eφ(X t(y))|¶ Ct‖φ‖∞|x − y|,

where Ct > 0 satisfies limt→0 Ct =+∞.

Remark 1.2. The uniqueness proven in this theorem means local uniqueness. We want to emphasize
that global uniqueness can not imply local uniqueness since local solution can not in general be extended
to a global solution.

By localization technique (cf. [15]), as a corollary of Theorem 1.1, we have the following existence
and uniqueness of local strong solutions.

Theorem 1.3. Assume that for any n ∈N and some pn, qn ∈ (1,∞) satisfying (1.3),

(i) |bt |, |∇σt | ∈ Lqn
loc(R+; Lpn(Bn)), where Bn := {x ∈Rd : |x |¶ n};

(ii) σik
t (x) is uniformly continuous in x ∈ Bn uniformly with respect to t ∈ [0, n], and there exist

positive constants δn such that for all (t, x) ∈ [0, n]× Bn,
∑

ik

|σik
t (x)λ

i|2 ¾ δn|λ|2, ∀λ ∈Rd .

Then for any x ∈ Rd , there exist an (Ft)-stopping time ζ(x) (called explosion time) and a unique
strong solution X t(x) ∈ S

ζ(x)
b,σ (x) to SDE (1.1) such that on {ω : ζ(ω, x)<+∞},

lim
t↑ζ(x)

X t(x) = +∞, a.s. (1.4)

Proof. For each n ∈ N, let χn(t, x) ∈ [0,1] be a nonnegative smooth function in R+ ×Rd with
χn(t, x) = 1 for all (t, x) ∈ [0, n]× Bn and χn(t, x) = 0 for all (t, x) /∈ [0, n+ 1]× Bn+1. Let

bn
t (x) := χn(t, x)bt(x)

and

σn
t (x) := χn+1(t, x)σt(x) + (1−χn(t, x))

 

1+ sup
(t,x)∈[0,n+2]×Bn+2

|σt(x)|

!

Id×d .
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By Theorem 1.1, for each x ∈ Rd , there exists a unique strong solution X n
t (x) ∈ S

∞
bn,σn(x) to SDE

(1.1) with coefficients bn and σn. For n¾ k, define

τn,k(x ,ω) := inf{t ¾ 0 : |X n
t (ω, x)|¾ k} ∧ n.

It is easy to see that

X n
t (x), X k

t (x) ∈ S
τn,k(x)

bk ,σk (x).

By the local uniqueness proven in Theorem 1.1, we have

P{ω : X n
t (ω, x) = X k

t (ω, x),∀t ∈ [0,τn,k(x ,ω))}= 1,

which implies that for n¾ k,

τk,k(x)¶ τn,k(x)¶ τn,n(x), a.s.

Hence, if we let ζk(x) := τk,k(x), then ζk(x) is an increasing sequence of (Ft)-stopping times and
for n¾ k,

P{ω : X n
t (x ,ω) = X k

t (x ,ω), ∀t ∈ [0,ζk(x ,ω))}= 1.

Now, for each k ∈N, we can define X t(x ,ω) = X k
t (x ,ω) for t < ζk(x ,ω) and ζ(x) = limk→∞ ζk(x).

It is clear that X t(x) ∈ S
ζ(x)

b,σ (x) and (1.4) holds.

The aim of this paper is now to prove Theorem 1.1. We organize it as follows: In Section 2,
we prove two new estimates of Krylov’s type, which is the key point for our proof and has some
independent interest. In Section 3, we prove Theorem 1.1 in the case of b = 0. For the stochastic
homeomorphism flow, we adopt Kunita’s simple argument (cf. [11]). For the strong Feller property,
we use Bismut-Elworthy-Li’s formula (cf. [2]). In Section 4, we use Zvonkin’s transformation to
fully prove Theorem 1.1. In Appendix, we recall some well known facts used in the present paper.

2 Two estimates of Krylov’s type

We first introduce some spaces and notations. For p, q ∈ [1,∞) and 0 ¶ S < T <∞, we denote by
L

q
p(S, T ) the space of all real Borel measurable functions on [S, T]×Rd with the norm

‖ f ‖Lq
p(S,T ) :=







∫ T

S

�
∫

Rd

f (t, x)pdx

�

q
p







1
q

<+∞.

For m ∈N and p ¾ 1, let Hm
p be the usual Sobolev space over Rd with the norm

‖ f ‖Hm
p

:=
m
∑

k=0

‖∇k f ‖Lp <+∞,

where ∇ denotes the gradient operator, and ‖ · ‖Lp is the usual Lp-norm. We also introduce for
0¶ S < T <∞,

H2,q
p (S, T ) = Lq(S, T ; H2

p),
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and the space H 2,q
p (S, T ) consisting of function u = u(t) defined on [S, T] with values in the space

of distributions on Rd such that u ∈H2,q
p (S, T ) and ∂tu ∈ L

q
p(S, T ). For simplicity, we write

Lq
p(T ) = L

q
p(0, T ), H2,q

p (T ) =H
2,q
p (0, T ), H 2,q

p (T ) =H
2,q
p (0, T )

and

Ltu(x) := 1
2
σik

t (x)σ
jk
t (x)∂i∂ ju(x) + bi

t(x)∂iu(x). (2.1)

Here and below, we use the convention that the repeated indices in a product will be summed
automatically. Moreover, the letter C will denote an unimportant constant, whose dependence on
the functions or parameters can be traced from the context.

We first prove the following estimate of Krylov’s type (cf. [8, p.54, Theorem 4]).

Theorem 2.1. Suppose that σ satisfies (Hσ1 ) and b is bounded measurable. Fix an (Ft)-stopping
time τ and an F0-measurable Rd -valued random variable ξ and let X t ∈ S τ

b,σ(ξ). Given T0 > 0 and
p, q ∈ (1,∞) with

d

p
+

2

q
< 2, (2.2)

there exists a positive constant C = C(K ,δ, d, p, q, T0,‖b‖∞) such that for all f ∈ Lq
p(T0) and 0¶ S <

T ¶ T0,

E







∫ T∧τ

S∧τ
f (s, Xs)ds

�

�

�

�

�

FS






¶ C‖ f ‖Lq

p(S,T ). (2.3)

Proof. Let r = d + 1. Since Lr
r(T0)∩L

q
p(T0) is dense in Lq

p(T0), it suffices to prove (2.3) for

f ∈ Lr
r(T0)∩Lq

p(T0).

Fix T ∈ [0, T0]. By Theorem 5.2 in appendix, there exists a unique solution u ∈H 2,r
r (T )∩H

2,q
p (T )

for the following backward PDE on [0, T]:

∂tu(t, x) + Ltu(t, x) = f (t, x), u(T, x) = 0.

Moreover, for some constant C = C(K ,δ, d, p, q, T0,‖b‖∞),

‖∂tu‖Lr
r (S,T )+ ‖u‖H2,r

r (S,T ) ¶ C‖ f ‖Lr
r (S,T ), ∀S ∈ [0, T] (2.4)

and
‖∂tu‖Lq

p(S,T )+ ‖u‖H2,q
p (S,T ) ¶ C‖ f ‖Lq

p(S,T ), ∀S ∈ [0, T].

In particular, by (2.2) and [10, Lemma 10.2],

sup
(t,x)∈[S,T]×Rd

|u(t, x)|¶ C‖ f ‖Lq
p(S,T ). (2.5)
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Let ρ be a nonnegative smooth function in Rd+1 with support in {x ∈ Rd+1 : |x | ¶ 1} and
∫

Rd+1 ρ(t, x)dtdx = 1. Set ρn(t, x) := nd+1ρ(nt, nx) and extend u(s) to R by setting u(s, ·) = 0 for
s ¾ T and u(s, ·) = u(0, ·) for s ¶ 0. Define

un(t, x) :=

∫

Rd+1

u(s, y)ρn(t − s, x − y)dsdy (2.6)

and
fn(t, x) := ∂tun(t, x) + Ltun(t, x).

Then by (2.4) and the property of convolutions, we have

‖ fn− f ‖Lr
r (T )
¶ ‖∂t(un− u)‖Lr

r (T )
+ ‖bi∂i(un− u)‖Lr

r (T )
+ K‖∂i∂ j(un− u)‖Lr

r (T )

¶ ‖∂t(un− u)‖Lr
r (T )
+ ‖b‖∞‖∇(un− u)‖Lr

r (T )
+ K‖un− u‖

H
2,r
r (T )

¶ ‖∂t(un− u)‖Lr
r (T )
+ C‖un− u‖

H
2,r
r (T )

→ 0 as n→∞.

So, by the classical Krylov’s estimate (cf. [9, Lemma 5.1] or [6, Lemma 3.1]), we have

lim
n→∞

E

 

∫ T∧τ

0

| fn(s, Xs)− f (s, Xs)|ds

!

¶ lim
n→∞

‖ fn− f ‖Lr
r (T )
= 0. (2.7)

Now using Itô’s formula for un(t, x), we have

un(t, X t) = un(0, X0) +

∫ t

0

fn(s, Xs)ds+

∫ t

0

∂iun(s, Xs)σ
ik
s (Xs)dW k

s , ∀t < τ.

In view of
sup
s,x
|∂iun(s, x)|¶ Cn,

by Doob’s optional theorem, we have

E







∫ T∧τ

S∧τ
∂iun(s, Xs)σ

ik
s (Xs)dW k

s

�

�

�

�

�

FS






= 0.

Hence,

E







∫ T∧τ

S∧τ
fn(s, Xs)ds

�

�

�

�

�

FS






= E

�

(un(T ∧τ, XT∧τ)− un(S ∧τ, XS∧τ))
�

�

�

FS

�

(2.8)

¶ 2 sup
(t,x)∈[S,T]×Rd

|un(t, x)|¶ 2 sup
(t,x)∈[S,T]×Rd

|u(t, x)|
(2.5)
¶ C‖ f ‖Lq

p(S,T ).

The proof is thus completed by (2.7) and letting n→∞.

Next, we want to relax the boundedness assumption on b. The price to pay is that a stronger
integrability assumption is required.
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Theorem 2.2. Suppose that σ satisfies (Hσ1 ) and b ∈ Lq(R+, Lp(Rd)) provided with

d

p
+

2

q
< 1. (2.9)

Fix an (Ft)-stopping time τ and anF0-measurableRd -valued random variable ξ and let X t ∈ S τ
b,σ(ξ).

Given T0 > 0, there exists a positive constant C = C(K ,δ, d, p, q, T0,‖b‖Lq
p(T0)) such that for all f ∈

L
q
p(T0) and 0¶ S < T ¶ T0,

E







∫ T∧τ

S∧τ
f (s, Xs)ds

�

�

�

�

�

FS






¶ C‖ f ‖Lq

p(S,T ). (2.10)

Proof. Following the proof of Theorem 2.1, we let r = d + 1 and assume that

f ∈ Lr
r(T0)∩Lq

p(T0).

Below, for N > 0, we write

LN
t u(x) := 1

2
σik

t (x)σ
jk
t (x)∂i∂ ju(x) + 1{|bt (x)|¶N}b

i
t(x)∂iu(x).

Fix T ∈ [0, T0]. By Theorem 5.2, there exists a unique solution u ∈ H 2,r
r (T ) ∩ H

2,q
p (T ) for the

following backward PDE on [0, T]:

∂tu(t, x) + LN
t u(t, x) = f (t, x), u(T, x) = 0.

Moreover, for some constant C1 = C1(K ,δ, d, p, q, T0, N),

‖∂tu‖Lr
r (S,T )+ ‖u‖H2,r

r (S,T ) ¶ C1‖ f ‖Lr
r (S,T ), ∀S ∈ [0, T], (2.11)

and for some constant C2 = C2(K ,δ, d, p, q, T0,‖b‖Lq
p(T )),

‖∂tu‖Lq
p(S,T )+ ‖u‖H2,q

p (S,T ) ¶ C2‖ f ‖Lq
p(S,T ), ∀S ∈ [0, T].

In particular, by (2.9) and [10, Lemma 10.2],

sup
(t,x)∈[S,T]×Rd

|u(t, x)|+ sup
(t,x)∈[S,T]×Rd

|∇u(t, x)|¶ C2‖ f ‖Lq
p(S,T ). (2.12)

For R> 0, define

τR := inf

¨

t ∈ [0,τ) :

∫ t

0

|bs(Xs)|ds ¾ R

«

.

Let un be defined by (2.6). As in the proof of Theorem 2.1 (see (2.8)), by (2.12), we have

E







∫ T∧τR

S∧τR

(∂sun+ Lsun)(s, Xs)ds

�

�

�

�

�

FS






¶ C2‖ f ‖Lq

p(S,T ). (2.13)
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Now if we set
f N
n (t, x) := ∂tun(t, x) + LN

t un(t, x),

then

E







∫ T∧τR

S∧τR

f N
n (s, Xs)ds

�

�

�

�

�

FS






= E







∫ T∧τR

S∧τR

(∂sun+ Lsun)(s, Xs)ds

�

�

�

�

�

FS







−E







∫ T∧τR

S∧τR

1{|bs(Xs)|>N}b
i
s(Xs)∂iun(s, Xs)ds

�

�

�

�

�

FS






.

Hence, by (2.12) and (2.13),

E







∫ T∧τR

S∧τR

f N
n (s, Xs)ds

�

�

�

�

�

FS






¶ C‖ f ‖Lq

p(S,T )+ CE







∫ T∧τR

S∧τR

1{|bs(Xs)|>N}|bs(Xs)|ds

�

�

�

�

�

FS






, (2.14)

where C = C(K ,δ, d, p, q, T0,‖b‖Lq
p(T0)) is independent of n and R, N . Observe that for fixed N > 0,

by (2.11),
lim

n→∞
‖ f N

n − f ‖Lr
r (T )
= 0,

and for fixed R> 0, by the dominated convergence theorem,

lim
N→∞

E

 

∫ T∧τR

S∧τR

1{|bs(Xs)|>N}|bs(Xs)|ds

!

= 0.

Taking limits for both sides of (2.14) in order: n→∞, N →∞ and R→∞, we obtain (2.10).

3 SDE with Sobolev diffusion coefficient and zero drift

In this section we consider the following SDE without drift:

X t(x) = x +

∫ t

0

σs(Xs(x))dWs. (3.1)

We first prove that:

Theorem 3.1. Under (Hσ1 ) and (Hσ2 ), the local pathwise uniqueness holds for SDE (3.1). More pre-
cisely, for any (Ft)-stopping time τ (possibly being infinity) and x ∈Rd , let X t , Yt ∈ S τ

0,σ(x), then

P{ω : X t(ω) = Yt(ω),∀t ∈ [0,τ(ω))}= 1.

In particular, there exists a unique strong solution for SDE (3.1).

Proof. Set Zt := X t − Yt . By Itô’s formula, we have

|Zt∧τ|2 = 2

∫ t∧τ

0

〈Zs, [σs(Xs)−σs(Ys)]dWs〉+
∫ t∧τ

0

‖σs(Xs)−σs(Ys)‖2ds.
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If we set

Mt := 2

∫ t

0

〈Zs, [σs(Xs)−σs(Ys)]dWs〉
|Zs|2

and

At :=

∫ t

0

‖σs(Xs)−σs(Ys)‖2

|Zs|2
ds,

then

|Zt∧τ|2 =
∫ t∧τ

0

|Zs|2d(Ms + As).

Here and below, we use the convention that 0
0
≡ 0. Thus, if we can show that t 7→ Mt∧τ + At∧τ is

a continuous semimartingale, then the uniqueness follows. For this, it suffices to prove that for any
t ¾ 0,

E|Mt∧τ|2 <+∞, EAt∧τ <+∞.

Set
σn

s (x) := σs ∗ρn(x),

where ρn is a mollifier in Rd as used in Theorem 2.1. By Fatou’s lemma, we have

EAt∧τ ¶ lim
ε↓0
E

∫ t∧τ

0

‖σs(Xs)−σs(Ys)‖2

|Zs|2
· 1|Zs|>εds

¶ 3

�

lim
ε↓0

sup
n∈N

E

∫ t∧τ

0

‖σn
s (Xs)−σn

s (Ys)‖2

|Zs|2
· 1|Zs|>εds

+ lim
ε↓0

lim
n→∞

E

∫ t∧τ

0

‖σn
s (Xs)−σs(Xs)‖2

|Zs|2
· 1|Zs|>εds

+ lim
ε↓0

lim
n→∞

E

∫ t∧τ

0

‖σn
s (Ys)−σs(Ys)‖2

|Zs|2
· 1|Zs|>εds

�

=: 3(I1(t) + I2(t) + I3(t)).

By estimate (2.3), we have

I2(t)¶ lim
ε↓0

1

ε2 lim
n→∞

E

∫ t∧τ

0

‖σn
s (Xs)−σs(Xs)‖2ds

¶ lim
ε↓0

1

ε2 lim
n→∞

‖|σn−σ|2‖
L

q/2
p/2(t)

= lim
ε↓0

1

ε2 lim
n→∞

‖σn−σ‖2
L

q
p(t)
= 0,

and also,
I3(t) = 0.

For I1(t), we have

I1(t)
(5.2)
¶ C sup

n∈N
E

∫ t∧τ

0

h

M|∇σn
s |(Xs) +M|∇σn

s |(Ys)
i2

ds

¶ C sup
n∈N
‖(M|∇σn

· |)
2‖
L

q/2
p/2(t)

= C sup
n∈N
‖M|∇σn

· |‖
2
L

q
p(t)
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(5.3)
¶ C sup

n∈N
‖∇σn

· ‖
2
L

q
p(t)
¶ C‖∇σ·‖2Lq

p(t)
.

Combining the above calculations, we obtain that for all t ¾ 0,

EAt∧τ ¶ C‖∇σ·‖2Lq
p(t)

. (3.2)

Similarly, we can prove that

E|Mt∧τ|2 = 4E

∫ t∧τ

0

|[σs(Xs)−σs(Ys)]∗Zs|2

|Zs|4
ds ¶ C‖∇σ·‖2Lq

p(t)
,

where the star denotes the transpose of a matrix. The existence of a unique strong solution now
follows from the classical Yamada-Watanabe theorem (cf. [7]).

Below, we prove better regularities of solutions with respect to the initial values.

Lemma 3.2. Under (Hσ1 ) and (Hσ2 ), let X t(x) be the unique strong solution of SDE (3.1). For any
T > 0, γ ∈R and all x 6= y ∈Rd , we have

sup
t∈[0,T]

E
�

|X t(x)− X t(y)|2γ
�

¶ C |x − y|2γ,

where C = C(K ,δ, p, q, d,γ, T ).

Proof. For x 6= y and ε ∈ (0, |x − y|), define

τε := inf{t ¾ 0 : |X t(x)− X t(y)|¶ ε}.

Set Zεt := X t∧τε(x)− X t∧τε(y). For any γ ∈R, by Itô’s formula, we have

|Zεt |
2γ = |x − y|2γ+ 2γ

∫ t∧τε

0

|Zεs |
2(γ−1)〈Zεs , [σs(Xs(x))−σs(Xs(y))]dWs〉

+ 2γ

∫ t∧τε

0

|Zεs |
2(γ−1)‖σs(Xs(x))−σs(Xs(y))‖2ds

+ 2γ(γ− 1)

∫ t∧τε

0

|Zεs |
2(γ−2)|[σs(Xs(x))−σs(Xs(y))]

∗Zεs |
2ds

=: |x − y|2γ+
∫ t∧τε

0

|Zεs |
2γ
�

α(s)dWs + β(s)ds
�

,

where

α(s) :=
2γ[σs(Xs(x))−σs(Ys(y))]∗Zεs

|Zεs |
2

and

β(s) :=
2γ‖σs(Xs(x))−σs(Ys(y))‖2

|Zεs |
2 +

2γ(γ− 1)|[σs(Xs(x))−σs(Ys(y))]∗Zεs |
2

|Zεs |
4 .
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By the Doléans-Dade’s exponential (cf. [13]), we have

|Zεt |
2γ = |x − y|2γ exp

¨
∫ t∧τε

0

α(s)dWt −
1

2

∫ t∧τε

0

|α(s)|2ds+

∫ t∧τε

0

β(s)ds

«

.

Fix T > 0 below. Using (2.3) and as in the proof of (3.2), we have for any 0¶ s < t ¶ T ,

E







∫ t

s

|β(r ∧τε)|dr

�

�

�

�

�

Fs






¶ C‖∇σ‖2

L
q
p(s,t)

,

where C = C(K ,δ, p, q, d,γ, T ). Thus, by Lemma 5.3, we get for any λ > 0,

Eexp

 

λ

∫ T∧τε

0

|β(s)|ds

!

¶ Eexp

 

λ

∫ T

0

|β(s ∧τε)|ds

!

<+∞.

Similarly, we have

Eexp

 

λ

∫ T∧τε

0

|α(s)|2ds

!

<+∞, ∀λ > 0.

In particular, by Novikov’s criterion,

t 7→ exp

¨

2

∫ t∧τε

0

α(s)dWs − 2

∫ t∧τε

0

|α(s)|2ds

«

=: Mε
t

is a continuous exponential martingale. Hence, by Hölder’s inequality, we have

E|Zεt |
2γ ¶ |x − y|2γ(EMε

t )
1
2

�

Eexp

¨
∫ t∧τε

0

|α(s)|2ds+ 2

∫ t∧τε

0

β(s)ds

«�

1
2

¶ C |x − y|2γ,

where C is independent of ε and x , y .

Noting that
lim
ε↓0
τε = τ := inf{t ¾ 0 : X t(x) = X t(y)},

by Fatou’s lemma, we obtain

E|X t∧τ(x)− X t∧τ(y)|2γ = lim
ε→0

E|Zεt |
2γ ¶ C |x − y|2γ.

Letting γ=−1 yields that
τ¾ t, a.s.

The proof is thus complete.

Since σ is bounded, the following lemma is standard, and we omit the details.
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Lemma 3.3. Under (Hσ1 ), let X t(x) solve SDE (3.1). For any T > 0, γ ∈R and all x ∈Rd , we have

E

�

sup
t∈[0,T]

(1+ |X t(x)|2)γ
�

¶ C1(1+ |x |2)γ,

where C1 = C1(K ,γ, T ), and for any γ¾ 1 and t, s ¾ 0,

sup
x∈Rd

E|X t(x)− Xs(x)|2γ ¶ C2|t − s|γ,

where C2 = C2(K ,γ).

Basing on Lemmas 3.2 and 3.3, it is by now standard to prove the following theorem (cf. [11,
Theorem 4.5.1]). For the reader’s convenience, we sketch the proof here.

Theorem 3.4. Under (Hσ1 ) and (Hσ2 ), let X t(x) ∈ S ∞0,σ(x) be the unique strong solution of SDE (3.1),
then for almost all ω and all t ∈R+, x 7→ X t(ω, x) is a homeomorphism on Rd .

Proof. For x 6= y ∈Rd , define

Rt(x , y) := |X t(x)− X t(y)|−1.

For any x , y, x ′, y ′ ∈Rd with x 6= y , x ′ 6= y ′ and s 6= t, it is easy to see that

|Rt(x , y)−Rs(x
′, y ′)|¶Rt(x , y) · Rs(x

′, y ′) · [|X t(x)− Xs(x
′)|+ |X t(y)− Xs(y

′)|].

By Lemmas 3.2 and 3.3, for any γ¾ 1 and s, t ∈ [0, T], we have

E|Rt(x , y)−Rs(x
′, y ′)|γ ¶ C |x − y|−γ|x ′− y ′|−γ(|t − s|γ/2+ |x − x ′|γ+ |y − y ′|γ).

Choosing γ > 4(d + 1), by Kolmogorov’s continuity criterion, there exists a continuous version to
the mapping (t, x , y) 7→ Rt(x , y) on {(t, x , y) ∈ R+ ×Rd ×Rd : x 6= y}. In particular, this proves
that for almost all ω, the mapping x 7→ X t(ω, x) is one-to-one for all t ¾ 0.

As for the onto property, let us define

Jt(x) =

¨

(1+ |X t(x |x |−2)|)−1, x 6= 0,
0, x = 0.

As above, using Lemmas 3.2 and 3.3, one can show that (t, x) 7→ Jt(x) admits a continuous version.
Thus, (t, x) 7→ X t(ω, x) can be extended to a continuous map from R+ × R̂d to R̂d , where R̂d =
Rd ∪ {∞} is the one-point compactification of Rd . Hence, X t(ω, ·) : R̂d → R̂d is homotopic to the
identity mapping X0(·) so that it is an onto map by the well known fact in homotopic theory. In
particular, for almost all ω, x 7→ X t(ω, x) is a homeomorphism on R̂d for all t ¾ 0. Clearly, the
restriction of X t(ω, ·) to Rd is still a homeomorphism since X t(ω,∞) =∞.

Now we turn to the proof of the strong Feller property.

Theorem 3.5. Under (Hσ1 ) and (Hσ2 ), let X t(x) ∈ S ∞0,σ(x) be the unique strong solution of SDE (3.1),
then for any bounded measurable function φ, T > 0 and x , y ∈Rd ,

|E(φ(X t(x)))−E(φ(X t(y)))|¶
CTp

t
‖φ‖∞|x − y|, ∀t ∈ (0, T]. (3.3)
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Proof. Define σn
t (x) := σt ∗ρn(x), where ρn is a mollifier in Rd . By (Hσ1 ), it is easy to see that for

all (t, x) ∈R+×Rd ,

δ|λ|2 ¶
∑

ik

|[σn
t (x)]

ikλi|2 ¶ K |λ|2, ∀λ ∈Rd . (3.4)

Let X n
t (x) ∈ S

∞
0,σn(x) be the unique strong solution of SDE (3.1) corresponding to σn. By the

monotone class theorem, it suffices to prove (3.3) for any bounded Lipschitz continuous function φ.
First of all, by Bismut-Elworthy-Li’s formula (cf. [2]), for any h ∈Rd , we have

∇hEφ(X
n
t (x)) =

1

t
E

�

φ(X n
t (x))

∫ t

0

[σn
s (X

n
s (x))]

−1∇hX n
s (x)dWs

�

, (3.5)

where for a smooth function f , we denote ∇h f := 〈∇ f , h〉. Noting that

∇hX n
t (x) = h+

∫ t

0

∇σn
s (X

n
s (x)) · ∇hX n

s (x)dWs,

by Itô’s formula, we have

|∇hX n
t (x)|

2 = |h|2+ 2

∫ t

0

〈∇hX n
s (x),∇σ

n
s (X

n
s (x)) · ∇hX n

s (x)dWs〉

+

∫ t

0

‖∇σn
s (X

n
s (x)) · ∇hX n

s (x)‖
2ds

=: |h|2+
∫ t

0

|∇hX n
s (x)|

2
�

αn
h(s)dWs + β

n
h (s)ds

�

,

where

αn
h(s) :=

(∇hX n
s (x))

∗ · ∇σn
s (X

n
s (x)) · ∇hX n

s (x)

|∇hX n
s (x)|

2

and

βn
h (s) :=

‖∇σn
s (X

n
s (x)) · ∇hX n

s (x)‖
2

|∇hX n
s (x)|

2 .

By the Doléans-Dade’s exponential again, we have

|∇hX n
t (x)|

2 = |h|2 exp

¨
∫ t

0

αn
h(s)dWs −

1

2

∫ t

0

|αn
h(s)|

2ds+

∫ t

0

βn
h (s)ds

«

.

Fix T > 0. By (2.3), we have for any 0¶ s < t ¶ T ,

E







∫ t

s

|βn
h (r)|dr

�

�

�

�

�

Fs






¶ C‖∇σn‖2

L
q
p(s,t)
¶ C‖∇σ‖2

L
q
p(s,t)

,

where C = C(K ,δ, p, q, d, T ) is independent of n, x and h. Thus, by Lemma 5.3, we get for any
λ > 0,

sup
n

sup
h∈Rd

Eexp

 

λ

∫ T

0

|βn
h (s)|ds

!

<+∞.
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Similarly,

sup
n

sup
h∈Rd

Eexp

 

λ

∫ T

0

|αn
h(s)|

2ds

!

<+∞.

Hence,
sup

n
sup

t∈[0,T]
sup
x∈Rd

E|∇hX n
t (x)|

2 ¶ C |h|2, ∀h ∈Rd ,

and by (3.4) and (3.5),

|∇hEφ(X
n
t (x))|¶

‖φ‖∞
t

�

E

∫ t

0

|[σn
s (X

n
s (x))]

−1∇hX n
s (x)|

2ds

�

1
2

¶
CT‖φ‖∞

t

�

E

∫ t

0

|∇hX n
s (x)|

2ds

�

1
2

¶
CT‖φ‖∞|h|p

t
,

which implies that for all t ∈ (0, T] and x , y ∈Rd ,

|E(φ(X n
t (x)))−E(φ(X

n
t (y)))|¶

CT‖φ‖∞p
t
|x − y|, (3.6)

where CT is independent of n.

Now for completing the proof, it only needs to take limits for (3.6) by proving that for any x ∈Rd ,

lim
n→∞

E|X n
t (x)− X t(x)|= 0. (3.7)

Set
Zn

t (x) := X n
t (x)− X t(x)

and

ηn(s) :=
�

M|∇σn
s |(X

n
s (x)) +M|∇σ

n
s |(Xs(x))

�2
.

For any λ > 0, by Itô’s formula, we have

E|Zn
t (x)|

2e−λ
∫ t

0
ηn(s)ds = E

∫ t

0

‖σn
s (X

n
s (x))−σs(Xs(x))‖2e−λ

∫ s

0
ηn(r)drds

−λE
∫ t

0

ηn(s)|Zn
s (x)|

2e−λ
∫ s

0
ηn(r)drds

¶ E
∫ t

0

‖σn
s (X

n
s (x))−σ

n
s (Xs(x))‖2e−λ

∫ s

0
ηn(r)drds

+E

∫ t

0

‖σn
s (Xs(x))−σs(Xs(x))‖2e−λ

∫ s

0
ηn(r)drds

−λE
∫ t

0

ηn(s)|Zn
s (x)|

2e−λ
∫ s

0
ηn(r)drds

(5.2)
¶ (Cd −λ)E

∫ t

0

ηn(s)|Zn
s (x)|

2e−λ
∫ s

0
ηn(r)drds
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+E

∫ t

0

‖σn
s (Xs(x))−σs(Xs(x))‖2ds.

Thus, by (2.3), we obtain that for any λ¾ Cd ,

lim
n→∞

E|Zn
t (x)|

2e−λ
∫ t

0
ηn(s)ds ¶ lim

n→∞
‖σn−σ‖2

L
q
p(T )
= 0.

Moreover, as above, by (2.3), (5.3) and Lemma 5.3, we also have

sup
n
Eexp

 

λ

∫ T

0

|ηn(s)|ds

!

<+∞, ∀λ, T > 0.

Hence, by Hölder’s inequality,

lim
n→∞

E|Zn
t (x)|¶ lim

n→∞

�

�

Eeλ
∫ t

0
ηn(s)ds

�
1
2
�

E|Zn
t (x)|

2e−λ
∫ t

0
ηn(s)ds

�
1
2

�

= 0,

which then gives (3.7). The proof is complete.

4 Zvonkin’s transformation and Proof of Theorem 1.1

In this section we prove Theorem 1.1 by using Zvonkin’s transformation to kill the drift (cf. [17]).
Below, we assume that σ satisfies (Hσ1 ) and b ∈ Lq(R+, Lp(Rd)) provided with

d

p
+

2

q
< 1. (4.1)

Fix T0 > 0. For any T ∈ [0, T0] and `= 1, · · · , d, let u`(t, x) solve the following PDE:

∂tu
`(t, x) + Ltu

`(t, x) + b`(t, x) = 0, u`(T, x) = 0,

where Lt is given by (2.1). Set

u(t, x) := (u1(t, x), · · · , ud(t, x)) ∈Rd .

By Theorem 5.1, we have

C0 := sup
T∈[0,T0]

�

‖∂tu‖Lq
p(T )+ ‖u‖H2,q

p (T )

�

<+∞. (4.2)

Thanks to (4.1) and (4.2), by [10, Lemma 10.2],

(t, x) 7→ ∇u(t, x) is Hölder continuous,

and for fixed δ ∈ (0, 1
2
− d

2p
− 1

q
), there exists constant C1 > 0 depending only on p, q,δ such that

for any S ∈ [0, T],

sup
(t,x)∈[S,T]×Rd

|∇u(t, x)|¶ C1(T − S)δ
�

‖∂tu‖Lq
p(S,T )+ ‖u‖H2,q

p (S,T )

�

¶ C0C1(T − S)δ, (4.3)
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where C0 is defined by (4.2).

Let un be the mollifying approximation of u defined as in (2.6). Define

Φt(x) := x + u(t, x), Φn
t (x) := x + un(t, x).

It is easy to see that Φ solves the following PDE:

∂tΦt(x) + LtΦt(x) = 0, ΦT (x) = x . (4.4)

Moreover, letting T, S ∈ [0, T0] satisfy that

0¶ T − S ¶
1

2(C0C1)1/δ
, (4.5)

then by (4.3), we have for all t ∈ [S, T],

1
2
|x − y|¶ |Φn

t (x)−Φ
n
t (y)|¶

3
2
|x − y|

and
1
2
|x − y|¶ |Φt(x)−Φt(y)|¶

3
2
|x − y|,

which implies that Φt and Φn
t are diffeomorphisms on Rd . So, if we set

Ψt(x) := Φ−1
t (x), Ψ

n
t (x) := Φn,−1

t (x),

then

|∇Φt(x)| ∨ |∇Φn
t (x)|¶

3

2
, |∇Ψt(x)| ∨ |∇Ψn

t (x)|¶ 2. (4.6)

We first prove two lemmas.

Lemma 4.1. For each (t, x) ∈ [S, T]×Rd , we have

lim
n→∞

Φn
t (x) = Φt(x), lim

n→∞
Ψn

t (x) = Ψt(x) (4.7)

and

lim
n→∞

|∇Ψn
t (y)−∇Ψt(y)|= 0. (4.8)

Proof. The first limit is immediate from the property of convolution. The second limit follows from

|Ψn
t (x)−Ψt(x)|¶ 2|x −Φn

t (Ψt(x))|= 2|Φt(Ψt(x))−Φn
t (Ψt(x))|,

and the first limit. As for the third limit, noting that

[∇Ψn
t (y)]

−1 =∇Φn
t ◦Ψ

n
t (y),

by (4.6), we have

|∇Ψn
t (y)−∇Ψt(y)|= |∇Ψn

t (y)| · |∇Φ
n
t ◦Ψ

n
t (y)−∇Φt ◦Ψt(y)| · |∇Ψt(y)|

¶ 4|∇Φn
t ◦Ψ

n
t (y)−∇Φt ◦Ψt(y)|.

The third limit follows from the continuity of x 7→ ∇Φt(x).
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Lemma 4.2. We have

lim
n→∞

‖∂iΨ
n,i′
s · ∂ jΨ

n, j′
s · (∂i′∂ j′Φ

n,l
s ◦Ψ

n
s ) · ∂lΨ

n,k
s − ∂iΨ

i′
s · ∂ jΨ

j′
s · (∂i′∂ j′Φ

l
s ◦Ψs) · ∂lΨ

k
s ‖Lq

p(S,T ) = 0

and
lim

n→∞
‖(∂tΦ

n ◦Ψn) · ∇Ψn− (∂tΦ ◦Ψ) · ∇Ψ‖Lq
p(S,T ) = 0.

Proof. We only prove the first limit, the second limit can be proved similarly. For proving the first
limit, it suffices to prove the following two limits:

lim
n→∞

‖∂iΨ
n,i′
s · ∂ jΨ

n, j′
s · ∂i′∂ j′Φ

l
s ◦Ψs · ∂lΨ

n,k
s − ∂iΨ

i′
s · ∂ jΨ

j′
s · ∂i′∂ j′Φ

l
s ◦Ψs · ∂lΨ

k
s ‖Lq

p(S,T ) = 0,

lim
n→∞

‖∂iΨ
n,i′
s · ∂ jΨ

n, j′
s · ∂i′∂ j′Φ

n,l
s ◦Ψ

n
s · ∂lΨ

n,k
s − ∂iΨ

n,i′
s · ∂ jΨ

n, j′
s · ∂i′∂ j′Φ

l
s ◦Ψs · ∂lΨ

n,k
s ‖Lq

p(S,T ) = 0.

The first limit follows by (4.2), (4.6), (4.8) and the dominated convergence theorem. For the second
limit, by (4.6), we have

‖∂iΨ
n,i′
s · ∂ jΨ

n, j′
s · ∂i′∂ j′Φ

n,l
s ◦Ψ

n
s · ∂lΨ

n,k
s − ∂iΨ

n,i′
s · ∂ jΨ

n, j′
s · ∂i′∂ j′Φ

l
s ◦Ψs · ∂lΨ

n,k
s ‖Lq

p(S,T )

¶ 8‖∇2Φn ◦Ψn−∇2Φ ◦Ψ‖Lq
p(S,T ) = 8‖∇2un ◦Ψn−∇2u ◦Ψ‖Lq

p(S,T ) ¶

¶ 8‖∇2un ◦Ψn−∇2u ◦Ψn‖Lq
p(S,T )+ 8‖∇2u ◦Ψn−∇2u ◦Ψ‖Lq

p(S,T )

¶ C‖∇2un−∇2u‖Lq
p(S,T )+ 8‖∇2u ◦Ψn−∇2u ◦Ψ‖Lq

p(S,T ).

where in the last step, we have used the change of variables and

sup
n

sup
(t,x)∈[S,T]×Rd

det(∇Φn
t (x))¶ C .

It is clear that by (4.2),
lim

n→∞
‖∇2un−∇2u‖Lq

p(S,T ) = 0.

On the other hand, let uε be a family of smooth functions on [0, T]×Rd with compact supports
such that

lim
ε→0
‖∇2uε −∇2u‖Lq

p(S,T ) = 0.

Then as above, we have

lim
ε→0

sup
n
‖∇2uε ◦Ψn−∇2u ◦Ψn‖Lq

p(S,T ) = 0,

and for fixed ε, by (4.7) and the dominated convergence theorem,

lim
n→∞

‖∇2uε ◦Ψn−∇2uε ◦Ψ‖Lq
p(S,T ) = 0.

Hence,
lim

n→∞
‖∇2u ◦Ψn−∇2u ◦Ψ‖Lq

p(S,T ) = 0.

The proof is thus complete.

Now we are in a position to prove the following Zvonkin’s transformation to kill the drift.
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Lemma 4.3. Let τ be any (Ft)-stopping time. Let X t be a Rd -valued (Ft)-adapted and continuous
stochastic process satisfying

P

¨

ω :

∫ t

0

�

|bs(Xs(ω))|+ |σs(Xs(ω))|2
�

ds <+∞,∀t ∈ [0,τ(ω))

«

= 1.

Then X t solves the following SDE on [S ∧τ, T ∧τ),

dX t = bt(X t)dt +σt(X t)dWt ,

if and only if Yt := Φt(X t) solves the following SDE on [S ∧τ, T ∧τ)

dYt = Σt(Yt)dWt ,

where Σik
t (y) := (∂lΦi

t ·σ
lk
t ) ◦Ψt(y).

Proof. We first prove the “only if” part. Let X n
t := Ψn

t (Yt). By Itô’s formula, we have for all t ∈
[S ∧τ, T ∧τ),

X n
t =Ψ

n
S∧τ(YS∧τ) +

∫ t

S∧τ

h

∂sΨ
n
s +

1
2
(ΣsΣ

∗
s )

i j∂i∂ jΨ
n
s

i

(Ys)ds+

∫ t

S∧τ
[∇Ψn

s ·Σs](Ys)dWs. (4.9)

Noticing that
∂sΨ

n
s · (∇Φ

n
s ◦Ψ

n
s ) + ∂sΦ

n
s ◦Ψ

n
s = 0

and
∂iΨ

n,i′
s · ∂ jΨ

n, j′
s · (∂i′∂ j′Φ

n,l
s ◦Ψ

n
s ) + ∂i∂ jΨ

n,k
s · (∂kΦ

n,l
s ◦Ψ

n
s ) = 0,

we have
∂sΨ

n
s =−(∂sΦ

n
s ◦Ψ

n
s ) · ∇Ψ

n
s

and
∂i∂ jΨ

n,k
s =−∂iΨ

n,i′
s · ∂ jΨ

n, j′
s · (∂i′∂ j′Φ

n,l
s ◦Ψ

n
s ) · ∂lΨ

n,k
s .

Let X t =Ψt(Yt). Taking limits for both sides of (4.9), and by Lemmas 4.1, 4.2 and (2.3), (4.4), one
finds that for all t ∈ [S ∧τ, T ∧τ),

X t =ΨS(YS∧τ) +

∫ t

S∧τ
b(Xs)ds+

∫ t

S∧τ
σs(Xs)dWs.

The “if” part is similar by (2.10) and in fact easier. We omit the details.

Basing on the above Zvonkin’s transformation, we can give

Proof of Theorem 1.1. Using the standard time shift technique (cf. [16]), by Lemma 4.3 and The-
orems 3.4, 3.5, it only needs to check that Σik

t (y) := (∂lΦi
t ·σ

lk
t ) ◦Ψt(y) satisfies (HΣ1 ) and (HΣ2 ).

First of all, (HΣ1 ) is clear. For (HΣ2 ), we have

∂lΣ
ik
t (y) = [(∂l ′∂ jΦ

i
t ·σ

jk
t + ∂ jΦ

i
t · ∂l ′σ

jk
t ) ◦Ψt(y)] · ∂lΨ

l ′(y).

By (4.2), (4.6) and (Hσ2 ), it is easy to see that

‖∂lΣ
ik‖Lq

p(T0) <+∞.
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5 Appendix

The following result is a combination of [10, Theorem 10.3 and Remark 10.4].

Theorem 5.1. Let p, q ∈ (1,∞) satisfy (1.3). Assume (Hσ1 ) and b ∈ Lq(R+, Lp(Rd)). For any T > 0
and f ∈ Lq

p(T ), there exists a unique solution u ∈H 2,q
p (T ) for the following PDE:

∂tu(t, x) + Ltu(t, x) + f (t, x) = 0, u(T, x) = 0. (5.1)

Moreover, this solution satisfies that for any S ∈ [0, T],

‖∂tu‖Lq
p(S,T )+ ‖u‖H2,q

p (S,T ) ¶ C‖ f ‖Lq
p(S,T ),

where C = C(T, K ,δ, p, q,‖b‖Lq
p(T )).

The following result can be proved along the same lines as in [10, Theorem 10.3, Remark 10.4]. We
omit the details.

Theorem 5.2. Assume (Hσ1 ) and we consider the following two cases about b:

(1o) Let p, q ∈ (1,∞) be fixed and let b be a bounded measurable function.

(2o) Let p, q ∈ (1,∞) satisfy (1.3) and let b ∈ Lq(R+, Lp(Rd))∩ L∞(R+×Rd).

For any T > 0, r ∈ (1,∞) and f ∈ Lr
r(T ) ∩ L

q
p(T ), there exists a unique solution u ∈ H 2,r

r (T ) ∩
H 2,q

p (T ) for PDE (5.1). Moreover, this solution satisfies that for any S ∈ [0, T],

‖∂tu‖Lr
r (S,T )+ ‖u‖H2,r

r (S,T ) ¶ C1‖ f ‖Lr
r (S,T )

and
‖∂tu‖Lq

p(S,T )+ ‖u‖H2,q
p (S,T ) ¶ C2‖ f ‖Lq

p(S,T ),

where C1 = C1(T, K ,δ, p, q,‖b‖∞) and, in case (1o), C2 = C2(T, K ,δ, p, q,‖b‖∞), and in case (2o),
C2 = C2(T, K ,δ, p, q,‖b‖Lq

p(T )).

The following lemma is taken from [12, p. 1, Lemma 1.1].

Lemma 5.3. Let {β(t)}t∈[0,T] be a nonnegative measurable (Ft)-adapted process. Assume that for all
0¶ s ¶ t ¶ T,

E







∫ t

s

β(r)dr

�

�

�

�

�

Fs






¶ ρ(s, t),

where ρ(s, t) is a nonrandom interval function satisfying the following conditions:

(i) ρ(t1, t2)¶ ρ(t3, t4) if (t1, t2)⊂ (t3, t4);

(ii) limh↓0 sup0¶s<t¶T,|t−s|¶hρ(s, t) = κ, κ¾ 0.
Then for any arbitrary real λ < κ−1 (if κ= 0, then κ−1 =+∞),

Eexp

(

λ

∫ T

0

β(r)dr

)

¶ C = C(λ,ρ, T )<+∞.
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Let ϕ be a locally integrable function on Rd . The Hardy-Littlewood maximal function is defined by

Mϕ(x) := sup
0<r<∞

1

|Br |

∫

Br

ϕ(x + y)dy,

where Br := {x ∈Rd : |x |< r}. The following result can be found in [1, Appendix A].

Lemma 5.4. (i) There exists a constant Cd > 0 such that for all ϕ ∈ C∞(Rd) and x , y ∈Rd ,

|ϕ(x)−ϕ(y)|¶ Cd · |x − y| · (M|∇ϕ|(x) +M|∇ϕ|(y)). (5.2)

(ii) For any p > 1, there exists a constant Cd,p such that for all ϕ ∈ Lp(Rd),

�
∫

Rd

(Mϕ(x))pdx

�1/p

¶ Cd,p

�
∫

Rd

|ϕ(x)|pdx

�1/p

. (5.3)
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